1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 * High-resolution kernel timers
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
13 * Started by: Thomas Gleixner and Ingo Molnar
16 * Based on the original timer wheel code
18 * Help, testing, suggestions, bugfixes, improvements were
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/sched/isolation.h>
42 #include <linux/timer.h>
43 #include <linux/freezer.h>
44 #include <linux/compat.h>
46 #include <linux/uaccess.h>
48 #include <trace/events/timer.h>
50 #include "tick-internal.h"
53 * Masks for selecting the soft and hard context timers from
56 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
57 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
58 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
59 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
64 * There are more clockids than hrtimer bases. Thus, we index
65 * into the timer bases by the hrtimer_base_type enum. When trying
66 * to reach a base using a clockid, hrtimer_clockid_to_base()
67 * is used to convert from clockid to the proper hrtimer_base_type.
69 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
71 .lock
= __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases
.lock
),
75 .index
= HRTIMER_BASE_MONOTONIC
,
76 .clockid
= CLOCK_MONOTONIC
,
77 .get_time
= &ktime_get
,
80 .index
= HRTIMER_BASE_REALTIME
,
81 .clockid
= CLOCK_REALTIME
,
82 .get_time
= &ktime_get_real
,
85 .index
= HRTIMER_BASE_BOOTTIME
,
86 .clockid
= CLOCK_BOOTTIME
,
87 .get_time
= &ktime_get_boottime
,
90 .index
= HRTIMER_BASE_TAI
,
92 .get_time
= &ktime_get_clocktai
,
95 .index
= HRTIMER_BASE_MONOTONIC_SOFT
,
96 .clockid
= CLOCK_MONOTONIC
,
97 .get_time
= &ktime_get
,
100 .index
= HRTIMER_BASE_REALTIME_SOFT
,
101 .clockid
= CLOCK_REALTIME
,
102 .get_time
= &ktime_get_real
,
105 .index
= HRTIMER_BASE_BOOTTIME_SOFT
,
106 .clockid
= CLOCK_BOOTTIME
,
107 .get_time
= &ktime_get_boottime
,
110 .index
= HRTIMER_BASE_TAI_SOFT
,
111 .clockid
= CLOCK_TAI
,
112 .get_time
= &ktime_get_clocktai
,
117 static const int hrtimer_clock_to_base_table
[MAX_CLOCKS
] = {
118 /* Make sure we catch unsupported clockids */
119 [0 ... MAX_CLOCKS
- 1] = HRTIMER_MAX_CLOCK_BASES
,
121 [CLOCK_REALTIME
] = HRTIMER_BASE_REALTIME
,
122 [CLOCK_MONOTONIC
] = HRTIMER_BASE_MONOTONIC
,
123 [CLOCK_BOOTTIME
] = HRTIMER_BASE_BOOTTIME
,
124 [CLOCK_TAI
] = HRTIMER_BASE_TAI
,
128 * Functions and macros which are different for UP/SMP systems are kept in a
134 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
135 * such that hrtimer_callback_running() can unconditionally dereference
136 * timer->base->cpu_base
138 static struct hrtimer_cpu_base migration_cpu_base
= {
140 .cpu_base
= &migration_cpu_base
,
141 .seq
= SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base
.seq
,
142 &migration_cpu_base
.lock
),
146 #define migration_base migration_cpu_base.clock_base[0]
148 static inline bool is_migration_base(struct hrtimer_clock_base
*base
)
150 return base
== &migration_base
;
154 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
155 * means that all timers which are tied to this base via timer->base are
156 * locked, and the base itself is locked too.
158 * So __run_timers/migrate_timers can safely modify all timers which could
159 * be found on the lists/queues.
161 * When the timer's base is locked, and the timer removed from list, it is
162 * possible to set timer->base = &migration_base and drop the lock: the timer
166 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
167 unsigned long *flags
)
168 __acquires(&timer
->base
->lock
)
170 struct hrtimer_clock_base
*base
;
173 base
= READ_ONCE(timer
->base
);
174 if (likely(base
!= &migration_base
)) {
175 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
176 if (likely(base
== timer
->base
))
178 /* The timer has migrated to another CPU: */
179 raw_spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
186 * We do not migrate the timer when it is expiring before the next
187 * event on the target cpu. When high resolution is enabled, we cannot
188 * reprogram the target cpu hardware and we would cause it to fire
189 * late. To keep it simple, we handle the high resolution enabled and
190 * disabled case similar.
192 * Called with cpu_base->lock of target cpu held.
195 hrtimer_check_target(struct hrtimer
*timer
, struct hrtimer_clock_base
*new_base
)
199 expires
= ktime_sub(hrtimer_get_expires(timer
), new_base
->offset
);
200 return expires
< new_base
->cpu_base
->expires_next
;
204 struct hrtimer_cpu_base
*get_target_base(struct hrtimer_cpu_base
*base
,
207 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
208 if (static_branch_likely(&timers_migration_enabled
) && !pinned
)
209 return &per_cpu(hrtimer_bases
, get_nohz_timer_target());
215 * We switch the timer base to a power-optimized selected CPU target,
217 * - NO_HZ_COMMON is enabled
218 * - timer migration is enabled
219 * - the timer callback is not running
220 * - the timer is not the first expiring timer on the new target
222 * If one of the above requirements is not fulfilled we move the timer
223 * to the current CPU or leave it on the previously assigned CPU if
224 * the timer callback is currently running.
226 static inline struct hrtimer_clock_base
*
227 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
230 struct hrtimer_cpu_base
*new_cpu_base
, *this_cpu_base
;
231 struct hrtimer_clock_base
*new_base
;
232 int basenum
= base
->index
;
234 this_cpu_base
= this_cpu_ptr(&hrtimer_bases
);
235 new_cpu_base
= get_target_base(this_cpu_base
, pinned
);
237 new_base
= &new_cpu_base
->clock_base
[basenum
];
239 if (base
!= new_base
) {
241 * We are trying to move timer to new_base.
242 * However we can't change timer's base while it is running,
243 * so we keep it on the same CPU. No hassle vs. reprogramming
244 * the event source in the high resolution case. The softirq
245 * code will take care of this when the timer function has
246 * completed. There is no conflict as we hold the lock until
247 * the timer is enqueued.
