Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / mm / gup.c
blob746070a1d8bfbb89dc06e632a116c67acc57a946
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
7 #include <linux/mm.h>
8 #include <linux/memfd.h>
9 #include <linux/memremap.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/secretmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/rwsem.h>
18 #include <linux/hugetlb.h>
19 #include <linux/migrate.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/sched/mm.h>
23 #include <linux/shmem_fs.h>
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
28 #include "internal.h"
30 struct follow_page_context {
31 struct dev_pagemap *pgmap;
32 unsigned int page_mask;
35 static inline void sanity_check_pinned_pages(struct page **pages,
36 unsigned long npages)
38 if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 return;
42 * We only pin anonymous pages if they are exclusive. Once pinned, we
43 * can no longer turn them possibly shared and PageAnonExclusive() will
44 * stick around until the page is freed.
46 * We'd like to verify that our pinned anonymous pages are still mapped
47 * exclusively. The issue with anon THP is that we don't know how
48 * they are/were mapped when pinning them. However, for anon
49 * THP we can assume that either the given page (PTE-mapped THP) or
50 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
51 * neither is the case, there is certainly something wrong.
53 for (; npages; npages--, pages++) {
54 struct page *page = *pages;
55 struct folio *folio = page_folio(page);
57 if (is_zero_page(page) ||
58 !folio_test_anon(folio))
59 continue;
60 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
61 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
62 else
63 /* Either a PTE-mapped or a PMD-mapped THP. */
64 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
65 !PageAnonExclusive(page), page);
70 * Return the folio with ref appropriately incremented,
71 * or NULL if that failed.
73 static inline struct folio *try_get_folio(struct page *page, int refs)
75 struct folio *folio;
77 retry:
78 folio = page_folio(page);
79 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
80 return NULL;
81 if (unlikely(!folio_ref_try_add(folio, refs)))
82 return NULL;
85 * At this point we have a stable reference to the folio; but it
86 * could be that between calling page_folio() and the refcount
87 * increment, the folio was split, in which case we'd end up
88 * holding a reference on a folio that has nothing to do with the page
89 * we were given anymore.
90 * So now that the folio is stable, recheck that the page still
91 * belongs to this folio.
93 if (unlikely(page_folio(page) != folio)) {
94 if (!put_devmap_managed_folio_refs(folio, refs))
95 folio_put_refs(folio, refs);
96 goto retry;
99 return folio;
102 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
104 if (flags & FOLL_PIN) {
105 if (is_zero_folio(folio))
106 return;
107 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
108 if (folio_test_large(folio))
109 atomic_sub(refs, &folio->_pincount);
110 else
111 refs *= GUP_PIN_COUNTING_BIAS;
114 if (!put_devmap_managed_folio_refs(folio, refs))
115 folio_put_refs(folio, refs);
119 * try_grab_folio() - add a folio's refcount by a flag-dependent amount
120 * @folio: pointer to folio to be grabbed
121 * @refs: the value to (effectively) add to the folio's refcount
122 * @flags: gup flags: these are the FOLL_* flag values
124 * This might not do anything at all, depending on the flags argument.
126 * "grab" names in this file mean, "look at flags to decide whether to use
127 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
129 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
130 * time.
132 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
133 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
135 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not
136 * be grabbed.
138 * It is called when we have a stable reference for the folio, typically in
139 * GUP slow path.
141 int __must_check try_grab_folio(struct folio *folio, int refs,
142 unsigned int flags)
144 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
145 return -ENOMEM;
147 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
148 return -EREMOTEIO;
150 if (flags & FOLL_GET)
151 folio_ref_add(folio, refs);
152 else if (flags & FOLL_PIN) {
154 * Don't take a pin on the zero page - it's not going anywhere
155 * and it is used in a *lot* of places.
157 if (is_zero_folio(folio))
158 return 0;
161 * Increment the normal page refcount field at least once,
162 * so that the page really is pinned.
164 if (folio_test_large(folio)) {
165 folio_ref_add(folio, refs);
166 atomic_add(refs, &folio->_pincount);
167 } else {
168 folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
174 return 0;
178 * unpin_user_page() - release a dma-pinned page
179 * @page: pointer to page to be released
181 * Pages that were pinned via pin_user_pages*() must be released via either
182 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
183 * that such pages can be separately tracked and uniquely handled. In
184 * particular, interactions with RDMA and filesystems need special handling.
