1 // SPDX-License-Identifier: GPL-2.0
3 * linux/mm/compaction.c
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include <linux/cpuset.h>
29 #ifdef CONFIG_COMPACTION
31 * Fragmentation score check interval for proactive compaction purposes.
33 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
35 static inline void count_compact_event(enum vm_event_item item
)
40 static inline void count_compact_events(enum vm_event_item item
, long delta
)
42 count_vm_events(item
, delta
);
46 * order == -1 is expected when compacting proactively via
47 * 1. /proc/sys/vm/compact_memory
48 * 2. /sys/devices/system/node/nodex/compact
49 * 3. /proc/sys/vm/compaction_proactiveness
51 static inline bool is_via_compact_memory(int order
)
57 #define count_compact_event(item) do { } while (0)
58 #define count_compact_events(item, delta) do { } while (0)
59 static inline bool is_via_compact_memory(int order
) { return false; }
62 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/compaction.h>
67 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
68 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
71 * Page order with-respect-to which proactive compaction
72 * calculates external fragmentation, which is used as
73 * the "fragmentation score" of a node/zone.
75 #if defined CONFIG_TRANSPARENT_HUGEPAGE
76 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
77 #elif defined CONFIG_HUGETLBFS
78 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
80 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
83 static struct page
*mark_allocated_noprof(struct page
*page
, unsigned int order
, gfp_t gfp_flags
)
85 post_alloc_hook(page
, order
, __GFP_MOVABLE
);
88 #define mark_allocated(...) alloc_hooks(mark_allocated_noprof(__VA_ARGS__))
90 static unsigned long release_free_list(struct list_head
*freepages
)
93 unsigned long high_pfn
= 0;
95 for (order
= 0; order
< NR_PAGE_ORDERS
; order
++) {
96 struct page
*page
, *next
;
98 list_for_each_entry_safe(page
, next
, &freepages
[order
], lru
) {
99 unsigned long pfn
= page_to_pfn(page
);
101 list_del(&page
->lru
);
103 * Convert free pages into post allocation pages, so
104 * that we can free them via __free_page.
106 mark_allocated(page
, order
, __GFP_MOVABLE
);
107 __free_pages(page
, order
);
115 #ifdef CONFIG_COMPACTION
116 bool PageMovable(struct page
*page
)
118 const struct movable_operations
*mops
;
120 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
121 if (!__PageMovable(page
))
124 mops
= page_movable_ops(page
);
131 void __SetPageMovable(struct page
*page
, const struct movable_operations
*mops
)
133 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
134 VM_BUG_ON_PAGE((unsigned long)mops
& PAGE_MAPPING_MOVABLE
, page
);
135 page
->mapping
= (void *)((unsigned long)mops
| PAGE_MAPPING_MOVABLE
);
137 EXPORT_SYMBOL(__SetPageMovable
);
139 void __ClearPageMovable(struct page
*page
)
141 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
143 * This page still has the type of a movable page, but it's
144 * actually not movable any more.
146 page
->mapping
= (void *)PAGE_MAPPING_MOVABLE
;
148 EXPORT_SYMBOL(__ClearPageMovable
);
150 /* Do not skip compaction more than 64 times */
151 #define COMPACT_MAX_DEFER_SHIFT 6
154 * Compaction is deferred when compaction fails to result in a page
155 * allocation success. 1 << compact_defer_shift, compactions are skipped up
156 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158 static void defer_compaction(struct zone
*zone
, int order
)
160 zone
->compact_considered
= 0;
161 zone
->compact_defer_shift
++;
163 if (order
< zone
->compact_order_failed
)
164 zone
->compact_order_failed
= order
;
166 if (zone
->compact_defer_shift
> COMPACT_MAX_DEFER_SHIFT
)
167 zone
->compact_defer_shift
= COMPACT_MAX_DEFER_SHIFT
;
169 trace_mm_compaction_defer_compaction(zone
, order
);
172 /* Returns true if compaction should be skipped this time */
173 static bool compaction_deferred(struct zone
*zone
, int order
)
175 unsigned long defer_limit
= 1UL << zone
->compact_defer_shift
;
177 if (order
< zone
->compact_order_failed
)
180 /* Avoid possible overflow */
181 if (++zone
->compact_considered
>= defer_limit
) {
182 zone
->compact_considered
= defer_limit
;
186 trace_mm_compaction_deferred(zone
, order
);
192 * Update defer tracking counters after successful compaction of given order,
193 * which means an allocation either succeeded (alloc_success == true) or is
194 * expected to succeed.
196 void compaction_defer_reset(struct zone
*zone
, int order
,
200 zone
->compact_considered
= 0;
201 zone
->compact_defer_shift
= 0;
203 if (order
>= zone
->compact_order_failed
)
204 zone
->compact_order_failed
= order
+ 1;
206 trace_mm_compaction_defer_reset(zone
, order
);
209 /* Returns true if restarting compaction after many failures */
210 static bool compaction_restarting(struct zone
*zone
, int order
)
212 if (order
< zone
->compact_order_failed
)
215 return zone
->compact_defer_shift
== COMPACT_MAX_DEFER_SHIFT
&&
216 zone
->compact_considered
>= 1UL << zone
->compact_defer_shift
;
219 /* Returns true if the pageblock should be scanned for pages to isolate. */
220 static inline bool isolation_suitable(struct compact_control
*cc
,
223 if (cc
->ignore_skip_hint
)
226 return !get_pageblock_skip(page
);
229 static void reset_cached_positions(struct zone
*zone
)
231 zone
->compact_cached_migrate_pfn
[0] = zone
->zone_start_pfn
;
232 zone
->compact_cached_migrate_pfn
[1] = zone
->zone_start_pfn
;
233 zone
->compact_cached_free_pfn
=
234 pageblock_start_pfn(zone_end_pfn(zone
) - 1);
237 #ifdef CONFIG_SPARSEMEM
239 * If the PFN falls into an offline section, return the start PFN of the
240 * next online section. If the PFN falls into an online section or if
241 * there is no next online section, return 0.
243 static unsigned long skip_offline_sections(unsigned long start_pfn
)
245 unsigned long start_nr
= pfn_to_section_nr(start_pfn
);
247 if (online_section_nr(start_nr
))
250 while (++start_nr
<= __highest_present_section_nr
) {
251 if (online_section_nr(start_nr
))
252 return section_nr_to_pfn(start_nr
);
259 * If the PFN falls into an offline section, return the end PFN of the
260 * next online section in reverse. If the PFN falls into an online section
261 * or if there is no next online section in reverse, return 0.
263 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn
)
265 unsigned long start_nr
= pfn_to_section_nr(start_pfn
);
267 if (!start_nr
|| online_section_nr(start_nr
))
270 while (start_nr
-- > 0) {
271 if (online_section_nr(start_nr
))
272 return section_nr_to_pfn(start_nr
) + PAGES_PER_SECTION
;
278 static unsigned long skip_offline_sections(unsigned long start_pfn
)
283 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn
)
290 * Compound pages of >= pageblock_order should consistently be skipped until
291 * released. It is always pointless to compact pages of such order (if they are
292 * migratable), and the pageblocks they occupy cannot contain any free pages.
294 static bool pageblock_skip_persistent(struct page
*page
)
296 if (!PageCompound(page
))
299 page
= compound_head(page
);
301 if (compound_order(page
) >= pageblock_order
)
308 __reset_isolation_pfn(struct zone
*zone
, unsigned long pfn
, bool check_source
,
311 struct page
*page
= pfn_to_online_page(pfn
);
312 struct page
*block_page
;
313 struct page
*end_page
;
314 unsigned long block_pfn
;
318 if (zone
!= page_zone(page
))
320 if (pageblock_skip_persistent(page
))
324 * If skip is already cleared do no further checking once the
325 * restart points have been set.
327 if (check_source
&& check_target
&& !get_pageblock_skip(page
))
331 * If clearing skip for the target scanner, do not select a
332 * non-movable pageblock as the starting point.
334 if (!check_source
&& check_target
&&
335 get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
)
338 /* Ensure the start of the pageblock or zone is online and valid */
339 block_pfn
= pageblock_start_pfn(pfn
);
340 block_pfn
= max(block_pfn
, zone
->zone_start_pfn
);
341 block_page
= pfn_to_online_page(block_pfn
);
347 /* Ensure the end of the pageblock or zone is online and valid */
348 block_pfn
= pageblock_end_pfn(pfn
) - 1;
349 block_pfn
= min(block_pfn
, zone_end_pfn(zone
) - 1);
350 end_page
= pfn_to_online_page(block_pfn
);
355 * Only clear the hint if a sample indicates there is either a
356 * free page or an LRU page in the block. One or other condition
357 * is necessary for the block to be a migration source/target.
360 if (check_source
&& PageLRU(page
)) {
361 clear_pageblock_skip(page
);
365 if (check_target
&& PageBuddy(page
)) {
366 clear_pageblock_skip(page
);
370 page
+= (1 << PAGE_ALLOC_COSTLY_ORDER
);
371 } while (page
<= end_page
);
377 * This function is called to clear all cached information on pageblocks that
378 * should be skipped for page isolation when the migrate and free page scanner
381 static void __reset_isolation_suitable(struct zone
*zone
)
383 unsigned long migrate_pfn
= zone
->zone_start_pfn
;
384 unsigned long free_pfn
= zone_end_pfn(zone
) - 1;
385 unsigned long reset_migrate
= free_pfn
;
386 unsigned long reset_free
= migrate_pfn
;
387 bool source_set
= false;
388 bool free_set
= false;
390 /* Only flush if a full compaction finished recently */
391 if (!zone
->compact_blockskip_flush
)
394 zone
->compact_blockskip_flush
= false;
397 * Walk the zone and update pageblock skip information. Source looks
398 * for PageLRU while target looks for PageBuddy. When the scanner
399 * is found, both PageBuddy and PageLRU are checked as the pageblock
400 * is suitable as both source and target.
402 for (; migrate_pfn
< free_pfn
; migrate_pfn
+= pageblock_nr_pages
,
403 free_pfn
-= pageblock_nr_pages
) {
406 /* Update the migrate PFN */
407 if (__reset_isolation_pfn(zone
, migrate_pfn
, true, source_set
) &&
408 migrate_pfn
< reset_migrate
) {
410 reset_migrate
= migrate_pfn
;
411 zone
->compact_init_migrate_pfn
= reset_migrate
;
412 zone
->compact_cached_migrate_pfn
[0] = reset_migrate
;
413 zone
->compact_cached_migrate_pfn
[1] = reset_migrate
;
416 /* Update the free PFN */
417 if (__reset_isolation_pfn(zone
, free_pfn
, free_set
, true) &&
418 free_pfn
> reset_free
) {
420 reset_free
= free_pfn
;
421 zone
->compact_init_free_pfn
= reset_free
;
422 zone
->compact_cached_free_pfn
= reset_free
;
426 /* Leave no distance if no suitable block was reset */
427 if (reset_migrate
>= reset_free
) {
428 zone
->compact_cached_migrate_pfn
[0] = migrate_pfn
;
429 zone
->compact_cached_migrate_pfn
[1] = migrate_pfn
;
430 zone
->compact_cached_free_pfn
= free_pfn
;
434 void reset_isolation_suitable(pg_data_t
*pgdat
)
438 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
439 struct zone
*zone
= &pgdat
->node_zones
[zoneid
];
440 if (!populated_zone(zone
))
443 __reset_isolation_suitable(zone
);
448 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
449 * locks are not required for read/writers. Returns true if it was already set.
451 static bool test_and_set_skip(struct compact_control
*cc
, struct page
*page
)
455 /* Do not update if skip hint is being ignored */
456 if (cc
->ignore_skip_hint
)
459 skip
= get_pageblock_skip(page
);
460 if (!skip
&& !cc
->no_set_skip_hint
)
461 set_pageblock_skip(page
);
466 static void update_cached_migrate(struct compact_control
*cc
, unsigned long pfn
)
468 struct zone
*zone
= cc
->zone
;
470 /* Set for isolation rather than compaction */
471 if (cc
->no_set_skip_hint
)
474 pfn
= pageblock_end_pfn(pfn
);
476 /* Update where async and sync compaction should restart */
477 if (pfn
> zone
->compact_cached_migrate_pfn
[0])
478 zone
->compact_cached_migrate_pfn
[0] = pfn
;
479 if (cc
->mode
!= MIGRATE_ASYNC
&&
480 pfn
> zone
->compact_cached_migrate_pfn
[1])
481 zone
->compact_cached_migrate_pfn
[1] = pfn
;
485 * If no pages were isolated then mark this pageblock to be skipped in the
486 * future. The information is later cleared by __reset_isolation_suitable().
