Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / mm / damon / core.c
blob8b8e2933dcd4a8f6c2b5ed592d1d48092fbc844e
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Data Access Monitor
5 * Author: SeongJae Park <sj@kernel.org>
6 */
8 #define pr_fmt(fmt) "damon: " fmt
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/psi.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
18 #define CREATE_TRACE_POINTS
19 #include <trace/events/damon.h>
21 #ifdef CONFIG_DAMON_KUNIT_TEST
22 #undef DAMON_MIN_REGION
23 #define DAMON_MIN_REGION 1
24 #endif
26 static DEFINE_MUTEX(damon_lock);
27 static int nr_running_ctxs;
28 static bool running_exclusive_ctxs;
30 static DEFINE_MUTEX(damon_ops_lock);
31 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
33 static struct kmem_cache *damon_region_cache __ro_after_init;
35 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
36 static bool __damon_is_registered_ops(enum damon_ops_id id)
38 struct damon_operations empty_ops = {};
40 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
41 return false;
42 return true;
45 /**
46 * damon_is_registered_ops() - Check if a given damon_operations is registered.
47 * @id: Id of the damon_operations to check if registered.
49 * Return: true if the ops is set, false otherwise.
51 bool damon_is_registered_ops(enum damon_ops_id id)
53 bool registered;
55 if (id >= NR_DAMON_OPS)
56 return false;
57 mutex_lock(&damon_ops_lock);
58 registered = __damon_is_registered_ops(id);
59 mutex_unlock(&damon_ops_lock);
60 return registered;
63 /**
64 * damon_register_ops() - Register a monitoring operations set to DAMON.
65 * @ops: monitoring operations set to register.
67 * This function registers a monitoring operations set of valid &struct
68 * damon_operations->id so that others can find and use them later.
70 * Return: 0 on success, negative error code otherwise.
72 int damon_register_ops(struct damon_operations *ops)
74 int err = 0;
76 if (ops->id >= NR_DAMON_OPS)
77 return -EINVAL;
78 mutex_lock(&damon_ops_lock);
79 /* Fail for already registered ops */
80 if (__damon_is_registered_ops(ops->id)) {
81 err = -EINVAL;
82 goto out;
84 damon_registered_ops[ops->id] = *ops;
85 out:
86 mutex_unlock(&damon_ops_lock);
87 return err;
90 /**
91 * damon_select_ops() - Select a monitoring operations to use with the context.
92 * @ctx: monitoring context to use the operations.
93 * @id: id of the registered monitoring operations to select.
95 * This function finds registered monitoring operations set of @id and make
96 * @ctx to use it.
98 * Return: 0 on success, negative error code otherwise.
100 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
102 int err = 0;
104 if (id >= NR_DAMON_OPS)
105 return -EINVAL;
107 mutex_lock(&damon_ops_lock);
108 if (!__damon_is_registered_ops(id))
109 err = -EINVAL;
110 else
111 ctx->ops = damon_registered_ops[id];
112 mutex_unlock(&damon_ops_lock);
113 return err;
117 * Construct a damon_region struct
119 * Returns the pointer to the new struct if success, or NULL otherwise
121 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
123 struct damon_region *region;
125 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
126 if (!region)
127 return NULL;
129 region->ar.start = start;
130 region->ar.end = end;
131 region->nr_accesses = 0;
132 region->nr_accesses_bp = 0;
133 INIT_LIST_HEAD(&region->list);
135 region->age = 0;
136 region->last_nr_accesses = 0;
138 return region;
141 void damon_add_region(struct damon_region *r, struct damon_target *t)
143 list_add_tail(&r->list, &t->regions_list);
144 t->nr_regions++;
147 static void damon_del_region(struct damon_region *r, struct damon_target *t)
149 list_del(&r->list);
150 t->nr_regions--;
153 static void damon_free_region(struct damon_region *r)
155 kmem_cache_free(damon_region_cache, r);
158 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
160 damon_del_region(r, t);
161 damon_free_region(r);
165 * Check whether a region is intersecting an address range
167 * Returns true if it is.
169 static bool damon_intersect(struct damon_region *r,
170 struct damon_addr_range *re)
172 return !(r->ar.end <= re->start || re->end <= r->ar.start);
176 * Fill holes in regions with new regions.
178 static int damon_fill_regions_holes(struct damon_region *first,
179 struct damon_region *last, struct damon_target *t)
181 struct damon_region *r = first;
183 damon_for_each_region_from(r, t) {
184 struct damon_region *next, *newr;
186 if (r == last)
187 break;
188 next = damon_next_region(r);
189 if (r->ar.end != next->ar.start) {
190 newr = damon_new_region(r->ar.end, next->ar.start);
191 if (!newr)
192 return -ENOMEM;
193 damon_insert_region(newr, r, next, t);
196 return 0;
200 * damon_set_regions() - Set regions of a target for given address ranges.
201 * @t: the given target.
202 * @ranges: array of new monitoring target ranges.
203 * @nr_ranges: length of @ranges.
205 * This function adds new regions to, or modify existing regions of a
206 * monitoring target to fit in specific ranges.
208 * Return: 0 if success, or negative error code otherwise.
210 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
211 unsigned int nr_ranges)
213 struct damon_region *r, *next;
214 unsigned int i;
215 int err;
217 /* Remove regions which are not in the new ranges */
218 damon_for_each_region_safe(r, next, t) {
219 for (i = 0; i < nr_ranges; i++) {
220 if (damon_intersect(r, &ranges[i]))
221 break;
223 if (i == nr_ranges)
224 damon_destroy_region(r, t);
227 r = damon_first_region(t);
228 /* Add new regions or resize existing regions to fit in the ranges */
229 for (i = 0; i < nr_ranges; i++) {
230 struct damon_region *first = NULL, *last, *newr;
231 struct damon_addr_range *range;
233 range = &ranges[i];
234 /* Get the first/last regions intersecting with the range */
235 damon_for_each_region_from(r, t) {
236 if (damon_intersect(r, range)) {
237 if (!first)
238 first = r;
239 last = r;
241 if (r->ar.start >= range->end)
242 break;
244 if (!first) {
245 /* no region intersects with this range */
246 newr = damon_new_region(
247 ALIGN_DOWN(range->start,
248 DAMON_MIN_REGION),
249 ALIGN(range->end, DAMON_MIN_REGION));
250 if (!newr)
251 return -ENOMEM;
252 damon_insert_region(newr, damon_prev_region(r), r, t);
253 } else {
254 /* resize intersecting regions to fit in this range */
255 first->ar.start = ALIGN_DOWN(range->start,
256 DAMON_MIN_REGION);
257 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
259 /* fill possible holes in the range */
260 err = damon_fill_regions_holes(first, last, t);
261 if (err)
262 return err;
265 return 0;
268 struct damos_filter *damos_new_filter(enum damos_filter_type type,
269 bool matching)
271 struct damos_filter *filter;
273 filter = kmalloc(sizeof(*filter), GFP_KERNEL);
274 if (!filter)
275 return NULL;
276 filter->type = type;
277 filter->matching = matching;
278 INIT_LIST_HEAD(&filter->list);
279 return filter;
282 void damos_add_filter(struct damos *s, struct damos_filter *f)
284 list_add_tail(&f->list, &s->filters);
287 static void damos_del_filter(struct damos_filter *f)
289 list_del(&f->list);
292 static void damos_free_filter(struct damos_filter *f)
294 kfree(f);
297 void damos_destroy_filter(struct damos_filter *f)
299 damos_del_filter(f);
300 damos_free_filter(f);
303 struct damos_quota_goal *damos_new_quota_goal(
304 enum damos_quota_goal_metric metric,
305 unsigned long target_value)
307 struct damos_quota_goal *goal;
309 goal = kmalloc(sizeof(*goal), GFP_KERNEL);
310 if (!goal)
311 return NULL;
312 goal->metric = metric;
313 goal->target_value = target_value;
314 INIT_LIST_HEAD(&goal->list);
315 return goal;
318 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g)
320 list_add_tail(&g->list, &q->goals);
323 static void damos_del_quota_goal(struct damos_quota_goal *g)
325 list_del(&g->list);
328 static void damos_free_quota_goal(struct damos_quota_goal *g)
330 kfree(g);
333 void damos_destroy_quota_goal(struct damos_quota_goal *g)
335 damos_del_quota_goal(g);
336 damos_free_quota_goal(g);
339 /* initialize fields of @quota that normally API users wouldn't set */
340 static struct damos_quota *damos_quota_init(struct damos_quota *quota)
342 quota->esz = 0;
343 quota->total_charged_sz = 0;
344 quota->total_charged_ns = 0;
345 quota->charged_sz = 0;
346 quota->charged_from = 0;
347 quota->charge_target_from = NULL;
348 quota->charge_addr_from = 0;
349 quota->esz_bp = 0;
350 return quota;
353 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
354 enum damos_action action,
355 unsigned long apply_interval_us,
356 struct damos_quota *quota,
357 struct damos_watermarks *wmarks,
358 int target_nid)
360 struct damos *scheme;
362 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
363 if (!scheme)
364 return NULL;
365 scheme->pattern = *pattern;
366 scheme->action = action;
367 scheme->apply_interval_us = apply_interval_us;
369 * next_apply_sis will be set when kdamond starts. While kdamond is
370 * running, it will also updated when it is added to the DAMON context,
371 * or damon_attrs are updated.
