Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / kernel / time / tick-common.c
bloba47bcf71defcf5afdf4edae01d27287e73f1d56a
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file contains the base functions to manage periodic tick
4 * related events.
6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9 */
10 #include <linux/compiler.h>
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/nmi.h>
16 #include <linux/percpu.h>
17 #include <linux/profile.h>
18 #include <linux/sched.h>
19 #include <linux/module.h>
20 #include <trace/events/power.h>
22 #include <asm/irq_regs.h>
24 #include "tick-internal.h"
27 * Tick devices
29 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
31 * Tick next event: keeps track of the tick time. It's updated by the
32 * CPU which handles the tick and protected by jiffies_lock. There is
33 * no requirement to write hold the jiffies seqcount for it.
35 ktime_t tick_next_period;
38 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
39 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
40 * variable has two functions:
42 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
43 * timekeeping lock all at once. Only the CPU which is assigned to do the
44 * update is handling it.
46 * 2) Hand off the duty in the NOHZ idle case by setting the value to
47 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
48 * at it will take over and keep the time keeping alive. The handover
49 * procedure also covers cpu hotplug.
51 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
52 #ifdef CONFIG_NO_HZ_FULL
54 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
55 * tick_do_timer_cpu and it should be taken over by an eligible secondary
56 * when one comes online.
58 static int tick_do_timer_boot_cpu __read_mostly = -1;
59 #endif
62 * Debugging: see timer_list.c
64 struct tick_device *tick_get_device(int cpu)
66 return &per_cpu(tick_cpu_device, cpu);
69 /**
70 * tick_is_oneshot_available - check for a oneshot capable event device
72 int tick_is_oneshot_available(void)
74 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
76 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
77 return 0;
78 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
79 return 1;
80 return tick_broadcast_oneshot_available();
84 * Periodic tick
86 static void tick_periodic(int cpu)
88 if (READ_ONCE(tick_do_timer_cpu) == cpu) {
89 raw_spin_lock(&jiffies_lock);
90 write_seqcount_begin(&jiffies_seq);
92 /* Keep track of the next tick event */
93 tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC);
95 do_timer(1);
96 write_seqcount_end(&jiffies_seq);
97 raw_spin_unlock(&jiffies_lock);
98 update_wall_time();
101 update_process_times(user_mode(get_irq_regs()));
102 profile_tick(CPU_PROFILING);
106 * Event handler for periodic ticks
108 void tick_handle_periodic(struct clock_event_device *dev)
110 int cpu = smp_processor_id();
111 ktime_t next = dev->next_event;
113 tick_periodic(cpu);
116 * The cpu might have transitioned to HIGHRES or NOHZ mode via
117 * update_process_times() -> run_local_timers() ->
118 * hrtimer_run_queues().
120 if (IS_ENABLED(CONFIG_TICK_ONESHOT) && dev->event_handler != tick_handle_periodic)
121 return;
123 if (!clockevent_state_oneshot(dev))
124 return;
125 for (;;) {
127 * Setup the next period for devices, which do not have
128 * periodic mode:
130 next = ktime_add_ns(next, TICK_NSEC);
132 if (!clockevents_program_event(dev, next, false))
133 return;
135 * Have to be careful here. If we're in oneshot mode,
136 * before we call tick_periodic() in a loop, we need
137 * to be sure we're using a real hardware clocksource.
138 * Otherwise we could get trapped in an infinite
139 * loop, as the tick_periodic() increments jiffies,
140 * which then will increment time, possibly causing
141 * the loop to trigger again and again.
143 if (timekeeping_valid_for_hres())
144 tick_periodic(cpu);
149 * Setup the device for a periodic tick
151 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
153 tick_set_periodic_handler(dev, broadcast);
155 /* Broadcast setup ? */
156 if (!tick_device_is_functional(dev))
157 return;
159 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
160 !tick_broadcast_oneshot_active()) {
161 clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
162 } else {
163 unsigned int seq;
164 ktime_t next;
166 do {
167 seq = read_seqcount_begin(&jiffies_seq);
168 next = tick_next_period;
169 } while (read_seqcount_retry(&jiffies_seq, seq));
171 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
173 for (;;) {
174 if (!clockevents_program_event(dev, next, false))
175 return;
176 next = ktime_add_ns(next, TICK_NSEC);
182 * Setup the tick device
184 static void tick_setup_device(struct tick_device *td,
185 struct clock_event_device *newdev, int cpu,
186 const struct cpumask *cpumask)
188 void (*handler)(struct clock_event_device *) = NULL;
189 ktime_t next_event = 0;
192 * First device setup ?
194 if (!td->evtdev) {
196 * If no cpu took the do_timer update, assign it to
197 * this cpu:
199 if (READ_ONCE(tick_do_timer_cpu) == TICK_DO_TIMER_BOOT) {
200 WRITE_ONCE(tick_do_timer_cpu, cpu);
201 tick_next_period = ktime_get();
202 #ifdef CONFIG_NO_HZ_FULL
204 * The boot CPU may be nohz_full, in which case the
205 * first housekeeping secondary will take do_timer()
206 * from it.