488 static void update_pageblock_skip(struct compact_control
*cc
,
489 struct page
*page
, unsigned long pfn
)
491 struct zone
*zone
= cc
->zone
;
493 if (cc
->no_set_skip_hint
)
496 set_pageblock_skip(page
);
498 if (pfn
< zone
->compact_cached_free_pfn
)
499 zone
->compact_cached_free_pfn
= pfn
;
502 static inline bool isolation_suitable(struct compact_control
*cc
,
508 static inline bool pageblock_skip_persistent(struct page
*page
)
513 static inline void update_pageblock_skip(struct compact_control
*cc
,
514 struct page
*page
, unsigned long pfn
)
518 static void update_cached_migrate(struct compact_control
*cc
, unsigned long pfn
)
522 static bool test_and_set_skip(struct compact_control
*cc
, struct page
*page
)
526 #endif /* CONFIG_COMPACTION */
529 * Compaction requires the taking of some coarse locks that are potentially
530 * very heavily contended. For async compaction, trylock and record if the
531 * lock is contended. The lock will still be acquired but compaction will
532 * abort when the current block is finished regardless of success rate.
533 * Sync compaction acquires the lock.
535 * Always returns true which makes it easier to track lock state in callers.
537 static bool compact_lock_irqsave(spinlock_t
*lock
, unsigned long *flags
,
538 struct compact_control
*cc
)
541 /* Track if the lock is contended in async mode */
542 if (cc
->mode
== MIGRATE_ASYNC
&& !cc
->contended
) {
543 if (spin_trylock_irqsave(lock
, *flags
))
546 cc
->contended
= true;
549 spin_lock_irqsave(lock
, *flags
);
554 * Compaction requires the taking of some coarse locks that are potentially
555 * very heavily contended. The lock should be periodically unlocked to avoid
556 * having disabled IRQs for a long time, even when there is nobody waiting on
557 * the lock. It might also be that allowing the IRQs will result in
558 * need_resched() becoming true. If scheduling is needed, compaction schedules.
559 * Either compaction type will also abort if a fatal signal is pending.
560 * In either case if the lock was locked, it is dropped and not regained.
562 * Returns true if compaction should abort due to fatal signal pending.
563 * Returns false when compaction can continue.
565 static bool compact_unlock_should_abort(spinlock_t
*lock
,
566 unsigned long flags
, bool *locked
, struct compact_control
*cc
)
569 spin_unlock_irqrestore(lock
, flags
);
573 if (fatal_signal_pending(current
)) {
574 cc
->contended
= true;
584 * Isolate free pages onto a private freelist. If @strict is true, will abort
585 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
586 * (even though it may still end up isolating some pages).
588 static unsigned long isolate_freepages_block(struct compact_control
*cc
,
589 unsigned long *start_pfn
,
590 unsigned long end_pfn
,
591 struct list_head
*freelist
,
595 int nr_scanned
= 0, total_isolated
= 0;
597 unsigned long flags
= 0;
599 unsigned long blockpfn
= *start_pfn
;
602 /* Strict mode is for isolation, speed is secondary */
606 page
= pfn_to_page(blockpfn
);
608 /* Isolate free pages. */
609 for (; blockpfn
< end_pfn
; blockpfn
+= stride
, page
+= stride
) {
613 * Periodically drop the lock (if held) regardless of its
614 * contention, to give chance to IRQs. Abort if fatal signal
617 if (!(blockpfn
% COMPACT_CLUSTER_MAX
)
618 && compact_unlock_should_abort(&cc
->zone
->lock
, flags
,
625 * For compound pages such as THP and hugetlbfs, we can save
626 * potentially a lot of iterations if we skip them at once.
627 * The check is racy, but we can consider only valid values
628 * and the only danger is skipping too much.
630 if (PageCompound(page
)) {
631 const unsigned int order
= compound_order(page
);
633 if (blockpfn
+ (1UL << order
) <= end_pfn
) {
634 blockpfn
+= (1UL << order
) - 1;
635 page
+= (1UL << order
) - 1;
636 nr_scanned
+= (1UL << order
) - 1;
642 if (!PageBuddy(page
))
645 /* If we already hold the lock, we can skip some rechecking. */
647 locked
= compact_lock_irqsave(&cc
->zone
->lock
,
650 /* Recheck this is a buddy page under lock */
651 if (!PageBuddy(page
))
655 /* Found a free page, will break it into order-0 pages */
656 order
= buddy_order(page
);
657 isolated
= __isolate_free_page(page
, order
);
660 set_page_private(page
, order
);
662 nr_scanned
+= isolated
- 1;
663 total_isolated
+= isolated
;
664 cc
->nr_freepages
+= isolated
;
665 list_add_tail(&page
->lru
, &freelist
[order
]);
667 if (!strict
&& cc
->nr_migratepages
<= cc
->nr_freepages
) {
668 blockpfn
+= isolated
;
671 /* Advance to the end of split page */
672 blockpfn
+= isolated
- 1;
673 page
+= isolated
- 1;
683 spin_unlock_irqrestore(&cc
->zone
->lock
, flags
);
686 * Be careful to not go outside of the pageblock.
688 if (unlikely(blockpfn
> end_pfn
))
691 trace_mm_compaction_isolate_freepages(*start_pfn
, blockpfn
,
692 nr_scanned
, total_isolated
);
694 /* Record how far we have got within the block */
695 *start_pfn
= blockpfn
;
698 * If strict isolation is requested by CMA then check that all the
699 * pages requested were isolated. If there were any failures, 0 is
700 * returned and CMA will fail.
702 if (strict
&& blockpfn
< end_pfn
)
705 cc
->total_free_scanned
+= nr_scanned
;
707 count_compact_events(COMPACTISOLATED
, total_isolated
);
708 return total_isolated
;
712 * isolate_freepages_range() - isolate free pages.
713 * @cc: Compaction control structure.
714 * @start_pfn: The first PFN to start isolating.
715 * @end_pfn: The one-past-last PFN.
717 * Non-free pages, invalid PFNs, or zone boundaries within the
718 * [start_pfn, end_pfn) range are considered errors, cause function to
719 * undo its actions and return zero. cc->freepages[] are empty.
721 * Otherwise, function returns one-past-the-last PFN of isolated page
722 * (which may be greater then end_pfn if end fell in a middle of
723 * a free page). cc->freepages[] contain free pages isolated.
726 isolate_freepages_range(struct compact_control
*cc
,
727 unsigned long start_pfn
, unsigned long end_pfn
)
729 unsigned long isolated
, pfn
, block_start_pfn
, block_end_pfn
;
732 for (order
= 0; order
< NR_PAGE_ORDERS
; order
++)
733 INIT_LIST_HEAD(&cc
->freepages
[order
]);
736 block_start_pfn
= pageblock_start_pfn(pfn
);
737 if (block_start_pfn
< cc
->zone
->zone_start_pfn
)
738 block_start_pfn
= cc
->zone
->zone_start_pfn
;
739 block_end_pfn
= pageblock_end_pfn(pfn
);
741 for (; pfn
< end_pfn
; pfn
+= isolated
,
742 block_start_pfn
= block_end_pfn
,
743 block_end_pfn
+= pageblock_nr_pages
) {
744 /* Protect pfn from changing by isolate_freepages_block */
745 unsigned long isolate_start_pfn
= pfn
;
748 * pfn could pass the block_end_pfn if isolated freepage
749 * is more than pageblock order. In this case, we adjust
750 * scanning range to right one.
752 if (pfn
>= block_end_pfn
) {
753 block_start_pfn
= pageblock_start_pfn(pfn
);
754 block_end_pfn
= pageblock_end_pfn(pfn
);
757 block_end_pfn
= min(block_end_pfn
, end_pfn
);
759 if (!pageblock_pfn_to_page(block_start_pfn
,
760 block_end_pfn
, cc
->zone
))
763 isolated
= isolate_freepages_block(cc
, &isolate_start_pfn
,
764 block_end_pfn
, cc
->freepages
, 0, true);
767 * In strict mode, isolate_freepages_block() returns 0 if
768 * there are any holes in the block (ie. invalid PFNs or
775 * If we managed to isolate pages, it is always (1 << n) *
776 * pageblock_nr_pages for some non-negative n. (Max order
777 * page may span two pageblocks).
782 /* Loop terminated early, cleanup. */
783 release_free_list(cc
->freepages
);
787 /* We don't use freelists for anything. */
791 /* Similar to reclaim, but different enough that they don't share logic */
792 static bool too_many_isolated(struct compact_control
*cc
)
794 pg_data_t
*pgdat
= cc
->zone
->zone_pgdat
;
797 unsigned long active
, inactive
, isolated
;
799 inactive
= node_page_state(pgdat
, NR_INACTIVE_FILE
) +
800 node_page_state(pgdat
, NR_INACTIVE_ANON
);
801 active
= node_page_state(pgdat
, NR_ACTIVE_FILE
) +
802 node_page_state(pgdat
, NR_ACTIVE_ANON
);
803 isolated
= node_page_state(pgdat
, NR_ISOLATED_FILE
) +
804 node_page_state(pgdat
, NR_ISOLATED_ANON
);
807 * Allow GFP_NOFS to isolate past the limit set for regular
808 * compaction runs. This prevents an ABBA deadlock when other
809 * compactors have already isolated to the limit, but are
810 * blocked on filesystem locks held by the GFP_NOFS thread.
812 if (cc
->gfp_mask
& __GFP_FS
) {
817 too_many
= isolated
> (inactive
+ active
) / 2;
819 wake_throttle_isolated(pgdat
);
825 * skip_isolation_on_order() - determine when to skip folio isolation based on
826 * folio order and compaction target order
827 * @order: to-be-isolated folio order
828 * @target_order: compaction target order
830 * This avoids unnecessary folio isolations during compaction.
832 static bool skip_isolation_on_order(int order
, int target_order
)
835 * Unless we are performing global compaction (i.e.,
836 * is_via_compact_memory), skip any folios that are larger than the
837 * target order: we wouldn't be here if we'd have a free folio with
838 * the desired target_order, so migrating this folio would likely fail
841 if (!is_via_compact_memory(target_order
) && order
>= target_order
)
844 * We limit memory compaction to pageblocks and won't try
845 * creating free blocks of memory that are larger than that.
847 return order
>= pageblock_order
;
851 * isolate_migratepages_block() - isolate all migrate-able pages within
853 * @cc: Compaction control structure.
854 * @low_pfn: The first PFN to isolate
855 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
856 * @mode: Isolation mode to be used.
858 * Isolate all pages that can be migrated from the range specified by
859 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
860 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
861 * -ENOMEM in case we could not allocate a page, or 0.
862 * cc->migrate_pfn will contain the next pfn to scan.
864 * The pages are isolated on cc->migratepages list (not required to be empty),
865 * and cc->nr_migratepages is updated accordingly.
868 isolate_migratepages_block(struct compact_control
*cc
, unsigned long low_pfn
,
869 unsigned long end_pfn
, isolate_mode_t mode
)
871 pg_data_t
*pgdat
= cc
->zone
->zone_pgdat
;
872 unsigned long nr_scanned
= 0, nr_isolated
= 0;
873 struct lruvec
*lruvec
;
874 unsigned long flags
= 0;
875 struct lruvec
*locked
= NULL
;
876 struct folio
*folio
= NULL
;
877 struct page
*page
= NULL
, *valid_page
= NULL
;
878 struct address_space
*mapping
;
879 unsigned long start_pfn
= low_pfn
;
880 bool skip_on_failure
= false;
881 unsigned long next_skip_pfn
= 0;
882 bool skip_updated
= false;
885 cc
->migrate_pfn
= low_pfn
;
888 * Ensure that there are not too many pages isolated from the LRU
889 * list by either parallel reclaimers or compaction. If there are,
890 * delay for some time until fewer pages are isolated
892 while (unlikely(too_many_isolated(cc
))) {
893 /* stop isolation if there are still pages not migrated */
894 if (cc
->nr_migratepages
)
897 /* async migration should just abort */
898 if (cc
->mode
== MIGRATE_ASYNC
)
901 reclaim_throttle(pgdat
, VMSCAN_THROTTLE_ISOLATED
);
903 if (fatal_signal_pending(current
))
909 if (cc
->direct_compaction
&& (cc
->mode
== MIGRATE_ASYNC
)) {
910 skip_on_failure
= true;
911 next_skip_pfn
= block_end_pfn(low_pfn
, cc
->order
);
914 /* Time to isolate some pages for migration */
915 for (; low_pfn
< end_pfn
; low_pfn
++) {
916 bool is_dirty
, is_unevictable
;
918 if (skip_on_failure
&& low_pfn
>= next_skip_pfn
) {
920 * We have isolated all migration candidates in the
921 * previous order-aligned block, and did not skip it due
922 * to failure. We should migrate the pages now and
923 * hopefully succeed compaction.