186 void unpin_user_page(struct page *page)
188 sanity_check_pinned_pages(&page, 1);
189 gup_put_folio(page_folio(page), 1, FOLL_PIN);
191 EXPORT_SYMBOL(unpin_user_page);
194 * unpin_folio() - release a dma-pinned folio
195 * @folio: pointer to folio to be released
197 * Folios that were pinned via memfd_pin_folios() or other similar routines
198 * must be released either using unpin_folio() or unpin_folios().
200 void unpin_folio(struct folio *folio)
202 gup_put_folio(folio, 1, FOLL_PIN);
204 EXPORT_SYMBOL_GPL(unpin_folio);
207 * folio_add_pin - Try to get an additional pin on a pinned folio
208 * @folio: The folio to be pinned
210 * Get an additional pin on a folio we already have a pin on. Makes no change
211 * if the folio is a zero_page.
213 void folio_add_pin(struct folio *folio)
215 if (is_zero_folio(folio))
216 return;
219 * Similar to try_grab_folio(): be sure to *also* increment the normal
220 * page refcount field at least once, so that the page really is
221 * pinned.
223 if (folio_test_large(folio)) {
224 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
225 folio_ref_inc(folio);
226 atomic_inc(&folio->_pincount);
227 } else {
228 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
229 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
233 static inline struct folio *gup_folio_range_next(struct page *start,
234 unsigned long npages, unsigned long i, unsigned int *ntails)
236 struct page *next = nth_page(start, i);
237 struct folio *folio = page_folio(next);
238 unsigned int nr = 1;
240 if (folio_test_large(folio))
241 nr = min_t(unsigned int, npages - i,
242 folio_nr_pages(folio) - folio_page_idx(folio, next));
244 *ntails = nr;
245 return folio;
248 static inline struct folio *gup_folio_next(struct page **list,
249 unsigned long npages, unsigned long i, unsigned int *ntails)
251 struct folio *folio = page_folio(list[i]);
252 unsigned int nr;
254 for (nr = i + 1; nr < npages; nr++) {
255 if (page_folio(list[nr]) != folio)
256 break;
259 *ntails = nr - i;
260 return folio;
264 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
265 * @pages: array of pages to be maybe marked dirty, and definitely released.
266 * @npages: number of pages in the @pages array.
267 * @make_dirty: whether to mark the pages dirty
269 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
270 * variants called on that page.
272 * For each page in the @pages array, make that page (or its head page, if a
273 * compound page) dirty, if @make_dirty is true, and if the page was previously
274 * listed as clean. In any case, releases all pages using unpin_user_page(),
275 * possibly via unpin_user_pages(), for the non-dirty case.
277 * Please see the unpin_user_page() documentation for details.
279 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
280 * required, then the caller should a) verify that this is really correct,
281 * because _lock() is usually required, and b) hand code it:
282 * set_page_dirty_lock(), unpin_user_page().
285 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
286 bool make_dirty)
288 unsigned long i;
289 struct folio *folio;
290 unsigned int nr;
292 if (!make_dirty) {
293 unpin_user_pages(pages, npages);
294 return;
297 sanity_check_pinned_pages(pages, npages);
298 for (i = 0; i < npages; i += nr) {
299 folio = gup_folio_next(pages, npages, i, &nr);
301 * Checking PageDirty at this point may race with
302 * clear_page_dirty_for_io(), but that's OK. Two key
303 * cases:
305 * 1) This code sees the page as already dirty, so it
306 * skips the call to set_page_dirty(). That could happen
307 * because clear_page_dirty_for_io() called
308 * folio_mkclean(), followed by set_page_dirty().
309 * However, now the page is going to get written back,
310 * which meets the original intention of setting it
311 * dirty, so all is well: clear_page_dirty_for_io() goes
312 * on to call TestClearPageDirty(), and write the page
313 * back.
315 * 2) This code sees the page as clean, so it calls
316 * set_page_dirty(). The page stays dirty, despite being
317 * written back, so it gets written back again in the
318 * next writeback cycle. This is harmless.
320 if (!folio_test_dirty(folio)) {
321 folio_lock(folio);
322 folio_mark_dirty(folio);
323 folio_unlock(folio);
325 gup_put_folio(folio, nr, FOLL_PIN);
328 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
331 * unpin_user_page_range_dirty_lock() - release and optionally dirty
332 * gup-pinned page range
334 * @page: the starting page of a range maybe marked dirty, and definitely released.
335 * @npages: number of consecutive pages to release.
336 * @make_dirty: whether to mark the pages dirty
338 * "gup-pinned page range" refers to a range of pages that has had one of the
339 * pin_user_pages() variants called on that page.
341 * For the page ranges defined by [page .. page+npages], make that range (or
342 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
343 * page range was previously listed as clean.