373 scheme->next_apply_sis = 0;
374 INIT_LIST_HEAD(&scheme->filters);
375 scheme->stat = (struct damos_stat){};
376 INIT_LIST_HEAD(&scheme->list);
378 scheme->quota = *(damos_quota_init(quota));
379 /* quota.goals should be separately set by caller */
380 INIT_LIST_HEAD(&scheme->quota.goals);
382 scheme->wmarks = *wmarks;
383 scheme->wmarks.activated = true;
385 scheme->target_nid = target_nid;
387 return scheme;
390 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
392 unsigned long sample_interval = ctx->attrs.sample_interval ?
393 ctx->attrs.sample_interval : 1;
394 unsigned long apply_interval = s->apply_interval_us ?
395 s->apply_interval_us : ctx->attrs.aggr_interval;
397 s->next_apply_sis = ctx->passed_sample_intervals +
398 apply_interval / sample_interval;
401 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
403 list_add_tail(&s->list, &ctx->schemes);
404 damos_set_next_apply_sis(s, ctx);
407 static void damon_del_scheme(struct damos *s)
409 list_del(&s->list);
412 static void damon_free_scheme(struct damos *s)
414 kfree(s);
417 void damon_destroy_scheme(struct damos *s)
419 struct damos_quota_goal *g, *g_next;
420 struct damos_filter *f, *next;
422 damos_for_each_quota_goal_safe(g, g_next, &s->quota)
423 damos_destroy_quota_goal(g);
425 damos_for_each_filter_safe(f, next, s)
426 damos_destroy_filter(f);
427 damon_del_scheme(s);
428 damon_free_scheme(s);
432 * Construct a damon_target struct
434 * Returns the pointer to the new struct if success, or NULL otherwise
436 struct damon_target *damon_new_target(void)
438 struct damon_target *t;
440 t = kmalloc(sizeof(*t), GFP_KERNEL);
441 if (!t)
442 return NULL;
444 t->pid = NULL;
445 t->nr_regions = 0;
446 INIT_LIST_HEAD(&t->regions_list);
447 INIT_LIST_HEAD(&t->list);
449 return t;
452 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
454 list_add_tail(&t->list, &ctx->adaptive_targets);
457 bool damon_targets_empty(struct damon_ctx *ctx)
459 return list_empty(&ctx->adaptive_targets);
462 static void damon_del_target(struct damon_target *t)
464 list_del(&t->list);
467 void damon_free_target(struct damon_target *t)
469 struct damon_region *r, *next;
471 damon_for_each_region_safe(r, next, t)
472 damon_free_region(r);
473 kfree(t);
476 void damon_destroy_target(struct damon_target *t)
478 damon_del_target(t);
479 damon_free_target(t);
482 unsigned int damon_nr_regions(struct damon_target *t)
484 return t->nr_regions;
487 struct damon_ctx *damon_new_ctx(void)
489 struct damon_ctx *ctx;
491 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
492 if (!ctx)
493 return NULL;
495 init_completion(&ctx->kdamond_started);
497 ctx->attrs.sample_interval = 5 * 1000;
498 ctx->attrs.aggr_interval = 100 * 1000;
499 ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
501 ctx->passed_sample_intervals = 0;
502 /* These will be set from kdamond_init_intervals_sis() */
503 ctx->next_aggregation_sis = 0;
504 ctx->next_ops_update_sis = 0;
506 mutex_init(&ctx->kdamond_lock);
508 ctx->attrs.min_nr_regions = 10;
509 ctx->attrs.max_nr_regions = 1000;
511 INIT_LIST_HEAD(&ctx->adaptive_targets);
512 INIT_LIST_HEAD(&ctx->schemes);
514 return ctx;
517 static void damon_destroy_targets(struct damon_ctx *ctx)
519 struct damon_target *t, *next_t;
521 if (ctx->ops.cleanup) {
522 ctx->ops.cleanup(ctx);
523 return;
526 damon_for_each_target_safe(t, next_t, ctx)
527 damon_destroy_target(t);
530 void damon_destroy_ctx(struct damon_ctx *ctx)
532 struct damos *s, *next_s;
534 damon_destroy_targets(ctx);
536 damon_for_each_scheme_safe(s, next_s, ctx)
537 damon_destroy_scheme(s);
539 kfree(ctx);
542 static unsigned int damon_age_for_new_attrs(unsigned int age,
543 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
545 return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
548 /* convert access ratio in bp (per 10,000) to nr_accesses */
549 static unsigned int damon_accesses_bp_to_nr_accesses(
550 unsigned int accesses_bp, struct damon_attrs *attrs)
552 return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
556 * Convert nr_accesses to access ratio in bp (per 10,000).
558 * Callers should ensure attrs.aggr_interval is not zero, like
559 * damon_update_monitoring_results() does . Otherwise, divide-by-zero would
560 * happen.
562 static unsigned int damon_nr_accesses_to_accesses_bp(
563 unsigned int nr_accesses, struct damon_attrs *attrs)
565 return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
568 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
569 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
571 return damon_accesses_bp_to_nr_accesses(
572 damon_nr_accesses_to_accesses_bp(
573 nr_accesses, old_attrs),
574 new_attrs);
577 static void damon_update_monitoring_result(struct damon_region *r,
578 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
580 r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
581 old_attrs, new_attrs);
582 r->nr_accesses_bp = r->nr_accesses * 10000;
583 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
587 * region->nr_accesses is the number of sampling intervals in the last
588 * aggregation interval that access to the region has found, and region->age is
589 * the number of aggregation intervals that its access pattern has maintained.
590 * For the reason, the real meaning of the two fields depend on current
591 * sampling interval and aggregation interval. This function updates
592 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
594 static void damon_update_monitoring_results(struct damon_ctx *ctx,
595 struct damon_attrs *new_attrs)
597 struct damon_attrs *old_attrs = &ctx->attrs;
598 struct damon_target *t;
599 struct damon_region *r;
601 /* if any interval is zero, simply forgive conversion */
602 if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
603 !new_attrs->sample_interval ||
604 !new_attrs->aggr_interval)
605 return;
607 damon_for_each_target(t, ctx)
608 damon_for_each_region(r, t)
609 damon_update_monitoring_result(
610 r, old_attrs, new_attrs);
614 * damon_set_attrs() - Set attributes for the monitoring.
615 * @ctx: monitoring context
616 * @attrs: monitoring attributes
618 * This function should be called while the kdamond is not running, or an
619 * access check results aggregation is not ongoing (e.g., from
620 * &struct damon_callback->after_aggregation or
621 * &struct damon_callback->after_wmarks_check callbacks).