929 * We failed to isolate in the previous order-aligned
930 * block. Set the new boundary to the end of the
931 * current block. Note we can't simply increase
932 * next_skip_pfn by 1 << order, as low_pfn might have
933 * been incremented by a higher number due to skipping
934 * a compound or a high-order buddy page in the
935 * previous loop iteration.
937 next_skip_pfn
= block_end_pfn(low_pfn
, cc
->order
);
941 * Periodically drop the lock (if held) regardless of its
942 * contention, to give chance to IRQs. Abort completely if
943 * a fatal signal is pending.
945 if (!(low_pfn
% COMPACT_CLUSTER_MAX
)) {
947 unlock_page_lruvec_irqrestore(locked
, flags
);
951 if (fatal_signal_pending(current
)) {
952 cc
->contended
= true;
963 page
= pfn_to_page(low_pfn
);
966 * Check if the pageblock has already been marked skipped.
967 * Only the first PFN is checked as the caller isolates
968 * COMPACT_CLUSTER_MAX at a time so the second call must
969 * not falsely conclude that the block should be skipped.
971 if (!valid_page
&& (pageblock_aligned(low_pfn
) ||
972 low_pfn
== cc
->zone
->zone_start_pfn
)) {
973 if (!isolation_suitable(cc
, page
)) {
981 if (PageHuge(page
)) {
983 * skip hugetlbfs if we are not compacting for pages
984 * bigger than its order. THPs and other compound pages
987 if (!cc
->alloc_contig
) {
988 const unsigned int order
= compound_order(page
);
990 if (order
<= MAX_PAGE_ORDER
) {
991 low_pfn
+= (1UL << order
) - 1;
992 nr_scanned
+= (1UL << order
) - 1;
996 /* for alloc_contig case */
998 unlock_page_lruvec_irqrestore(locked
, flags
);
1002 ret
= isolate_or_dissolve_huge_page(page
, &cc
->migratepages
);
1005 * Fail isolation in case isolate_or_dissolve_huge_page()
1006 * reports an error. In case of -ENOMEM, abort right away.
1009 /* Do not report -EBUSY down the chain */
1012 low_pfn
+= compound_nr(page
) - 1;
1013 nr_scanned
+= compound_nr(page
) - 1;
1017 if (PageHuge(page
)) {
1019 * Hugepage was successfully isolated and placed
1020 * on the cc->migratepages list.
1022 folio
= page_folio(page
);
1023 low_pfn
+= folio_nr_pages(folio
) - 1;
1024 goto isolate_success_no_list
;
1028 * Ok, the hugepage was dissolved. Now these pages are
1029 * Buddy and cannot be re-allocated because they are
1030 * isolated. Fall-through as the check below handles
1036 * Skip if free. We read page order here without zone lock
1037 * which is generally unsafe, but the race window is small and
1038 * the worst thing that can happen is that we skip some
1039 * potential isolation targets.
1041 if (PageBuddy(page
)) {
1042 unsigned long freepage_order
= buddy_order_unsafe(page
);
1045 * Without lock, we cannot be sure that what we got is
1046 * a valid page order. Consider only values in the
1047 * valid order range to prevent low_pfn overflow.
1049 if (freepage_order
> 0 && freepage_order
<= MAX_PAGE_ORDER
) {
1050 low_pfn
+= (1UL << freepage_order
) - 1;
1051 nr_scanned
+= (1UL << freepage_order
) - 1;
1057 * Regardless of being on LRU, compound pages such as THP
1058 * (hugetlbfs is handled above) are not to be compacted unless
1059 * we are attempting an allocation larger than the compound
1060 * page size. We can potentially save a lot of iterations if we
1061 * skip them at once. The check is racy, but we can consider
1062 * only valid values and the only danger is skipping too much.
1064 if (PageCompound(page
) && !cc
->alloc_contig
) {
1065 const unsigned int order
= compound_order(page
);
1067 /* Skip based on page order and compaction target order. */
1068 if (skip_isolation_on_order(order
, cc
->order
)) {
1069 if (order
<= MAX_PAGE_ORDER
) {
1070 low_pfn
+= (1UL << order
) - 1;
1071 nr_scanned
+= (1UL << order
) - 1;
1078 * Check may be lockless but that's ok as we recheck later.
1079 * It's possible to migrate LRU and non-lru movable pages.
1080 * Skip any other type of page
1082 if (!PageLRU(page
)) {
1084 * __PageMovable can return false positive so we need
1085 * to verify it under page_lock.
1087 if (unlikely(__PageMovable(page
)) &&
1088 !PageIsolated(page
)) {
1090 unlock_page_lruvec_irqrestore(locked
, flags
);
1094 if (isolate_movable_page(page
, mode
)) {
1095 folio
= page_folio(page
);
1096 goto isolate_success
;
1104 * Be careful not to clear PageLRU until after we're
1105 * sure the page is not being freed elsewhere -- the
1106 * page release code relies on it.
1108 folio
= folio_get_nontail_page(page
);
1109 if (unlikely(!folio
))
1113 * Migration will fail if an anonymous page is pinned in memory,
1114 * so avoid taking lru_lock and isolating it unnecessarily in an
1115 * admittedly racy check.
1117 mapping
= folio_mapping(folio
);
1118 if (!mapping
&& (folio_ref_count(folio
) - 1) > folio_mapcount(folio
))
1119 goto isolate_fail_put
;
1122 * Only allow to migrate anonymous pages in GFP_NOFS context
1123 * because those do not depend on fs locks.
1125 if (!(cc
->gfp_mask
& __GFP_FS
) && mapping
)
1126 goto isolate_fail_put
;
1128 /* Only take pages on LRU: a check now makes later tests safe */
1129 if (!folio_test_lru(folio
))
1130 goto isolate_fail_put
;
1132 is_unevictable
= folio_test_unevictable(folio
);
1134 /* Compaction might skip unevictable pages but CMA takes them */
1135 if (!(mode
& ISOLATE_UNEVICTABLE
) && is_unevictable
)
1136 goto isolate_fail_put
;
1139 * To minimise LRU disruption, the caller can indicate with
1140 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1141 * it will be able to migrate without blocking - clean pages
1142 * for the most part. PageWriteback would require blocking.
1144 if ((mode
& ISOLATE_ASYNC_MIGRATE
) && folio_test_writeback(folio
))
1145 goto isolate_fail_put
;
1147 is_dirty
= folio_test_dirty(folio
);
1149 if (((mode
& ISOLATE_ASYNC_MIGRATE
) && is_dirty
) ||
1150 (mapping
&& is_unevictable
)) {
1151 bool migrate_dirty
= true;
1152 bool is_inaccessible
;
1155 * Only folios without mappings or that have
1156 * a ->migrate_folio callback are possible to migrate
1159 * Folios from inaccessible mappings are not migratable.
1161 * However, we can be racing with truncation, which can
1162 * free the mapping that we need to check. Truncation
1163 * holds the folio lock until after the folio is removed
1164 * from the page so holding it ourselves is sufficient.
1166 * To avoid locking the folio just to check inaccessible,
1167 * assume every inaccessible folio is also unevictable,
1168 * which is a cheaper test. If our assumption goes
1169 * wrong, it's not a correctness bug, just potentially
1172 if (!folio_trylock(folio
))
1173 goto isolate_fail_put
;
1175 mapping
= folio_mapping(folio
);
1176 if ((mode
& ISOLATE_ASYNC_MIGRATE
) && is_dirty
) {
1177 migrate_dirty
= !mapping
||
1178 mapping
->a_ops
->migrate_folio
;
1180 is_inaccessible
= mapping
&& mapping_inaccessible(mapping
);
1181 folio_unlock(folio
);
1182 if (!migrate_dirty
|| is_inaccessible
)
1183 goto isolate_fail_put
;
1186 /* Try isolate the folio */
1187 if (!folio_test_clear_lru(folio
))
1188 goto isolate_fail_put
;
1190 lruvec
= folio_lruvec(folio
);
1192 /* If we already hold the lock, we can skip some rechecking */
1193 if (lruvec
!= locked
) {
1195 unlock_page_lruvec_irqrestore(locked
, flags
);
1197 compact_lock_irqsave(&lruvec
->lru_lock
, &flags
, cc
);
1200 lruvec_memcg_debug(lruvec
, folio
);
1203 * Try get exclusive access under lock. If marked for
1204 * skip, the scan is aborted unless the current context
1205 * is a rescan to reach the end of the pageblock.
1207 if (!skip_updated
&& valid_page
) {
1208 skip_updated
= true;
1209 if (test_and_set_skip(cc
, valid_page
) &&
1210 !cc
->finish_pageblock
) {
1217 * Check LRU folio order under the lock
1219 if (unlikely(skip_isolation_on_order(folio_order(folio
),
1221 !cc
->alloc_contig
)) {
1222 low_pfn
+= folio_nr_pages(folio
) - 1;
1223 nr_scanned
+= folio_nr_pages(folio
) - 1;
1224 folio_set_lru(folio
);
1225 goto isolate_fail_put
;
1229 /* The folio is taken off the LRU */
1230 if (folio_test_large(folio
))
1231 low_pfn
+= folio_nr_pages(folio
) - 1;
1233 /* Successfully isolated */
1234 lruvec_del_folio(lruvec
, folio
);
1235 node_stat_mod_folio(folio
,
1236 NR_ISOLATED_ANON
+ folio_is_file_lru(folio
),
1237 folio_nr_pages(folio
));
1240 list_add(&folio
->lru
, &cc
->migratepages
);
1241 isolate_success_no_list
:
1242 cc
->nr_migratepages
+= folio_nr_pages(folio
);
1243 nr_isolated
+= folio_nr_pages(folio
);
1244 nr_scanned
+= folio_nr_pages(folio
) - 1;
1247 * Avoid isolating too much unless this block is being
1248 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1249 * or a lock is contended. For contention, isolate quickly to
1250 * potentially remove one source of contention.
1252 if (cc
->nr_migratepages
>= COMPACT_CLUSTER_MAX
&&
1253 !cc
->finish_pageblock
&& !cc
->contended
) {
1261 /* Avoid potential deadlock in freeing page under lru_lock */
1263 unlock_page_lruvec_irqrestore(locked
, flags
);
1269 if (!skip_on_failure
&& ret
!= -ENOMEM
)
1273 * We have isolated some pages, but then failed. Release them
1274 * instead of migrating, as we cannot form the cc->order buddy
1279 unlock_page_lruvec_irqrestore(locked
, flags
);
1282 putback_movable_pages(&cc
->migratepages
);
1283 cc
->nr_migratepages
= 0;
1287 if (low_pfn
< next_skip_pfn
) {
1288 low_pfn
= next_skip_pfn
- 1;
1290 * The check near the loop beginning would have updated
1291 * next_skip_pfn too, but this is a bit simpler.
1293 next_skip_pfn
+= 1UL << cc
->order
;
1301 * The PageBuddy() check could have potentially brought us outside
1302 * the range to be scanned.
1304 if (unlikely(low_pfn
> end_pfn
))
1311 unlock_page_lruvec_irqrestore(locked
, flags
);
1313 folio_set_lru(folio
);
1318 * Update the cached scanner pfn once the pageblock has been scanned.
1319 * Pages will either be migrated in which case there is no point
1320 * scanning in the near future or migration failed in which case the
1321 * failure reason may persist. The block is marked for skipping if
1322 * there were no pages isolated in the block or if the block is
1323 * rescanned twice in a row.
1325 if (low_pfn
== end_pfn
&& (!nr_isolated
|| cc
->finish_pageblock
)) {
1326 if (!cc
->no_set_skip_hint
&& valid_page
&& !skip_updated
)
1327 set_pageblock_skip(valid_page
);
1328 update_cached_migrate(cc
, low_pfn
);
1331 trace_mm_compaction_isolate_migratepages(start_pfn
, low_pfn
,
1332 nr_scanned
, nr_isolated
);
1335 cc
->total_migrate_scanned
+= nr_scanned
;
1337 count_compact_events(COMPACTISOLATED
, nr_isolated
);
1339 cc
->migrate_pfn
= low_pfn
;
1345 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1346 * @cc: Compaction control structure.
1347 * @start_pfn: The first PFN to start isolating.
1348 * @end_pfn: The one-past-last PFN.
1350 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1351 * in case we could not allocate a page, or 0.