345 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
346 * required, then the caller should a) verify that this is really correct,
347 * because _lock() is usually required, and b) hand code it:
348 * set_page_dirty_lock(), unpin_user_page().
351 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
352 bool make_dirty)
354 unsigned long i;
355 struct folio *folio;
356 unsigned int nr;
358 for (i = 0; i < npages; i += nr) {
359 folio = gup_folio_range_next(page, npages, i, &nr);
360 if (make_dirty && !folio_test_dirty(folio)) {
361 folio_lock(folio);
362 folio_mark_dirty(folio);
363 folio_unlock(folio);
365 gup_put_folio(folio, nr, FOLL_PIN);
368 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
370 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
372 unsigned long i;
373 struct folio *folio;
374 unsigned int nr;
377 * Don't perform any sanity checks because we might have raced with
378 * fork() and some anonymous pages might now actually be shared --
379 * which is why we're unpinning after all.
381 for (i = 0; i < npages; i += nr) {
382 folio = gup_folio_next(pages, npages, i, &nr);
383 gup_put_folio(folio, nr, FOLL_PIN);
388 * unpin_user_pages() - release an array of gup-pinned pages.
389 * @pages: array of pages to be marked dirty and released.
390 * @npages: number of pages in the @pages array.
392 * For each page in the @pages array, release the page using unpin_user_page().
394 * Please see the unpin_user_page() documentation for details.
396 void unpin_user_pages(struct page **pages, unsigned long npages)
398 unsigned long i;
399 struct folio *folio;
400 unsigned int nr;
403 * If this WARN_ON() fires, then the system *might* be leaking pages (by
404 * leaving them pinned), but probably not. More likely, gup/pup returned
405 * a hard -ERRNO error to the caller, who erroneously passed it here.
407 if (WARN_ON(IS_ERR_VALUE(npages)))
408 return;
410 sanity_check_pinned_pages(pages, npages);
411 for (i = 0; i < npages; i += nr) {
412 folio = gup_folio_next(pages, npages, i, &nr);
413 gup_put_folio(folio, nr, FOLL_PIN);
416 EXPORT_SYMBOL(unpin_user_pages);
419 * unpin_user_folio() - release pages of a folio
420 * @folio: pointer to folio to be released
421 * @npages: number of pages of same folio
423 * Release npages of the folio
425 void unpin_user_folio(struct folio *folio, unsigned long npages)
427 gup_put_folio(folio, npages, FOLL_PIN);
429 EXPORT_SYMBOL(unpin_user_folio);
432 * unpin_folios() - release an array of gup-pinned folios.
433 * @folios: array of folios to be marked dirty and released.
434 * @nfolios: number of folios in the @folios array.
436 * For each folio in the @folios array, release the folio using gup_put_folio.
438 * Please see the unpin_folio() documentation for details.
440 void unpin_folios(struct folio **folios, unsigned long nfolios)
442 unsigned long i = 0, j;
445 * If this WARN_ON() fires, then the system *might* be leaking folios
446 * (by leaving them pinned), but probably not. More likely, gup/pup
447 * returned a hard -ERRNO error to the caller, who erroneously passed
448 * it here.
450 if (WARN_ON(IS_ERR_VALUE(nfolios)))
451 return;
453 while (i < nfolios) {
454 for (j = i + 1; j < nfolios; j++)
455 if (folios[i] != folios[j])
456 break;
458 if (folios[i])
459 gup_put_folio(folios[i], j - i, FOLL_PIN);
460 i = j;
463 EXPORT_SYMBOL_GPL(unpin_folios);
466 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
467 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
468 * cache bouncing on large SMP machines for concurrent pinned gups.
470 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
472 if (!test_bit(MMF_HAS_PINNED, mm_flags))
473 set_bit(MMF_HAS_PINNED, mm_flags);
476 #ifdef CONFIG_MMU
478 #ifdef CONFIG_HAVE_GUP_FAST
479 static int record_subpages(struct page *page, unsigned long sz,
480 unsigned long addr, unsigned long end,
481 struct page **pages)
483 struct page *start_page;
484 int nr;
486 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
487 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
488 pages[nr] = nth_page(start_page, nr);
490 return nr;
494 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
495 * @page: pointer to page to be grabbed
496 * @refs: the value to (effectively) add to the folio's refcount
497 * @flags: gup flags: these are the FOLL_* flag values.
499 * "grab" names in this file mean, "look at flags to decide whether to use
500 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
502 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
503 * same time. (That's true throughout the get_user_pages*() and
504 * pin_user_pages*() APIs.) Cases:
506 * FOLL_GET: folio's refcount will be incremented by @refs.
