1 // SPDX-License-Identifier: GPL-2.0
3 * This file contains the base functions to manage periodic tick
6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 #include <linux/compiler.h>
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/nmi.h>
16 #include <linux/percpu.h>
17 #include <linux/profile.h>
18 #include <linux/sched.h>
19 #include <linux/module.h>
20 #include <trace/events/power.h>
22 #include <asm/irq_regs.h>
24 #include "tick-internal.h"
29 DEFINE_PER_CPU(struct tick_device
, tick_cpu_device
);
31 * Tick next event: keeps track of the tick time. It's updated by the
32 * CPU which handles the tick and protected by jiffies_lock. There is
33 * no requirement to write hold the jiffies seqcount for it.
35 ktime_t tick_next_period
;
38 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
39 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
40 * variable has two functions:
42 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
43 * timekeeping lock all at once. Only the CPU which is assigned to do the
44 * update is handling it.
46 * 2) Hand off the duty in the NOHZ idle case by setting the value to
47 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
48 * at it will take over and keep the time keeping alive. The handover
49 * procedure also covers cpu hotplug.
51 int tick_do_timer_cpu __read_mostly
= TICK_DO_TIMER_BOOT
;
52 #ifdef CONFIG_NO_HZ_FULL
54 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
55 * tick_do_timer_cpu and it should be taken over by an eligible secondary
56 * when one comes online.
58 static int tick_do_timer_boot_cpu __read_mostly
= -1;
62 * Debugging: see timer_list.c
64 struct tick_device
*tick_get_device(int cpu
)
66 return &per_cpu(tick_cpu_device
, cpu
);
70 * tick_is_oneshot_available - check for a oneshot capable event device
72 int tick_is_oneshot_available(void)
74 struct clock_event_device
*dev
= __this_cpu_read(tick_cpu_device
.evtdev
);
76 if (!dev
|| !(dev
->features
& CLOCK_EVT_FEAT_ONESHOT
))
78 if (!(dev
->features
& CLOCK_EVT_FEAT_C3STOP
))
80 return tick_broadcast_oneshot_available();
86 static void tick_periodic(int cpu
)
88 if (READ_ONCE(tick_do_timer_cpu
) == cpu
) {
89 raw_spin_lock(&jiffies_lock
);
90 write_seqcount_begin(&jiffies_seq
);
92 /* Keep track of the next tick event */
93 tick_next_period
= ktime_add_ns(tick_next_period
, TICK_NSEC
);
96 write_seqcount_end(&jiffies_seq
);
97 raw_spin_unlock(&jiffies_lock
);
101 update_process_times(user_mode(get_irq_regs()));
102 profile_tick(CPU_PROFILING
);
106 * Event handler for periodic ticks
108 void tick_handle_periodic(struct clock_event_device
*dev
)
110 int cpu
= smp_processor_id();
111 ktime_t next
= dev
->next_event
;
116 * The cpu might have transitioned to HIGHRES or NOHZ mode via
117 * update_process_times() -> run_local_timers() ->
118 * hrtimer_run_queues().
120 if (IS_ENABLED(CONFIG_TICK_ONESHOT
) && dev
->event_handler
!= tick_handle_periodic
)
123 if (!clockevent_state_oneshot(dev
))
127 * Setup the next period for devices, which do not have
130 next
= ktime_add_ns(next
, TICK_NSEC
);
132 if (!clockevents_program_event(dev
, next
, false))
135 * Have to be careful here. If we're in oneshot mode,
136 * before we call tick_periodic() in a loop, we need
137 * to be sure we're using a real hardware clocksource.
138 * Otherwise we could get trapped in an infinite
139 * loop, as the tick_periodic() increments jiffies,
140 * which then will increment time, possibly causing
141 * the loop to trigger again and again.