1354 isolate_migratepages_range(struct compact_control
*cc
, unsigned long start_pfn
,
1355 unsigned long end_pfn
)
1357 unsigned long pfn
, block_start_pfn
, block_end_pfn
;
1360 /* Scan block by block. First and last block may be incomplete */
1362 block_start_pfn
= pageblock_start_pfn(pfn
);
1363 if (block_start_pfn
< cc
->zone
->zone_start_pfn
)
1364 block_start_pfn
= cc
->zone
->zone_start_pfn
;
1365 block_end_pfn
= pageblock_end_pfn(pfn
);
1367 for (; pfn
< end_pfn
; pfn
= block_end_pfn
,
1368 block_start_pfn
= block_end_pfn
,
1369 block_end_pfn
+= pageblock_nr_pages
) {
1371 block_end_pfn
= min(block_end_pfn
, end_pfn
);
1373 if (!pageblock_pfn_to_page(block_start_pfn
,
1374 block_end_pfn
, cc
->zone
))
1377 ret
= isolate_migratepages_block(cc
, pfn
, block_end_pfn
,
1378 ISOLATE_UNEVICTABLE
);
1383 if (cc
->nr_migratepages
>= COMPACT_CLUSTER_MAX
)
1390 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1391 #ifdef CONFIG_COMPACTION
1393 static bool suitable_migration_source(struct compact_control
*cc
,
1398 if (pageblock_skip_persistent(page
))
1401 if ((cc
->mode
!= MIGRATE_ASYNC
) || !cc
->direct_compaction
)
1404 block_mt
= get_pageblock_migratetype(page
);
1406 if (cc
->migratetype
== MIGRATE_MOVABLE
)
1407 return is_migrate_movable(block_mt
);
1409 return block_mt
== cc
->migratetype
;
1412 /* Returns true if the page is within a block suitable for migration to */
1413 static bool suitable_migration_target(struct compact_control
*cc
,
1416 /* If the page is a large free page, then disallow migration */
1417 if (PageBuddy(page
)) {
1418 int order
= cc
->order
> 0 ? cc
->order
: pageblock_order
;
1421 * We are checking page_order without zone->lock taken. But
1422 * the only small danger is that we skip a potentially suitable
1423 * pageblock, so it's not worth to check order for valid range.
1425 if (buddy_order_unsafe(page
) >= order
)
1429 if (cc
->ignore_block_suitable
)
1432 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1433 if (is_migrate_movable(get_pageblock_migratetype(page
)))
1436 /* Otherwise skip the block */
1440 static inline unsigned int
1441 freelist_scan_limit(struct compact_control
*cc
)
1443 unsigned short shift
= BITS_PER_LONG
- 1;
1445 return (COMPACT_CLUSTER_MAX
>> min(shift
, cc
->fast_search_fail
)) + 1;
1449 * Test whether the free scanner has reached the same or lower pageblock than
1450 * the migration scanner, and compaction should thus terminate.
1452 static inline bool compact_scanners_met(struct compact_control
*cc
)
1454 return (cc
->free_pfn
>> pageblock_order
)
1455 <= (cc
->migrate_pfn
>> pageblock_order
);
1459 * Used when scanning for a suitable migration target which scans freelists
1460 * in reverse. Reorders the list such as the unscanned pages are scanned
1461 * first on the next iteration of the free scanner
1464 move_freelist_head(struct list_head
*freelist
, struct page
*freepage
)
1468 if (!list_is_first(&freepage
->buddy_list
, freelist
)) {
1469 list_cut_before(&sublist
, freelist
, &freepage
->buddy_list
);
1470 list_splice_tail(&sublist
, freelist
);
1475 * Similar to move_freelist_head except used by the migration scanner
1476 * when scanning forward. It's possible for these list operations to
1477 * move against each other if they search the free list exactly in
1481 move_freelist_tail(struct list_head
*freelist
, struct page
*freepage
)
1485 if (!list_is_last(&freepage
->buddy_list
, freelist
)) {
1486 list_cut_position(&sublist
, freelist
, &freepage
->buddy_list
);
1487 list_splice_tail(&sublist
, freelist
);
1492 fast_isolate_around(struct compact_control
*cc
, unsigned long pfn
)
1494 unsigned long start_pfn
, end_pfn
;
1497 /* Do not search around if there are enough pages already */
1498 if (cc
->nr_freepages
>= cc
->nr_migratepages
)
1501 /* Minimise scanning during async compaction */
1502 if (cc
->direct_compaction
&& cc
->mode
== MIGRATE_ASYNC
)
1505 /* Pageblock boundaries */
1506 start_pfn
= max(pageblock_start_pfn(pfn
), cc
->zone
->zone_start_pfn
);
1507 end_pfn
= min(pageblock_end_pfn(pfn
), zone_end_pfn(cc
->zone
));
1509 page
= pageblock_pfn_to_page(start_pfn
, end_pfn
, cc
->zone
);
1513 isolate_freepages_block(cc
, &start_pfn
, end_pfn
, cc
->freepages
, 1, false);
1515 /* Skip this pageblock in the future as it's full or nearly full */
1516 if (start_pfn
== end_pfn
&& !cc
->no_set_skip_hint
)
1517 set_pageblock_skip(page
);
1520 /* Search orders in round-robin fashion */
1521 static int next_search_order(struct compact_control
*cc
, int order
)
1525 order
= cc
->order
- 1;
1527 /* Search wrapped around? */
1528 if (order
== cc
->search_order
) {
1530 if (cc
->search_order
< 0)
1531 cc
->search_order
= cc
->order
- 1;
1538 static void fast_isolate_freepages(struct compact_control
*cc
)
1540 unsigned int limit
= max(1U, freelist_scan_limit(cc
) >> 1);
1541 unsigned int nr_scanned
= 0, total_isolated
= 0;
1542 unsigned long low_pfn
, min_pfn
, highest
= 0;
1543 unsigned long nr_isolated
= 0;
1544 unsigned long distance
;
1545 struct page
*page
= NULL
;
1546 bool scan_start
= false;
1549 /* Full compaction passes in a negative order */
1554 * If starting the scan, use a deeper search and use the highest
1555 * PFN found if a suitable one is not found.
1557 if (cc
->free_pfn
>= cc
->zone
->compact_init_free_pfn
) {
1558 limit
= pageblock_nr_pages
>> 1;
1563 * Preferred point is in the top quarter of the scan space but take
1564 * a pfn from the top half if the search is problematic.
1566 distance
= (cc
->free_pfn
- cc
->migrate_pfn
);
1567 low_pfn
= pageblock_start_pfn(cc
->free_pfn
- (distance
>> 2));
1568 min_pfn
= pageblock_start_pfn(cc
->free_pfn
- (distance
>> 1));
1570 if (WARN_ON_ONCE(min_pfn
> low_pfn
))
1574 * Search starts from the last successful isolation order or the next
1575 * order to search after a previous failure
1577 cc
->search_order
= min_t(unsigned int, cc
->order
- 1, cc
->search_order
);
1579 for (order
= cc
->search_order
;
1580 !page
&& order
>= 0;
1581 order
= next_search_order(cc
, order
)) {
1582 struct free_area
*area
= &cc
->zone
->free_area
[order
];
1583 struct list_head
*freelist
;
1584 struct page
*freepage
;
1585 unsigned long flags
;
1586 unsigned int order_scanned
= 0;
1587 unsigned long high_pfn
= 0;
1592 spin_lock_irqsave(&cc
->zone
->lock
, flags
);
1593 freelist
= &area
->free_list
[MIGRATE_MOVABLE
];
1594 list_for_each_entry_reverse(freepage
, freelist
, buddy_list
) {
1599 pfn
= page_to_pfn(freepage
);
1602 highest
= max(pageblock_start_pfn(pfn
),
1603 cc
->zone
->zone_start_pfn
);
1605 if (pfn
>= low_pfn
) {
1606 cc
->fast_search_fail
= 0;
1607 cc
->search_order
= order
;
1612 if (pfn
>= min_pfn
&& pfn
> high_pfn
) {
1615 /* Shorten the scan if a candidate is found */
1619 if (order_scanned
>= limit
)
1623 /* Use a maximum candidate pfn if a preferred one was not found */
1624 if (!page
&& high_pfn
) {
1625 page
= pfn_to_page(high_pfn
);
1627 /* Update freepage for the list reorder below */
1631 /* Reorder to so a future search skips recent pages */
1632 move_freelist_head(freelist
, freepage
);
1634 /* Isolate the page if available */
1636 if (__isolate_free_page(page
, order
)) {
1637 set_page_private(page
, order
);
1638 nr_isolated
= 1 << order
;
1639 nr_scanned
+= nr_isolated
- 1;
1640 total_isolated
+= nr_isolated
;
1641 cc
->nr_freepages
+= nr_isolated
;
1642 list_add_tail(&page
->lru
, &cc
->freepages
[order
]);
1643 count_compact_events(COMPACTISOLATED
, nr_isolated
);
1645 /* If isolation fails, abort the search */
1646 order
= cc
->search_order
+ 1;
1651 spin_unlock_irqrestore(&cc
->zone
->lock
, flags
);
1653 /* Skip fast search if enough freepages isolated */
1654 if (cc
->nr_freepages
>= cc
->nr_migratepages
)
1658 * Smaller scan on next order so the total scan is related
1659 * to freelist_scan_limit.
1661 if (order_scanned
>= limit
)
1662 limit
= max(1U, limit
>> 1);
1665 trace_mm_compaction_fast_isolate_freepages(min_pfn
, cc
->free_pfn
,
1666 nr_scanned
, total_isolated
);
1669 cc
->fast_search_fail
++;
1672 * Use the highest PFN found above min. If one was
1673 * not found, be pessimistic for direct compaction
1674 * and use the min mark.
1676 if (highest
>= min_pfn
) {
1677 page
= pfn_to_page(highest
);
1678 cc
->free_pfn
= highest
;
1680 if (cc
->direct_compaction
&& pfn_valid(min_pfn
)) {
1681 page
= pageblock_pfn_to_page(min_pfn
,
1682 min(pageblock_end_pfn(min_pfn
),
1683 zone_end_pfn(cc
->zone
)),
1685 if (page
&& !suitable_migration_target(cc
, page
))
1688 cc
->free_pfn
= min_pfn
;
1694 if (highest
&& highest
>= cc
->zone
->compact_cached_free_pfn
) {
1695 highest
-= pageblock_nr_pages
;
1696 cc
->zone
->compact_cached_free_pfn
= highest
;
1699 cc
->total_free_scanned
+= nr_scanned
;
1703 low_pfn
= page_to_pfn(page
);
1704 fast_isolate_around(cc
, low_pfn
);
1708 * Based on information in the current compact_control, find blocks
1709 * suitable for isolating free pages from and then isolate them.
1711 static void isolate_freepages(struct compact_control
*cc
)
1713 struct zone
*zone
= cc
->zone
;
1715 unsigned long block_start_pfn
; /* start of current pageblock */
1716 unsigned long isolate_start_pfn
; /* exact pfn we start at */
1717 unsigned long block_end_pfn
; /* end of current pageblock */
1718 unsigned long low_pfn
; /* lowest pfn scanner is able to scan */
1719 unsigned int stride
;
1721 /* Try a small search of the free lists for a candidate */
1722 fast_isolate_freepages(cc
);
1723 if (cc
->nr_freepages
)
1727 * Initialise the free scanner. The starting point is where we last
1728 * successfully isolated from, zone-cached value, or the end of the
1729 * zone when isolating for the first time. For looping we also need
1730 * this pfn aligned down to the pageblock boundary, because we do
1731 * block_start_pfn -= pageblock_nr_pages in the for loop.
1732 * For ending point, take care when isolating in last pageblock of a
1733 * zone which ends in the middle of a pageblock.
1734 * The low boundary is the end of the pageblock the migration scanner
1737 isolate_start_pfn
= cc
->free_pfn
;
1738 block_start_pfn
= pageblock_start_pfn(isolate_start_pfn
);
1739 block_end_pfn
= min(block_start_pfn
+ pageblock_nr_pages
,
1740 zone_end_pfn(zone
));
1741 low_pfn
= pageblock_end_pfn(cc
->migrate_pfn
);
1742 stride
= cc
->mode
== MIGRATE_ASYNC
? COMPACT_CLUSTER_MAX
: 1;
1745 * Isolate free pages until enough are available to migrate the
1746 * pages on cc->migratepages. We stop searching if the migrate
1747 * and free page scanners meet or enough free pages are isolated.
1749 for (; block_start_pfn
>= low_pfn
;
1750 block_end_pfn
= block_start_pfn
,
1751 block_start_pfn
-= pageblock_nr_pages
,
1752 isolate_start_pfn
= block_start_pfn
) {
1753 unsigned long nr_isolated
;
1756 * This can iterate a massively long zone without finding any
1757 * suitable migration targets, so periodically check resched.
