1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992 Linus Torvalds
5 * This file contains the interface functions for the various time related
6 * system calls: time, stime, gettimeofday, settimeofday, adjtime
8 * Modification history:
10 * 1993-09-02 Philip Gladstone
11 * Created file with time related functions from sched/core.c and adjtimex()
12 * 1993-10-08 Torsten Duwe
13 * adjtime interface update and CMOS clock write code
14 * 1995-08-13 Torsten Duwe
15 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
16 * 1999-01-16 Ulrich Windl
17 * Introduced error checking for many cases in adjtimex().
18 * Updated NTP code according to technical memorandum Jan '96
19 * "A Kernel Model for Precision Timekeeping" by Dave Mills
20 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
21 * (Even though the technical memorandum forbids it)
22 * 2004-07-14 Christoph Lameter
23 * Added getnstimeofday to allow the posix timer functions to return
24 * with nanosecond accuracy
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/timex.h>
30 #include <linux/capability.h>
31 #include <linux/timekeeper_internal.h>
32 #include <linux/errno.h>
33 #include <linux/syscalls.h>
34 #include <linux/security.h>
36 #include <linux/math64.h>
37 #include <linux/ptrace.h>
39 #include <linux/uaccess.h>
40 #include <linux/compat.h>
41 #include <asm/unistd.h>
43 #include <generated/timeconst.h>
44 #include "timekeeping.h"
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
50 struct timezone sys_tz
;
52 EXPORT_SYMBOL(sys_tz
);
54 #ifdef __ARCH_WANT_SYS_TIME
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
62 SYSCALL_DEFINE1(time
, __kernel_old_time_t __user
*, tloc
)
64 __kernel_old_time_t i
= (__kernel_old_time_t
)ktime_get_real_seconds();
70 force_successful_syscall_return();
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
81 SYSCALL_DEFINE1(stime
, __kernel_old_time_t __user
*, tptr
)
86 if (get_user(tv
.tv_sec
, tptr
))
91 err
= security_settime64(&tv
, NULL
);
95 do_settimeofday64(&tv
);
99 #endif /* __ARCH_WANT_SYS_TIME */
101 #ifdef CONFIG_COMPAT_32BIT_TIME
102 #ifdef __ARCH_WANT_SYS_TIME32
104 /* old_time32_t is a 32 bit "long" and needs to get converted. */
105 SYSCALL_DEFINE1(time32
, old_time32_t __user
*, tloc
)
109 i
= (old_time32_t
)ktime_get_real_seconds();
112 if (put_user(i
,tloc
))
115 force_successful_syscall_return();
119 SYSCALL_DEFINE1(stime32
, old_time32_t __user
*, tptr
)
121 struct timespec64 tv
;
124 if (get_user(tv
.tv_sec
, tptr
))
129 err
= security_settime64(&tv
, NULL
);
133 do_settimeofday64(&tv
);
137 #endif /* __ARCH_WANT_SYS_TIME32 */
140 SYSCALL_DEFINE2(gettimeofday
, struct __kernel_old_timeval __user
*, tv
,
141 struct timezone __user
*, tz
)
143 if (likely(tv
!= NULL
)) {
144 struct timespec64 ts
;
146 ktime_get_real_ts64(&ts
);
147 if (put_user(ts
.tv_sec
, &tv
->tv_sec
) ||
148 put_user(ts
.tv_nsec
/ 1000, &tv
->tv_usec
))
151 if (unlikely(tz
!= NULL
)) {
152 if (copy_to_user(tz
, &sys_tz
, sizeof(sys_tz
)))
159 * In case for some reason the CMOS clock has not already been running
160 * in UTC, but in some local time: The first time we set the timezone,
161 * we will warp the clock so that it is ticking UTC time instead of
162 * local time. Presumably, if someone is setting the timezone then we
163 * are running in an environment where the programs understand about
164 * timezones. This should be done at boot time in the /etc/rc script,
165 * as soon as possible, so that the clock can be set right. Otherwise,
166 * various programs will get confused when the clock gets warped.