143 if (timekeeping_valid_for_hres())
149 * Setup the device for a periodic tick
151 void tick_setup_periodic(struct clock_event_device
*dev
, int broadcast
)
153 tick_set_periodic_handler(dev
, broadcast
);
155 /* Broadcast setup ? */
156 if (!tick_device_is_functional(dev
))
159 if ((dev
->features
& CLOCK_EVT_FEAT_PERIODIC
) &&
160 !tick_broadcast_oneshot_active()) {
161 clockevents_switch_state(dev
, CLOCK_EVT_STATE_PERIODIC
);
167 seq
= read_seqcount_begin(&jiffies_seq
);
168 next
= tick_next_period
;
169 } while (read_seqcount_retry(&jiffies_seq
, seq
));
171 clockevents_switch_state(dev
, CLOCK_EVT_STATE_ONESHOT
);
174 if (!clockevents_program_event(dev
, next
, false))
176 next
= ktime_add_ns(next
, TICK_NSEC
);
182 * Setup the tick device
184 static void tick_setup_device(struct tick_device
*td
,
185 struct clock_event_device
*newdev
, int cpu
,
186 const struct cpumask
*cpumask
)
188 void (*handler
)(struct clock_event_device
*) = NULL
;
189 ktime_t next_event
= 0;
192 * First device setup ?
196 * If no cpu took the do_timer update, assign it to
199 if (READ_ONCE(tick_do_timer_cpu
) == TICK_DO_TIMER_BOOT
) {
200 WRITE_ONCE(tick_do_timer_cpu
, cpu
);
201 tick_next_period
= ktime_get();
202 #ifdef CONFIG_NO_HZ_FULL
204 * The boot CPU may be nohz_full, in which case the
205 * first housekeeping secondary will take do_timer()
208 if (tick_nohz_full_cpu(cpu
))
209 tick_do_timer_boot_cpu
= cpu
;
211 } else if (tick_do_timer_boot_cpu
!= -1 && !tick_nohz_full_cpu(cpu
)) {
212 tick_do_timer_boot_cpu
= -1;
214 * The boot CPU will stay in periodic (NOHZ disabled)
215 * mode until clocksource_done_booting() called after
216 * smp_init() selects a high resolution clocksource and
217 * timekeeping_notify() kicks the NOHZ stuff alive.
219 * So this WRITE_ONCE can only race with the READ_ONCE
220 * check in tick_periodic() but this race is harmless.
222 WRITE_ONCE(tick_do_timer_cpu
, cpu
);
227 * Startup in periodic mode first.
229 td
->mode
= TICKDEV_MODE_PERIODIC
;
231 handler
= td
->evtdev
->event_handler
;
232 next_event
= td
->evtdev
->next_event
;
233 td
->evtdev
->event_handler
= clockevents_handle_noop
;
239 * When the device is not per cpu, pin the interrupt to the
242 if (!cpumask_equal(newdev
->cpumask
, cpumask
))
243 irq_set_affinity(newdev
->irq
, cpumask
);
246 * When global broadcasting is active, check if the current
247 * device is registered as a placeholder for broadcast mode.
248 * This allows us to handle this x86 misfeature in a generic
249 * way. This function also returns !=0 when we keep the
250 * current active broadcast state for this CPU.
252 if (tick_device_uses_broadcast(newdev
, cpu
))
255 if (td
->mode
== TICKDEV_MODE_PERIODIC
)
256 tick_setup_periodic(newdev
, 0);
258 tick_setup_oneshot(newdev
, handler
, next_event
);
261 void tick_install_replacement(struct clock_event_device
*newdev
)
263 struct tick_device
*td
= this_cpu_ptr(&tick_cpu_device
);
264 int cpu
= smp_processor_id();
266 clockevents_exchange_device(td
->evtdev
, newdev
);
267 tick_setup_device(td
, newdev
, cpu
, cpumask_of(cpu
));
268 if (newdev
->features
& CLOCK_EVT_FEAT_ONESHOT
)
269 tick_oneshot_notify();
272 static bool tick_check_percpu(struct clock_event_device
*curdev
,
273 struct clock_event_device
*newdev
, int cpu
)
275 if (!cpumask_test_cpu(cpu
, newdev
->cpumask
))
277 if (cpumask_equal(newdev
->cpumask
, cpumask_of(cpu
)))
279 /* Check if irq affinity can be set */
280 if (newdev
->irq
>= 0 && !irq_can_set_affinity(newdev
->irq
))
282 /* Prefer an existing cpu local device */
283 if (curdev
&& cpumask_equal(curdev
->cpumask
, cpumask_of(cpu
)))
288 static bool tick_check_preferred(struct clock_event_device
*curdev
,
289 struct clock_event_device
*newdev
)
291 /* Prefer oneshot capable device */
292 if (!(newdev
->features
& CLOCK_EVT_FEAT_ONESHOT
)) {
293 if (curdev
&& (curdev
->features
& CLOCK_EVT_FEAT_ONESHOT
))
295 if (tick_oneshot_mode_active())
300 * Use the higher rated one, but prefer a CPU local device with a lower
301 * rating than a non-CPU local device
304 newdev
->rating
> curdev
->rating
||
305 !cpumask_equal(curdev
->cpumask
, newdev
->cpumask
);
309 * Check whether the new device is a better fit than curdev. curdev
312 bool tick_check_replacement(struct clock_event_device
*curdev
,
313 struct clock_event_device
*newdev
)
315 if (!tick_check_percpu(curdev
, newdev
, smp_processor_id()))
318 return tick_check_preferred(curdev
, newdev
);
322 * Check, if the new registered device should be used. Called with
323 * clockevents_lock held and interrupts disabled.