208 if (tick_nohz_full_cpu(cpu))
209 tick_do_timer_boot_cpu = cpu;
211 } else if (tick_do_timer_boot_cpu != -1 && !tick_nohz_full_cpu(cpu)) {
212 tick_do_timer_boot_cpu = -1;
214 * The boot CPU will stay in periodic (NOHZ disabled)
215 * mode until clocksource_done_booting() called after
216 * smp_init() selects a high resolution clocksource and
217 * timekeeping_notify() kicks the NOHZ stuff alive.
219 * So this WRITE_ONCE can only race with the READ_ONCE
220 * check in tick_periodic() but this race is harmless.
222 WRITE_ONCE(tick_do_timer_cpu, cpu);
223 #endif
227 * Startup in periodic mode first.
229 td->mode = TICKDEV_MODE_PERIODIC;
230 } else {
231 handler = td->evtdev->event_handler;
232 next_event = td->evtdev->next_event;
233 td->evtdev->event_handler = clockevents_handle_noop;
236 td->evtdev = newdev;
239 * When the device is not per cpu, pin the interrupt to the
240 * current cpu:
242 if (!cpumask_equal(newdev->cpumask, cpumask))
243 irq_set_affinity(newdev->irq, cpumask);
246 * When global broadcasting is active, check if the current
247 * device is registered as a placeholder for broadcast mode.
248 * This allows us to handle this x86 misfeature in a generic
249 * way. This function also returns !=0 when we keep the
250 * current active broadcast state for this CPU.
252 if (tick_device_uses_broadcast(newdev, cpu))
253 return;
255 if (td->mode == TICKDEV_MODE_PERIODIC)
256 tick_setup_periodic(newdev, 0);
257 else
258 tick_setup_oneshot(newdev, handler, next_event);
261 void tick_install_replacement(struct clock_event_device *newdev)
263 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
264 int cpu = smp_processor_id();
266 clockevents_exchange_device(td->evtdev, newdev);
267 tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
268 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
269 tick_oneshot_notify();
272 static bool tick_check_percpu(struct clock_event_device *curdev,
273 struct clock_event_device *newdev, int cpu)
275 if (!cpumask_test_cpu(cpu, newdev->cpumask))
276 return false;
277 if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
278 return true;
279 /* Check if irq affinity can be set */
280 if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
281 return false;
282 /* Prefer an existing cpu local device */
283 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
284 return false;
285 return true;
288 static bool tick_check_preferred(struct clock_event_device *curdev,
289 struct clock_event_device *newdev)
291 /* Prefer oneshot capable device */
292 if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
293 if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
294 return false;
295 if (tick_oneshot_mode_active())
296 return false;
300 * Use the higher rated one, but prefer a CPU local device with a lower
301 * rating than a non-CPU local device
303 return !curdev ||
304 newdev->rating > curdev->rating ||
305 !cpumask_equal(curdev->cpumask, newdev->cpumask);
309 * Check whether the new device is a better fit than curdev. curdev
310 * can be NULL !
312 bool tick_check_replacement(struct clock_event_device *curdev,
313 struct clock_event_device *newdev)
315 if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
316 return false;
318 return tick_check_preferred(curdev, newdev);
322 * Check, if the new registered device should be used. Called with
323 * clockevents_lock held and interrupts disabled.
325 void tick_check_new_device(struct clock_event_device *newdev)
327 struct clock_event_device *curdev;
328 struct tick_device *td;
329 int cpu;
331 cpu = smp_processor_id();
332 td = &per_cpu(tick_cpu_device, cpu);
333 curdev = td->evtdev;
335 if (!tick_check_replacement(curdev, newdev))
336 goto out_bc;
338 if (!try_module_get(newdev->owner))
339 return;
342 * Replace the eventually existing device by the new
343 * device. If the current device is the broadcast device, do
344 * not give it back to the clockevents layer !
346 if (tick_is_broadcast_device(curdev)) {
347 clockevents_shutdown(curdev);
348 curdev = NULL;
350 clockevents_exchange_device(curdev, newdev);
351 tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
352 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
353 tick_oneshot_notify();
354 return;
356 out_bc:
358 * Can the new device be used as a broadcast device ?
360 tick_install_broadcast_device(newdev, cpu);
364 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
365 * @state: The target state (enter/exit)
367 * The system enters/leaves a state, where affected devices might stop
368 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
370 * Called with interrupts disabled, so clockevents_lock is not
371 * required here because the local clock event device cannot go away
372 * under us.
374 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
376 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
378 if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
379 return 0;
381 return __tick_broadcast_oneshot_control(state);
383 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
385 #ifdef CONFIG_HOTPLUG_CPU
386 void tick_assert_timekeeping_handover(void)
388 WARN_ON_ONCE(tick_do_timer_cpu == smp_processor_id());
391 * Stop the tick and transfer the timekeeping job away from a dying cpu.