623 * Every time interval is in micro-seconds.
625 * Return: 0 on success, negative error code otherwise.
627 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
629 unsigned long sample_interval = attrs->sample_interval ?
630 attrs->sample_interval : 1;
631 struct damos *s;
633 if (attrs->min_nr_regions < 3)
634 return -EINVAL;
635 if (attrs->min_nr_regions > attrs->max_nr_regions)
636 return -EINVAL;
637 if (attrs->sample_interval > attrs->aggr_interval)
638 return -EINVAL;
640 ctx->next_aggregation_sis = ctx->passed_sample_intervals +
641 attrs->aggr_interval / sample_interval;
642 ctx->next_ops_update_sis = ctx->passed_sample_intervals +
643 attrs->ops_update_interval / sample_interval;
645 damon_update_monitoring_results(ctx, attrs);
646 ctx->attrs = *attrs;
648 damon_for_each_scheme(s, ctx)
649 damos_set_next_apply_sis(s, ctx);
651 return 0;
655 * damon_set_schemes() - Set data access monitoring based operation schemes.
656 * @ctx: monitoring context
657 * @schemes: array of the schemes
658 * @nr_schemes: number of entries in @schemes
660 * This function should not be called while the kdamond of the context is
661 * running.
663 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
664 ssize_t nr_schemes)
666 struct damos *s, *next;
667 ssize_t i;
669 damon_for_each_scheme_safe(s, next, ctx)
670 damon_destroy_scheme(s);
671 for (i = 0; i < nr_schemes; i++)
672 damon_add_scheme(ctx, schemes[i]);
675 static struct damos_quota_goal *damos_nth_quota_goal(
676 int n, struct damos_quota *q)
678 struct damos_quota_goal *goal;
679 int i = 0;
681 damos_for_each_quota_goal(goal, q) {
682 if (i++ == n)
683 return goal;
685 return NULL;
688 static void damos_commit_quota_goal(
689 struct damos_quota_goal *dst, struct damos_quota_goal *src)
691 dst->metric = src->metric;
692 dst->target_value = src->target_value;
693 if (dst->metric == DAMOS_QUOTA_USER_INPUT)
694 dst->current_value = src->current_value;
695 /* keep last_psi_total as is, since it will be updated in next cycle */
699 * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota.
700 * @dst: The commit destination DAMOS quota.
701 * @src: The commit source DAMOS quota.
703 * Copies user-specified parameters for quota goals from @src to @dst. Users
704 * should use this function for quota goals-level parameters update of running
705 * DAMON contexts, instead of manual in-place updates.
707 * This function should be called from parameters-update safe context, like
708 * DAMON callbacks.
710 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src)
712 struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal;
713 int i = 0, j = 0;
715 damos_for_each_quota_goal_safe(dst_goal, next, dst) {
716 src_goal = damos_nth_quota_goal(i++, src);
717 if (src_goal)
718 damos_commit_quota_goal(dst_goal, src_goal);
719 else
720 damos_destroy_quota_goal(dst_goal);
722 damos_for_each_quota_goal_safe(src_goal, next, src) {
723 if (j++ < i)
724 continue;
725 new_goal = damos_new_quota_goal(
726 src_goal->metric, src_goal->target_value);
727 if (!new_goal)
728 return -ENOMEM;
729 damos_add_quota_goal(dst, new_goal);
731 return 0;
734 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src)
736 int err;
738 dst->reset_interval = src->reset_interval;
739 dst->ms = src->ms;
740 dst->sz = src->sz;
741 err = damos_commit_quota_goals(dst, src);
742 if (err)
743 return err;
744 dst->weight_sz = src->weight_sz;
745 dst->weight_nr_accesses = src->weight_nr_accesses;
746 dst->weight_age = src->weight_age;
747 return 0;
750 static struct damos_filter *damos_nth_filter(int n, struct damos *s)
752 struct damos_filter *filter;
753 int i = 0;
755 damos_for_each_filter(filter, s) {
756 if (i++ == n)
757 return filter;
759 return NULL;
762 static void damos_commit_filter_arg(
763 struct damos_filter *dst, struct damos_filter *src)
765 switch (dst->type) {
766 case DAMOS_FILTER_TYPE_MEMCG:
767 dst->memcg_id = src->memcg_id;
768 break;
769 case DAMOS_FILTER_TYPE_ADDR:
770 dst->addr_range = src->addr_range;
771 break;
772 case DAMOS_FILTER_TYPE_TARGET:
773 dst->target_idx = src->target_idx;
774 break;
775 default:
776 break;
780 static void damos_commit_filter(
781 struct damos_filter *dst, struct damos_filter *src)
783 dst->type = src->type;
784 dst->matching = src->matching;
785 damos_commit_filter_arg(dst, src);
788 static int damos_commit_filters(struct damos *dst, struct damos *src)
790 struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
791 int i = 0, j = 0;
793 damos_for_each_filter_safe(dst_filter, next, dst) {
794 src_filter = damos_nth_filter(i++, src);
795 if (src_filter)
796 damos_commit_filter(dst_filter, src_filter);
797 else
798 damos_destroy_filter(dst_filter);
801 damos_for_each_filter_safe(src_filter, next, src) {
802 if (j++ < i)
803 continue;
805 new_filter = damos_new_filter(
806 src_filter->type, src_filter->matching);
807 if (!new_filter)
808 return -ENOMEM;
809 damos_commit_filter_arg(new_filter, src_filter);
810 damos_add_filter(dst, new_filter);
812 return 0;
815 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx)
817 struct damos *s;
818 int i = 0;
820 damon_for_each_scheme(s, ctx) {
821 if (i++ == n)
822 return s;
824 return NULL;
827 static int damos_commit(struct damos *dst, struct damos *src)
829 int err;
831 dst->pattern = src->pattern;
832 dst->action = src->action;
833 dst->apply_interval_us = src->apply_interval_us;
835 err = damos_commit_quota(&dst->quota, &src->quota);
836 if (err)
837 return err;
839 dst->wmarks = src->wmarks;
841 err = damos_commit_filters(dst, src);
842 return err;
845 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src)
847 struct damos *dst_scheme, *next, *src_scheme, *new_scheme;
848 int i = 0, j = 0, err;
850 damon_for_each_scheme_safe(dst_scheme, next, dst) {
851 src_scheme = damon_nth_scheme(i++, src);
852 if (src_scheme) {
853 err = damos_commit(dst_scheme, src_scheme);
854 if (err)
855 return err;
856 } else {
857 damon_destroy_scheme(dst_scheme);
861 damon_for_each_scheme_safe(src_scheme, next, src) {
862 if (j++ < i)
863 continue;
864 new_scheme = damon_new_scheme(&src_scheme->pattern,
865 src_scheme->action,
866 src_scheme->apply_interval_us,
867 &src_scheme->quota, &src_scheme->wmarks,
868 NUMA_NO_NODE);
869 if (!new_scheme)
870 return -ENOMEM;
871 damon_add_scheme(dst, new_scheme);
873 return 0;
876 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx)
878 struct damon_target *t;
879 int i = 0;
881 damon_for_each_target(t, ctx) {
882 if (i++ == n)
883 return t;
885 return NULL;
889 * The caller should ensure the regions of @src are
890 * 1. valid (end >= src) and
891 * 2. sorted by starting address.
893 * If @src has no region, @dst keeps current regions.