325 void tick_check_new_device(struct clock_event_device
*newdev
)
327 struct clock_event_device
*curdev
;
328 struct tick_device
*td
;
331 cpu
= smp_processor_id();
332 td
= &per_cpu(tick_cpu_device
, cpu
);
335 if (!tick_check_replacement(curdev
, newdev
))
338 if (!try_module_get(newdev
->owner
))
342 * Replace the eventually existing device by the new
343 * device. If the current device is the broadcast device, do
344 * not give it back to the clockevents layer !
346 if (tick_is_broadcast_device(curdev
)) {
347 clockevents_shutdown(curdev
);
350 clockevents_exchange_device(curdev
, newdev
);
351 tick_setup_device(td
, newdev
, cpu
, cpumask_of(cpu
));
352 if (newdev
->features
& CLOCK_EVT_FEAT_ONESHOT
)
353 tick_oneshot_notify();
358 * Can the new device be used as a broadcast device ?
360 tick_install_broadcast_device(newdev
, cpu
);
364 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
365 * @state: The target state (enter/exit)
367 * The system enters/leaves a state, where affected devices might stop
368 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
370 * Called with interrupts disabled, so clockevents_lock is not
371 * required here because the local clock event device cannot go away
374 int tick_broadcast_oneshot_control(enum tick_broadcast_state state
)
376 struct tick_device
*td
= this_cpu_ptr(&tick_cpu_device
);
378 if (!(td
->evtdev
->features
& CLOCK_EVT_FEAT_C3STOP
))
381 return __tick_broadcast_oneshot_control(state
);
383 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control
);
385 #ifdef CONFIG_HOTPLUG_CPU
386 void tick_assert_timekeeping_handover(void)
388 WARN_ON_ONCE(tick_do_timer_cpu
== smp_processor_id());
391 * Stop the tick and transfer the timekeeping job away from a dying cpu.
393 int tick_cpu_dying(unsigned int dying_cpu
)
396 * If the current CPU is the timekeeper, it's the only one that can
397 * safely hand over its duty. Also all online CPUs are in stop
398 * machine, guaranteed not to be idle, therefore there is no
399 * concurrency and it's safe to pick any online successor.
401 if (tick_do_timer_cpu
== dying_cpu
)
402 tick_do_timer_cpu
= cpumask_first(cpu_online_mask
);
404 /* Make sure the CPU won't try to retake the timekeeping duty */
405 tick_sched_timer_dying(dying_cpu
);
407 /* Remove CPU from timer broadcasting */
408 tick_offline_cpu(dying_cpu
);
414 * Shutdown an event device on a given cpu:
416 * This is called on a life CPU, when a CPU is dead. So we cannot
417 * access the hardware device itself.
418 * We just set the mode and remove it from the lists.