508 * FOLL_PIN on large folios: folio's refcount will be incremented by
509 * @refs, and its pincount will be incremented by @refs.
511 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
512 * @refs * GUP_PIN_COUNTING_BIAS.
514 * Return: The folio containing @page (with refcount appropriately
515 * incremented) for success, or NULL upon failure. If neither FOLL_GET
516 * nor FOLL_PIN was set, that's considered failure, and furthermore,
517 * a likely bug in the caller, so a warning is also emitted.
519 * It uses add ref unless zero to elevate the folio refcount and must be called
520 * in fast path only.
522 static struct folio *try_grab_folio_fast(struct page *page, int refs,
523 unsigned int flags)
525 struct folio *folio;
527 /* Raise warn if it is not called in fast GUP */
528 VM_WARN_ON_ONCE(!irqs_disabled());
530 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
531 return NULL;
533 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
534 return NULL;
536 if (flags & FOLL_GET)
537 return try_get_folio(page, refs);
539 /* FOLL_PIN is set */
542 * Don't take a pin on the zero page - it's not going anywhere
543 * and it is used in a *lot* of places.
545 if (is_zero_page(page))
546 return page_folio(page);
548 folio = try_get_folio(page, refs);
549 if (!folio)
550 return NULL;
553 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
554 * right zone, so fail and let the caller fall back to the slow
555 * path.
557 if (unlikely((flags & FOLL_LONGTERM) &&
558 !folio_is_longterm_pinnable(folio))) {
559 if (!put_devmap_managed_folio_refs(folio, refs))
560 folio_put_refs(folio, refs);
561 return NULL;
565 * When pinning a large folio, use an exact count to track it.
567 * However, be sure to *also* increment the normal folio
568 * refcount field at least once, so that the folio really
569 * is pinned. That's why the refcount from the earlier
570 * try_get_folio() is left intact.
572 if (folio_test_large(folio))
573 atomic_add(refs, &folio->_pincount);
574 else
575 folio_ref_add(folio,
576 refs * (GUP_PIN_COUNTING_BIAS - 1));
578 * Adjust the pincount before re-checking the PTE for changes.
579 * This is essentially a smp_mb() and is paired with a memory
580 * barrier in folio_try_share_anon_rmap_*().
582 smp_mb__after_atomic();
584 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
586 return folio;
588 #endif /* CONFIG_HAVE_GUP_FAST */
590 static struct page *no_page_table(struct vm_area_struct *vma,
591 unsigned int flags, unsigned long address)
593 if (!(flags & FOLL_DUMP))
594 return NULL;
597 * When core dumping, we don't want to allocate unnecessary pages or
598 * page tables. Return error instead of NULL to skip handle_mm_fault,
599 * then get_dump_page() will return NULL to leave a hole in the dump.
600 * But we can only make this optimization where a hole would surely
601 * be zero-filled if handle_mm_fault() actually did handle it.
603 if (is_vm_hugetlb_page(vma)) {
604 struct hstate *h = hstate_vma(vma);
606 if (!hugetlbfs_pagecache_present(h, vma, address))
607 return ERR_PTR(-EFAULT);
608 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
609 return ERR_PTR(-EFAULT);
612 return NULL;
615 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
616 static struct page *follow_huge_pud(struct vm_area_struct *vma,
617 unsigned long addr, pud_t *pudp,
618 int flags, struct follow_page_context *ctx)
620 struct mm_struct *mm = vma->vm_mm;
621 struct page *page;
622 pud_t pud = *pudp;
623 unsigned long pfn = pud_pfn(pud);
624 int ret;
626 assert_spin_locked(pud_lockptr(mm, pudp));
628 if ((flags & FOLL_WRITE) && !pud_write(pud))
629 return NULL;
631 if (!pud_present(pud))
632 return NULL;
634 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
636 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
637 pud_devmap(pud)) {
639 * device mapped pages can only be returned if the caller
640 * will manage the page reference count.