249 if (unlikely(hrtimer_callback_running(timer
)))
252 /* See the comment in lock_hrtimer_base() */
253 WRITE_ONCE(timer
->base
, &migration_base
);
254 raw_spin_unlock(&base
->cpu_base
->lock
);
255 raw_spin_lock(&new_base
->cpu_base
->lock
);
257 if (new_cpu_base
!= this_cpu_base
&&
258 hrtimer_check_target(timer
, new_base
)) {
259 raw_spin_unlock(&new_base
->cpu_base
->lock
);
260 raw_spin_lock(&base
->cpu_base
->lock
);
261 new_cpu_base
= this_cpu_base
;
262 WRITE_ONCE(timer
->base
, base
);
265 WRITE_ONCE(timer
->base
, new_base
);
267 if (new_cpu_base
!= this_cpu_base
&&
268 hrtimer_check_target(timer
, new_base
)) {
269 new_cpu_base
= this_cpu_base
;
276 #else /* CONFIG_SMP */
278 static inline bool is_migration_base(struct hrtimer_clock_base
*base
)
283 static inline struct hrtimer_clock_base
*
284 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
285 __acquires(&timer
->base
->cpu_base
->lock
)
287 struct hrtimer_clock_base
*base
= timer
->base
;
289 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
294 # define switch_hrtimer_base(t, b, p) (b)
296 #endif /* !CONFIG_SMP */
299 * Functions for the union type storage format of ktime_t which are
300 * too large for inlining:
302 #if BITS_PER_LONG < 64
304 * Divide a ktime value by a nanosecond value
306 s64
__ktime_divns(const ktime_t kt
, s64 div
)
312 dclc
= ktime_to_ns(kt
);
313 tmp
= dclc
< 0 ? -dclc
: dclc
;
315 /* Make sure the divisor is less than 2^32: */
321 do_div(tmp
, (u32
) div
);
322 return dclc
< 0 ? -tmp
: tmp
;
324 EXPORT_SYMBOL_GPL(__ktime_divns
);
325 #endif /* BITS_PER_LONG >= 64 */
328 * Add two ktime values and do a safety check for overflow:
330 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
332 ktime_t res
= ktime_add_unsafe(lhs
, rhs
);
335 * We use KTIME_SEC_MAX here, the maximum timeout which we can
336 * return to user space in a timespec:
338 if (res
< 0 || res
< lhs
|| res
< rhs
)
339 res
= ktime_set(KTIME_SEC_MAX
, 0);
344 EXPORT_SYMBOL_GPL(ktime_add_safe
);
346 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
348 static const struct debug_obj_descr hrtimer_debug_descr
;
350 static void *hrtimer_debug_hint(void *addr
)
352 return ((struct hrtimer
*) addr
)->function
;
356 * fixup_init is called when:
357 * - an active object is initialized
359 static bool hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
361 struct hrtimer
*timer
= addr
;
364 case ODEBUG_STATE_ACTIVE
:
365 hrtimer_cancel(timer
);
366 debug_object_init(timer
, &hrtimer_debug_descr
);
374 * fixup_activate is called when:
375 * - an active object is activated
376 * - an unknown non-static object is activated
378 static bool hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
381 case ODEBUG_STATE_ACTIVE
:
390 * fixup_free is called when:
391 * - an active object is freed
393 static bool hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
395 struct hrtimer
*timer
= addr
;
398 case ODEBUG_STATE_ACTIVE
:
399 hrtimer_cancel(timer
);
400 debug_object_free(timer
, &hrtimer_debug_descr
);
407 static const struct debug_obj_descr hrtimer_debug_descr
= {
409 .debug_hint
= hrtimer_debug_hint
,
410 .fixup_init
= hrtimer_fixup_init
,
411 .fixup_activate
= hrtimer_fixup_activate
,
412 .fixup_free
= hrtimer_fixup_free
,
415 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
417 debug_object_init(timer
, &hrtimer_debug_descr
);
420 static inline void debug_hrtimer_init_on_stack(struct hrtimer
*timer
)
422 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
425 static inline void debug_hrtimer_activate(struct hrtimer
*timer
,
426 enum hrtimer_mode mode
)
428 debug_object_activate(timer
, &hrtimer_debug_descr
);
431 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
433 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
436 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
438 debug_object_free(timer
, &hrtimer_debug_descr
);
440 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack
);
444 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
445 static inline void debug_hrtimer_init_on_stack(struct hrtimer
*timer
) { }
446 static inline void debug_hrtimer_activate(struct hrtimer
*timer
,
447 enum hrtimer_mode mode
) { }
448 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
452 debug_init(struct hrtimer
*timer
, clockid_t clockid
,
453 enum hrtimer_mode mode
)
455 debug_hrtimer_init(timer
);
456 trace_hrtimer_init(timer
, clockid
, mode
);
459 static inline void debug_init_on_stack(struct hrtimer
*timer
, clockid_t clockid
,
460 enum hrtimer_mode mode
)
462 debug_hrtimer_init_on_stack(timer
);
463 trace_hrtimer_init(timer
, clockid
, mode
);
466 static inline void debug_activate(struct hrtimer
*timer
,
467 enum hrtimer_mode mode
)
469 debug_hrtimer_activate(timer
, mode
);
470 trace_hrtimer_start(timer
, mode
);
473 static inline void debug_deactivate(struct hrtimer
*timer
)
475 debug_hrtimer_deactivate(timer
);
476 trace_hrtimer_cancel(timer
);
479 static struct hrtimer_clock_base
*
480 __next_base(struct hrtimer_cpu_base
*cpu_base
, unsigned int *active
)
487 idx
= __ffs(*active
);
488 *active
&= ~(1U << idx
);
490 return &cpu_base
->clock_base
[idx
];
493 #define for_each_active_base(base, cpu_base, active) \
494 while ((base = __next_base((cpu_base), &(active))))
496 static ktime_t
__hrtimer_next_event_base(struct hrtimer_cpu_base
*cpu_base
,
497 const struct hrtimer
*exclude
,
499 ktime_t expires_next
)
501 struct hrtimer_clock_base
*base
;
504 for_each_active_base(base
, cpu_base
, active
) {
505 struct timerqueue_node
*next
;
506 struct hrtimer
*timer
;
508 next
= timerqueue_getnext(&base
->active
);
509 timer
= container_of(next
, struct hrtimer
, node
);
510 if (timer
== exclude
) {
511 /* Get to the next timer in the queue. */
512 next
= timerqueue_iterate_next(next
);
516 timer
= container_of(next
, struct hrtimer
, node
);
518 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
519 if (expires
< expires_next
) {
520 expires_next
= expires
;
522 /* Skip cpu_base update if a timer is being excluded. */
527 cpu_base
->softirq_next_timer
= timer
;
529 cpu_base
->next_timer
= timer
;
533 * clock_was_set() might have changed base->offset of any of
534 * the clock bases so the result might be negative. Fix it up
535 * to prevent a false positive in clockevents_program_event().
537 if (expires_next
< 0)
543 * Recomputes cpu_base::*next_timer and returns the earliest expires_next
544 * but does not set cpu_base::*expires_next, that is done by
545 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
546 * cpu_base::*expires_next right away, reprogramming logic would no longer
549 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
550 * those timers will get run whenever the softirq gets handled, at the end of
551 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
553 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
554 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
555 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
557 * @active_mask must be one of:
558 * - HRTIMER_ACTIVE_ALL,
559 * - HRTIMER_ACTIVE_SOFT, or
560 * - HRTIMER_ACTIVE_HARD.
563 __hrtimer_get_next_event(struct hrtimer_cpu_base
*cpu_base
, unsigned int active_mask
)
566 struct hrtimer
*next_timer
= NULL
;
567 ktime_t expires_next
= KTIME_MAX
;
569 if (!cpu_base
->softirq_activated
&& (active_mask
& HRTIMER_ACTIVE_SOFT
)) {
570 active
= cpu_base
->active_bases
& HRTIMER_ACTIVE_SOFT
;
571 cpu_base
->softirq_next_timer
= NULL
;
572 expires_next
= __hrtimer_next_event_base(cpu_base
, NULL
,
575 next_timer
= cpu_base
->softirq_next_timer
;
578 if (active_mask
& HRTIMER_ACTIVE_HARD
) {
579 active
= cpu_base
->active_bases
& HRTIMER_ACTIVE_HARD
;
580 cpu_base
->next_timer
= next_timer
;
581 expires_next
= __hrtimer_next_event_base(cpu_base
, NULL
, active
,
588 static ktime_t
hrtimer_update_next_event(struct hrtimer_cpu_base
*cpu_base
)
590 ktime_t expires_next
, soft
= KTIME_MAX
;
593 * If the soft interrupt has already been activated, ignore the
594 * soft bases. They will be handled in the already raised soft
597 if (!cpu_base
->softirq_activated
) {
598 soft
= __hrtimer_get_next_event(cpu_base
, HRTIMER_ACTIVE_SOFT
);
600 * Update the soft expiry time. clock_settime() might have
603 cpu_base
->softirq_expires_next
= soft
;
606 expires_next
= __hrtimer_get_next_event(cpu_base
, HRTIMER_ACTIVE_HARD
);
608 * If a softirq timer is expiring first, update cpu_base->next_timer
609 * and program the hardware with the soft expiry time.
611 if (expires_next
> soft
) {
612 cpu_base
->next_timer
= cpu_base
->softirq_next_timer
;
619 static inline ktime_t
hrtimer_update_base(struct hrtimer_cpu_base
*base
)
621 ktime_t
*offs_real
= &base
->clock_base
[HRTIMER_BASE_REALTIME
].offset
;
622 ktime_t
*offs_boot
= &base
->clock_base
[HRTIMER_BASE_BOOTTIME
].offset
;
623 ktime_t
*offs_tai
= &base
->clock_base
[HRTIMER_BASE_TAI
].offset
;
625 ktime_t now
= ktime_get_update_offsets_now(&base
->clock_was_set_seq
,
626 offs_real
, offs_boot
, offs_tai
);
628 base
->clock_base
[HRTIMER_BASE_REALTIME_SOFT
].offset
= *offs_real
;
629 base
->clock_base
[HRTIMER_BASE_BOOTTIME_SOFT
].offset
= *offs_boot
;
630 base
->clock_base
[HRTIMER_BASE_TAI_SOFT
].offset
= *offs_tai
;
636 * Is the high resolution mode active ?
638 static inline int hrtimer_hres_active(struct hrtimer_cpu_base
*cpu_base
)
640 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS
) ?