169 int do_sys_settimeofday64(const struct timespec64
*tv
, const struct timezone
*tz
)
171 static int firsttime
= 1;
174 if (tv
&& !timespec64_valid_settod(tv
))
177 error
= security_settime64(tv
, tz
);
182 /* Verify we're within the +-15 hrs range */
183 if (tz
->tz_minuteswest
> 15*60 || tz
->tz_minuteswest
< -15*60)
187 update_vsyscall_tz();
191 timekeeping_warp_clock();
195 return do_settimeofday64(tv
);
199 SYSCALL_DEFINE2(settimeofday
, struct __kernel_old_timeval __user
*, tv
,
200 struct timezone __user
*, tz
)
202 struct timespec64 new_ts
;
203 struct timezone new_tz
;
206 if (get_user(new_ts
.tv_sec
, &tv
->tv_sec
) ||
207 get_user(new_ts
.tv_nsec
, &tv
->tv_usec
))
210 if (new_ts
.tv_nsec
> USEC_PER_SEC
|| new_ts
.tv_nsec
< 0)
213 new_ts
.tv_nsec
*= NSEC_PER_USEC
;
216 if (copy_from_user(&new_tz
, tz
, sizeof(*tz
)))
220 return do_sys_settimeofday64(tv
? &new_ts
: NULL
, tz
? &new_tz
: NULL
);
224 COMPAT_SYSCALL_DEFINE2(gettimeofday
, struct old_timeval32 __user
*, tv
,
225 struct timezone __user
*, tz
)
228 struct timespec64 ts
;
230 ktime_get_real_ts64(&ts
);
231 if (put_user(ts
.tv_sec
, &tv
->tv_sec
) ||
232 put_user(ts
.tv_nsec
/ 1000, &tv
->tv_usec
))
236 if (copy_to_user(tz
, &sys_tz
, sizeof(sys_tz
)))
243 COMPAT_SYSCALL_DEFINE2(settimeofday
, struct old_timeval32 __user
*, tv
,
244 struct timezone __user
*, tz
)
246 struct timespec64 new_ts
;
247 struct timezone new_tz
;
250 if (get_user(new_ts
.tv_sec
, &tv
->tv_sec
) ||
251 get_user(new_ts
.tv_nsec
, &tv
->tv_usec
))
254 if (new_ts
.tv_nsec
> USEC_PER_SEC
|| new_ts
.tv_nsec
< 0)
257 new_ts
.tv_nsec
*= NSEC_PER_USEC
;
260 if (copy_from_user(&new_tz
, tz
, sizeof(*tz
)))
264 return do_sys_settimeofday64(tv
? &new_ts
: NULL
, tz
? &new_tz
: NULL
);
269 SYSCALL_DEFINE1(adjtimex
, struct __kernel_timex __user
*, txc_p
)
271 struct __kernel_timex txc
; /* Local copy of parameter */
274 /* Copy the user data space into the kernel copy
275 * structure. But bear in mind that the structures
278 if (copy_from_user(&txc
, txc_p
, sizeof(struct __kernel_timex
)))
280 ret
= do_adjtimex(&txc
);
281 return copy_to_user(txc_p
, &txc
, sizeof(struct __kernel_timex
)) ? -EFAULT
: ret
;
285 #ifdef CONFIG_COMPAT_32BIT_TIME
286 int get_old_timex32(struct __kernel_timex
*txc
, const struct old_timex32 __user
*utp
)
288 struct old_timex32 tx32
;
290 memset(txc
, 0, sizeof(struct __kernel_timex
));
291 if (copy_from_user(&tx32
, utp
, sizeof(struct old_timex32
)))
294 txc
->modes
= tx32
.modes
;
295 txc
->offset
= tx32
.offset
;
296 txc
->freq
= tx32
.freq
;
297 txc
->maxerror
= tx32
.maxerror
;
298 txc
->esterror