895 static int damon_commit_target_regions(
896 struct damon_target *dst, struct damon_target *src)
898 struct damon_region *src_region;
899 struct damon_addr_range *ranges;
900 int i = 0, err;
902 damon_for_each_region(src_region, src)
903 i++;
904 if (!i)
905 return 0;
907 ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN);
908 if (!ranges)
909 return -ENOMEM;
910 i = 0;
911 damon_for_each_region(src_region, src)
912 ranges[i++] = src_region->ar;
913 err = damon_set_regions(dst, ranges, i);
914 kfree(ranges);
915 return err;
918 static int damon_commit_target(
919 struct damon_target *dst, bool dst_has_pid,
920 struct damon_target *src, bool src_has_pid)
922 int err;
924 err = damon_commit_target_regions(dst, src);
925 if (err)
926 return err;
927 if (dst_has_pid)
928 put_pid(dst->pid);
929 if (src_has_pid)
930 get_pid(src->pid);
931 dst->pid = src->pid;
932 return 0;
935 static int damon_commit_targets(
936 struct damon_ctx *dst, struct damon_ctx *src)
938 struct damon_target *dst_target, *next, *src_target, *new_target;
939 int i = 0, j = 0, err;
941 damon_for_each_target_safe(dst_target, next, dst) {
942 src_target = damon_nth_target(i++, src);
943 if (src_target) {
944 err = damon_commit_target(
945 dst_target, damon_target_has_pid(dst),
946 src_target, damon_target_has_pid(src));
947 if (err)
948 return err;
949 } else {
950 if (damon_target_has_pid(dst))
951 put_pid(dst_target->pid);
952 damon_destroy_target(dst_target);
956 damon_for_each_target_safe(src_target, next, src) {
957 if (j++ < i)
958 continue;
959 new_target = damon_new_target();
960 if (!new_target)
961 return -ENOMEM;
962 err = damon_commit_target(new_target, false,
963 src_target, damon_target_has_pid(src));
964 if (err)
965 return err;
967 return 0;
971 * damon_commit_ctx() - Commit parameters of a DAMON context to another.
972 * @dst: The commit destination DAMON context.
973 * @src: The commit source DAMON context.
975 * This function copies user-specified parameters from @src to @dst and update
976 * the internal status and results accordingly. Users should use this function
977 * for context-level parameters update of running context, instead of manual
978 * in-place updates.
980 * This function should be called from parameters-update safe context, like
981 * DAMON callbacks.
983 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src)
985 int err;
987 err = damon_commit_schemes(dst, src);
988 if (err)
989 return err;
990 err = damon_commit_targets(dst, src);
991 if (err)
992 return err;
994 * schemes and targets should be updated first, since
995 * 1. damon_set_attrs() updates monitoring results of targets and
996 * next_apply_sis of schemes, and
997 * 2. ops update should be done after pid handling is done (target
998 * committing require putting pids).
1000 err = damon_set_attrs(dst, &src->attrs);
1001 if (err)
1002 return err;
1003 dst->ops = src->ops;
1005 return 0;
1009 * damon_nr_running_ctxs() - Return number of currently running contexts.
1011 int damon_nr_running_ctxs(void)
1013 int nr_ctxs;
1015 mutex_lock(&damon_lock);
1016 nr_ctxs = nr_running_ctxs;
1017 mutex_unlock(&damon_lock);
1019 return nr_ctxs;
1022 /* Returns the size upper limit for each monitoring region */
1023 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
1025 struct damon_target *t;
1026 struct damon_region *r;
1027 unsigned long sz = 0;
1029 damon_for_each_target(t, ctx) {
1030 damon_for_each_region(r, t)
1031 sz += damon_sz_region(r);
1034 if (ctx->attrs.min_nr_regions)
1035 sz /= ctx->attrs.min_nr_regions;
1036 if (sz < DAMON_MIN_REGION)
1037 sz = DAMON_MIN_REGION;
1039 return sz;
1042 static int kdamond_fn(void *data);
1045 * __damon_start() - Starts monitoring with given context.
1046 * @ctx: monitoring context
1048 * This function should be called while damon_lock is hold.
1050 * Return: 0 on success, negative error code otherwise.
1052 static int __damon_start(struct damon_ctx *ctx)
1054 int err = -EBUSY;
1056 mutex_lock(&ctx->kdamond_lock);
1057 if (!ctx->kdamond) {
1058 err = 0;
1059 reinit_completion(&ctx->kdamond_started);
1060 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
1061 nr_running_ctxs);
1062 if (IS_ERR(ctx->kdamond)) {
1063 err = PTR_ERR(ctx->kdamond);
1064 ctx->kdamond = NULL;
1065 } else {
1066 wait_for_completion(&ctx->kdamond_started);
1069 mutex_unlock(&ctx->kdamond_lock);
1071 return err;
1075 * damon_start() - Starts the monitorings for a given group of contexts.
1076 * @ctxs: an array of the pointers for contexts to start monitoring
1077 * @nr_ctxs: size of @ctxs
1078 * @exclusive: exclusiveness of this contexts group
1080 * This function starts a group of monitoring threads for a group of monitoring
1081 * contexts. One thread per each context is created and run in parallel. The
1082 * caller should handle synchronization between the threads by itself. If
1083 * @exclusive is true and a group of threads that created by other
1084 * 'damon_start()' call is currently running, this function does nothing but
1085 * returns -EBUSY.
1087 * Return: 0 on success, negative error code otherwise.
1089 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
1091 int i;
1092 int err = 0;
1094 mutex_lock(&damon_lock);
1095 if ((exclusive && nr_running_ctxs) ||
1096 (!exclusive && running_exclusive_ctxs)) {
1097 mutex_unlock(&damon_lock);
1098 return -EBUSY;
1101 for (i = 0; i < nr_ctxs; i++) {
1102 err = __damon_start(ctxs[i]);
1103 if (err)
1104 break;
1105 nr_running_ctxs++;
1107 if (exclusive && nr_running_ctxs)
1108 running_exclusive_ctxs = true;
1109 mutex_unlock(&damon_lock);
1111 return err;
1115 * __damon_stop() - Stops monitoring of a given context.
1116 * @ctx: monitoring context
1118 * Return: 0 on success, negative error code otherwise.
1120 static int __damon_stop(struct damon_ctx *ctx)
1122 struct task_struct *tsk;
1124 mutex_lock(&ctx->kdamond_lock);
1125 tsk = ctx->kdamond;
1126 if (tsk) {
1127 get_task_struct(tsk);
1128 mutex_unlock(&ctx->kdamond_lock);
1129 kthread_stop_put(tsk);
1130 return 0;
1132 mutex_unlock(&ctx->kdamond_lock);
1134 return -EPERM;
1138 * damon_stop() - Stops the monitorings for a given group of contexts.
1139 * @ctxs: an array of the pointers for contexts to stop monitoring
1140 * @nr_ctxs: size of @ctxs
1142 * Return: 0 on success, negative error code otherwise.
1144 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
1146 int i, err = 0;
1148 for (i = 0; i < nr_ctxs; i++) {
1149 /* nr_running_ctxs is decremented in kdamond_fn */
1150 err = __damon_stop(ctxs[i]);
1151 if (err)
1152 break;
1154 return err;
1158 * Reset the aggregated monitoring results ('nr_accesses' of each region).
1160 static void kdamond_reset_aggregated(struct damon_ctx *c)
1162 struct damon_target *t;
1163 unsigned int ti = 0; /* target's index */
1165 damon_for_each_target(t, c) {
1166 struct damon_region *r;
1168 damon_for_each_region(r, t) {
1169 trace_damon_aggregated(ti, r, damon_nr_regions(t));
1170 r->last_nr_accesses = r->nr_accesses;
1171 r->nr_accesses = 0;
1173 ti++;
1177 static void damon_split_region_at(struct damon_target *t,
1178 struct damon_region *r, unsigned long sz_r);
1180 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
1182 unsigned long sz;
1183 unsigned int nr_accesses = r->nr_accesses_bp / 10000;
1185 sz = damon_sz_region(r);
1186 return s->pattern.min_sz_region <= sz &&
1187 sz <= s->pattern.max_sz_region &&
1188 s->pattern.min_nr_accesses <= nr_accesses &&
1189 nr_accesses <= s->pattern.max_nr_accesses &&
1190 s->pattern.min_age_region <= r->age &&
1191 r->age <= s->pattern.max_age_region;
1194 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
1195 struct damon_region *r, struct damos *s)
1197 bool ret = __damos_valid_target(r, s);
1199 if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
1200 return ret;
1202 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
1206 * damos_skip_charged_region() - Check if the given region or starting part of
1207 * it is already charged for the DAMOS quota.