641 cpu_base
->hres_active
: 0;
644 static void __hrtimer_reprogram(struct hrtimer_cpu_base
*cpu_base
,
645 struct hrtimer
*next_timer
,
646 ktime_t expires_next
)
648 cpu_base
->expires_next
= expires_next
;
651 * If hres is not active, hardware does not have to be
654 * If a hang was detected in the last timer interrupt then we
655 * leave the hang delay active in the hardware. We want the
656 * system to make progress. That also prevents the following
658 * T1 expires 50ms from now
659 * T2 expires 5s from now
661 * T1 is removed, so this code is called and would reprogram
662 * the hardware to 5s from now. Any hrtimer_start after that
663 * will not reprogram the hardware due to hang_detected being
664 * set. So we'd effectively block all timers until the T2 event
667 if (!hrtimer_hres_active(cpu_base
) || cpu_base
->hang_detected
)
670 tick_program_event(expires_next
, 1);
674 * Reprogram the event source with checking both queues for the
676 * Called with interrupts disabled and base->lock held
679 hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
, int skip_equal
)
681 ktime_t expires_next
;
683 expires_next
= hrtimer_update_next_event(cpu_base
);
685 if (skip_equal
&& expires_next
== cpu_base
->expires_next
)
688 __hrtimer_reprogram(cpu_base
, cpu_base
->next_timer
, expires_next
);
691 /* High resolution timer related functions */
692 #ifdef CONFIG_HIGH_RES_TIMERS
695 * High resolution timer enabled ?
697 static bool hrtimer_hres_enabled __read_mostly
= true;
698 unsigned int hrtimer_resolution __read_mostly
= LOW_RES_NSEC
;
699 EXPORT_SYMBOL_GPL(hrtimer_resolution
);
702 * Enable / Disable high resolution mode
704 static int __init
setup_hrtimer_hres(char *str
)
706 return (kstrtobool(str
, &hrtimer_hres_enabled
) == 0);
709 __setup("highres=", setup_hrtimer_hres
);
712 * hrtimer_high_res_enabled - query, if the highres mode is enabled
714 static inline int hrtimer_is_hres_enabled(void)
716 return hrtimer_hres_enabled
;
719 static void retrigger_next_event(void *arg
);
722 * Switch to high resolution mode
724 static void hrtimer_switch_to_hres(void)
726 struct hrtimer_cpu_base
*base
= this_cpu_ptr(&hrtimer_bases
);
728 if (tick_init_highres()) {
729 pr_warn("Could not switch to high resolution mode on CPU %u\n",
733 base
->hres_active
= 1;
734 hrtimer_resolution
= HIGH_RES_NSEC
;
736 tick_setup_sched_timer(true);
737 /* "Retrigger" the interrupt to get things going */
738 retrigger_next_event(NULL
);
743 static inline int hrtimer_is_hres_enabled(void) { return 0; }
744 static inline void hrtimer_switch_to_hres(void) { }
746 #endif /* CONFIG_HIGH_RES_TIMERS */
748 * Retrigger next event is called after clock was set with interrupts
749 * disabled through an SMP function call or directly from low level
752 * This is only invoked when:
753 * - CONFIG_HIGH_RES_TIMERS is enabled.
754 * - CONFIG_NOHZ_COMMON is enabled
756 * For the other cases this function is empty and because the call sites
757 * are optimized out it vanishes as well, i.e. no need for lots of
760 static void retrigger_next_event(void *arg
)
762 struct hrtimer_cpu_base
*base
= this_cpu_ptr(&hrtimer_bases
);
765 * When high resolution mode or nohz is active, then the offsets of
766 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the
767 * next tick will take care of that.
769 * If high resolution mode is active then the next expiring timer
770 * must be reevaluated and the clock event device reprogrammed if
773 * In the NOHZ case the update of the offset and the reevaluation
774 * of the next expiring timer is enough. The return from the SMP
775 * function call will take care of the reprogramming in case the
776 * CPU was in a NOHZ idle sleep.
778 if (!hrtimer_hres_active(base
) && !tick_nohz_active
)
781 raw_spin_lock(&base
->lock
);
782 hrtimer_update_base(base
);
783 if (hrtimer_hres_active(base
))
784 hrtimer_force_reprogram(base
, 0);
786 hrtimer_update_next_event(base
);
787 raw_spin_unlock(&base
->lock
);
791 * When a timer is enqueued and expires earlier than the already enqueued
792 * timers, we have to check, whether it expires earlier than the timer for
793 * which the clock event device was armed.
795 * Called with interrupts disabled and base->cpu_base.lock held
797 static void hrtimer_reprogram(struct hrtimer
*timer
, bool reprogram
)
799 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
800 struct hrtimer_clock_base
*base
= timer
->base
;
801 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
803 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
806 * CLOCK_REALTIME timer might be requested with an absolute
807 * expiry time which is less than base->offset. Set it to 0.
812 if (timer
->is_soft
) {
814 * soft hrtimer could be started on a remote CPU. In this
815 * case softirq_expires_next needs to be updated on the
816 * remote CPU. The soft hrtimer will not expire before the
817 * first hard hrtimer on the remote CPU -
818 * hrtimer_check_target() prevents this case.
820 struct hrtimer_cpu_base
*timer_cpu_base
= base
->cpu_base
;
822 if (timer_cpu_base
->softirq_activated
)
825 if (!ktime_before(expires
, timer_cpu_base
->softirq_expires_next
))
828 timer_cpu_base
->softirq_next_timer
= timer
;
829 timer_cpu_base
->softirq_expires_next
= expires
;
831 if (!ktime_before(expires
, timer_cpu_base
->expires_next
) ||
837 * If the timer is not on the current cpu, we cannot reprogram
838 * the other cpus clock event device.
840 if (base
->cpu_base
!= cpu_base
)
843 if (expires
>= cpu_base
->expires_next
)
847 * If the hrtimer interrupt is running, then it will reevaluate the
848 * clock bases and reprogram the clock event device.
850 if (cpu_base
->in_hrtirq
)
853 cpu_base
->next_timer
= timer
;
855 __hrtimer_reprogram(cpu_base
, timer
, expires
);
858 static bool update_needs_ipi(struct hrtimer_cpu_base
*cpu_base
,
861 struct hrtimer_clock_base
*base
;
866 * Update the base offsets unconditionally so the following
867 * checks whether the SMP function call is required works.
869 * The update is safe even when the remote CPU is in the hrtimer
870 * interrupt or the hrtimer soft interrupt and expiring affected
871 * bases. Either it will see the update before handling a base or
872 * it will see it when it finishes the processing and reevaluates
873 * the next expiring timer.
875 seq
= cpu_base
->clock_was_set_seq
;
876 hrtimer_update_base(cpu_base
);
879 * If the sequence did not change over the update then the
880 * remote CPU already handled it.
882 if (seq
== cpu_base
->clock_was_set_seq
)
886 * If the remote CPU is currently handling an hrtimer interrupt, it
887 * will reevaluate the first expiring timer of all clock bases
888 * before reprogramming. Nothing to do here.
890 if (cpu_base
->in_hrtirq
)
894 * Walk the affected clock bases and check whether the first expiring
895 * timer in a clock base is moving ahead of the first expiring timer of
896 * @cpu_base. If so, the IPI must be invoked because per CPU clock
897 * event devices cannot be remotely reprogrammed.
899 active
&= cpu_base
->active_bases
;
901 for_each_active_base(base
, cpu_base
, active
) {
902 struct timerqueue_node
*next
;
904 next
= timerqueue_getnext(&base
->active
);
905 expires
= ktime_sub(next
->expires
, base
->offset
);
906 if (expires
< cpu_base
->expires_next
)
909 /* Extra check for softirq clock bases */
910 if (base
->clockid
< HRTIMER_BASE_MONOTONIC_SOFT
)
912 if (cpu_base
->softirq_activated
)
914 if (expires
< cpu_base
->softirq_expires_next
)
921 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and
922 * CLOCK_BOOTTIME (for late sleep time injection).
924 * This requires to update the offsets for these clocks
925 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this
926 * also requires to eventually reprogram the per CPU clock event devices
927 * when the change moves an affected timer ahead of the first expiring
928 * timer on that CPU. Obviously remote per CPU clock event devices cannot
929 * be reprogrammed. The other reason why an IPI has to be sent is when the
930 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets
931 * in the tick, which obviously might be stopped, so this has to bring out
932 * the remote CPU which might sleep in idle to get this sorted.