= tx32
.esterror
;
299 txc
->status
= tx32
.status
;
300 txc
->constant
= tx32
.constant
;
301 txc
->precision
= tx32
.precision
;
302 txc
->tolerance
= tx32
.tolerance
;
303 txc
->time
.tv_sec
= tx32
.time
.tv_sec
;
304 txc
->time
.tv_usec
= tx32
.time
.tv_usec
;
305 txc
->tick
= tx32
.tick
;
306 txc
->ppsfreq
= tx32
.ppsfreq
;
307 txc
->jitter
= tx32
.jitter
;
308 txc
->shift
= tx32
.shift
;
309 txc
->stabil
= tx32
.stabil
;
310 txc
->jitcnt
= tx32
.jitcnt
;
311 txc
->calcnt
= tx32
.calcnt
;
312 txc
->errcnt
= tx32
.errcnt
;
313 txc
->stbcnt
= tx32
.stbcnt
;
318 int put_old_timex32(struct old_timex32 __user
*utp
, const struct __kernel_timex
*txc
)
320 struct old_timex32 tx32
;
322 memset(&tx32
, 0, sizeof(struct old_timex32
));
323 tx32
.modes
= txc
->modes
;
324 tx32
.offset
= txc
->offset
;
325 tx32
.freq
= txc
->freq
;
326 tx32
.maxerror
= txc
->maxerror
;
327 tx32
.esterror
= txc
->esterror
;
328 tx32
.status
= txc
->status
;
329 tx32
.constant
= txc
->constant
;
330 tx32
.precision
= txc
->precision
;
331 tx32
.tolerance
= txc
->tolerance
;
332 tx32
.time
.tv_sec
= txc
->time
.tv_sec
;
333 tx32
.time
.tv_usec
= txc
->time
.tv_usec
;
334 tx32
.tick
= txc
->tick
;
335 tx32
.ppsfreq
= txc
->ppsfreq
;
336 tx32
.jitter
= txc
->jitter
;
337 tx32
.shift
= txc
->shift
;
338 tx32
.stabil
= txc
->stabil
;
339 tx32
.jitcnt
= txc
->jitcnt
;
340 tx32
.calcnt
= txc
->calcnt
;
341 tx32
.errcnt
= txc
->errcnt
;
342 tx32
.stbcnt
= txc
->stbcnt
;
344 if (copy_to_user(utp
, &tx32
, sizeof(struct old_timex32
)))
349 SYSCALL_DEFINE1(adjtimex_time32
, struct old_timex32 __user
*, utp
)
351 struct __kernel_timex txc
;
354 err
= get_old_timex32(&txc
, utp
);
358 ret
= do_adjtimex(&txc
);
360 err
= put_old_timex32(utp
, &txc
);
369 * jiffies_to_msecs - Convert jiffies to milliseconds
372 * Avoid unnecessary multiplications/divisions in the
373 * two most common HZ cases.
375 * Return: milliseconds value
377 unsigned int jiffies_to_msecs(const unsigned long j
)
379 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
380 return (MSEC_PER_SEC
/ HZ
) * j
;
381 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
382 return (j
+ (HZ
/ MSEC_PER_SEC
) - 1)/(HZ
/ MSEC_PER_SEC
);
384 # if BITS_PER_LONG == 32
385 return (HZ_TO_MSEC_MUL32
* j
+ (1ULL << HZ_TO_MSEC_SHR32
) - 1) >>
388 return DIV_ROUND_UP(j
* HZ_TO_MSEC_NUM
, HZ_TO_MSEC_DEN
);
392 EXPORT_SYMBOL(jiffies_to_msecs
);
395 * jiffies_to_usecs - Convert jiffies to microseconds
398 * Return: microseconds value
400 unsigned int jiffies_to_usecs(const unsigned long j
)
403 * Hz usually doesn't go much further MSEC_PER_SEC.