420 void tick_shutdown(unsigned int cpu
)
422 struct tick_device
*td
= &per_cpu(tick_cpu_device
, cpu
);
423 struct clock_event_device
*dev
= td
->evtdev
;
425 td
->mode
= TICKDEV_MODE_PERIODIC
;
428 * Prevent that the clock events layer tries to call
429 * the set mode function!
431 clockevent_set_state(dev
, CLOCK_EVT_STATE_DETACHED
);
432 clockevents_exchange_device(dev
, NULL
);
433 dev
->event_handler
= clockevents_handle_noop
;
440 * tick_suspend_local - Suspend the local tick device
442 * Called from the local cpu for freeze with interrupts disabled.
444 * No locks required. Nothing can change the per cpu device.
446 void tick_suspend_local(void)
448 struct tick_device
*td
= this_cpu_ptr(&tick_cpu_device
);
450 clockevents_shutdown(td
->evtdev
);
454 * tick_resume_local - Resume the local tick device
456 * Called from the local CPU for unfreeze or XEN resume magic.
458 * No locks required. Nothing can change the per cpu device.
460 void tick_resume_local(void)
462 struct tick_device
*td
= this_cpu_ptr(&tick_cpu_device
);
463 bool broadcast
= tick_resume_check_broadcast();
465 clockevents_tick_resume(td
->evtdev
);
467 if (td
->mode
== TICKDEV_MODE_PERIODIC
)
468 tick_setup_periodic(td
->evtdev
, 0);
470 tick_resume_oneshot();
474 * Ensure that hrtimers are up to date and the clockevents device
475 * is reprogrammed correctly when high resolution timers are
478 hrtimers_resume_local();
482 * tick_suspend - Suspend the tick and the broadcast device
484 * Called from syscore_suspend() via timekeeping_suspend with only one
485 * CPU online and interrupts disabled or from tick_unfreeze() under
488 * No locks required. Nothing can change the per cpu device.
490 void tick_suspend(void)
492 tick_suspend_local();
493 tick_suspend_broadcast();
497 * tick_resume - Resume the tick and the broadcast device
499 * Called from syscore_resume() via timekeeping_resume with only one
500 * CPU online and interrupts disabled.
502 * No locks required. Nothing can change the per cpu device.
504 void tick_resume(void)
506 tick_resume_broadcast();
510 #ifdef CONFIG_SUSPEND
511 static DEFINE_RAW_SPINLOCK(tick_freeze_lock
);
512 static unsigned int tick_freeze_depth
;
515 * tick_freeze - Suspend the local tick and (possibly) timekeeping.
517 * Check if this is the last online CPU executing the function and if so,
518 * suspend timekeeping. Otherwise suspend the local tick.
520 * Call with interrupts disabled. Must be balanced with %tick_unfreeze().
521 * Interrupts must not be enabled before the subsequent %tick_unfreeze().
523 void tick_freeze(void)
525 raw_spin_lock(&tick_freeze_lock
);
528 if (tick_freeze_depth
== num_online_cpus()) {
529 trace_suspend_resume(TPS("timekeeping_freeze"),
530 smp_processor_id(), true);
531 system_state
= SYSTEM_SUSPEND
;
532 sched_clock_suspend();
533 timekeeping_suspend();
535 tick_suspend_local();
538 raw_spin_unlock(&tick_freeze_lock
);
542 * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
544 * Check if this is the first CPU executing the function and if so, resume
545 * timekeeping. Otherwise resume the local tick.
547 * Call with interrupts disabled. Must be balanced with %tick_freeze().
548 * Interrupts must not be enabled after the preceding %tick_freeze().
550 void tick_unfreeze(void)
552 raw_spin_lock(&tick_freeze_lock
);
554 if (tick_freeze_depth
== num_online_cpus()) {
555 timekeeping_resume();
556 sched_clock_resume();
557 system_state
= SYSTEM_RUNNING
;
558 trace_suspend_resume(TPS("timekeeping_freeze"),
559 smp_processor_id(), false);
561 touch_softlockup_watchdog();
567 raw_spin_unlock(&tick_freeze_lock
);
569 #endif /* CONFIG_SUSPEND */
572 * tick_init - initialize the tick control
574 void __init
tick_init(void)
576 tick_broadcast_init();