1759 if (!(block_start_pfn
% (COMPACT_CLUSTER_MAX
* pageblock_nr_pages
)))
1762 page
= pageblock_pfn_to_page(block_start_pfn
, block_end_pfn
,
1765 unsigned long next_pfn
;
1767 next_pfn
= skip_offline_sections_reverse(block_start_pfn
);
1769 block_start_pfn
= max(next_pfn
, low_pfn
);
1774 /* Check the block is suitable for migration */
1775 if (!suitable_migration_target(cc
, page
))
1778 /* If isolation recently failed, do not retry */
1779 if (!isolation_suitable(cc
, page
))
1782 /* Found a block suitable for isolating free pages from. */
1783 nr_isolated
= isolate_freepages_block(cc
, &isolate_start_pfn
,
1784 block_end_pfn
, cc
->freepages
, stride
, false);
1786 /* Update the skip hint if the full pageblock was scanned */
1787 if (isolate_start_pfn
== block_end_pfn
)
1788 update_pageblock_skip(cc
, page
, block_start_pfn
-
1789 pageblock_nr_pages
);
1791 /* Are enough freepages isolated? */
1792 if (cc
->nr_freepages
>= cc
->nr_migratepages
) {
1793 if (isolate_start_pfn
>= block_end_pfn
) {
1795 * Restart at previous pageblock if more
1796 * freepages can be isolated next time.
1799 block_start_pfn
- pageblock_nr_pages
;
1802 } else if (isolate_start_pfn
< block_end_pfn
) {
1804 * If isolation failed early, do not continue
1810 /* Adjust stride depending on isolation */
1815 stride
= min_t(unsigned int, COMPACT_CLUSTER_MAX
, stride
<< 1);
1819 * Record where the free scanner will restart next time. Either we
1820 * broke from the loop and set isolate_start_pfn based on the last
1821 * call to isolate_freepages_block(), or we met the migration scanner
1822 * and the loop terminated due to isolate_start_pfn < low_pfn
1824 cc
->free_pfn
= isolate_start_pfn
;
1828 * This is a migrate-callback that "allocates" freepages by taking pages
1829 * from the isolated freelists in the block we are migrating to.
1831 static struct folio
*compaction_alloc_noprof(struct folio
*src
, unsigned long data
)
1833 struct compact_control
*cc
= (struct compact_control
*)data
;
1835 int order
= folio_order(src
);
1836 bool has_isolated_pages
= false;
1838 struct page
*freepage
;
1842 for (start_order
= order
; start_order
< NR_PAGE_ORDERS
; start_order
++)
1843 if (!list_empty(&cc
->freepages
[start_order
]))
1846 /* no free pages in the list */
1847 if (start_order
== NR_PAGE_ORDERS
) {
1848 if (has_isolated_pages
)
1850 isolate_freepages(cc
);
1851 has_isolated_pages
= true;
1855 freepage
= list_first_entry(&cc
->freepages
[start_order
], struct page
,
1857 size
= 1 << start_order
;
1859 list_del(&freepage
->lru
);
1861 while (start_order
> order
) {
1865 list_add(&freepage
[size
].lru
, &cc
->freepages
[start_order
]);
1866 set_page_private(&freepage
[size
], start_order
);
1868 dst
= (struct folio
*)freepage
;
1870 post_alloc_hook(&dst
->page
, order
, __GFP_MOVABLE
);
1872 prep_compound_page(&dst
->page
, order
);
1873 cc
->nr_freepages
-= 1 << order
;
1874 cc
->nr_migratepages
-= 1 << order
;
1875 return page_rmappable_folio(&dst
->page
);
1878 static struct folio
*compaction_alloc(struct folio
*src
, unsigned long data
)
1880 return alloc_hooks(compaction_alloc_noprof(src
, data
));
1884 * This is a migrate-callback that "frees" freepages back to the isolated
1885 * freelist. All pages on the freelist are from the same zone, so there is no
1886 * special handling needed for NUMA.
1888 static void compaction_free(struct folio
*dst
, unsigned long data
)
1890 struct compact_control
*cc
= (struct compact_control
*)data
;
1891 int order
= folio_order(dst
);
1892 struct page
*page
= &dst
->page
;
1894 if (folio_put_testzero(dst
)) {
1895 free_pages_prepare(page
, order
);
1896 list_add(&dst
->lru
, &cc
->freepages
[order
]);
1897 cc
->nr_freepages
+= 1 << order
;
1899 cc
->nr_migratepages
+= 1 << order
;
1901 * someone else has referenced the page, we cannot take it back to our
1906 /* possible outcome of isolate_migratepages */
1908 ISOLATE_ABORT
, /* Abort compaction now */
1909 ISOLATE_NONE
, /* No pages isolated, continue scanning */
1910 ISOLATE_SUCCESS
, /* Pages isolated, migrate */
1911 } isolate_migrate_t
;
1914 * Allow userspace to control policy on scanning the unevictable LRU for
1915 * compactable pages.
1917 static int sysctl_compact_unevictable_allowed __read_mostly
= CONFIG_COMPACT_UNEVICTABLE_DEFAULT
;
1919 * Tunable for proactive compaction. It determines how
1920 * aggressively the kernel should compact memory in the
1921 * background. It takes values in the range [0, 100].
1923 static unsigned int __read_mostly sysctl_compaction_proactiveness
= 20;
1924 static int sysctl_extfrag_threshold
= 500;
1925 static int __read_mostly sysctl_compact_memory
;
1928 update_fast_start_pfn(struct compact_control
*cc
, unsigned long pfn
)
1930 if (cc
->fast_start_pfn
== ULONG_MAX
)
1933 if (!cc
->fast_start_pfn
)
1934 cc
->fast_start_pfn
= pfn
;
1936 cc
->fast_start_pfn
= min(cc
->fast_start_pfn
, pfn
);
1939 static inline unsigned long
1940 reinit_migrate_pfn(struct compact_control
*cc
)
1942 if (!cc
->fast_start_pfn
|| cc
->fast_start_pfn
== ULONG_MAX
)
1943 return cc
->migrate_pfn
;
1945 cc
->migrate_pfn
= cc
->fast_start_pfn
;
1946 cc
->fast_start_pfn
= ULONG_MAX
;
1948 return cc
->migrate_pfn
;
1952 * Briefly search the free lists for a migration source that already has
1953 * some free pages to reduce the number of pages that need migration
1954 * before a pageblock is free.
1956 static unsigned long fast_find_migrateblock(struct compact_control
*cc
)
1958 unsigned int limit
= freelist_scan_limit(cc
);
1959 unsigned int nr_scanned
= 0;
1960 unsigned long distance
;
1961 unsigned long pfn
= cc
->migrate_pfn
;
1962 unsigned long high_pfn
;
1964 bool found_block
= false;
1966 /* Skip hints are relied on to avoid repeats on the fast search */
1967 if (cc
->ignore_skip_hint
)
1971 * If the pageblock should be finished then do not select a different
1974 if (cc
->finish_pageblock
)
1978 * If the migrate_pfn is not at the start of a zone or the start
1979 * of a pageblock then assume this is a continuation of a previous
1980 * scan restarted due to COMPACT_CLUSTER_MAX.
1982 if (pfn
!= cc
->zone
->zone_start_pfn
&& pfn
!= pageblock_start_pfn(pfn
))
1986 * For smaller orders, just linearly scan as the number of pages
1987 * to migrate should be relatively small and does not necessarily
1988 * justify freeing up a large block for a small allocation.
1990 if (cc
->order
<= PAGE_ALLOC_COSTLY_ORDER
)
1994 * Only allow kcompactd and direct requests for movable pages to
1995 * quickly clear out a MOVABLE pageblock for allocation. This
1996 * reduces the risk that a large movable pageblock is freed for
1997 * an unmovable/reclaimable small allocation.
1999 if (cc
->direct_compaction
&& cc
->migratetype
!= MIGRATE_MOVABLE
)
2003 * When starting the migration scanner, pick any pageblock within the
2004 * first half of the search space. Otherwise try and pick a pageblock
2005 * within the first eighth to reduce the chances that a migration
2006 * target later becomes a source.
2008 distance
= (cc
->free_pfn
- cc
->migrate_pfn
) >> 1;
2009 if (cc
->migrate_pfn
!= cc
->zone
->zone_start_pfn
)
2011 high_pfn
= pageblock_start_pfn(cc
->migrate_pfn
+ distance
);
2013 for (order
= cc
->order
- 1;
2014 order
>= PAGE_ALLOC_COSTLY_ORDER
&& !found_block
&& nr_scanned
< limit
;
2016 struct free_area
*area
= &cc
->zone
->free_area
[order
];
2017 struct list_head
*freelist
;
2018 unsigned long flags
;
2019 struct page
*freepage
;
2024 spin_lock_irqsave(&cc
->zone
->lock
, flags
);
2025 freelist
= &area
->free_list
[MIGRATE_MOVABLE
];
2026 list_for_each_entry(freepage
, freelist
, buddy_list
) {
2027 unsigned long free_pfn
;
2029 if (nr_scanned
++ >= limit
) {
2030 move_freelist_tail(freelist
, freepage
);
2034 free_pfn
= page_to_pfn(freepage
);
2035 if (free_pfn
< high_pfn
) {
2037 * Avoid if skipped recently. Ideally it would
2038 * move to the tail but even safe iteration of
2039 * the list assumes an entry is deleted, not
2042 if (get_pageblock_skip(freepage
))
2045 /* Reorder to so a future search skips recent pages */
2046 move_freelist_tail(freelist
, freepage
);
2048 update_fast_start_pfn(cc
, free_pfn
);
2049 pfn
= pageblock_start_pfn(free_pfn
);
2050 if (pfn
< cc
->zone
->zone_start_pfn
)
2051 pfn
= cc
->zone
->zone_start_pfn
;
2052 cc
->fast_search_fail
= 0;
2057 spin_unlock_irqrestore(&cc
->zone
->lock
, flags
);
2060 cc
->total_migrate_scanned
+= nr_scanned
;
2063 * If fast scanning failed then use a cached entry for a page block
2064 * that had free pages as the basis for starting a linear scan.
2067 cc
->fast_search_fail
++;
2068 pfn
= reinit_migrate_pfn(cc
);
2074 * Isolate all pages that can be migrated from the first suitable block,
2075 * starting at the block pointed to by the migrate scanner pfn within
2078 static isolate_migrate_t
isolate_migratepages(struct compact_control
*cc
)
2080 unsigned long block_start_pfn
;
2081 unsigned long block_end_pfn
;
2082 unsigned long low_pfn
;
2084 const isolate_mode_t isolate_mode
=
2085 (sysctl_compact_unevictable_allowed
? ISOLATE_UNEVICTABLE
: 0) |
2086 (cc
->mode
!= MIGRATE_SYNC
? ISOLATE_ASYNC_MIGRATE
: 0);
2087 bool fast_find_block
;
2090 * Start at where we last stopped, or beginning of the zone as
2091 * initialized by compact_zone(). The first failure will use
2092 * the lowest PFN as the starting point for linear scanning.
2094 low_pfn
= fast_find_migrateblock(cc
);
2095 block_start_pfn
= pageblock_start_pfn(low_pfn
);
2096 if (block_start_pfn
< cc
->zone
->zone_start_pfn
)
2097 block_start_pfn
= cc
->zone
->zone_start_pfn
;
2100 * fast_find_migrateblock() has already ensured the pageblock is not
2101 * set with a skipped flag, so to avoid the isolation_suitable check
2102 * below again, check whether the fast search was successful.
2104 fast_find_block
= low_pfn
!= cc
->migrate_pfn
&& !cc
->fast_search_fail
;
2106 /* Only scan within a pageblock boundary */
2107 block_end_pfn
= pageblock_end_pfn(low_pfn
);
2110 * Iterate over whole pageblocks until we find the first suitable.
2111 * Do not cross the free scanner.
2113 for (; block_end_pfn
<= cc
->free_pfn
;
2114 fast_find_block
= false,
2115 cc
->migrate_pfn
= low_pfn
= block_end_pfn
,
2116 block_start_pfn
= block_end_pfn
,
2117 block_end_pfn
+= pageblock_nr_pages
) {
2120 * This can potentially iterate a massively long zone with
2121 * many pageblocks unsuitable, so periodically check if we
2124 if (!(low_pfn
% (COMPACT_CLUSTER_MAX
* pageblock_nr_pages
)))
2127 page
= pageblock_pfn_to_page(block_start_pfn
,
2128 block_end_pfn
, cc
->zone
);
2130 unsigned long next_pfn
;
2132 next_pfn
= skip_offline_sections(block_start_pfn
);
2134 block_end_pfn
= min(next_pfn
, cc
->free_pfn
);
2139 * If isolation recently failed, do not retry. Only check the
2140 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2141 * to be visited multiple times. Assume skip was checked
2142 * before making it "skip" so other compaction instances do
2143 * not scan the same block.
2145 if ((pageblock_aligned(low_pfn
) ||
2146 low_pfn
== cc
->zone
->zone_start_pfn
) &&
2147 !fast_find_block
&& !isolation_suitable(cc
, page
))
2151 * For async direct compaction, only scan the pageblocks of the
2152 * same migratetype without huge pages. Async direct compaction
2153 * is optimistic to see if the minimum amount of work satisfies
2154 * the allocation. The cached PFN is updated as it's possible
2155 * that all remaining blocks between source and target are
2156 * unsuitable and the compaction scanners fail to meet.