1208 * @t: The target of the region.
1209 * @rp: The pointer to the region.
1210 * @s: The scheme to be applied.
1212 * If a quota of a scheme has exceeded in a quota charge window, the scheme's
1213 * action would applied to only a part of the target access pattern fulfilling
1214 * regions. To avoid applying the scheme action to only already applied
1215 * regions, DAMON skips applying the scheme action to the regions that charged
1216 * in the previous charge window.
1218 * This function checks if a given region should be skipped or not for the
1219 * reason. If only the starting part of the region has previously charged,
1220 * this function splits the region into two so that the second one covers the
1221 * area that not charged in the previous charge widnow and saves the second
1222 * region in *rp and returns false, so that the caller can apply DAMON action
1223 * to the second one.
1225 * Return: true if the region should be entirely skipped, false otherwise.
1227 static bool damos_skip_charged_region(struct damon_target *t,
1228 struct damon_region **rp, struct damos *s)
1230 struct damon_region *r = *rp;
1231 struct damos_quota *quota = &s->quota;
1232 unsigned long sz_to_skip;
1234 /* Skip previously charged regions */
1235 if (quota->charge_target_from) {
1236 if (t != quota->charge_target_from)
1237 return true;
1238 if (r == damon_last_region(t)) {
1239 quota->charge_target_from = NULL;
1240 quota->charge_addr_from = 0;
1241 return true;
1243 if (quota->charge_addr_from &&
1244 r->ar.end <= quota->charge_addr_from)
1245 return true;
1247 if (quota->charge_addr_from && r->ar.start <
1248 quota->charge_addr_from) {
1249 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
1250 r->ar.start, DAMON_MIN_REGION);
1251 if (!sz_to_skip) {
1252 if (damon_sz_region(r) <= DAMON_MIN_REGION)
1253 return true;
1254 sz_to_skip = DAMON_MIN_REGION;
1256 damon_split_region_at(t, r, sz_to_skip);
1257 r = damon_next_region(r);
1258 *rp = r;
1260 quota->charge_target_from = NULL;
1261 quota->charge_addr_from = 0;
1263 return false;
1266 static void damos_update_stat(struct damos *s,
1267 unsigned long sz_tried, unsigned long sz_applied)
1269 s->stat.nr_tried++;
1270 s->stat.sz_tried += sz_tried;
1271 if (sz_applied)
1272 s->stat.nr_applied++;
1273 s->stat.sz_applied += sz_applied;
1276 static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
1277 struct damon_region *r, struct damos_filter *filter)
1279 bool matched = false;
1280 struct damon_target *ti;
1281 int target_idx = 0;
1282 unsigned long start, end;
1284 switch (filter->type) {
1285 case DAMOS_FILTER_TYPE_TARGET:
1286 damon_for_each_target(ti, ctx) {
1287 if (ti == t)
1288 break;
1289 target_idx++;
1291 matched = target_idx == filter->target_idx;
1292 break;
1293 case DAMOS_FILTER_TYPE_ADDR:
1294 start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
1295 end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
1297 /* inside the range */
1298 if (start <= r->ar.start && r->ar.end <= end) {
1299 matched = true;
1300 break;
1302 /* outside of the range */
1303 if (r->ar.end <= start || end <= r->ar.start) {
1304 matched = false;
1305 break;
1307 /* start before the range and overlap */
1308 if (r->ar.start < start) {
1309 damon_split_region_at(t, r, start - r->ar.start);
1310 matched = false;
1311 break;
1313 /* start inside the range */
1314 damon_split_region_at(t, r, end - r->ar.start);
1315 matched = true;
1316 break;
1317 default:
1318 return false;
1321 return matched == filter->matching;
1324 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
1325 struct damon_region *r, struct damos *s)
1327 struct damos_filter *filter;
1329 damos_for_each_filter(filter, s) {
1330 if (__damos_filter_out(ctx, t, r, filter))
1331 return true;
1333 return false;
1336 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
1337 struct damon_region *r, struct damos *s)
1339 struct damos_quota *quota = &s->quota;
1340 unsigned long sz = damon_sz_region(r);
1341 struct timespec64 begin, end;
1342 unsigned long sz_applied = 0;
1343 int err = 0;
1345 * We plan to support multiple context per kdamond, as DAMON sysfs
1346 * implies with 'nr_contexts' file. Nevertheless, only single context
1347 * per kdamond is supported for now. So, we can simply use '0' context
1348 * index here.
1350 unsigned int cidx = 0;
1351 struct damos *siter; /* schemes iterator */
1352 unsigned int sidx = 0;
1353 struct damon_target *titer; /* targets iterator */
1354 unsigned int tidx = 0;
1355 bool do_trace = false;
1357 /* get indices for trace_damos_before_apply() */
1358 if (trace_damos_before_apply_enabled()) {
1359 damon_for_each_scheme(siter, c) {
1360 if (siter == s)
1361 break;
1362 sidx++;
1364 damon_for_each_target(titer, c) {
1365 if (titer == t)
1366 break;
1367 tidx++;
1369 do_trace = true;
1372 if (c->ops.apply_scheme) {
1373 if (quota->esz && quota->charged_sz + sz > quota->esz) {
1374 sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
1375 DAMON_MIN_REGION);
1376 if (!sz)
1377 goto update_stat;
1378 damon_split_region_at(t, r, sz);
1380 if (damos_filter_out(c, t, r, s))
1381 return;
1382 ktime_get_coarse_ts64(&begin);
1383 if (c->callback.before_damos_apply)
1384 err = c->callback.before_damos_apply(c, t, r, s);
1385 if (!err) {
1386 trace_damos_before_apply(cidx, sidx, tidx, r,
1387 damon_nr_regions(t), do_trace);
1388 sz_applied = c->ops.apply_scheme(c, t, r, s);
1390 ktime_get_coarse_ts64(&end);
1391 quota->total_charged_ns += timespec64_to_ns(&end) -
1392 timespec64_to_ns(&begin);
1393 quota->charged_sz += sz;
1394 if (quota->esz && quota->charged_sz >= quota->esz) {
1395 quota->charge_target_from = t;
1396 quota->charge_addr_from = r->ar.end + 1;
1399 if (s->action != DAMOS_STAT)
1400 r->age = 0;
1402 update_stat:
1403 damos_update_stat(s, sz, sz_applied);
1406 static void damon_do_apply_schemes(struct damon_ctx *c,
1407 struct damon_target *t,
1408 struct damon_region *r)
1410 struct damos *s;
1412 damon_for_each_scheme(s, c) {
1413 struct damos_quota *quota = &s->quota;
1415 if (c->passed_sample_intervals < s->next_apply_sis)
1416 continue;
1418 if (!s->wmarks.activated)
1419 continue;
1421 /* Check the quota */
1422 if (quota->esz && quota->charged_sz >= quota->esz)
1423 continue;
1425 if (damos_skip_charged_region(t, &r, s))
1426 continue;
1428 if (!damos_valid_target(c, t, r, s))
1429 continue;
1431 damos_apply_scheme(c, t, r, s);
1436 * damon_feed_loop_next_input() - get next input to achieve a target score.
1437 * @last_input The last input.
1438 * @score Current score that made with @last_input.
1440 * Calculate next input to achieve the target score, based on the last input
1441 * and current score. Assuming the input and the score are positively
1442 * proportional, calculate how much compensation should be added to or
1443 * subtracted from the last input as a proportion of the last input. Avoid
1444 * next input always being zero by setting it non-zero always. In short form
1445 * (assuming support of float and signed calculations), the algorithm is as
1446 * below.
1448 * next_input = max(last_input * ((goal - current) / goal + 1), 1)
1450 * For simple implementation, we assume the target score is always 10,000. The
1451 * caller should adjust @score for this.
1453 * Returns next input that assumed to achieve the target score.