642 * At least one of FOLL_GET | FOLL_PIN must be set, so
643 * assert that here:
645 if (!(flags & (FOLL_GET | FOLL_PIN)))
646 return ERR_PTR(-EEXIST);
648 if (flags & FOLL_TOUCH)
649 touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
651 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
652 if (!ctx->pgmap)
653 return ERR_PTR(-EFAULT);
656 page = pfn_to_page(pfn);
658 if (!pud_devmap(pud) && !pud_write(pud) &&
659 gup_must_unshare(vma, flags, page))
660 return ERR_PTR(-EMLINK);
662 ret = try_grab_folio(page_folio(page), 1, flags);
663 if (ret)
664 page = ERR_PTR(ret);
665 else
666 ctx->page_mask = HPAGE_PUD_NR - 1;
668 return page;
671 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
672 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
673 struct vm_area_struct *vma,
674 unsigned int flags)
676 /* If the pmd is writable, we can write to the page. */
677 if (pmd_write(pmd))
678 return true;
680 /* Maybe FOLL_FORCE is set to override it? */
681 if (!(flags & FOLL_FORCE))
682 return false;
684 /* But FOLL_FORCE has no effect on shared mappings */
685 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
686 return false;
688 /* ... or read-only private ones */
689 if (!(vma->vm_flags & VM_MAYWRITE))
690 return false;
692 /* ... or already writable ones that just need to take a write fault */
693 if (vma->vm_flags & VM_WRITE)
694 return false;
697 * See can_change_pte_writable(): we broke COW and could map the page
698 * writable if we have an exclusive anonymous page ...
700 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
701 return false;
703 /* ... and a write-fault isn't required for other reasons. */
704 if (pmd_needs_soft_dirty_wp(vma, pmd))
705 return false;
706 return !userfaultfd_huge_pmd_wp(vma, pmd);
709 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
710 unsigned long addr, pmd_t *pmd,
711 unsigned int flags,
712 struct follow_page_context *ctx)
714 struct mm_struct *mm = vma->vm_mm;
715 pmd_t pmdval = *pmd;
716 struct page *page;
717 int ret;
719 assert_spin_locked(pmd_lockptr(mm, pmd));
721 page = pmd_page(pmdval);
722 if ((flags & FOLL_WRITE) &&
723 !can_follow_write_pmd(pmdval, page, vma, flags))
724 return NULL;
726 /* Avoid dumping huge zero page */
727 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
728 return ERR_PTR(-EFAULT);
730 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
731 return NULL;
733 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
734 return ERR_PTR(-EMLINK);
736 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
737 !PageAnonExclusive(page), page);
739 ret = try_grab_folio(page_folio(page), 1, flags);
740 if (ret)
741 return ERR_PTR(ret);
743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
744 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
745 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
746 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
748 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
749 ctx->page_mask = HPAGE_PMD_NR - 1;
751 return page;
754 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
755 static struct page *follow_huge_pud(struct vm_area_struct *vma,
756 unsigned long addr, pud_t *pudp,
757 int flags, struct follow_page_context *ctx)
759 return NULL;
762 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
763 unsigned long addr, pmd_t *pmd,
764 unsigned int flags,
765 struct follow_page_context *ctx)
767 return NULL;
769 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
771 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
772 pte_t *pte, unsigned int flags)
774 if (flags & FOLL_TOUCH) {
775 pte_t orig_entry = ptep_get(pte);
776 pte_t entry = orig_entry;
778 if (flags & FOLL_WRITE)
779 entry = pte_mkdirty(entry);
780 entry = pte_mkyoung(entry);
782 if (!pte_same(orig_entry, entry)) {
783 set_pte_at(vma->vm_mm, address, pte, entry);
784 update_mmu_cache(vma, address, pte);
788 /* Proper page table entry exists, but no corresponding struct page */
789 return -EEXIST;
792 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
793 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
794 struct vm_area_struct *vma,
795 unsigned int flags)
797 /* If the pte is writable, we can write to the page. */
798 if (pte_write(pte))
799 return true;
801 /* Maybe FOLL_FORCE is set to override it? */
802 if (!(flags & FOLL_FORCE))
803 return false;
805 /* But FOLL_FORCE has no effect on shared mappings */
806 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
807 return false;
809 /* ... or read-only private ones */
810 if (!(vma->vm_flags & VM_MAYWRITE))
811 return false;
813 /* ... or already writable ones that just need to take a write fault */
814 if (vma->vm_flags & VM_WRITE)
815 return false;
818 * See can_change_pte_writable(): we broke COW and could map the page
819 * writable if we have an exclusive anonymous page ...
821 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
822 return false;
824 /* ... and a write-fault isn't required for other reasons. */
825 if (pte_needs_soft_dirty_wp(vma, pte))
826 return false;
827 return !userfaultfd_pte_wp(vma, pte);
830 static struct page *follow_page_pte(struct vm_area_struct *vma,
831 unsigned long address, pmd_t *pmd, unsigned int flags,
832 struct dev_pagemap **pgmap)
834 struct mm_struct *mm = vma->vm_mm;
835 struct folio *folio;
836 struct page *page;
837 spinlock_t *ptl;
838 pte_t *ptep, pte;
839 int ret;
841 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
842 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
843 (FOLL_PIN | FOLL_GET)))
844 return ERR_PTR(-EINVAL);
846 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
847 if (!ptep)
848 return no_page_table(vma, flags, address);
849 pte = ptep_get(ptep);
850 if (!pte_present(pte))
851 goto no_page;
852 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
853 goto no_page;
855 page = vm_normal_page(vma, address, pte);
858 * We only care about anon pages in can_follow_write_pte() and don't
859 * have to worry about pte_devmap() because they are never anon.