404 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
406 BUILD_BUG_ON(HZ
> USEC_PER_SEC
);
408 #if !(USEC_PER_SEC % HZ)
409 return (USEC_PER_SEC
/ HZ
) * j
;
411 # if BITS_PER_LONG == 32
412 return (HZ_TO_USEC_MUL32
* j
) >> HZ_TO_USEC_SHR32
;
414 return (j
* HZ_TO_USEC_NUM
) / HZ_TO_USEC_DEN
;
418 EXPORT_SYMBOL(jiffies_to_usecs
);
421 * mktime64 - Converts date to seconds.
422 * @year0: year to convert
423 * @mon0: month to convert
424 * @day: day to convert
425 * @hour: hour to convert
426 * @min: minute to convert
427 * @sec: second to convert
429 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
430 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
431 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
433 * [For the Julian calendar (which was used in Russia before 1917,
434 * Britain & colonies before 1752, anywhere else before 1582,
435 * and is still in use by some communities) leave out the
436 * -year/100+year/400 terms, and add 10.]
438 * This algorithm was first published by Gauss (I think).
440 * A leap second can be indicated by calling this function with sec as
441 * 60 (allowable under ISO 8601). The leap second is treated the same
442 * as the following second since they don't exist in UNIX time.
444 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
445 * tomorrow - (allowable under ISO 8601) is supported.
447 * Return: seconds since the epoch time for the given input date
449 time64_t
mktime64(const unsigned int year0
, const unsigned int mon0
,
450 const unsigned int day
, const unsigned int hour
,
451 const unsigned int min
, const unsigned int sec
)
453 unsigned int mon
= mon0
, year
= year0
;
455 /* 1..12 -> 11,12,1..10 */
456 if (0 >= (int) (mon
-= 2)) {
457 mon
+= 12; /* Puts Feb last since it has leap day */
462 (year
/4 - year
/100 + year
/400 + 367*mon
/12 + day
) +
464 )*24 + hour
/* now have hours - midnight tomorrow handled here */
465 )*60 + min
/* now have minutes */
466 )*60 + sec
; /* finally seconds */
468 EXPORT_SYMBOL(mktime64
);
470 struct __kernel_old_timeval
ns_to_kernel_old_timeval(s64 nsec
)
472 struct timespec64 ts
= ns_to_timespec64(nsec
);
473 struct __kernel_old_timeval tv
;
475 tv
.tv_sec
= ts
.tv_sec
;
476 tv
.tv_usec
= (suseconds_t
)ts
.tv_nsec
/ 1000;
480 EXPORT_SYMBOL(ns_to_kernel_old_timeval
);
483 * set_normalized_timespec64 - set timespec sec and nsec parts and normalize
485 * @ts: pointer to timespec variable to be set
486 * @sec: seconds to set
487 * @nsec: nanoseconds to set
489 * Set seconds and nanoseconds field of a timespec variable and
490 * normalize to the timespec storage format
492 * Note: The tv_nsec part is always in the range of 0 <= tv_nsec < NSEC_PER_SEC.
493 * For negative values only the tv_sec field is negative !
495 void set_normalized_timespec64(struct timespec64
*ts
, time64_t sec
, s64 nsec
)
497 while (nsec
>= NSEC_PER_SEC
) {
499 * The following asm() prevents the compiler from
500 * optimising this loop into a modulo operation. See
501 * also __iter_div_u64_rem() in include/linux/time.h
503 asm("" : "+rm"(nsec
));
504 nsec
-= NSEC_PER_SEC
;
508 asm("" : "+rm"(nsec
));
509 nsec
+= NSEC_PER_SEC
;
515 EXPORT_SYMBOL(set_normalized_timespec64
);
518 * ns_to_timespec64 - Convert nanoseconds to timespec64
519 * @nsec: the nanoseconds value to be converted
521 * Return: the timespec64 representation of the nsec parameter.
523 struct timespec64
ns_to_timespec64(s64 nsec
)
525 struct timespec64 ts
= { 0, 0 };
528 if (likely(nsec
> 0)) {
529 ts
.tv_sec
= div_u64_rem(nsec
, NSEC_PER_SEC
, &rem
);
531 } else if (nsec
< 0) {
533 * With negative times, tv_sec points to the earlier
534 * second, and tv_nsec counts the nanoseconds since
535 * then, so tv_nsec is always a positive number.