1455 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1456 unsigned long score)
1458 const unsigned long goal = 10000;
1459 /* Set minimum input as 10000 to avoid compensation be zero */
1460 const unsigned long min_input = 10000;
1461 unsigned long score_goal_diff, compensation;
1462 bool over_achieving = score > goal;
1464 if (score == goal)
1465 return last_input;
1466 if (score >= goal * 2)
1467 return min_input;
1469 if (over_achieving)
1470 score_goal_diff = score - goal;
1471 else
1472 score_goal_diff = goal - score;
1474 if (last_input < ULONG_MAX / score_goal_diff)
1475 compensation = last_input * score_goal_diff / goal;
1476 else
1477 compensation = last_input / goal * score_goal_diff;
1479 if (over_achieving)
1480 return max(last_input - compensation, min_input);
1481 if (last_input < ULONG_MAX - compensation)
1482 return last_input + compensation;
1483 return ULONG_MAX;
1486 #ifdef CONFIG_PSI
1488 static u64 damos_get_some_mem_psi_total(void)
1490 if (static_branch_likely(&psi_disabled))
1491 return 0;
1492 return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2],
1493 NSEC_PER_USEC);
1496 #else /* CONFIG_PSI */
1498 static inline u64 damos_get_some_mem_psi_total(void)
1500 return 0;
1503 #endif /* CONFIG_PSI */
1505 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal)
1507 u64 now_psi_total;
1509 switch (goal->metric) {
1510 case DAMOS_QUOTA_USER_INPUT:
1511 /* User should already set goal->current_value */
1512 break;
1513 case DAMOS_QUOTA_SOME_MEM_PSI_US:
1514 now_psi_total = damos_get_some_mem_psi_total();
1515 goal->current_value = now_psi_total - goal->last_psi_total;
1516 goal->last_psi_total = now_psi_total;
1517 break;
1518 default:
1519 break;
1523 /* Return the highest score since it makes schemes least aggressive */
1524 static unsigned long damos_quota_score(struct damos_quota *quota)
1526 struct damos_quota_goal *goal;
1527 unsigned long highest_score = 0;
1529 damos_for_each_quota_goal(goal, quota) {
1530 damos_set_quota_goal_current_value(goal);
1531 highest_score = max(highest_score,
1532 goal->current_value * 10000 /
1533 goal->target_value);
1536 return highest_score;
1540 * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty
1542 static void damos_set_effective_quota(struct damos_quota *quota)
1544 unsigned long throughput;
1545 unsigned long esz;
1547 if (!quota->ms && list_empty(&quota->goals)) {
1548 quota->esz = quota->sz;
1549 return;
1552 if (!list_empty(&quota->goals)) {
1553 unsigned long score = damos_quota_score(quota);
1555 quota->esz_bp = damon_feed_loop_next_input(
1556 max(quota->esz_bp, 10000UL),
1557 score);
1558 esz = quota->esz_bp / 10000;
1561 if (quota->ms) {
1562 if (quota->total_charged_ns)
1563 throughput = quota->total_charged_sz * 1000000 /
1564 quota->total_charged_ns;
1565 else
1566 throughput = PAGE_SIZE * 1024;
1567 if (!list_empty(&quota->goals))
1568 esz = min(throughput * quota->ms, esz);
1569 else
1570 esz = throughput * quota->ms;
1573 if (quota->sz && quota->sz < esz)
1574 esz = quota->sz;
1576 quota->esz = esz;
1579 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
1581 struct damos_quota *quota = &s->quota;
1582 struct damon_target *t;
1583 struct damon_region *r;
1584 unsigned long cumulated_sz;
1585 unsigned int score, max_score = 0;
1587 if (!quota->ms && !quota->sz && list_empty(&quota->goals))
1588 return;
1590 /* New charge window starts */
1591 if (time_after_eq(jiffies, quota->charged_from +
1592 msecs_to_jiffies(quota->reset_interval))) {
1593 if (quota->esz && quota->charged_sz >= quota->esz)
1594 s->stat.qt_exceeds++;
1595 quota->total_charged_sz += quota->charged_sz;
1596 quota->charged_from = jiffies;
1597 quota->charged_sz = 0;
1598 damos_set_effective_quota(quota);
1601 if (!c->ops.get_scheme_score)
1602 return;
1604 /* Fill up the score histogram */
1605 memset(c->regions_score_histogram, 0,
1606 sizeof(*c->regions_score_histogram) *
1607 (DAMOS_MAX_SCORE + 1));
1608 damon_for_each_target(t, c) {
1609 damon_for_each_region(r, t) {
1610 if (!__damos_valid_target(r, s))
1611 continue;
1612 score = c->ops.get_scheme_score(c, t, r, s);
1613 c->regions_score_histogram[score] +=
1614 damon_sz_region(r);
1615 if (score > max_score)
1616 max_score = score;
1620 /* Set the min score limit */
1621 for (cumulated_sz = 0, score = max_score; ; score--) {
1622 cumulated_sz += c->regions_score_histogram[score];
1623 if (cumulated_sz >= quota->esz || !score)
1624 break;
1626 quota->min_score = score;
1629 static void kdamond_apply_schemes(struct damon_ctx *c)
1631 struct damon_target *t;
1632 struct damon_region *r, *next_r;
1633 struct damos *s;
1634 unsigned long sample_interval = c->attrs.sample_interval ?
1635 c->attrs.sample_interval : 1;
1636 bool has_schemes_to_apply = false;
1638 damon_for_each_scheme(s, c) {
1639 if (c->passed_sample_intervals < s->next_apply_sis)
1640 continue;
1642 if (!s->wmarks.activated)
1643 continue;
1645 has_schemes_to_apply = true;
1647 damos_adjust_quota(c, s);
1650 if (!has_schemes_to_apply)
1651 return;
1653 damon_for_each_target(t, c) {
1654 damon_for_each_region_safe(r, next_r, t)
1655 damon_do_apply_schemes(c, t, r);
1658 damon_for_each_scheme(s, c) {
1659 if (c->passed_sample_intervals < s->next_apply_sis)
1660 continue;
1661 s->next_apply_sis = c->passed_sample_intervals +
1662 (s->apply_interval_us ? s->apply_interval_us :
1663 c->attrs.aggr_interval) / sample_interval;
1668 * Merge two adjacent regions into one region
1670 static void damon_merge_two_regions(struct damon_target *t,
1671 struct damon_region *l, struct damon_region *r)
1673 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
1675 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
1676 (sz_l + sz_r);
1677 l->nr_accesses_bp = l->nr_accesses * 10000;
1678 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
1679 l->ar.end = r->ar.end;
1680 damon_destroy_region(r, t);
1684 * Merge adjacent regions having similar access frequencies
1686 * t target affected by this merge operation
1687 * thres '->nr_accesses' diff threshold for the merge
1688 * sz_limit size upper limit of each region
1690 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
1691 unsigned long sz_limit)
1693 struct damon_region *r, *prev = NULL, *next;
1695 damon_for_each_region_safe(r, next, t) {
1696 if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
1697 r->age = 0;
1698 else
1699 r->age++;
1701 if (prev && prev->ar.end == r->ar.start &&
1702 abs(prev->nr_accesses - r->nr_accesses) <= thres &&
1703 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
1704 damon_merge_two_regions(t, prev, r);
1705 else
1706 prev = r;
1711 * Merge adjacent regions having similar access frequencies
1713 * threshold '->nr_accesses' diff threshold for the merge
1714 * sz_limit size upper limit of each region
1716 * This function merges monitoring target regions which are adjacent and their
1717 * access frequencies are similar. This is for minimizing the monitoring
1718 * overhead under the dynamically changeable access pattern. If a merge was
1719 * unnecessarily made, later 'kdamond_split_regions()' will revert it.
1721 * The total number of regions could be higher than the user-defined limit,
1722 * max_nr_regions for some cases. For example, the user can update
1723 * max_nr_regions to a number that lower than the current number of regions
1724 * while DAMON is running. For such a case, repeat merging until the limit is
1725 * met while increasing @threshold up to possible maximum level.