393 int tick_cpu_dying(unsigned int dying_cpu)
396 * If the current CPU is the timekeeper, it's the only one that can
397 * safely hand over its duty. Also all online CPUs are in stop
398 * machine, guaranteed not to be idle, therefore there is no
399 * concurrency and it's safe to pick any online successor.
401 if (tick_do_timer_cpu == dying_cpu)
402 tick_do_timer_cpu = cpumask_first(cpu_online_mask);
404 /* Make sure the CPU won't try to retake the timekeeping duty */
405 tick_sched_timer_dying(dying_cpu);
407 /* Remove CPU from timer broadcasting */
408 tick_offline_cpu(dying_cpu);
410 return 0;
414 * Shutdown an event device on a given cpu:
416 * This is called on a life CPU, when a CPU is dead. So we cannot
417 * access the hardware device itself.
418 * We just set the mode and remove it from the lists.
420 void tick_shutdown(unsigned int cpu)
422 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
423 struct clock_event_device *dev = td->evtdev;
425 td->mode = TICKDEV_MODE_PERIODIC;
426 if (dev) {
428 * Prevent that the clock events layer tries to call
429 * the set mode function!
431 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
432 clockevents_exchange_device(dev, NULL);
433 dev->event_handler = clockevents_handle_noop;
434 td->evtdev = NULL;
437 #endif
440 * tick_suspend_local - Suspend the local tick device
442 * Called from the local cpu for freeze with interrupts disabled.
444 * No locks required. Nothing can change the per cpu device.
446 void tick_suspend_local(void)
448 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
450 clockevents_shutdown(td->evtdev);
454 * tick_resume_local - Resume the local tick device
456 * Called from the local CPU for unfreeze or XEN resume magic.
458 * No locks required. Nothing can change the per cpu device.
460 void tick_resume_local(void)
462 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
463 bool broadcast = tick_resume_check_broadcast();
465 clockevents_tick_resume(td->evtdev);
466 if (!broadcast) {
467 if (td->mode == TICKDEV_MODE_PERIODIC)
468 tick_setup_periodic(td->evtdev, 0);
469 else
470 tick_resume_oneshot();
474 * Ensure that hrtimers are up to date and the clockevents device
475 * is reprogrammed correctly when high resolution timers are
476 * enabled.
478 hrtimers_resume_local();
482 * tick_suspend - Suspend the tick and the broadcast device
484 * Called from syscore_suspend() via timekeeping_suspend with only one
485 * CPU online and interrupts disabled or from tick_unfreeze() under
486 * tick_freeze_lock.
488 * No locks required. Nothing can change the per cpu device.
490 void tick_suspend(void)
492 tick_suspend_local();
493 tick_suspend_broadcast();
497 * tick_resume - Resume the tick and the broadcast device
499 * Called from syscore_resume() via timekeeping_resume with only one
500 * CPU online and interrupts disabled.
502 * No locks required. Nothing can change the per cpu device.
504 void tick_resume(void)
506 tick_resume_broadcast();
507 tick_resume_local();
510 #ifdef CONFIG_SUSPEND
511 static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
512 static unsigned int tick_freeze_depth;
515 * tick_freeze - Suspend the local tick and (possibly) timekeeping.
517 * Check if this is the last online CPU executing the function and if so,
518 * suspend timekeeping. Otherwise suspend the local tick.
520 * Call with interrupts disabled. Must be balanced with %tick_unfreeze().
521 * Interrupts must not be enabled before the subsequent %tick_unfreeze().
523 void tick_freeze(void)
525 raw_spin_lock(&tick_freeze_lock);
527 tick_freeze_depth++;
528 if (tick_freeze_depth == num_online_cpus()) {
529 trace_suspend_resume(TPS("timekeeping_freeze"),
530 smp_processor_id(), true);
531 system_state = SYSTEM_SUSPEND;
532 sched_clock_suspend();
533 timekeeping_suspend();
534 } else {
535 tick_suspend_local();
538 raw_spin_unlock(&tick_freeze_lock);
542 * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
544 * Check if this is the first CPU executing the function and if so, resume
545 * timekeeping. Otherwise resume the local tick.
547 * Call with interrupts disabled. Must be balanced with %tick_freeze().
548 * Interrupts must not be enabled after the preceding %tick_freeze().
550 void tick_unfreeze(void)
552 raw_spin_lock(&tick_freeze_lock);
554 if (tick_freeze_depth == num_online_cpus()) {
555 timekeeping_resume();
556 sched_clock_resume();
557 system_state = SYSTEM_RUNNING;
558 trace_suspend_resume(TPS("timekeeping_freeze"),
559 smp_processor_id(), false);
560 } else {
561 touch_softlockup_watchdog();
562 tick_resume_local();
565 tick_freeze_depth--;
567 raw_spin_unlock(&tick_freeze_lock);
569 #endif /* CONFIG_SUSPEND */
572 * tick_init - initialize the tick control
574 void __init tick_init(void)
576 tick_broadcast_init();
577 tick_nohz_init();