537 ts
.tv_sec
= -div_u64_rem(-nsec
- 1, NSEC_PER_SEC
, &rem
) - 1;
538 ts
.tv_nsec
= NSEC_PER_SEC
- rem
- 1;
543 EXPORT_SYMBOL(ns_to_timespec64
);
546 * __msecs_to_jiffies: - convert milliseconds to jiffies
547 * @m: time in milliseconds
549 * conversion is done as follows:
551 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
553 * - 'too large' values [that would result in larger than
554 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
556 * - all other values are converted to jiffies by either multiplying
557 * the input value by a factor or dividing it with a factor and
558 * handling any 32-bit overflows.
559 * for the details see _msecs_to_jiffies()
561 * msecs_to_jiffies() checks for the passed in value being a constant
562 * via __builtin_constant_p() allowing gcc to eliminate most of the
563 * code, __msecs_to_jiffies() is called if the value passed does not
564 * allow constant folding and the actual conversion must be done at
566 * The _msecs_to_jiffies helpers are the HZ dependent conversion
567 * routines found in include/linux/jiffies.h
569 * Return: jiffies value
571 unsigned long __msecs_to_jiffies(const unsigned int m
)
574 * Negative value, means infinite timeout:
577 return MAX_JIFFY_OFFSET
;
578 return _msecs_to_jiffies(m
);
580 EXPORT_SYMBOL(__msecs_to_jiffies
);
583 * __usecs_to_jiffies: - convert microseconds to jiffies
584 * @u: time in milliseconds
586 * Return: jiffies value
588 unsigned long __usecs_to_jiffies(const unsigned int u
)
590 if (u
> jiffies_to_usecs(MAX_JIFFY_OFFSET
))
591 return MAX_JIFFY_OFFSET
;
592 return _usecs_to_jiffies(u
);
594 EXPORT_SYMBOL(__usecs_to_jiffies
);
597 * timespec64_to_jiffies - convert a timespec64 value to jiffies
598 * @value: pointer to &struct timespec64
600 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
601 * that a remainder subtract here would not do the right thing as the
602 * resolution values don't fall on second boundaries. I.e. the line:
603 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
604 * Note that due to the small error in the multiplier here, this
605 * rounding is incorrect for sufficiently large values of tv_nsec, but
606 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
609 * Rather, we just shift the bits off the right.
611 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
612 * value to a scaled second value.
614 * Return: jiffies value
617 timespec64_to_jiffies(const struct timespec64
*value
)
619 u64 sec
= value
->tv_sec
;
620 long nsec
= value
->tv_nsec
+ TICK_NSEC
- 1;
622 if (sec
>= MAX_SEC_IN_JIFFIES
){
623 sec
= MAX_SEC_IN_JIFFIES
;
626 return ((sec
* SEC_CONVERSION
) +
627 (((u64
)nsec
* NSEC_CONVERSION
) >>
628 (NSEC_JIFFIE_SC
- SEC_JIFFIE_SC
))) >> SEC_JIFFIE_SC
;
631 EXPORT_SYMBOL(timespec64_to_jiffies
);
634 * jiffies_to_timespec64 - convert jiffies value to &struct timespec64
635 * @jiffies: jiffies value
636 * @value: pointer to &struct timespec64
639 jiffies_to_timespec64(const unsigned long jiffies
, struct timespec64
*value
)
642 * Convert jiffies to nanoseconds and separate with
646 value
->tv_sec
= div_u64_rem((u64
)jiffies
* TICK_NSEC
,
648 value
->tv_nsec
= rem
;
650 EXPORT_SYMBOL(jiffies_to_timespec64
);
653 * Convert jiffies/jiffies_64 to clock_t and back.