861 if ((flags & FOLL_WRITE) &&
862 !can_follow_write_pte(pte, page, vma, flags)) {
863 page = NULL;
864 goto out;
867 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
869 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
870 * case since they are only valid while holding the pgmap
871 * reference.
873 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
874 if (*pgmap)
875 page = pte_page(pte);
876 else
877 goto no_page;
878 } else if (unlikely(!page)) {
879 if (flags & FOLL_DUMP) {
880 /* Avoid special (like zero) pages in core dumps */
881 page = ERR_PTR(-EFAULT);
882 goto out;
885 if (is_zero_pfn(pte_pfn(pte))) {
886 page = pte_page(pte);
887 } else {
888 ret = follow_pfn_pte(vma, address, ptep, flags);
889 page = ERR_PTR(ret);
890 goto out;
893 folio = page_folio(page);
895 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
896 page = ERR_PTR(-EMLINK);
897 goto out;
900 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
901 !PageAnonExclusive(page), page);
903 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
904 ret = try_grab_folio(folio, 1, flags);
905 if (unlikely(ret)) {
906 page = ERR_PTR(ret);
907 goto out;
911 * We need to make the page accessible if and only if we are going
912 * to access its content (the FOLL_PIN case). Please see
913 * Documentation/core-api/pin_user_pages.rst for details.
915 if (flags & FOLL_PIN) {
916 ret = arch_make_folio_accessible(folio);
917 if (ret) {
918 unpin_user_page(page);
919 page = ERR_PTR(ret);
920 goto out;
923 if (flags & FOLL_TOUCH) {
924 if ((flags & FOLL_WRITE) &&
925 !pte_dirty(pte) && !folio_test_dirty(folio))
926 folio_mark_dirty(folio);
928 * pte_mkyoung() would be more correct here, but atomic care
929 * is needed to avoid losing the dirty bit: it is easier to use
930 * folio_mark_accessed().
932 folio_mark_accessed(folio);
934 out:
935 pte_unmap_unlock(ptep, ptl);
936 return page;
937 no_page:
938 pte_unmap_unlock(ptep, ptl);
939 if (!pte_none(pte))
940 return NULL;
941 return no_page_table(vma, flags, address);
944 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
945 unsigned long address, pud_t *pudp,
946 unsigned int flags,
947 struct follow_page_context *ctx)
949 pmd_t *pmd, pmdval;
950 spinlock_t *ptl;
951 struct page *page;
952 struct mm_struct *mm = vma->vm_mm;
954 pmd = pmd_offset(pudp, address);
955 pmdval = pmdp_get_lockless(pmd);
956 if (pmd_none(pmdval))
957 return no_page_table(vma, flags, address);
958 if (!pmd_present(pmdval))
959 return no_page_table(vma, flags, address);
960 if (pmd_devmap(pmdval)) {
961 ptl = pmd_lock(mm, pmd);
962 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
963 spin_unlock(ptl);
964 if (page)
965 return page;
966 return no_page_table(vma, flags, address);
968 if (likely(!pmd_leaf(pmdval)))
969 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
971 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
972 return no_page_table(vma, flags, address);
974 ptl = pmd_lock(mm, pmd);
975 pmdval = *pmd;
976 if (unlikely(!pmd_present(pmdval))) {
977 spin_unlock(ptl);
978 return no_page_table(vma, flags, address);
980 if (unlikely(!pmd_leaf(pmdval))) {
981 spin_unlock(ptl);
982 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
984 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
985 spin_unlock(ptl);
986 split_huge_pmd(vma, pmd, address);
987 /* If pmd was left empty, stuff a page table in there quickly */
988 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
989 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
991 page = follow_huge_pmd(vma, address, pmd, flags, ctx);
992 spin_unlock(ptl);
993 return page;
996 static struct page *follow_pud_mask(struct vm_area_struct *vma,
997 unsigned long address, p4d_t *p4dp,
998 unsigned int flags,
999 struct follow_page_context *ctx)
1001 pud_t *pudp, pud;
1002 spinlock_t *ptl;
1003 struct page *page;
1004 struct mm_struct *mm = vma->vm_mm;
1006 pudp = pud_offset(p4dp, address);
1007 pud = READ_ONCE(*pudp);