934 void clock_was_set(unsigned int bases
)
936 struct hrtimer_cpu_base
*cpu_base
= raw_cpu_ptr(&hrtimer_bases
);
940 if (!hrtimer_hres_active(cpu_base
) && !tick_nohz_active
)
943 if (!zalloc_cpumask_var(&mask
, GFP_KERNEL
)) {
944 on_each_cpu(retrigger_next_event
, NULL
, 1);
948 /* Avoid interrupting CPUs if possible */
950 for_each_online_cpu(cpu
) {
953 cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
954 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
956 if (update_needs_ipi(cpu_base
, bases
))
957 cpumask_set_cpu(cpu
, mask
);
959 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
963 smp_call_function_many(mask
, retrigger_next_event
, NULL
, 1);
966 free_cpumask_var(mask
);
969 timerfd_clock_was_set();
972 static void clock_was_set_work(struct work_struct
*work
)
974 clock_was_set(CLOCK_SET_WALL
);
977 static DECLARE_WORK(hrtimer_work
, clock_was_set_work
);
980 * Called from timekeeping code to reprogram the hrtimer interrupt device
981 * on all cpus and to notify timerfd.
983 void clock_was_set_delayed(void)
985 schedule_work(&hrtimer_work
);
989 * Called during resume either directly from via timekeeping_resume()
990 * or in the case of s2idle from tick_unfreeze() to ensure that the
991 * hrtimers are up to date.
993 void hrtimers_resume_local(void)
995 lockdep_assert_irqs_disabled();
996 /* Retrigger on the local CPU */
997 retrigger_next_event(NULL
);
1001 * Counterpart to lock_hrtimer_base above:
1004 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
1005 __releases(&timer
->base
->cpu_base
->lock
)
1007 raw_spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
1011 * hrtimer_forward() - forward the timer expiry
1012 * @timer: hrtimer to forward
1013 * @now: forward past this time
1014 * @interval: the interval to forward
1016 * Forward the timer expiry so it will expire in the future.
1019 * This only updates the timer expiry value and does not requeue the timer.
1021 * There is also a variant of the function hrtimer_forward_now().
1023 * Context: Can be safely called from the callback function of @timer. If called
1024 * from other contexts @timer must neither be enqueued nor running the
1025 * callback and the caller needs to take care of serialization.
1027 * Return: The number of overruns are returned.
1029 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
1034 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
1039 if (WARN_ON(timer
->state
& HRTIMER_STATE_ENQUEUED
))
1042 if (interval
< hrtimer_resolution
)
1043 interval
= hrtimer_resolution
;
1045 if (unlikely(delta
>= interval
)) {
1046 s64 incr
= ktime_to_ns(interval
);
1048 orun
= ktime_divns(delta
, incr
);
1049 hrtimer_add_expires_ns(timer
, incr
* orun
);
1050 if (hrtimer_get_expires_tv64(timer
) > now
)
1053 * This (and the ktime_add() below) is the
1054 * correction for exact:
1058 hrtimer_add_expires(timer
, interval
);
1062 EXPORT_SYMBOL_GPL(hrtimer_forward
);
1065 * enqueue_hrtimer - internal function to (re)start a timer
1067 * The timer is inserted in expiry order. Insertion into the
1068 * red black tree is O(log(n)). Must hold the base lock.
1070 * Returns 1 when the new timer is the leftmost timer in the tree.
1072 static int enqueue_hrtimer(struct hrtimer
*timer
,
1073 struct hrtimer_clock_base
*base
,
1074 enum hrtimer_mode mode
)
1076 debug_activate(timer
, mode
);
1077 WARN_ON_ONCE(!base
->cpu_base
->online
);
1079 base
->cpu_base
->active_bases
|= 1 << base
->index
;
1081 /* Pairs with the lockless read in hrtimer_is_queued() */
1082 WRITE_ONCE(timer
->state
, HRTIMER_STATE_ENQUEUED
);
1084 return timerqueue_add(&base
->active
, &timer
->node
);
1088 * __remove_hrtimer - internal function to remove a timer
1090 * Caller must hold the base lock.
1092 * High resolution timer mode reprograms the clock event device when the
1093 * timer is the one which expires next. The caller can disable this by setting
1094 * reprogram to zero. This is useful, when the context does a reprogramming
1095 * anyway (e.g. timer interrupt)
1097 static void __remove_hrtimer(struct hrtimer
*timer
,
1098 struct hrtimer_clock_base
*base
,
1099 u8 newstate
, int reprogram
)
1101 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
1102 u8 state
= timer
->state
;
1104 /* Pairs with the lockless read in hrtimer_is_queued() */
1105 WRITE_ONCE(timer
->state
, newstate
);
1106 if (!(state
& HRTIMER_STATE_ENQUEUED
))
1109 if (!timerqueue_del(&base
->active
, &timer
->node
))
1110 cpu_base
->active_bases
&= ~(1 << base
->index
);
1113 * Note: If reprogram is false we do not update
1114 * cpu_base->next_timer. This happens when we remove the first
1115 * timer on a remote cpu. No harm as we never dereference
1116 * cpu_base->next_timer. So the worst thing what can happen is
1117 * an superfluous call to hrtimer_force_reprogram() on the
1118 * remote cpu later on if the same timer gets enqueued again.
1120 if (reprogram
&& timer
== cpu_base
->next_timer
)
1121 hrtimer_force_reprogram(cpu_base
, 1);
1125 * remove hrtimer, called with base lock held
1128 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
1129 bool restart
, bool keep_local
)
1131 u8 state
= timer
->state
;
1133 if (state
& HRTIMER_STATE_ENQUEUED
) {
1137 * Remove the timer and force reprogramming when high
1138 * resolution mode is active and the timer is on the current
1139 * CPU. If we remove a timer on another CPU, reprogramming is
1140 * skipped. The interrupt event on this CPU is fired and
1141 * reprogramming happens in the interrupt handler. This is a
1142 * rare case and less expensive than a smp call.
1144 debug_deactivate(timer
);
1145 reprogram
= base
->cpu_base
== this_cpu_ptr(&hrtimer_bases
);
1148 * If the timer is not restarted then reprogramming is
1149 * required if the timer is local. If it is local and about
1150 * to be restarted, avoid programming it twice (on removal
1151 * and a moment later when it's requeued).
1154 state
= HRTIMER_STATE_INACTIVE
;
1156 reprogram
&= !keep_local
;
1158 __remove_hrtimer(timer
, base
, state
, reprogram
);
1164 static inline ktime_t
hrtimer_update_lowres(struct hrtimer
*timer
, ktime_t tim
,
1165 const enum hrtimer_mode mode
)
1167 #ifdef CONFIG_TIME_LOW_RES
1169 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1170 * granular time values. For relative timers we add hrtimer_resolution
1171 * (i.e. one jiffy) to prevent short timeouts.
1173 timer
->is_rel
= mode
& HRTIMER_MODE_REL
;
1175 tim
= ktime_add_safe(tim
, hrtimer_resolution
);
1181 hrtimer_update_softirq_timer(struct hrtimer_cpu_base
*cpu_base
, bool reprogram
)
1186 * Find the next SOFT expiration.
1188 expires
= __hrtimer_get_next_event(cpu_base
, HRTIMER_ACTIVE_SOFT
);
1191 * reprogramming needs to be triggered, even if the next soft
1192 * hrtimer expires at the same time than the next hard
1193 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1195 if (expires
== KTIME_MAX
)
1199 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1200 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1202 hrtimer_reprogram(cpu_base
->softirq_next_timer
, reprogram
);
1205 static int __hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
1206 u64 delta_ns
, const enum hrtimer_mode mode
,
1207 struct hrtimer_clock_base
*base
)
1209 struct hrtimer_clock_base
*new_base
;
1210 bool force_local
, first
;
1213 * If the timer is on the local cpu base and is the first expiring
1214 * timer then this might end up reprogramming the hardware twice
1215 * (on removal and on enqueue). To avoid that by prevent the
1216 * reprogram on removal, keep the timer local to the current CPU
1217 * and enforce reprogramming after it is queued no matter whether
1218 * it is the new first expiring timer again or not.
1220 force_local
= base
->cpu_base
== this_cpu_ptr(&hrtimer_bases
);
1221 force_local
&= base
->cpu_base
->next_timer
== timer
;
1224 * Remove an active timer from the queue. In case it is not queued
1225 * on the current CPU, make sure that remove_hrtimer() updates the
1226 * remote data correctly.
1228 * If it's on the current CPU and the first expiring timer, then
1229 * skip reprogramming, keep the timer local and enforce
1230 * reprogramming later if it was the first expiring timer. This
1231 * avoids programming the underlying clock event twice (once at
1232 * removal and once after enqueue).