657 * jiffies_to_clock_t - Convert jiffies to clock_t
660 * Return: jiffies converted to clock_t (CLOCKS_PER_SEC)
662 clock_t jiffies_to_clock_t(unsigned long x
)
664 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
666 return x
* (USER_HZ
/ HZ
);
668 return x
/ (HZ
/ USER_HZ
);
671 return div_u64((u64
)x
* TICK_NSEC
, NSEC_PER_SEC
/ USER_HZ
);
674 EXPORT_SYMBOL(jiffies_to_clock_t
);
677 * clock_t_to_jiffies - Convert clock_t to jiffies
680 * Return: clock_t value converted to jiffies
682 unsigned long clock_t_to_jiffies(unsigned long x
)
684 #if (HZ % USER_HZ)==0
685 if (x
>= ~0UL / (HZ
/ USER_HZ
))
687 return x
* (HZ
/ USER_HZ
);
689 /* Don't worry about loss of precision here .. */
690 if (x
>= ~0UL / HZ
* USER_HZ
)
693 /* .. but do try to contain it here */
694 return div_u64((u64
)x
* HZ
, USER_HZ
);
697 EXPORT_SYMBOL(clock_t_to_jiffies
);
700 * jiffies_64_to_clock_t - Convert jiffies_64 to clock_t
701 * @x: jiffies_64 value
703 * Return: jiffies_64 value converted to 64-bit "clock_t" (CLOCKS_PER_SEC)
705 u64
jiffies_64_to_clock_t(u64 x
)
707 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
709 x
= div_u64(x
* USER_HZ
, HZ
);
711 x
= div_u64(x
, HZ
/ USER_HZ
);
717 * There are better ways that don't overflow early,
718 * but even this doesn't overflow in hundreds of years
721 x
= div_u64(x
* TICK_NSEC
, (NSEC_PER_SEC
/ USER_HZ
));
725 EXPORT_SYMBOL(jiffies_64_to_clock_t
);
728 * nsec_to_clock_t - Convert nsec value to clock_t
731 * Return: nsec value converted to 64-bit "clock_t" (CLOCKS_PER_SEC)
733 u64
nsec_to_clock_t(u64 x
)
735 #if (NSEC_PER_SEC % USER_HZ) == 0
736 return div_u64(x
, NSEC_PER_SEC
/ USER_HZ
);
737 #elif (USER_HZ % 512) == 0
738 return div_u64(x
* USER_HZ
/ 512, NSEC_PER_SEC
/ 512);
741 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
742 * overflow after 64.99 years.
743 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
745 return div_u64(x
* 9, (9ull * NSEC_PER_SEC
+ (USER_HZ
/ 2)) / USER_HZ
);
750 * jiffies64_to_nsecs - Convert jiffies64 to nanoseconds
751 * @j: jiffies64 value
753 * Return: nanoseconds value
755 u64
jiffies64_to_nsecs(u64 j
)
757 #if !(NSEC_PER_SEC % HZ)
758 return (NSEC_PER_SEC
/ HZ
) * j
;
760 return div_u64(j
* HZ_TO_NSEC_NUM
, HZ_TO_NSEC_DEN
);
763 EXPORT_SYMBOL(jiffies64_to_nsecs
);
766 * jiffies64_to_msecs - Convert jiffies64 to milliseconds
767 * @j: jiffies64 value
769 * Return: milliseconds value
771 u64
jiffies64_to_msecs(const u64 j
)
773 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
774 return (MSEC_PER_SEC
/ HZ
) * j
;
776 return div_u64(j
* HZ_TO_MSEC_NUM
, HZ_TO_MSEC_DEN
);
779 EXPORT_SYMBOL(jiffies64_to_msecs
);
782 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
786 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
787 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
788 * for scheduler, not for use in device drivers to calculate timeout value.
791 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
792 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
794 * Return: nsecs converted to jiffies64 value
796 u64
nsecs_to_jiffies64(u64 n
)
798 #if (NSEC_PER_SEC % HZ) == 0
799 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
800 return div_u64(n
, NSEC_PER_SEC
/ HZ
);
801 #elif (HZ % 512) == 0
802 /* overflow after 292 years if HZ = 1024 */
803 return div_u64(n
* HZ
/ 512, NSEC_PER_SEC
/ 512);
806 * Generic case - optimized for cases where HZ is a multiple of 3.