1008 if (!pud_present(pud))
1009 return no_page_table(vma, flags, address);
1010 if (pud_leaf(pud)) {
1011 ptl = pud_lock(mm, pudp);
1012 page = follow_huge_pud(vma, address, pudp, flags, ctx);
1013 spin_unlock(ptl);
1014 if (page)
1015 return page;
1016 return no_page_table(vma, flags, address);
1018 if (unlikely(pud_bad(pud)))
1019 return no_page_table(vma, flags, address);
1021 return follow_pmd_mask(vma, address, pudp, flags, ctx);
1024 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1025 unsigned long address, pgd_t *pgdp,
1026 unsigned int flags,
1027 struct follow_page_context *ctx)
1029 p4d_t *p4dp, p4d;
1031 p4dp = p4d_offset(pgdp, address);
1032 p4d = READ_ONCE(*p4dp);
1033 BUILD_BUG_ON(p4d_leaf(p4d));
1035 if (!p4d_present(p4d) || p4d_bad(p4d))
1036 return no_page_table(vma, flags, address);
1038 return follow_pud_mask(vma, address, p4dp, flags, ctx);
1042 * follow_page_mask - look up a page descriptor from a user-virtual address
1043 * @vma: vm_area_struct mapping @address
1044 * @address: virtual address to look up
1045 * @flags: flags modifying lookup behaviour
1046 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1047 * pointer to output page_mask
1049 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1051 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1052 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1054 * When getting an anonymous page and the caller has to trigger unsharing
1055 * of a shared anonymous page first, -EMLINK is returned. The caller should
1056 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1057 * relevant with FOLL_PIN and !FOLL_WRITE.
1059 * On output, the @ctx->page_mask is set according to the size of the page.
1061 * Return: the mapped (struct page *), %NULL if no mapping exists, or
1062 * an error pointer if there is a mapping to something not represented
1063 * by a page descriptor (see also vm_normal_page()).
1065 static struct page *follow_page_mask(struct vm_area_struct *vma,
1066 unsigned long address, unsigned int flags,
1067 struct follow_page_context *ctx)
1069 pgd_t *pgd;
1070 struct mm_struct *mm = vma->vm_mm;
1071 struct page *page;
1073 vma_pgtable_walk_begin(vma);
1075 ctx->page_mask = 0;
1076 pgd = pgd_offset(mm, address);
1078 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1079 page = no_page_table(vma, flags, address);
1080 else
1081 page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1083 vma_pgtable_walk_end(vma);
1085 return page;
1088 static int get_gate_page(struct mm_struct *mm, unsigned long address,
1089 unsigned int gup_flags, struct vm_area_struct **vma,
1090 struct page **page)
1092 pgd_t *pgd;
1093 p4d_t *p4d;
1094 pud_t *pud;
1095 pmd_t *pmd;
1096 pte_t *pte;
1097 pte_t entry;
1098 int ret = -EFAULT;
1100 /* user gate pages are read-only */
1101 if (gup_flags & FOLL_WRITE)
1102 return -EFAULT;
1103 if (address > TASK_SIZE)
1104 pgd = pgd_offset_k(address);
1105 else
1106 pgd = pgd_offset_gate(mm, address);
1107 if (pgd_none(*pgd))
1108 return -EFAULT;
1109 p4d = p4d_offset(pgd, address);
1110 if (p4d_none(*p4d))
1111 return -EFAULT;
1112 pud = pud_offset(p4d, address);
1113 if (pud_none(*pud))
1114 return -EFAULT;
1115 pmd = pmd_offset(pud, address);
1116 if (!pmd_present(*pmd))
1117 return -EFAULT;
1118 pte = pte_offset_map(pmd, address);
1119 if (!pte)
1120 return -EFAULT;
1121 entry = ptep_get(pte);
1122 if (pte_none(entry))
1123 goto unmap;
1124 *vma = get_gate_vma(mm);
1125 if (!page)
1126 goto out;
1127 *page = vm_normal_page(*vma, address, entry);
1128 if (!*page) {
1129 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1130 goto unmap;
1131 *page = pte_page(entry);
1133 ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1134 if (unlikely(ret))
1135 goto unmap;
1136 out:
1137 ret = 0;
1138 unmap:
1139 pte_unmap(pte);
1140 return ret;
1144 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
1145 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
1146 * to 0 and -EBUSY returned.