1727 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
1728 unsigned long sz_limit)
1730 struct damon_target *t;
1731 unsigned int nr_regions;
1732 unsigned int max_thres;
1734 max_thres = c->attrs.aggr_interval /
1735 (c->attrs.sample_interval ? c->attrs.sample_interval : 1);
1736 do {
1737 nr_regions = 0;
1738 damon_for_each_target(t, c) {
1739 damon_merge_regions_of(t, threshold, sz_limit);
1740 nr_regions += damon_nr_regions(t);
1742 threshold = max(1, threshold * 2);
1743 } while (nr_regions > c->attrs.max_nr_regions &&
1744 threshold / 2 < max_thres);
1748 * Split a region in two
1750 * r the region to be split
1751 * sz_r size of the first sub-region that will be made
1753 static void damon_split_region_at(struct damon_target *t,
1754 struct damon_region *r, unsigned long sz_r)
1756 struct damon_region *new;
1758 new = damon_new_region(r->ar.start + sz_r, r->ar.end);
1759 if (!new)
1760 return;
1762 r->ar.end = new->ar.start;
1764 new->age = r->age;
1765 new->last_nr_accesses = r->last_nr_accesses;
1766 new->nr_accesses_bp = r->nr_accesses_bp;
1767 new->nr_accesses = r->nr_accesses;
1769 damon_insert_region(new, r, damon_next_region(r), t);
1772 /* Split every region in the given target into 'nr_subs' regions */
1773 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
1775 struct damon_region *r, *next;
1776 unsigned long sz_region, sz_sub = 0;
1777 int i;
1779 damon_for_each_region_safe(r, next, t) {
1780 sz_region = damon_sz_region(r);
1782 for (i = 0; i < nr_subs - 1 &&
1783 sz_region > 2 * DAMON_MIN_REGION; i++) {
1785 * Randomly select size of left sub-region to be at
1786 * least 10 percent and at most 90% of original region
1788 sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
1789 sz_region / 10, DAMON_MIN_REGION);
1790 /* Do not allow blank region */
1791 if (sz_sub == 0 || sz_sub >= sz_region)
1792 continue;
1794 damon_split_region_at(t, r, sz_sub);
1795 sz_region = sz_sub;
1801 * Split every target region into randomly-sized small regions
1803 * This function splits every target region into random-sized small regions if
1804 * current total number of the regions is equal or smaller than half of the
1805 * user-specified maximum number of regions. This is for maximizing the
1806 * monitoring accuracy under the dynamically changeable access patterns. If a
1807 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
1808 * it.
1810 static void kdamond_split_regions(struct damon_ctx *ctx)
1812 struct damon_target *t;
1813 unsigned int nr_regions = 0;
1814 static unsigned int last_nr_regions;
1815 int nr_subregions = 2;
1817 damon_for_each_target(t, ctx)
1818 nr_regions += damon_nr_regions(t);
1820 if (nr_regions > ctx->attrs.max_nr_regions / 2)
1821 return;
1823 /* Maybe the middle of the region has different access frequency */
1824 if (last_nr_regions == nr_regions &&
1825 nr_regions < ctx->attrs.max_nr_regions / 3)
1826 nr_subregions = 3;
1828 damon_for_each_target(t, ctx)
1829 damon_split_regions_of(t, nr_subregions);
1831 last_nr_regions = nr_regions;
1835 * Check whether current monitoring should be stopped
1837 * The monitoring is stopped when either the user requested to stop, or all
1838 * monitoring targets are invalid.
1840 * Returns true if need to stop current monitoring.
1842 static bool kdamond_need_stop(struct damon_ctx *ctx)
1844 struct damon_target *t;
1846 if (kthread_should_stop())
1847 return true;
1849 if (!ctx->ops.target_valid)
1850 return false;
1852 damon_for_each_target(t, ctx) {
1853 if (ctx->ops.target_valid(t))
1854 return false;
1857 return true;
1860 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric,
1861 unsigned long *metric_value)
1863 switch (metric) {
1864 case DAMOS_WMARK_FREE_MEM_RATE:
1865 *metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 /
1866 totalram_pages();
1867 return 0;
1868 default:
1869 break;
1871 return -EINVAL;
1875 * Returns zero if the scheme is active. Else, returns time to wait for next
1876 * watermark check in micro-seconds.
1878 static unsigned long damos_wmark_wait_us(struct damos *scheme)
1880 unsigned long metric;
1882 if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric))
1883 return 0;
1885 /* higher than high watermark or lower than low watermark */
1886 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
1887 if (scheme->wmarks.activated)
1888 pr_debug("deactivate a scheme (%d) for %s wmark\n",
1889 scheme->action,
1890 metric > scheme->wmarks.high ?
1891 "high" : "low");
1892 scheme->wmarks.activated = false;
1893 return scheme->wmarks.interval;
1896 /* inactive and higher than middle watermark */
1897 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
1898 !scheme->wmarks.activated)
1899 return scheme->wmarks.interval;
1901 if (!scheme->wmarks.activated)
1902 pr_debug("activate a scheme (%d)\n", scheme->action);
1903 scheme->wmarks.activated = true;
1904 return 0;
1907 static void kdamond_usleep(unsigned long usecs)
1909 if (usecs >= USLEEP_RANGE_UPPER_BOUND)
1910 schedule_timeout_idle(usecs_to_jiffies(usecs));
1911 else
1912 usleep_range_idle(usecs, usecs + 1);
1915 /* Returns negative error code if it's not activated but should return */
1916 static int kdamond_wait_activation(struct damon_ctx *ctx)
1918 struct damos *s;
1919 unsigned long wait_time;
1920 unsigned long min_wait_time = 0;
1921 bool init_wait_time = false;
1923 while (!kdamond_need_stop(ctx)) {
1924 damon_for_each_scheme(s, ctx) {
1925 wait_time = damos_wmark_wait_us(s);
1926 if (!init_wait_time || wait_time < min_wait_time) {
1927 init_wait_time = true;
1928 min_wait_time = wait_time;
1931 if (!min_wait_time)
1932 return 0;
1934 kdamond_usleep(min_wait_time);
1936 if (ctx->callback.after_wmarks_check &&
1937 ctx->callback.after_wmarks_check(ctx))
1938 break;
1940 return -EBUSY;
1943 static void kdamond_init_intervals_sis(struct damon_ctx *ctx)
1945 unsigned long sample_interval = ctx->attrs.sample_interval ?
1946 ctx->attrs.sample_interval : 1;
1947 unsigned long apply_interval;
1948 struct damos *scheme;
1950 ctx->passed_sample_intervals = 0;
1951 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
1952 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
1953 sample_interval;
1955 damon_for_each_scheme(scheme, ctx) {
1956 apply_interval = scheme->apply_interval_us ?
1957 scheme->apply_interval_us : ctx->attrs.aggr_interval;
1958 scheme->next_apply_sis = apply_interval / sample_interval;
1963 * The monitoring daemon that runs as a kernel thread
1965 static int kdamond_fn(void *data)
1967 struct damon_ctx *ctx = data;
1968 struct damon_target *t;
1969 struct damon_region *r, *next;
1970 unsigned int max_nr_accesses = 0;
1971 unsigned long sz_limit = 0;
1973 pr_debug("kdamond (%d) starts\n", current->pid);
1975 complete(&ctx->kdamond_started);
1976 kdamond_init_intervals_sis(ctx);
1978 if (ctx->ops.init)
1979 ctx->ops.init(ctx);
1980 if (ctx->callback.before_start && ctx->callback.before_start(ctx))
1981 goto done;
1982 ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1,
1983 sizeof(*ctx->regions_score_histogram), GFP_KERNEL);
1984 if (!ctx->regions_score_histogram)
1985 goto done;
1987 sz_limit = damon_region_sz_limit(ctx);
1989 while (!kdamond_need_stop(ctx)) {
1991 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
1992 * be changed from after_wmarks_check() or after_aggregation()
1993 * callbacks. Read the values here, and use those for this
1994 * iteration. That is, damon_set_attrs() updated new values
1995 * are respected from next iteration.