1234 remove_hrtimer(timer
, base
, true, force_local
);
1236 if (mode
& HRTIMER_MODE_REL
)
1237 tim
= ktime_add_safe(tim
, base
->get_time());
1239 tim
= hrtimer_update_lowres(timer
, tim
, mode
);
1241 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
1243 /* Switch the timer base, if necessary: */
1245 new_base
= switch_hrtimer_base(timer
, base
,
1246 mode
& HRTIMER_MODE_PINNED
);
1251 first
= enqueue_hrtimer(timer
, new_base
, mode
);
1256 * Timer was forced to stay on the current CPU to avoid
1257 * reprogramming on removal and enqueue. Force reprogram the
1258 * hardware by evaluating the new first expiring timer.
1260 hrtimer_force_reprogram(new_base
->cpu_base
, 1);
1265 * hrtimer_start_range_ns - (re)start an hrtimer
1266 * @timer: the timer to be added
1268 * @delta_ns: "slack" range for the timer
1269 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1270 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1271 * softirq based mode is considered for debug purpose only!
1273 void hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
1274 u64 delta_ns
, const enum hrtimer_mode mode
)
1276 struct hrtimer_clock_base
*base
;
1277 unsigned long flags
;
1279 if (WARN_ON_ONCE(!timer
->function
))
1282 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1283 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1284 * expiry mode because unmarked timers are moved to softirq expiry.
1286 if (!IS_ENABLED(CONFIG_PREEMPT_RT
))
1287 WARN_ON_ONCE(!(mode
& HRTIMER_MODE_SOFT
) ^ !timer
->is_soft
);
1289 WARN_ON_ONCE(!(mode
& HRTIMER_MODE_HARD
) ^ !timer
->is_hard
);
1291 base
= lock_hrtimer_base(timer
, &flags
);
1293 if (__hrtimer_start_range_ns(timer
, tim
, delta_ns
, mode
, base
))
1294 hrtimer_reprogram(timer
, true);
1296 unlock_hrtimer_base(timer
, &flags
);
1298 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1301 * hrtimer_try_to_cancel - try to deactivate a timer
1302 * @timer: hrtimer to stop
1306 * * 0 when the timer was not active
1307 * * 1 when the timer was active
1308 * * -1 when the timer is currently executing the callback function and
1311 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1313 struct hrtimer_clock_base
*base
;
1314 unsigned long flags
;
1318 * Check lockless first. If the timer is not active (neither
1319 * enqueued nor running the callback, nothing to do here. The
1320 * base lock does not serialize against a concurrent enqueue,
1321 * so we can avoid taking it.
1323 if (!hrtimer_active(timer
))
1326 base
= lock_hrtimer_base(timer
, &flags
);
1328 if (!hrtimer_callback_running(timer
))
1329 ret
= remove_hrtimer(timer
, base
, false, false);
1331 unlock_hrtimer_base(timer
, &flags
);
1336 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1338 #ifdef CONFIG_PREEMPT_RT
1339 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base
*base
)
1341 spin_lock_init(&base
->softirq_expiry_lock
);
1344 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base
*base
)
1345 __acquires(&base
->softirq_expiry_lock
)
1347 spin_lock(&base
->softirq_expiry_lock
);
1350 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base
*base
)
1351 __releases(&base
->softirq_expiry_lock
)
1353 spin_unlock(&base
->softirq_expiry_lock
);
1357 * The counterpart to hrtimer_cancel_wait_running().
1359 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1360 * the timer callback to finish. Drop expiry_lock and reacquire it. That
1361 * allows the waiter to acquire the lock and make progress.
1363 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base
*cpu_base
,
1364 unsigned long flags
)
1366 if (atomic_read(&cpu_base
->timer_waiters
)) {
1367 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1368 spin_unlock(&cpu_base
->softirq_expiry_lock
);
1369 spin_lock(&cpu_base
->softirq_expiry_lock
);
1370 raw_spin_lock_irq(&cpu_base
->lock
);
1375 * This function is called on PREEMPT_RT kernels when the fast path
1376 * deletion of a timer failed because the timer callback function was
1379 * This prevents priority inversion: if the soft irq thread is preempted
1380 * in the middle of a timer callback, then calling del_timer_sync() can
1381 * lead to two issues:
1383 * - If the caller is on a remote CPU then it has to spin wait for the timer
1384 * handler to complete. This can result in unbound priority inversion.
1386 * - If the caller originates from the task which preempted the timer
1387 * handler on the same CPU, then spin waiting for the timer handler to
1388 * complete is never going to end.
1390 void hrtimer_cancel_wait_running(const struct hrtimer
*timer
)
1392 /* Lockless read. Prevent the compiler from reloading it below */
1393 struct hrtimer_clock_base
*base
= READ_ONCE(timer
->base
);
1396 * Just relax if the timer expires in hard interrupt context or if
1397 * it is currently on the migration base.
1399 if (!timer
->is_soft
|| is_migration_base(base
)) {
1405 * Mark the base as contended and grab the expiry lock, which is
1406 * held by the softirq across the timer callback. Drop the lock
1407 * immediately so the softirq can expire the next timer. In theory
1408 * the timer could already be running again, but that's more than
1409 * unlikely and just causes another wait loop.
1411 atomic_inc(&base
->cpu_base
->timer_waiters
);
1412 spin_lock_bh(&base
->cpu_base
->softirq_expiry_lock
);
1413 atomic_dec(&base
->cpu_base
->timer_waiters
);
1414 spin_unlock_bh(&base
->cpu_base
->softirq_expiry_lock
);
1418 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base
*base
) { }
1420 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base
*base
) { }
1422 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base
*base
) { }
1423 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base
*base
,
1424 unsigned long flags
) { }
1428 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1429 * @timer: the timer to be cancelled
1432 * 0 when the timer was not active
1433 * 1 when the timer was active
1435 int hrtimer_cancel(struct hrtimer
*timer
)
1440 ret
= hrtimer_try_to_cancel(timer
);
1443 hrtimer_cancel_wait_running(timer
);
1447 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1450 * __hrtimer_get_remaining - get remaining time for the timer
1451 * @timer: the timer to read
1452 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1454 ktime_t
__hrtimer_get_remaining(const struct hrtimer
*timer
, bool adjust
)
1456 unsigned long flags
;
1459 lock_hrtimer_base(timer
, &flags
);
1460 if (IS_ENABLED(CONFIG_TIME_LOW_RES
) && adjust
)
1461 rem
= hrtimer_expires_remaining_adjusted(timer
);
1463 rem
= hrtimer_expires_remaining(timer
);
1464 unlock_hrtimer_base(timer
, &flags
);
1468 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining
);
1470 #ifdef CONFIG_NO_HZ_COMMON
1472 * hrtimer_get_next_event - get the time until next expiry event
1474 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1476 u64
hrtimer_get_next_event(void)
1478 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1479 u64 expires
= KTIME_MAX
;
1480 unsigned long flags
;
1482 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1484 if (!hrtimer_hres_active(cpu_base
))
1485 expires
= __hrtimer_get_next_event(cpu_base
, HRTIMER_ACTIVE_ALL
);
1487 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1493 * hrtimer_next_event_without - time until next expiry event w/o one timer
1494 * @exclude: timer to exclude
1496 * Returns the next expiry time over all timers except for the @exclude one or
1497 * KTIME_MAX if none of them is pending.
1499 u64
hrtimer_next_event_without(const struct hrtimer
*exclude
)
1501 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1502 u64 expires
= KTIME_MAX
;
1503 unsigned long flags
;
1505 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1507 if (hrtimer_hres_active(cpu_base
)) {
1508 unsigned int active
;
1510 if (!cpu_base
->softirq_activated
) {
1511 active
= cpu_base
->active_bases
& HRTIMER_ACTIVE_SOFT
;
1512 expires
= __hrtimer_next_event_base(cpu_base
, exclude
,
1515 active
= cpu_base
->active_bases
& HRTIMER_ACTIVE_HARD
;
1516 expires
= __hrtimer_next_event_base(cpu_base
, exclude
, active
,
1520 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1526 static inline int hrtimer_clockid_to_base(clockid_t clock_id
)
1528 if (likely(clock_id
< MAX_CLOCKS
)) {
1529 int base
= hrtimer_clock_to_base_table
[clock_id
];
1531 if (likely(base
!= HRTIMER_MAX_CLOCK_BASES
))
1534 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id
);
1535 return HRTIMER_BASE_MONOTONIC
;
1538 static enum hrtimer_restart
hrtimer_dummy_timeout(struct hrtimer
*unused
)
1540 return HRTIMER_NORESTART
;
1543 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1544 enum hrtimer_mode mode
)
1546 bool softtimer
= !!(mode
& HRTIMER_MODE_SOFT
);
1547 struct hrtimer_cpu_base
*cpu_base
;
1551 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1552 * marked for hard interrupt expiry mode are moved into soft
1553 * interrupt context for latency reasons and because the callbacks
1554 * can invoke functions which might sleep on RT, e.g. spin_lock().