2158 if (!suitable_migration_source(cc
, page
)) {
2159 update_cached_migrate(cc
, block_end_pfn
);
2163 /* Perform the isolation */
2164 if (isolate_migratepages_block(cc
, low_pfn
, block_end_pfn
,
2166 return ISOLATE_ABORT
;
2169 * Either we isolated something and proceed with migration. Or
2170 * we failed and compact_zone should decide if we should
2176 return cc
->nr_migratepages
? ISOLATE_SUCCESS
: ISOLATE_NONE
;
2180 * Determine whether kswapd is (or recently was!) running on this node.
2182 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2185 static bool kswapd_is_running(pg_data_t
*pgdat
)
2189 pgdat_kswapd_lock(pgdat
);
2190 running
= pgdat
->kswapd
&& task_is_running(pgdat
->kswapd
);
2191 pgdat_kswapd_unlock(pgdat
);
2197 * A zone's fragmentation score is the external fragmentation wrt to the
2198 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2200 static unsigned int fragmentation_score_zone(struct zone
*zone
)
2202 return extfrag_for_order(zone
, COMPACTION_HPAGE_ORDER
);
2206 * A weighted zone's fragmentation score is the external fragmentation
2207 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2208 * returns a value in the range [0, 100].
2210 * The scaling factor ensures that proactive compaction focuses on larger
2211 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2212 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2213 * and thus never exceeds the high threshold for proactive compaction.
2215 static unsigned int fragmentation_score_zone_weighted(struct zone
*zone
)
2217 unsigned long score
;
2219 score
= zone
->present_pages
* fragmentation_score_zone(zone
);
2220 return div64_ul(score
, zone
->zone_pgdat
->node_present_pages
+ 1);
2224 * The per-node proactive (background) compaction process is started by its
2225 * corresponding kcompactd thread when the node's fragmentation score
2226 * exceeds the high threshold. The compaction process remains active till
2227 * the node's score falls below the low threshold, or one of the back-off
2228 * conditions is met.
2230 static unsigned int fragmentation_score_node(pg_data_t
*pgdat
)
2232 unsigned int score
= 0;
2235 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
2238 zone
= &pgdat
->node_zones
[zoneid
];
2239 if (!populated_zone(zone
))
2241 score
+= fragmentation_score_zone_weighted(zone
);
2247 static unsigned int fragmentation_score_wmark(bool low
)
2249 unsigned int wmark_low
;
2252 * Cap the low watermark to avoid excessive compaction
2253 * activity in case a user sets the proactiveness tunable
2254 * close to 100 (maximum).
2256 wmark_low
= max(100U - sysctl_compaction_proactiveness
, 5U);
2257 return low
? wmark_low
: min(wmark_low
+ 10, 100U);
2260 static bool should_proactive_compact_node(pg_data_t
*pgdat
)
2264 if (!sysctl_compaction_proactiveness
|| kswapd_is_running(pgdat
))
2267 wmark_high
= fragmentation_score_wmark(false);
2268 return fragmentation_score_node(pgdat
) > wmark_high
;
2271 static enum compact_result
__compact_finished(struct compact_control
*cc
)
2274 const int migratetype
= cc
->migratetype
;
2277 /* Compaction run completes if the migrate and free scanner meet */
2278 if (compact_scanners_met(cc
)) {
2279 /* Let the next compaction start anew. */
2280 reset_cached_positions(cc
->zone
);
2283 * Mark that the PG_migrate_skip information should be cleared
2284 * by kswapd when it goes to sleep. kcompactd does not set the
2285 * flag itself as the decision to be clear should be directly
2286 * based on an allocation request.
2288 if (cc
->direct_compaction
)
2289 cc
->zone
->compact_blockskip_flush
= true;
2292 return COMPACT_COMPLETE
;
2294 return COMPACT_PARTIAL_SKIPPED
;
2297 if (cc
->proactive_compaction
) {
2298 int score
, wmark_low
;
2301 pgdat
= cc
->zone
->zone_pgdat
;
2302 if (kswapd_is_running(pgdat
))
2303 return COMPACT_PARTIAL_SKIPPED
;
2305 score
= fragmentation_score_zone(cc
->zone
);
2306 wmark_low
= fragmentation_score_wmark(true);
2308 if (score
> wmark_low
)
2309 ret
= COMPACT_CONTINUE
;
2311 ret
= COMPACT_SUCCESS
;
2316 if (is_via_compact_memory(cc
->order
))
2317 return COMPACT_CONTINUE
;
2320 * Always finish scanning a pageblock to reduce the possibility of
2321 * fallbacks in the future. This is particularly important when
2322 * migration source is unmovable/reclaimable but it's not worth
2325 if (!pageblock_aligned(cc
->migrate_pfn
))
2326 return COMPACT_CONTINUE
;
2328 /* Direct compactor: Is a suitable page free? */
2329 ret
= COMPACT_NO_SUITABLE_PAGE
;
2330 for (order
= cc
->order
; order
< NR_PAGE_ORDERS
; order
++) {
2331 struct free_area
*area
= &cc
->zone
->free_area
[order
];
2334 /* Job done if page is free of the right migratetype */
2335 if (!free_area_empty(area
, migratetype
))
2336 return COMPACT_SUCCESS
;
2339 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2340 if (migratetype
== MIGRATE_MOVABLE
&&
2341 !free_area_empty(area
, MIGRATE_CMA
))
2342 return COMPACT_SUCCESS
;
2345 * Job done if allocation would steal freepages from
2346 * other migratetype buddy lists.
2348 if (find_suitable_fallback(area
, order
, migratetype
,
2349 true, &can_steal
) != -1)
2351 * Movable pages are OK in any pageblock. If we are
2352 * stealing for a non-movable allocation, make sure
2353 * we finish compacting the current pageblock first
2354 * (which is assured by the above migrate_pfn align
2355 * check) so it is as free as possible and we won't
2356 * have to steal another one soon.
2358 return COMPACT_SUCCESS
;
2362 if (cc
->contended
|| fatal_signal_pending(current
))
2363 ret
= COMPACT_CONTENDED
;
2368 static enum compact_result
compact_finished(struct compact_control
*cc
)
2372 ret
= __compact_finished(cc
);
2373 trace_mm_compaction_finished(cc
->zone
, cc
->order
, ret
);
2374 if (ret
== COMPACT_NO_SUITABLE_PAGE
)
2375 ret
= COMPACT_CONTINUE
;
2380 static bool __compaction_suitable(struct zone
*zone
, int order
,
2381 int highest_zoneidx
,
2382 unsigned long wmark_target
)
2384 unsigned long watermark
;
2386 * Watermarks for order-0 must be met for compaction to be able to
2387 * isolate free pages for migration targets. This means that the
2388 * watermark and alloc_flags have to match, or be more pessimistic than
2389 * the check in __isolate_free_page(). We don't use the direct
2390 * compactor's alloc_flags, as they are not relevant for freepage
2391 * isolation. We however do use the direct compactor's highest_zoneidx
2392 * to skip over zones where lowmem reserves would prevent allocation
2393 * even if compaction succeeds.
2394 * For costly orders, we require low watermark instead of min for
2395 * compaction to proceed to increase its chances.
2396 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2397 * suitable migration targets
2399 watermark
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
2400 low_wmark_pages(zone
) : min_wmark_pages(zone
);
2401 watermark
+= compact_gap(order
);
2402 return __zone_watermark_ok(zone
, 0, watermark
, highest_zoneidx
,
2403 ALLOC_CMA
, wmark_target
);
2407 * compaction_suitable: Is this suitable to run compaction on this zone now?
2409 bool compaction_suitable(struct zone
*zone
, int order
, int highest_zoneidx
)
2411 enum compact_result compact_result
;
2414 suitable
= __compaction_suitable(zone
, order
, highest_zoneidx
,
2415 zone_page_state(zone
, NR_FREE_PAGES
));
2417 * fragmentation index determines if allocation failures are due to
2418 * low memory or external fragmentation
2420 * index of -1000 would imply allocations might succeed depending on
2421 * watermarks, but we already failed the high-order watermark check
2422 * index towards 0 implies failure is due to lack of memory
2423 * index towards 1000 implies failure is due to fragmentation
2425 * Only compact if a failure would be due to fragmentation. Also
2426 * ignore fragindex for non-costly orders where the alternative to
2427 * a successful reclaim/compaction is OOM. Fragindex and the
2428 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2429 * excessive compaction for costly orders, but it should not be at the
2430 * expense of system stability.
2433 compact_result
= COMPACT_CONTINUE
;
2434 if (order
> PAGE_ALLOC_COSTLY_ORDER
) {
2435 int fragindex
= fragmentation_index(zone
, order
);
2437 if (fragindex
>= 0 &&
2438 fragindex
<= sysctl_extfrag_threshold
) {
2440 compact_result
= COMPACT_NOT_SUITABLE_ZONE
;
2444 compact_result
= COMPACT_SKIPPED
;
2447 trace_mm_compaction_suitable(zone
, order
, compact_result
);
2452 bool compaction_zonelist_suitable(struct alloc_context
*ac
, int order
,
2459 * Make sure at least one zone would pass __compaction_suitable if we continue
2460 * retrying the reclaim.
2462 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
2463 ac
->highest_zoneidx
, ac
->nodemask
) {
2464 unsigned long available
;
2467 * Do not consider all the reclaimable memory because we do not
2468 * want to trash just for a single high order allocation which
2469 * is even not guaranteed to appear even if __compaction_suitable
2470 * is happy about the watermark check.
2472 available
= zone_reclaimable_pages(zone
) / order
;
2473 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
2474 if (__compaction_suitable(zone
, order
, ac
->highest_zoneidx
,
2483 * Should we do compaction for target allocation order.
2484 * Return COMPACT_SUCCESS if allocation for target order can be already
2486 * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2487 * Return COMPACT_CONTINUE if compaction for target order should be ran
2489 static enum compact_result
2490 compaction_suit_allocation_order(struct zone
*zone
, unsigned int order
,
2491 int highest_zoneidx
, unsigned int alloc_flags
)
2493 unsigned long watermark
;
2495 watermark
= wmark_pages(zone
, alloc_flags
& ALLOC_WMARK_MASK
);
2496 if (zone_watermark_ok(zone
, order
, watermark
, highest_zoneidx
,
2498 return COMPACT_SUCCESS
;
2500 if (!compaction_suitable(zone
, order
, highest_zoneidx
))
2501 return COMPACT_SKIPPED
;
2503 return COMPACT_CONTINUE
;
2506 static enum compact_result
2507 compact_zone(struct compact_control
*cc
, struct capture_control
*capc
)
2509 enum compact_result ret
;
2510 unsigned long start_pfn
= cc
->zone
->zone_start_pfn
;
2511 unsigned long end_pfn
= zone_end_pfn(cc
->zone
);
2512 unsigned long last_migrated_pfn
;
2513 const bool sync
= cc
->mode
!= MIGRATE_ASYNC
;
2515 unsigned int nr_succeeded
= 0, nr_migratepages
;
2519 * These counters track activities during zone compaction. Initialize
2520 * them before compacting a new zone.
2522 cc
->total_migrate_scanned
= 0;
2523 cc
->total_free_scanned
= 0;
2524 cc
->nr_migratepages
= 0;
2525 cc
->nr_freepages
= 0;
2526 for (order
= 0; order
< NR_PAGE_ORDERS
; order
++)
2527 INIT_LIST_HEAD(&cc
->freepages
[order
]);
2528 INIT_LIST_HEAD(&cc
->migratepages
);
2530 cc
->migratetype
= gfp_migratetype(cc
->gfp_mask
);
2532 if (!is_via_compact_memory(cc
->order
)) {
2533 ret
= compaction_suit_allocation_order(cc
->zone
, cc
->order
,
2534 cc
->highest_zoneidx
,
2536 if (ret
!= COMPACT_CONTINUE
)
2541 * Clear pageblock skip if there were failures recently and compaction
2542 * is about to be retried after being deferred.
2544 if (compaction_restarting(cc
->zone
, cc
->order
))
2545 __reset_isolation_suitable(cc
->zone
);
2548 * Setup to move all movable pages to the end of the zone. Used cached
2549 * information on where the scanners should start (unless we explicitly
2550 * want to compact the whole zone), but check that it is initialised
2551 * by ensuring the values are within zone boundaries.