807 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
809 return div_u64(n
* 9, (9ull * NSEC_PER_SEC
+ HZ
/ 2) / HZ
);
812 EXPORT_SYMBOL(nsecs_to_jiffies64
);
815 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
819 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
820 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
821 * for scheduler, not for use in device drivers to calculate timeout value.
824 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
825 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
827 * Return: nsecs converted to jiffies value
829 unsigned long nsecs_to_jiffies(u64 n
)
831 return (unsigned long)nsecs_to_jiffies64(n
);
833 EXPORT_SYMBOL_GPL(nsecs_to_jiffies
);
836 * timespec64_add_safe - Add two timespec64 values and do a safety check
838 * @lhs: first (left) timespec64 to add
839 * @rhs: second (right) timespec64 to add
841 * It's assumed that both values are valid (>= 0).
842 * And, each timespec64 is in normalized form.
844 * Return: sum of @lhs + @rhs
846 struct timespec64
timespec64_add_safe(const struct timespec64 lhs
,
847 const struct timespec64 rhs
)
849 struct timespec64 res
;
851 set_normalized_timespec64(&res
, (timeu64_t
) lhs
.tv_sec
+ rhs
.tv_sec
,
852 lhs
.tv_nsec
+ rhs
.tv_nsec
);
854 if (unlikely(res
.tv_sec
< lhs
.tv_sec
|| res
.tv_sec
< rhs
.tv_sec
)) {
855 res
.tv_sec
= TIME64_MAX
;
863 * get_timespec64 - get user's time value into kernel space
864 * @ts: destination &struct timespec64
865 * @uts: user's time value as &struct __kernel_timespec
867 * Handles compat or 32-bit modes.
869 * Return: 0 on success or negative errno on error
871 int get_timespec64(struct timespec64
*ts
,
872 const struct __kernel_timespec __user
*uts
)
874 struct __kernel_timespec kts
;
877 ret
= copy_from_user(&kts
, uts
, sizeof(kts
));
881 ts
->tv_sec
= kts
.tv_sec
;
883 /* Zero out the padding in compat mode */
884 if (in_compat_syscall())
885 kts
.tv_nsec
&= 0xFFFFFFFFUL
;
887 /* In 32-bit mode, this drops the padding */
888 ts
->tv_nsec
= kts
.tv_nsec
;
892 EXPORT_SYMBOL_GPL(get_timespec64
);
895 * put_timespec64 - convert timespec64 value to __kernel_timespec format and
896 * copy the latter to userspace
897 * @ts: input &struct timespec64
898 * @uts: user's &struct __kernel_timespec
900 * Return: 0 on success or negative errno on error
902 int put_timespec64(const struct timespec64
*ts
,
903 struct __kernel_timespec __user
*uts
)
905 struct __kernel_timespec kts
= {
906 .tv_sec
= ts
->tv_sec
,
907 .tv_nsec
= ts
->tv_nsec
910 return copy_to_user(uts
, &kts
, sizeof(kts
)) ? -EFAULT
: 0;
912 EXPORT_SYMBOL_GPL(put_timespec64
);
914 static int __get_old_timespec32(struct timespec64
*ts64
,
915 const struct old_timespec32 __user
*cts
)
917 struct old_timespec32 ts
;
920 ret
= copy_from_user(&ts
, cts
, sizeof(ts
));
924 ts64
->tv_sec
= ts
.tv_sec
;
925 ts64
->tv_nsec
= ts
.tv_nsec
;
930 static int __put_old_timespec32(const struct timespec64
*ts64
,
931 struct old_timespec32 __user
*cts
)
933 struct old_timespec32 ts
= {
934 .tv_sec
= ts64
->tv_sec
,
935 .tv_nsec
= ts64
->tv_nsec
937 return copy_to_user(cts
, &ts
, sizeof(ts
)) ? -EFAULT
: 0;
941 * get_old_timespec32 - get user's old-format time value into kernel space
942 * @ts: destination &struct timespec64
943 * @uts: user's old-format time value (&struct old_timespec32)
945 * Handles X86_X32_ABI compatibility conversion.