1556 if (IS_ENABLED(CONFIG_PREEMPT_RT
) && !(mode
& HRTIMER_MODE_HARD
))
1559 memset(timer
, 0, sizeof(struct hrtimer
));
1561 cpu_base
= raw_cpu_ptr(&hrtimer_bases
);
1564 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1565 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1566 * ensure POSIX compliance.
1568 if (clock_id
== CLOCK_REALTIME
&& mode
& HRTIMER_MODE_REL
)
1569 clock_id
= CLOCK_MONOTONIC
;
1571 base
= softtimer
? HRTIMER_MAX_CLOCK_BASES
/ 2 : 0;
1572 base
+= hrtimer_clockid_to_base(clock_id
);
1573 timer
->is_soft
= softtimer
;
1574 timer
->is_hard
= !!(mode
& HRTIMER_MODE_HARD
);
1575 timer
->base
= &cpu_base
->clock_base
[base
];
1576 timerqueue_init(&timer
->node
);
1579 static void __hrtimer_setup(struct hrtimer
*timer
,
1580 enum hrtimer_restart (*function
)(struct hrtimer
*),
1581 clockid_t clock_id
, enum hrtimer_mode mode
)
1583 __hrtimer_init(timer
, clock_id
, mode
);
1585 if (WARN_ON_ONCE(!function
))
1586 timer
->function
= hrtimer_dummy_timeout
;
1588 timer
->function
= function
;
1592 * hrtimer_init - initialize a timer to the given clock
1593 * @timer: the timer to be initialized
1594 * @clock_id: the clock to be used
1595 * @mode: The modes which are relevant for initialization:
1596 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1597 * HRTIMER_MODE_REL_SOFT
1599 * The PINNED variants of the above can be handed in,
1600 * but the PINNED bit is ignored as pinning happens
1601 * when the hrtimer is started
1603 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1604 enum hrtimer_mode mode
)
1606 debug_init(timer
, clock_id
, mode
);
1607 __hrtimer_init(timer
, clock_id
, mode
);
1609 EXPORT_SYMBOL_GPL(hrtimer_init
);
1612 * hrtimer_setup - initialize a timer to the given clock
1613 * @timer: the timer to be initialized
1614 * @function: the callback function
1615 * @clock_id: the clock to be used
1616 * @mode: The modes which are relevant for initialization:
1617 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1618 * HRTIMER_MODE_REL_SOFT
1620 * The PINNED variants of the above can be handed in,
1621 * but the PINNED bit is ignored as pinning happens
1622 * when the hrtimer is started
1624 void hrtimer_setup(struct hrtimer
*timer
, enum hrtimer_restart (*function
)(struct hrtimer
*),
1625 clockid_t clock_id
, enum hrtimer_mode mode
)
1627 debug_init(timer
, clock_id
, mode
);
1628 __hrtimer_setup(timer
, function
, clock_id
, mode
);
1630 EXPORT_SYMBOL_GPL(hrtimer_setup
);
1633 * hrtimer_setup_on_stack - initialize a timer on stack memory
1634 * @timer: The timer to be initialized
1635 * @function: the callback function
1636 * @clock_id: The clock to be used
1637 * @mode: The timer mode
1639 * Similar to hrtimer_setup(), except that this one must be used if struct hrtimer is in stack
1642 void hrtimer_setup_on_stack(struct hrtimer
*timer
,
1643 enum hrtimer_restart (*function
)(struct hrtimer
*),
1644 clockid_t clock_id
, enum hrtimer_mode mode
)
1646 debug_init_on_stack(timer
, clock_id
, mode
);
1647 __hrtimer_setup(timer
, function
, clock_id
, mode
);
1649 EXPORT_SYMBOL_GPL(hrtimer_setup_on_stack
);
1652 * A timer is active, when it is enqueued into the rbtree or the
1653 * callback function is running or it's in the state of being migrated
1656 * It is important for this function to not return a false negative.
1658 bool hrtimer_active(const struct hrtimer
*timer
)
1660 struct hrtimer_clock_base
*base
;
1664 base
= READ_ONCE(timer
->base
);
1665 seq
= raw_read_seqcount_begin(&base
->seq
);
1667 if (timer
->state
!= HRTIMER_STATE_INACTIVE
||
1668 base
->running
== timer
)
1671 } while (read_seqcount_retry(&base
->seq
, seq
) ||
1672 base
!= READ_ONCE(timer
->base
));
1676 EXPORT_SYMBOL_GPL(hrtimer_active
);
1679 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1680 * distinct sections:
1682 * - queued: the timer is queued
1683 * - callback: the timer is being ran
1684 * - post: the timer is inactive or (re)queued
1686 * On the read side we ensure we observe timer->state and cpu_base->running
1687 * from the same section, if anything changed while we looked at it, we retry.
1688 * This includes timer->base changing because sequence numbers alone are
1689 * insufficient for that.
1691 * The sequence numbers are required because otherwise we could still observe
1692 * a false negative if the read side got smeared over multiple consecutive
1693 * __run_hrtimer() invocations.
1696 static void __run_hrtimer(struct hrtimer_cpu_base
*cpu_base
,
1697 struct hrtimer_clock_base
*base
,
1698 struct hrtimer
*timer
, ktime_t
*now
,
1699 unsigned long flags
) __must_hold(&cpu_base
->lock
)
1701 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1702 bool expires_in_hardirq
;
1705 lockdep_assert_held(&cpu_base
->lock
);
1707 debug_deactivate(timer
);
1708 base
->running
= timer
;
1711 * Separate the ->running assignment from the ->state assignment.
1713 * As with a regular write barrier, this ensures the read side in
1714 * hrtimer_active() cannot observe base->running == NULL &&
1715 * timer->state == INACTIVE.
1717 raw_write_seqcount_barrier(&base
->seq
);
1719 __remove_hrtimer(timer
, base
, HRTIMER_STATE_INACTIVE
, 0);
1720 fn
= timer
->function
;
1723 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1724 * timer is restarted with a period then it becomes an absolute
1725 * timer. If its not restarted it does not matter.
1727 if (IS_ENABLED(CONFIG_TIME_LOW_RES
))
1728 timer
->is_rel
= false;
1731 * The timer is marked as running in the CPU base, so it is
1732 * protected against migration to a different CPU even if the lock
1735 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1736 trace_hrtimer_expire_entry(timer
, now
);
1737 expires_in_hardirq
= lockdep_hrtimer_enter(timer
);
1739 restart
= fn(timer
);
1741 lockdep_hrtimer_exit(expires_in_hardirq
);
1742 trace_hrtimer_expire_exit(timer
);
1743 raw_spin_lock_irq(&cpu_base
->lock
);
1746 * Note: We clear the running state after enqueue_hrtimer and
1747 * we do not reprogram the event hardware. Happens either in
1748 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1750 * Note: Because we dropped the cpu_base->lock above,
1751 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1754 if (restart
!= HRTIMER_NORESTART
&&
1755 !(timer
->state
& HRTIMER_STATE_ENQUEUED
))
1756 enqueue_hrtimer(timer
, base
, HRTIMER_MODE_ABS
);
1759 * Separate the ->running assignment from the ->state assignment.
1761 * As with a regular write barrier, this ensures the read side in
1762 * hrtimer_active() cannot observe base->running.timer == NULL &&
1763 * timer->state == INACTIVE.
1765 raw_write_seqcount_barrier(&base
->seq
);
1767 WARN_ON_ONCE(base
->running
!= timer
);
1768 base
->running
= NULL
;
1771 static void __hrtimer_run_queues(struct hrtimer_cpu_base
*cpu_base
, ktime_t now
,
1772 unsigned long flags
, unsigned int active_mask
)
1774 struct hrtimer_clock_base
*base
;
1775 unsigned int active
= cpu_base
->active_bases
& active_mask
;
1777 for_each_active_base(base
, cpu_base
, active
) {
1778 struct timerqueue_node
*node
;
1781 basenow
= ktime_add(now
, base
->offset
);
1783 while ((node
= timerqueue_getnext(&base
->active
))) {
1784 struct hrtimer
*timer
;
1786 timer
= container_of(node
, struct hrtimer
, node
);
1789 * The immediate goal for using the softexpires is
1790 * minimizing wakeups, not running timers at the
1791 * earliest interrupt after their soft expiration.