2553 cc
->fast_start_pfn
= 0;
2554 if (cc
->whole_zone
) {
2555 cc
->migrate_pfn
= start_pfn
;
2556 cc
->free_pfn
= pageblock_start_pfn(end_pfn
- 1);
2558 cc
->migrate_pfn
= cc
->zone
->compact_cached_migrate_pfn
[sync
];
2559 cc
->free_pfn
= cc
->zone
->compact_cached_free_pfn
;
2560 if (cc
->free_pfn
< start_pfn
|| cc
->free_pfn
>= end_pfn
) {
2561 cc
->free_pfn
= pageblock_start_pfn(end_pfn
- 1);
2562 cc
->zone
->compact_cached_free_pfn
= cc
->free_pfn
;
2564 if (cc
->migrate_pfn
< start_pfn
|| cc
->migrate_pfn
>= end_pfn
) {
2565 cc
->migrate_pfn
= start_pfn
;
2566 cc
->zone
->compact_cached_migrate_pfn
[0] = cc
->migrate_pfn
;
2567 cc
->zone
->compact_cached_migrate_pfn
[1] = cc
->migrate_pfn
;
2570 if (cc
->migrate_pfn
<= cc
->zone
->compact_init_migrate_pfn
)
2571 cc
->whole_zone
= true;
2574 last_migrated_pfn
= 0;
2577 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2578 * the basis that some migrations will fail in ASYNC mode. However,
2579 * if the cached PFNs match and pageblocks are skipped due to having
2580 * no isolation candidates, then the sync state does not matter.
2581 * Until a pageblock with isolation candidates is found, keep the
2582 * cached PFNs in sync to avoid revisiting the same blocks.
2584 update_cached
= !sync
&&
2585 cc
->zone
->compact_cached_migrate_pfn
[0] == cc
->zone
->compact_cached_migrate_pfn
[1];
2587 trace_mm_compaction_begin(cc
, start_pfn
, end_pfn
, sync
);
2589 /* lru_add_drain_all could be expensive with involving other CPUs */
2592 while ((ret
= compact_finished(cc
)) == COMPACT_CONTINUE
) {
2594 unsigned long iteration_start_pfn
= cc
->migrate_pfn
;
2597 * Avoid multiple rescans of the same pageblock which can
2598 * happen if a page cannot be isolated (dirty/writeback in
2599 * async mode) or if the migrated pages are being allocated
2600 * before the pageblock is cleared. The first rescan will
2601 * capture the entire pageblock for migration. If it fails,
2602 * it'll be marked skip and scanning will proceed as normal.
2604 cc
->finish_pageblock
= false;
2605 if (pageblock_start_pfn(last_migrated_pfn
) ==
2606 pageblock_start_pfn(iteration_start_pfn
)) {
2607 cc
->finish_pageblock
= true;
2611 switch (isolate_migratepages(cc
)) {
2613 ret
= COMPACT_CONTENDED
;
2614 putback_movable_pages(&cc
->migratepages
);
2615 cc
->nr_migratepages
= 0;
2618 if (update_cached
) {
2619 cc
->zone
->compact_cached_migrate_pfn
[1] =
2620 cc
->zone
->compact_cached_migrate_pfn
[0];
2624 * We haven't isolated and migrated anything, but
2625 * there might still be unflushed migrations from
2626 * previous cc->order aligned block.
2629 case ISOLATE_SUCCESS
:
2630 update_cached
= false;
2631 last_migrated_pfn
= max(cc
->zone
->zone_start_pfn
,
2632 pageblock_start_pfn(cc
->migrate_pfn
- 1));
2636 * Record the number of pages to migrate since the
2637 * compaction_alloc/free() will update cc->nr_migratepages
2640 nr_migratepages
= cc
->nr_migratepages
;
2641 err
= migrate_pages(&cc
->migratepages
, compaction_alloc
,
2642 compaction_free
, (unsigned long)cc
, cc
->mode
,
2643 MR_COMPACTION
, &nr_succeeded
);
2645 trace_mm_compaction_migratepages(nr_migratepages
, nr_succeeded
);
2647 /* All pages were either migrated or will be released */
2648 cc
->nr_migratepages
= 0;
2650 putback_movable_pages(&cc
->migratepages
);
2652 * migrate_pages() may return -ENOMEM when scanners meet
2653 * and we want compact_finished() to detect it
2655 if (err
== -ENOMEM
&& !compact_scanners_met(cc
)) {
2656 ret
= COMPACT_CONTENDED
;
2660 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2661 * within the pageblock_order-aligned block and
2662 * fast_find_migrateblock may be used then scan the
2663 * remainder of the pageblock. This will mark the
2664 * pageblock "skip" to avoid rescanning in the near
2665 * future. This will isolate more pages than necessary
2666 * for the request but avoid loops due to
2667 * fast_find_migrateblock revisiting blocks that were
2668 * recently partially scanned.
2670 if (!pageblock_aligned(cc
->migrate_pfn
) &&
2671 !cc
->ignore_skip_hint
&& !cc
->finish_pageblock
&&
2672 (cc
->mode
< MIGRATE_SYNC
)) {
2673 cc
->finish_pageblock
= true;
2676 * Draining pcplists does not help THP if
2677 * any page failed to migrate. Even after
2678 * drain, the pageblock will not be free.
2680 if (cc
->order
== COMPACTION_HPAGE_ORDER
)
2681 last_migrated_pfn
= 0;
2687 /* Stop if a page has been captured */
2688 if (capc
&& capc
->page
) {
2689 ret
= COMPACT_SUCCESS
;
2695 * Has the migration scanner moved away from the previous
2696 * cc->order aligned block where we migrated from? If yes,
2697 * flush the pages that were freed, so that they can merge and
2698 * compact_finished() can detect immediately if allocation
2701 if (cc
->order
> 0 && last_migrated_pfn
) {
2702 unsigned long current_block_start
=
2703 block_start_pfn(cc
->migrate_pfn
, cc
->order
);
2705 if (last_migrated_pfn
< current_block_start
) {
2706 lru_add_drain_cpu_zone(cc
->zone
);
2707 /* No more flushing until we migrate again */
2708 last_migrated_pfn
= 0;
2715 * Release free pages and update where the free scanner should restart,
2716 * so we don't leave any returned pages behind in the next attempt.
2718 if (cc
->nr_freepages
> 0) {
2719 unsigned long free_pfn
= release_free_list(cc
->freepages
);
2721 cc
->nr_freepages
= 0;
2722 VM_BUG_ON(free_pfn
== 0);
2723 /* The cached pfn is always the first in a pageblock */
2724 free_pfn
= pageblock_start_pfn(free_pfn
);
2726 * Only go back, not forward. The cached pfn might have been
2727 * already reset to zone end in compact_finished()
2729 if (free_pfn
> cc
->zone
->compact_cached_free_pfn
)
2730 cc
->zone
->compact_cached_free_pfn
= free_pfn
;
2733 count_compact_events(COMPACTMIGRATE_SCANNED
, cc
->total_migrate_scanned
);
2734 count_compact_events(COMPACTFREE_SCANNED
, cc
->total_free_scanned
);
2736 trace_mm_compaction_end(cc
, start_pfn
, end_pfn
, sync
, ret
);
2738 VM_BUG_ON(!list_empty(&cc
->migratepages
));
2743 static enum compact_result
compact_zone_order(struct zone
*zone
, int order
,
2744 gfp_t gfp_mask
, enum compact_priority prio
,
2745 unsigned int alloc_flags
, int highest_zoneidx
,
2746 struct page
**capture
)
2748 enum compact_result ret
;
2749 struct compact_control cc
= {
2751 .search_order
= order
,
2752 .gfp_mask
= gfp_mask
,
2754 .mode
= (prio
== COMPACT_PRIO_ASYNC
) ?
2755 MIGRATE_ASYNC
: MIGRATE_SYNC_LIGHT
,
2756 .alloc_flags
= alloc_flags
,
2757 .highest_zoneidx
= highest_zoneidx
,
2758 .direct_compaction
= true,
2759 .whole_zone
= (prio
== MIN_COMPACT_PRIORITY
),
2760 .ignore_skip_hint
= (prio
== MIN_COMPACT_PRIORITY
),
2761 .ignore_block_suitable
= (prio
== MIN_COMPACT_PRIORITY
)
2763 struct capture_control capc
= {
2769 * Make sure the structs are really initialized before we expose the
2770 * capture control, in case we are interrupted and the interrupt handler
2774 WRITE_ONCE(current
->capture_control
, &capc
);
2776 ret
= compact_zone(&cc
, &capc
);
2779 * Make sure we hide capture control first before we read the captured
2780 * page pointer, otherwise an interrupt could free and capture a page
2781 * and we would leak it.
2783 WRITE_ONCE(current
->capture_control
, NULL
);
2784 *capture
= READ_ONCE(capc
.page
);
2786 * Technically, it is also possible that compaction is skipped but
2787 * the page is still captured out of luck(IRQ came and freed the page).
2788 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2789 * the COMPACT[STALL|FAIL] when compaction is skipped.
2792 ret
= COMPACT_SUCCESS
;
2798 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2799 * @gfp_mask: The GFP mask of the current allocation
2800 * @order: The order of the current allocation
2801 * @alloc_flags: The allocation flags of the current allocation
2802 * @ac: The context of current allocation
2803 * @prio: Determines how hard direct compaction should try to succeed
2804 * @capture: Pointer to free page created by compaction will be stored here
2806 * This is the main entry point for direct page compaction.
2808 enum compact_result
try_to_compact_pages(gfp_t gfp_mask
, unsigned int order
,
2809 unsigned int alloc_flags
, const struct alloc_context
*ac
,
2810 enum compact_priority prio
, struct page
**capture
)
2814 enum compact_result rc
= COMPACT_SKIPPED
;
2816 if (!gfp_compaction_allowed(gfp_mask
))
2817 return COMPACT_SKIPPED
;
2819 trace_mm_compaction_try_to_compact_pages(order
, gfp_mask
, prio
);
2821 /* Compact each zone in the list */
2822 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
2823 ac
->highest_zoneidx
, ac
->nodemask
) {
2824 enum compact_result status
;
2826 if (cpusets_enabled() &&
2827 (alloc_flags
& ALLOC_CPUSET
) &&
2828 !__cpuset_zone_allowed(zone
, gfp_mask
))
2831 if (prio
> MIN_COMPACT_PRIORITY
2832 && compaction_deferred(zone
, order
)) {
2833 rc
= max_t(enum compact_result
, COMPACT_DEFERRED
, rc
);
2837 status
= compact_zone_order(zone
, order
, gfp_mask
, prio
,
2838 alloc_flags
, ac
->highest_zoneidx
, capture
);
2839 rc
= max(status
, rc
);
2841 /* The allocation should succeed, stop compacting */
2842 if (status
== COMPACT_SUCCESS
) {
2844 * We think the allocation will succeed in this zone,
2845 * but it is not certain, hence the false. The caller
2846 * will repeat this with true if allocation indeed
2847 * succeeds in this zone.
2849 compaction_defer_reset(zone
, order
, false);
2854 if (prio
!= COMPACT_PRIO_ASYNC
&& (status
== COMPACT_COMPLETE
||
2855 status
== COMPACT_PARTIAL_SKIPPED
))
2857 * We think that allocation won't succeed in this zone
2858 * so we defer compaction there. If it ends up
2859 * succeeding after all, it will be reset.
2861 defer_compaction(zone
, order
);
2864 * We might have stopped compacting due to need_resched() in
2865 * async compaction, or due to a fatal signal detected. In that
2866 * case do not try further zones
2868 if ((prio
== COMPACT_PRIO_ASYNC
&& need_resched())
2869 || fatal_signal_pending(current
))
2877 * compact_node() - compact all zones within a node
2878 * @pgdat: The node page data
2879 * @proactive: Whether the compaction is proactive
2881 * For proactive compaction, compact till each zone's fragmentation score
2882 * reaches within proactive compaction thresholds (as determined by the
2883 * proactiveness tunable), it is possible that the function returns before
2884 * reaching score targets due to various back-off conditions, such as,
2885 * contention on per-node or per-zone locks.