947 * Return: 0 on success or negative errno on error
949 int get_old_timespec32(struct timespec64
*ts
, const void __user
*uts
)
951 if (COMPAT_USE_64BIT_TIME
)
952 return copy_from_user(ts
, uts
, sizeof(*ts
)) ? -EFAULT
: 0;
954 return __get_old_timespec32(ts
, uts
);
956 EXPORT_SYMBOL_GPL(get_old_timespec32
);
959 * put_old_timespec32 - convert timespec64 value to &struct old_timespec32 and
960 * copy the latter to userspace
961 * @ts: input &struct timespec64
962 * @uts: user's &struct old_timespec32
964 * Handles X86_X32_ABI compatibility conversion.
966 * Return: 0 on success or negative errno on error
968 int put_old_timespec32(const struct timespec64
*ts
, void __user
*uts
)
970 if (COMPAT_USE_64BIT_TIME
)
971 return copy_to_user(uts
, ts
, sizeof(*ts
)) ? -EFAULT
: 0;
973 return __put_old_timespec32(ts
, uts
);
975 EXPORT_SYMBOL_GPL(put_old_timespec32
);
978 * get_itimerspec64 - get user's &struct __kernel_itimerspec into kernel space
979 * @it: destination &struct itimerspec64
980 * @uit: user's &struct __kernel_itimerspec
982 * Return: 0 on success or negative errno on error
984 int get_itimerspec64(struct itimerspec64
*it
,
985 const struct __kernel_itimerspec __user
*uit
)
989 ret
= get_timespec64(&it
->it_interval
, &uit
->it_interval
);
993 ret
= get_timespec64(&it
->it_value
, &uit
->it_value
);
997 EXPORT_SYMBOL_GPL(get_itimerspec64
);
1000 * put_itimerspec64 - convert &struct itimerspec64 to __kernel_itimerspec format
1001 * and copy the latter to userspace
1002 * @it: input &struct itimerspec64
1003 * @uit: user's &struct __kernel_itimerspec
1005 * Return: 0 on success or negative errno on error
1007 int put_itimerspec64(const struct itimerspec64
*it
,
1008 struct __kernel_itimerspec __user
*uit
)
1012 ret
= put_timespec64(&it
->it_interval
, &uit
->it_interval
);
1016 ret
= put_timespec64(&it
->it_value
, &uit
->it_value
);
1020 EXPORT_SYMBOL_GPL(put_itimerspec64
);
1023 * get_old_itimerspec32 - get user's &struct old_itimerspec32 into kernel space
1024 * @its: destination &struct itimerspec64
1025 * @uits: user's &struct old_itimerspec32
1027 * Return: 0 on success or negative errno on error
1029 int get_old_itimerspec32(struct itimerspec64
*its
,
1030 const struct old_itimerspec32 __user
*uits
)
1033 if (__get_old_timespec32(&its
->it_interval
, &uits
->it_interval
) ||
1034 __get_old_timespec32(&its
->it_value
, &uits
->it_value
))
1038 EXPORT_SYMBOL_GPL(get_old_itimerspec32
);
1041 * put_old_itimerspec32 - convert &struct itimerspec64 to &struct
1042 * old_itimerspec32 and copy the latter to userspace
1043 * @its: input &struct itimerspec64
1044 * @uits: user's &struct old_itimerspec32
1046 * Return: 0 on success or negative errno on error
1048 int put_old_itimerspec32(const struct itimerspec64
*its
,
1049 struct old_itimerspec32 __user
*uits
)
1051 if (__put_old_timespec32(&its
->it_interval
, &uits
->it_interval
) ||
1052 __put_old_timespec32(&its
->it_value
, &uits
->it_value
))
1056 EXPORT_SYMBOL_GPL(put_old_itimerspec32
);