1792 * This allows us to avoid using a Priority Search
1793 * Tree, which can answer a stabbing query for
1794 * overlapping intervals and instead use the simple
1795 * BST we already have.
1796 * We don't add extra wakeups by delaying timers that
1797 * are right-of a not yet expired timer, because that
1798 * timer will have to trigger a wakeup anyway.
1800 if (basenow
< hrtimer_get_softexpires_tv64(timer
))
1803 __run_hrtimer(cpu_base
, base
, timer
, &basenow
, flags
);
1804 if (active_mask
== HRTIMER_ACTIVE_SOFT
)
1805 hrtimer_sync_wait_running(cpu_base
, flags
);
1810 static __latent_entropy
void hrtimer_run_softirq(void)
1812 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1813 unsigned long flags
;
1816 hrtimer_cpu_base_lock_expiry(cpu_base
);
1817 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1819 now
= hrtimer_update_base(cpu_base
);
1820 __hrtimer_run_queues(cpu_base
, now
, flags
, HRTIMER_ACTIVE_SOFT
);
1822 cpu_base
->softirq_activated
= 0;
1823 hrtimer_update_softirq_timer(cpu_base
, true);
1825 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1826 hrtimer_cpu_base_unlock_expiry(cpu_base
);
1829 #ifdef CONFIG_HIGH_RES_TIMERS
1832 * High resolution timer interrupt
1833 * Called with interrupts disabled
1835 void hrtimer_interrupt(struct clock_event_device
*dev
)
1837 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1838 ktime_t expires_next
, now
, entry_time
, delta
;
1839 unsigned long flags
;
1842 BUG_ON(!cpu_base
->hres_active
);
1843 cpu_base
->nr_events
++;
1844 dev
->next_event
= KTIME_MAX
;
1846 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1847 entry_time
= now
= hrtimer_update_base(cpu_base
);
1849 cpu_base
->in_hrtirq
= 1;
1851 * We set expires_next to KTIME_MAX here with cpu_base->lock
1852 * held to prevent that a timer is enqueued in our queue via
1853 * the migration code. This does not affect enqueueing of
1854 * timers which run their callback and need to be requeued on
1857 cpu_base
->expires_next
= KTIME_MAX
;
1859 if (!ktime_before(now
, cpu_base
->softirq_expires_next
)) {
1860 cpu_base
->softirq_expires_next
= KTIME_MAX
;
1861 cpu_base
->softirq_activated
= 1;
1862 raise_timer_softirq(HRTIMER_SOFTIRQ
);
1865 __hrtimer_run_queues(cpu_base
, now
, flags
, HRTIMER_ACTIVE_HARD
);
1867 /* Reevaluate the clock bases for the [soft] next expiry */
1868 expires_next
= hrtimer_update_next_event(cpu_base
);
1870 * Store the new expiry value so the migration code can verify
1873 cpu_base
->expires_next
= expires_next
;
1874 cpu_base
->in_hrtirq
= 0;
1875 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1877 /* Reprogramming necessary ? */
1878 if (!tick_program_event(expires_next
, 0)) {
1879 cpu_base
->hang_detected
= 0;
1884 * The next timer was already expired due to:
1886 * - long lasting callbacks
1887 * - being scheduled away when running in a VM
1889 * We need to prevent that we loop forever in the hrtimer
1890 * interrupt routine. We give it 3 attempts to avoid
1891 * overreacting on some spurious event.
1893 * Acquire base lock for updating the offsets and retrieving
1896 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1897 now
= hrtimer_update_base(cpu_base
);
1898 cpu_base
->nr_retries
++;
1902 * Give the system a chance to do something else than looping
1903 * here. We stored the entry time, so we know exactly how long
1904 * we spent here. We schedule the next event this amount of
1907 cpu_base
->nr_hangs
++;
1908 cpu_base
->hang_detected
= 1;
1909 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1911 delta
= ktime_sub(now
, entry_time
);
1912 if ((unsigned int)delta
> cpu_base
->max_hang_time
)
1913 cpu_base
->max_hang_time
= (unsigned int) delta
;
1915 * Limit it to a sensible value as we enforce a longer
1916 * delay. Give the CPU at least 100ms to catch up.
1918 if (delta
> 100 * NSEC_PER_MSEC
)
1919 expires_next
= ktime_add_ns(now
, 100 * NSEC_PER_MSEC
);
1921 expires_next
= ktime_add(now
, delta
);
1922 tick_program_event(expires_next
, 1);
1923 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta
));
1925 #endif /* !CONFIG_HIGH_RES_TIMERS */
1928 * Called from run_local_timers in hardirq context every jiffy
1930 void hrtimer_run_queues(void)
1932 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1933 unsigned long flags
;
1936 if (hrtimer_hres_active(cpu_base
))
1940 * This _is_ ugly: We have to check periodically, whether we
1941 * can switch to highres and / or nohz mode. The clocksource
1942 * switch happens with xtime_lock held. Notification from
1943 * there only sets the check bit in the tick_oneshot code,
1944 * otherwise we might deadlock vs. xtime_lock.
1946 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1947 hrtimer_switch_to_hres();
1951 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1952 now
= hrtimer_update_base(cpu_base
);
1954 if (!ktime_before(now
, cpu_base
->softirq_expires_next
)) {
1955 cpu_base
->softirq_expires_next
= KTIME_MAX
;
1956 cpu_base
->softirq_activated
= 1;
1957 raise_timer_softirq(HRTIMER_SOFTIRQ
);
1960 __hrtimer_run_queues(cpu_base
, now
, flags
, HRTIMER_ACTIVE_HARD
);
1961 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1965 * Sleep related functions:
1967 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1969 struct hrtimer_sleeper
*t
=
1970 container_of(timer
, struct hrtimer_sleeper
, timer
);
1971 struct task_struct
*task
= t
->task
;
1975 wake_up_process(task
);
1977 return HRTIMER_NORESTART
;
1981 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1982 * @sl: sleeper to be started
1983 * @mode: timer mode abs/rel
1985 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1986 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1988 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper
*sl
,
1989 enum hrtimer_mode mode
)
1992 * Make the enqueue delivery mode check work on RT. If the sleeper
1993 * was initialized for hard interrupt delivery, force the mode bit.
1994 * This is a special case for hrtimer_sleepers because
1995 * __hrtimer_init_sleeper() determines the delivery mode on RT so the
1996 * fiddling with this decision is avoided at the call sites.
1998 if (IS_ENABLED(CONFIG_PREEMPT_RT
) && sl
->timer
.is_hard
)
1999 mode
|= HRTIMER_MODE_HARD
;
2001 hrtimer_start_expires(&sl
->timer
, mode
);
2003 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires
);
2005 static void __hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
,
2006 clockid_t clock_id
, enum hrtimer_mode mode
)
2009 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
2010 * marked for hard interrupt expiry mode are moved into soft
2011 * interrupt context either for latency reasons or because the
2012 * hrtimer callback takes regular spinlocks or invokes other
2013 * functions which are not suitable for hard interrupt context on
2016 * The hrtimer_sleeper callback is RT compatible in hard interrupt
2017 * context, but there is a latency concern: Untrusted userspace can
2018 * spawn many threads which arm timers for the same expiry time on
2019 * the same CPU. That causes a latency spike due to the wakeup of
2020 * a gazillion threads.