2887 static int compact_node(pg_data_t
*pgdat
, bool proactive
)
2891 struct compact_control cc
= {
2893 .mode
= proactive
? MIGRATE_SYNC_LIGHT
: MIGRATE_SYNC
,
2894 .ignore_skip_hint
= true,
2896 .gfp_mask
= GFP_KERNEL
,
2897 .proactive_compaction
= proactive
,
2900 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
2901 zone
= &pgdat
->node_zones
[zoneid
];
2902 if (!populated_zone(zone
))
2905 if (fatal_signal_pending(current
))
2910 compact_zone(&cc
, NULL
);
2913 count_compact_events(KCOMPACTD_MIGRATE_SCANNED
,
2914 cc
.total_migrate_scanned
);
2915 count_compact_events(KCOMPACTD_FREE_SCANNED
,
2916 cc
.total_free_scanned
);
2923 /* Compact all zones of all nodes in the system */
2924 static int compact_nodes(void)
2928 /* Flush pending updates to the LRU lists */
2929 lru_add_drain_all();
2931 for_each_online_node(nid
) {
2932 ret
= compact_node(NODE_DATA(nid
), false);
2940 static int compaction_proactiveness_sysctl_handler(const struct ctl_table
*table
, int write
,
2941 void *buffer
, size_t *length
, loff_t
*ppos
)
2945 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
2949 if (write
&& sysctl_compaction_proactiveness
) {
2950 for_each_online_node(nid
) {
2951 pg_data_t
*pgdat
= NODE_DATA(nid
);
2953 if (pgdat
->proactive_compact_trigger
)
2956 pgdat
->proactive_compact_trigger
= true;
2957 trace_mm_compaction_wakeup_kcompactd(pgdat
->node_id
, -1,
2958 pgdat
->nr_zones
- 1);
2959 wake_up_interruptible(&pgdat
->kcompactd_wait
);
2967 * This is the entry point for compacting all nodes via
2968 * /proc/sys/vm/compact_memory
2970 static int sysctl_compaction_handler(const struct ctl_table
*table
, int write
,
2971 void *buffer
, size_t *length
, loff_t
*ppos
)
2975 ret
= proc_dointvec(table
, write
, buffer
, length
, ppos
);
2979 if (sysctl_compact_memory
!= 1)
2983 ret
= compact_nodes();
2988 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2989 static ssize_t
compact_store(struct device
*dev
,
2990 struct device_attribute
*attr
,
2991 const char *buf
, size_t count
)
2995 if (nid
>= 0 && nid
< nr_node_ids
&& node_online(nid
)) {
2996 /* Flush pending updates to the LRU lists */
2997 lru_add_drain_all();
2999 compact_node(NODE_DATA(nid
), false);
3004 static DEVICE_ATTR_WO(compact
);
3006 int compaction_register_node(struct node
*node
)
3008 return device_create_file(&node
->dev
, &dev_attr_compact
);
3011 void compaction_unregister_node(struct node
*node
)
3013 device_remove_file(&node
->dev
, &dev_attr_compact
);
3015 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
3017 static inline bool kcompactd_work_requested(pg_data_t
*pgdat
)
3019 return pgdat
->kcompactd_max_order
> 0 || kthread_should_stop() ||
3020 pgdat
->proactive_compact_trigger
;
3023 static bool kcompactd_node_suitable(pg_data_t
*pgdat
)
3027 enum zone_type highest_zoneidx
= pgdat
->kcompactd_highest_zoneidx
;
3028 enum compact_result ret
;
3030 for (zoneid
= 0; zoneid
<= highest_zoneidx
; zoneid
++) {
3031 zone
= &pgdat
->node_zones
[zoneid
];
3033 if (!populated_zone(zone
))
3036 ret
= compaction_suit_allocation_order(zone
,
3037 pgdat
->kcompactd_max_order
,
3038 highest_zoneidx
, ALLOC_WMARK_MIN
);
3039 if (ret
== COMPACT_CONTINUE
)
3046 static void kcompactd_do_work(pg_data_t
*pgdat
)
3049 * With no special task, compact all zones so that a page of requested
3050 * order is allocatable.
3054 struct compact_control cc
= {
3055 .order
= pgdat
->kcompactd_max_order
,
3056 .search_order
= pgdat
->kcompactd_max_order
,
3057 .highest_zoneidx
= pgdat
->kcompactd_highest_zoneidx
,
3058 .mode
= MIGRATE_SYNC_LIGHT
,
3059 .ignore_skip_hint
= false,
3060 .gfp_mask
= GFP_KERNEL
,
3062 enum compact_result ret
;
3064 trace_mm_compaction_kcompactd_wake(pgdat
->node_id
, cc
.order
,
3065 cc
.highest_zoneidx
);
3066 count_compact_event(KCOMPACTD_WAKE
);
3068 for (zoneid
= 0; zoneid
<= cc
.highest_zoneidx
; zoneid
++) {
3071 zone
= &pgdat
->node_zones
[zoneid
];
3072 if (!populated_zone(zone
))
3075 if (compaction_deferred(zone
, cc
.order
))
3078 ret
= compaction_suit_allocation_order(zone
,
3079 cc
.order
, zoneid
, ALLOC_WMARK_MIN
);
3080 if (ret
!= COMPACT_CONTINUE
)
3083 if (kthread_should_stop())
3087 status
= compact_zone(&cc
, NULL
);
3089 if (status
== COMPACT_SUCCESS
) {
3090 compaction_defer_reset(zone
, cc
.order
, false);
3091 } else if (status
== COMPACT_PARTIAL_SKIPPED
|| status
== COMPACT_COMPLETE
) {
3093 * Buddy pages may become stranded on pcps that could
3094 * otherwise coalesce on the zone's free area for
3095 * order >= cc.order. This is ratelimited by the
3096 * upcoming deferral.
3098 drain_all_pages(zone
);
3101 * We use sync migration mode here, so we defer like
3102 * sync direct compaction does.
3104 defer_compaction(zone
, cc
.order
);
3107 count_compact_events(KCOMPACTD_MIGRATE_SCANNED
,
3108 cc
.total_migrate_scanned
);
3109 count_compact_events(KCOMPACTD_FREE_SCANNED
,
3110 cc
.total_free_scanned
);
3114 * Regardless of success, we are done until woken up next. But remember
3115 * the requested order/highest_zoneidx in case it was higher/tighter
3116 * than our current ones
3118 if (pgdat
->kcompactd_max_order
<= cc
.order
)
3119 pgdat
->kcompactd_max_order
= 0;
3120 if (pgdat
->kcompactd_highest_zoneidx
>= cc
.highest_zoneidx
)
3121 pgdat
->kcompactd_highest_zoneidx
= pgdat
->nr_zones
- 1;
3124 void wakeup_kcompactd(pg_data_t
*pgdat
, int order
, int highest_zoneidx
)
3129 if (pgdat
->kcompactd_max_order
< order
)
3130 pgdat
->kcompactd_max_order
= order
;
3132 if (pgdat
->kcompactd_highest_zoneidx
> highest_zoneidx
)
3133 pgdat
->kcompactd_highest_zoneidx
= highest_zoneidx
;
3136 * Pairs with implicit barrier in wait_event_freezable()
3137 * such that wakeups are not missed.
3139 if (!wq_has_sleeper(&pgdat
->kcompactd_wait
))
3142 if (!kcompactd_node_suitable(pgdat
))
3145 trace_mm_compaction_wakeup_kcompactd(pgdat
->node_id
, order
,
3147 wake_up_interruptible(&pgdat
->kcompactd_wait
);
3151 * The background compaction daemon, started as a kernel thread
3152 * from the init process.
3154 static int kcompactd(void *p
)
3156 pg_data_t
*pgdat
= (pg_data_t
*)p
;
3157 struct task_struct
*tsk
= current
;
3158 long default_timeout
= msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC
);
3159 long timeout
= default_timeout
;
3161 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
3163 if (!cpumask_empty(cpumask
))
3164 set_cpus_allowed_ptr(tsk
, cpumask
);
3168 pgdat
->kcompactd_max_order
= 0;
3169 pgdat
->kcompactd_highest_zoneidx
= pgdat
->nr_zones
- 1;
3171 while (!kthread_should_stop()) {
3172 unsigned long pflags
;
3175 * Avoid the unnecessary wakeup for proactive compaction
3176 * when it is disabled.
3178 if (!sysctl_compaction_proactiveness
)
3179 timeout
= MAX_SCHEDULE_TIMEOUT
;
3180 trace_mm_compaction_kcompactd_sleep(pgdat
->node_id
);
3181 if (wait_event_freezable_timeout(pgdat
->kcompactd_wait
,
3182 kcompactd_work_requested(pgdat
), timeout
) &&
3183 !pgdat
->proactive_compact_trigger
) {
3185 psi_memstall_enter(&pflags
);
3186 kcompactd_do_work(pgdat
);
3187 psi_memstall_leave(&pflags
);
3189 * Reset the timeout value. The defer timeout from
3190 * proactive compaction is lost here but that is fine
3191 * as the condition of the zone changing substantionally
3192 * then carrying on with the previous defer interval is
3195 timeout
= default_timeout
;
3200 * Start the proactive work with default timeout. Based
3201 * on the fragmentation score, this timeout is updated.
3203 timeout
= default_timeout
;
3204 if (should_proactive_compact_node(pgdat
)) {
3205 unsigned int prev_score
, score
;
3207 prev_score
= fragmentation_score_node(pgdat
);
3208 compact_node(pgdat
, true);
3209 score
= fragmentation_score_node(pgdat
);
3211 * Defer proactive compaction if the fragmentation
3212 * score did not go down i.e. no progress made.
3214 if (unlikely(score
>= prev_score
))
3216 default_timeout
<< COMPACT_MAX_DEFER_SHIFT
;
3218 if (unlikely(pgdat
->proactive_compact_trigger
))
3219 pgdat
->proactive_compact_trigger
= false;
3226 * This kcompactd start function will be called by init and node-hot-add.
3227 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3229 void __meminit
kcompactd_run(int nid
)
3231 pg_data_t
*pgdat
= NODE_DATA(nid
);
3233 if (pgdat
->kcompactd
)
3236 pgdat
->kcompactd
= kthread_run(kcompactd
, pgdat
, "kcompactd%d", nid
);
3237 if (IS_ERR(pgdat
->kcompactd
)) {
3238 pr_err("Failed to start kcompactd on node %d\n", nid
);
3239 pgdat
->kcompactd
= NULL
;
3244 * Called by memory hotplug when all memory in a node is offlined. Caller must
3245 * be holding mem_hotplug_begin/done().
3247 void __meminit
kcompactd_stop(int nid
)
3249 struct task_struct
*kcompactd
= NODE_DATA(nid
)->kcompactd
;
3252 kthread_stop(kcompactd
);
3253 NODE_DATA(nid
)->kcompactd
= NULL
;
3258 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3259 * not required for correctness. So if the last cpu in a node goes
3260 * away, we get changed to run anywhere: as the first one comes back,
3261 * restore their cpu bindings.
3263 static int kcompactd_cpu_online(unsigned int cpu
)
3267 for_each_node_state(nid
, N_MEMORY
) {
3268 pg_data_t
*pgdat
= NODE_DATA(nid
);
3269 const struct cpumask
*mask
;
3271 mask
= cpumask_of_node(pgdat
->node_id
);
3273 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
3274 /* One of our CPUs online: restore mask */
3275 if (pgdat
->kcompactd
)
3276 set_cpus_allowed_ptr(pgdat
->kcompactd
, mask
);
3281 static int proc_dointvec_minmax_warn_RT_change(const struct ctl_table
*table
,
3282 int write
, void *buffer
, size_t *lenp
, loff_t
*ppos
)
3286 if (!IS_ENABLED(CONFIG_PREEMPT_RT
) || !write
)
3287 return proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
3289 old
= *(int *)table
->data
;
3290 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
3293 if (old
!= *(int *)table
->data
)
3294 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3295 table
->procname
, current
->comm
,
3296 task_pid_nr(current
));
3300 static struct ctl_table vm_compaction
[] = {
3302 .procname
= "compact_memory",
3303 .data
= &sysctl_compact_memory
,
3304 .maxlen
= sizeof(int),
3306 .proc_handler
= sysctl_compaction_handler
,
3309 .procname
= "compaction_proactiveness",
3310 .data
= &sysctl_compaction_proactiveness
,
3311 .maxlen
= sizeof(sysctl_compaction_proactiveness
),
3313 .proc_handler
= compaction_proactiveness_sysctl_handler
,
3314 .extra1
= SYSCTL_ZERO
,
3315 .extra2
= SYSCTL_ONE_HUNDRED
,
3318 .procname
= "extfrag_threshold",
3319 .data
= &sysctl_extfrag_threshold
,
3320 .maxlen
= sizeof(int),
3322 .proc_handler
= proc_dointvec_minmax
,
3323 .extra1
= SYSCTL_ZERO
,
3324 .extra2
= SYSCTL_ONE_THOUSAND
,
3327 .procname
= "compact_unevictable_allowed",
3328 .data
= &sysctl_compact_unevictable_allowed
,
3329 .maxlen
= sizeof(int),
3331 .proc_handler
= proc_dointvec_minmax_warn_RT_change
,
3332 .extra1
= SYSCTL_ZERO
,
3333 .extra2
= SYSCTL_ONE
,
3337 static int __init
kcompactd_init(void)
3342 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
3343 "mm/compaction:online",
3344 kcompactd_cpu_online
, NULL
);
3346 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3350 for_each_node_state(nid
, N_MEMORY
)
3352 register_sysctl_init("vm", vm_compaction
);
3355 subsys_initcall(kcompactd_init
)
3357 #endif /* CONFIG_COMPACTION */