1997 unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
1998 unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
1999 unsigned long sample_interval = ctx->attrs.sample_interval;
2001 if (kdamond_wait_activation(ctx))
2002 break;
2004 if (ctx->ops.prepare_access_checks)
2005 ctx->ops.prepare_access_checks(ctx);
2006 if (ctx->callback.after_sampling &&
2007 ctx->callback.after_sampling(ctx))
2008 break;
2010 kdamond_usleep(sample_interval);
2011 ctx->passed_sample_intervals++;
2013 if (ctx->ops.check_accesses)
2014 max_nr_accesses = ctx->ops.check_accesses(ctx);
2016 if (ctx->passed_sample_intervals >= next_aggregation_sis) {
2017 kdamond_merge_regions(ctx,
2018 max_nr_accesses / 10,
2019 sz_limit);
2020 if (ctx->callback.after_aggregation &&
2021 ctx->callback.after_aggregation(ctx))
2022 break;
2026 * do kdamond_apply_schemes() after kdamond_merge_regions() if
2027 * possible, to reduce overhead
2029 if (!list_empty(&ctx->schemes))
2030 kdamond_apply_schemes(ctx);
2032 sample_interval = ctx->attrs.sample_interval ?
2033 ctx->attrs.sample_interval : 1;
2034 if (ctx->passed_sample_intervals >= next_aggregation_sis) {
2035 ctx->next_aggregation_sis = next_aggregation_sis +
2036 ctx->attrs.aggr_interval / sample_interval;
2038 kdamond_reset_aggregated(ctx);
2039 kdamond_split_regions(ctx);
2040 if (ctx->ops.reset_aggregated)
2041 ctx->ops.reset_aggregated(ctx);
2044 if (ctx->passed_sample_intervals >= next_ops_update_sis) {
2045 ctx->next_ops_update_sis = next_ops_update_sis +
2046 ctx->attrs.ops_update_interval /
2047 sample_interval;
2048 if (ctx->ops.update)
2049 ctx->ops.update(ctx);
2050 sz_limit = damon_region_sz_limit(ctx);
2053 done:
2054 damon_for_each_target(t, ctx) {
2055 damon_for_each_region_safe(r, next, t)
2056 damon_destroy_region(r, t);
2059 if (ctx->callback.before_terminate)
2060 ctx->callback.before_terminate(ctx);
2061 if (ctx->ops.cleanup)
2062 ctx->ops.cleanup(ctx);
2063 kfree(ctx->regions_score_histogram);
2065 pr_debug("kdamond (%d) finishes\n", current->pid);
2066 mutex_lock(&ctx->kdamond_lock);
2067 ctx->kdamond = NULL;
2068 mutex_unlock(&ctx->kdamond_lock);
2070 mutex_lock(&damon_lock);
2071 nr_running_ctxs--;
2072 if (!nr_running_ctxs && running_exclusive_ctxs)
2073 running_exclusive_ctxs = false;
2074 mutex_unlock(&damon_lock);
2076 return 0;
2080 * struct damon_system_ram_region - System RAM resource address region of
2081 * [@start, @end).
2082 * @start: Start address of the region (inclusive).
2083 * @end: End address of the region (exclusive).
2085 struct damon_system_ram_region {
2086 unsigned long start;
2087 unsigned long end;
2090 static int walk_system_ram(struct resource *res, void *arg)
2092 struct damon_system_ram_region *a = arg;
2094 if (a->end - a->start < resource_size(res)) {
2095 a->start = res->start;
2096 a->end = res->end;
2098 return 0;
2102 * Find biggest 'System RAM' resource and store its start and end address in
2103 * @start and @end, respectively. If no System RAM is found, returns false.
2105 static bool damon_find_biggest_system_ram(unsigned long *start,
2106 unsigned long *end)
2109 struct damon_system_ram_region arg = {};
2111 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
2112 if (arg.end <= arg.start)
2113 return false;
2115 *start = arg.start;
2116 *end = arg.end;
2117 return true;
2121 * damon_set_region_biggest_system_ram_default() - Set the region of the given
2122 * monitoring target as requested, or biggest 'System RAM'.
2123 * @t: The monitoring target to set the region.
2124 * @start: The pointer to the start address of the region.
2125 * @end: The pointer to the end address of the region.
2127 * This function sets the region of @t as requested by @start and @end. If the
2128 * values of @start and @end are zero, however, this function finds the biggest
2129 * 'System RAM' resource and sets the region to cover the resource. In the
2130 * latter case, this function saves the start and end addresses of the resource
2131 * in @start and @end, respectively.
2133 * Return: 0 on success, negative error code otherwise.
2135 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
2136 unsigned long *start, unsigned long *end)
2138 struct damon_addr_range addr_range;
2140 if (*start > *end)
2141 return -EINVAL;
2143 if (!*start && !*end &&
2144 !damon_find_biggest_system_ram(start, end))
2145 return -EINVAL;
2147 addr_range.start = *start;
2148 addr_range.end = *end;
2149 return damon_set_regions(t, &addr_range, 1);
2153 * damon_moving_sum() - Calculate an inferred moving sum value.
2154 * @mvsum: Inferred sum of the last @len_window values.
2155 * @nomvsum: Non-moving sum of the last discrete @len_window window values.
2156 * @len_window: The number of last values to take care of.
2157 * @new_value: New value that will be added to the pseudo moving sum.
2159 * Moving sum (moving average * window size) is good for handling noise, but
2160 * the cost of keeping past values can be high for arbitrary window size. This
2161 * function implements a lightweight pseudo moving sum function that doesn't
2162 * keep the past window values.
2164 * It simply assumes there was no noise in the past, and get the no-noise
2165 * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a
2166 * non-moving sum of the last window. For example, if @len_window is 10 and we
2167 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25
2168 * values. Hence, this function simply drops @nomvsum / @len_window from
2169 * given @mvsum and add @new_value.
2171 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for
2172 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For
2173 * calculating next moving sum with a new value, we should drop 0 from 50 and
2174 * add the new value. However, this function assumes it got value 5 for each
2175 * of the last ten times. Based on the assumption, when the next value is
2176 * measured, it drops the assumed past value, 5 from the current sum, and add
2177 * the new value to get the updated pseduo-moving average.
2179 * This means the value could have errors, but the errors will be disappeared
2180 * for every @len_window aligned calls. For example, if @len_window is 10, the
2181 * pseudo moving sum with 11th value to 19th value would have an error. But
2182 * the sum with 20th value will not have the error.
2184 * Return: Pseudo-moving average after getting the @new_value.
2186 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum,
2187 unsigned int len_window, unsigned int new_value)
2189 return mvsum - nomvsum / len_window + new_value;
2193 * damon_update_region_access_rate() - Update the access rate of a region.
2194 * @r: The DAMON region to update for its access check result.
2195 * @accessed: Whether the region has accessed during last sampling interval.
2196 * @attrs: The damon_attrs of the DAMON context.
2198 * Update the access rate of a region with the region's last sampling interval
2199 * access check result.
2201 * Usually this will be called by &damon_operations->check_accesses callback.
2203 void damon_update_region_access_rate(struct damon_region *r, bool accessed,
2204 struct damon_attrs *attrs)
2206 unsigned int len_window = 1;
2209 * sample_interval can be zero, but cannot be larger than
2210 * aggr_interval, owing to validation of damon_set_attrs().
2212 if (attrs->sample_interval)
2213 len_window = damon_max_nr_accesses(attrs);
2214 r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp,
2215 r->last_nr_accesses * 10000, len_window,
2216 accessed ? 10000 : 0);
2218 if (accessed)
2219 r->nr_accesses++;
2222 static int __init damon_init(void)
2224 damon_region_cache = KMEM_CACHE(damon_region, 0);
2225 if (unlikely(!damon_region_cache)) {
2226 pr_err("creating damon_region_cache fails\n");
2227 return -ENOMEM;
2230 return 0;
2233 subsys_initcall(damon_init);
2235 #include "tests/core-kunit.h"