2022 * OTOH, privileged real-time user space applications rely on the
2023 * low latency of hard interrupt wakeups. If the current task is in
2024 * a real-time scheduling class, mark the mode for hard interrupt
2027 if (IS_ENABLED(CONFIG_PREEMPT_RT
)) {
2028 if (rt_or_dl_task_policy(current
) && !(mode
& HRTIMER_MODE_SOFT
))
2029 mode
|= HRTIMER_MODE_HARD
;
2032 __hrtimer_init(&sl
->timer
, clock_id
, mode
);
2033 sl
->timer
.function
= hrtimer_wakeup
;
2038 * hrtimer_setup_sleeper_on_stack - initialize a sleeper in stack memory
2039 * @sl: sleeper to be initialized
2040 * @clock_id: the clock to be used
2041 * @mode: timer mode abs/rel
2043 void hrtimer_setup_sleeper_on_stack(struct hrtimer_sleeper
*sl
,
2044 clockid_t clock_id
, enum hrtimer_mode mode
)
2046 debug_init_on_stack(&sl
->timer
, clock_id
, mode
);
2047 __hrtimer_init_sleeper(sl
, clock_id
, mode
);
2049 EXPORT_SYMBOL_GPL(hrtimer_setup_sleeper_on_stack
);
2051 int nanosleep_copyout(struct restart_block
*restart
, struct timespec64
*ts
)
2053 switch(restart
->nanosleep
.type
) {
2054 #ifdef CONFIG_COMPAT_32BIT_TIME
2056 if (put_old_timespec32(ts
, restart
->nanosleep
.compat_rmtp
))
2061 if (put_timespec64(ts
, restart
->nanosleep
.rmtp
))
2067 return -ERESTART_RESTARTBLOCK
;
2070 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
2072 struct restart_block
*restart
;
2075 set_current_state(TASK_INTERRUPTIBLE
|TASK_FREEZABLE
);
2076 hrtimer_sleeper_start_expires(t
, mode
);
2078 if (likely(t
->task
))
2081 hrtimer_cancel(&t
->timer
);
2082 mode
= HRTIMER_MODE_ABS
;
2084 } while (t
->task
&& !signal_pending(current
));
2086 __set_current_state(TASK_RUNNING
);
2091 restart
= ¤t
->restart_block
;
2092 if (restart
->nanosleep
.type
!= TT_NONE
) {
2093 ktime_t rem
= hrtimer_expires_remaining(&t
->timer
);
2094 struct timespec64 rmt
;
2098 rmt
= ktime_to_timespec64(rem
);
2100 return nanosleep_copyout(restart
, &rmt
);
2102 return -ERESTART_RESTARTBLOCK
;
2105 static long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
2107 struct hrtimer_sleeper t
;
2110 hrtimer_setup_sleeper_on_stack(&t
, restart
->nanosleep
.clockid
, HRTIMER_MODE_ABS
);
2111 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
2112 ret
= do_nanosleep(&t
, HRTIMER_MODE_ABS
);
2113 destroy_hrtimer_on_stack(&t
.timer
);
2117 long hrtimer_nanosleep(ktime_t rqtp
, const enum hrtimer_mode mode
,
2118 const clockid_t clockid
)
2120 struct restart_block
*restart
;
2121 struct hrtimer_sleeper t
;
2124 hrtimer_setup_sleeper_on_stack(&t
, clockid
, mode
);
2125 hrtimer_set_expires_range_ns(&t
.timer
, rqtp
, current
->timer_slack_ns
);
2126 ret
= do_nanosleep(&t
, mode
);
2127 if (ret
!= -ERESTART_RESTARTBLOCK
)
2130 /* Absolute timers do not update the rmtp value and restart: */
2131 if (mode
== HRTIMER_MODE_ABS
) {
2132 ret
= -ERESTARTNOHAND
;
2136 restart
= ¤t
->restart_block
;
2137 restart
->nanosleep
.clockid
= t
.timer
.base
->clockid
;
2138 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
2139 set_restart_fn(restart
, hrtimer_nanosleep_restart
);
2141 destroy_hrtimer_on_stack(&t
.timer
);
2147 SYSCALL_DEFINE2(nanosleep
, struct __kernel_timespec __user
*, rqtp
,
2148 struct __kernel_timespec __user
*, rmtp
)
2150 struct timespec64 tu
;
2152 if (get_timespec64(&tu
, rqtp
))
2155 if (!timespec64_valid(&tu
))
2158 current
->restart_block
.fn
= do_no_restart_syscall
;
2159 current
->restart_block
.nanosleep
.type
= rmtp
? TT_NATIVE
: TT_NONE
;
2160 current
->restart_block
.nanosleep
.rmtp
= rmtp
;
2161 return hrtimer_nanosleep(timespec64_to_ktime(tu
), HRTIMER_MODE_REL
,
2167 #ifdef CONFIG_COMPAT_32BIT_TIME
2169 SYSCALL_DEFINE2(nanosleep_time32
, struct old_timespec32 __user
*, rqtp
,
2170 struct old_timespec32 __user
*, rmtp
)
2172 struct timespec64 tu
;
2174 if (get_old_timespec32(&tu
, rqtp
))
2177 if (!timespec64_valid(&tu
))
2180 current
->restart_block
.fn
= do_no_restart_syscall
;
2181 current
->restart_block
.nanosleep
.type
= rmtp
? TT_COMPAT
: TT_NONE
;
2182 current
->restart_block
.nanosleep
.compat_rmtp
= rmtp
;
2183 return hrtimer_nanosleep(timespec64_to_ktime(tu
), HRTIMER_MODE_REL
,
2189 * Functions related to boot-time initialization:
2191 int hrtimers_prepare_cpu(unsigned int cpu
)
2193 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
2196 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
2197 struct hrtimer_clock_base
*clock_b
= &cpu_base
->clock_base
[i
];
2199 clock_b
->cpu_base
= cpu_base
;
2200 seqcount_raw_spinlock_init(&clock_b
->seq
, &cpu_base
->lock
);
2201 timerqueue_init_head(&clock_b
->active
);
2204 cpu_base
->cpu
= cpu
;
2205 cpu_base
->active_bases
= 0;
2206 cpu_base
->hres_active
= 0;
2207 cpu_base
->hang_detected
= 0;
2208 cpu_base
->next_timer
= NULL
;
2209 cpu_base
->softirq_next_timer
= NULL
;
2210 cpu_base
->expires_next
= KTIME_MAX
;
2211 cpu_base
->softirq_expires_next
= KTIME_MAX
;
2212 cpu_base
->online
= 1;
2213 hrtimer_cpu_base_init_expiry_lock(cpu_base
);
2217 #ifdef CONFIG_HOTPLUG_CPU
2219 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
2220 struct hrtimer_clock_base
*new_base
)
2222 struct hrtimer
*timer
;
2223 struct timerqueue_node
*node
;
2225 while ((node
= timerqueue_getnext(&old_base
->active
))) {
2226 timer
= container_of(node
, struct hrtimer
, node
);
2227 BUG_ON(hrtimer_callback_running(timer
));
2228 debug_deactivate(timer
);
2231 * Mark it as ENQUEUED not INACTIVE otherwise the
2232 * timer could be seen as !active and just vanish away
2233 * under us on another CPU
2235 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_ENQUEUED
, 0);
2236 timer
->base
= new_base
;
2238 * Enqueue the timers on the new cpu. This does not
2239 * reprogram the event device in case the timer
2240 * expires before the earliest on this CPU, but we run
2241 * hrtimer_interrupt after we migrated everything to
2242 * sort out already expired timers and reprogram the
2245 enqueue_hrtimer(timer
, new_base
, HRTIMER_MODE_ABS
);
2249 int hrtimers_cpu_dying(unsigned int dying_cpu
)
2251 int i
, ncpu
= cpumask_any_and(cpu_active_mask
, housekeeping_cpumask(HK_TYPE_TIMER
));
2252 struct hrtimer_cpu_base
*old_base
, *new_base
;
2254 old_base
= this_cpu_ptr(&hrtimer_bases
);
2255 new_base
= &per_cpu(hrtimer_bases
, ncpu
);
2258 * The caller is globally serialized and nobody else
2259 * takes two locks at once, deadlock is not possible.
2261 raw_spin_lock(&old_base
->lock
);
2262 raw_spin_lock_nested(&new_base
->lock
, SINGLE_DEPTH_NESTING
);
2264 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
2265 migrate_hrtimer_list(&old_base
->clock_base
[i
],
2266 &new_base
->clock_base
[i
]);
2270 * The migration might have changed the first expiring softirq
2271 * timer on this CPU. Update it.
2273 __hrtimer_get_next_event(new_base
, HRTIMER_ACTIVE_SOFT
);
2274 /* Tell the other CPU to retrigger the next event */
2275 smp_call_function_single(ncpu
, retrigger_next_event
, NULL
, 0);
2277 raw_spin_unlock(&new_base
->lock
);
2278 old_base
->online
= 0;
2279 raw_spin_unlock(&old_base
->lock
);
2284 #endif /* CONFIG_HOTPLUG_CPU */
2286 void __init
hrtimers_init(void)
2288 hrtimers_prepare_cpu(smp_processor_id());
2289 open_softirq(HRTIMER_SOFTIRQ
, hrtimer_run_softirq
);