1148 static int faultin_page(struct vm_area_struct *vma,
1149 unsigned long address, unsigned int flags, bool unshare,
1150 int *locked)
1152 unsigned int fault_flags = 0;
1153 vm_fault_t ret;
1155 if (flags & FOLL_NOFAULT)
1156 return -EFAULT;
1157 if (flags & FOLL_WRITE)
1158 fault_flags |= FAULT_FLAG_WRITE;
1159 if (flags & FOLL_REMOTE)
1160 fault_flags |= FAULT_FLAG_REMOTE;
1161 if (flags & FOLL_UNLOCKABLE) {
1162 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1164 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1165 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1166 * That's because some callers may not be prepared to
1167 * handle early exits caused by non-fatal signals.
1169 if (flags & FOLL_INTERRUPTIBLE)
1170 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1172 if (flags & FOLL_NOWAIT)
1173 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1174 if (flags & FOLL_TRIED) {
1176 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1177 * can co-exist
1179 fault_flags |= FAULT_FLAG_TRIED;
1181 if (unshare) {
1182 fault_flags |= FAULT_FLAG_UNSHARE;
1183 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1184 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1187 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1189 if (ret & VM_FAULT_COMPLETED) {
1191 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1192 * mmap lock in the page fault handler. Sanity check this.
1194 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1195 *locked = 0;
1198 * We should do the same as VM_FAULT_RETRY, but let's not
1199 * return -EBUSY since that's not reflecting the reality of
1200 * what has happened - we've just fully completed a page
1201 * fault, with the mmap lock released. Use -EAGAIN to show
1202 * that we want to take the mmap lock _again_.
1204 return -EAGAIN;
1207 if (ret & VM_FAULT_ERROR) {
1208 int err = vm_fault_to_errno(ret, flags);
1210 if (err)
1211 return err;
1212 BUG();
1215 if (ret & VM_FAULT_RETRY) {
1216 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1217 *locked = 0;
1218 return -EBUSY;
1221 return 0;
1225 * Writing to file-backed mappings which require folio dirty tracking using GUP
1226 * is a fundamentally broken operation, as kernel write access to GUP mappings
1227 * do not adhere to the semantics expected by a file system.
1229 * Consider the following scenario:-
1231 * 1. A folio is written to via GUP which write-faults the memory, notifying
1232 * the file system and dirtying the folio.
1233 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1234 * the PTE being marked read-only.
1235 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1236 * direct mapping.
1237 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1238 * (though it does not have to).
1240 * This results in both data being written to a folio without writenotify, and
1241 * the folio being dirtied unexpectedly (if the caller decides to do so).
1243 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1244 unsigned long gup_flags)
1247 * If we aren't pinning then no problematic write can occur. A long term
1248 * pin is the most egregious case so this is the case we disallow.
1250 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1251 (FOLL_PIN | FOLL_LONGTERM))
1252 return true;
1255 * If the VMA does not require dirty tracking then no problematic write
1256 * can occur either.
1258 return !vma_needs_dirty_tracking(vma);
1261 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1263 vm_flags_t vm_flags = vma->vm_flags;
1264 int write = (gup_flags & FOLL_WRITE);
1265 int foreign = (gup_flags & FOLL_REMOTE);
1266 bool vma_anon = vma_is_anonymous(vma);
1268 if (vm_flags & (VM_IO | VM_PFNMAP))
1269 return -EFAULT;
1271 if ((gup_flags & FOLL_ANON) && !vma_anon)
1272 return -EFAULT;
1274 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1275 return -EOPNOTSUPP;
1277 if (vma_is_secretmem(vma))
1278 return -EFAULT;
1280 if (write) {
1281 if (!vma_anon &&
1282 !writable_file_mapping_allowed(vma, gup_flags))
1283 return -EFAULT;
1285 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1286 if (!(gup_flags & FOLL_FORCE))
1287 return -EFAULT;
1288 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1289 if (is_vm_hugetlb_page(vma))
1290 return -EFAULT;
1292 * We used to let the write,force case do COW in a
1293 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1294 * set a breakpoint in a read-only mapping of an
1295 * executable, without corrupting the file (yet only
1296 * when that file had been opened for writing!).
1297 * Anon pages in shared mappings are surprising: now
1298 * just reject it.
1300 if (!is_cow_mapping(vm_flags))
1301 return -EFAULT;
1303 } else if (!(vm_flags & VM_READ)) {
1304 if (!(gup_flags & FOLL_FORCE))
1305 return -EFAULT;
1307 * Is there actually any vma we can reach here which does not
1308 * have VM_MAYREAD set?
1310 if (!(vm_flags & VM_MAYREAD))
1311 return -EFAULT;
1314 * gups are always data accesses, not instruction
1315 * fetches, so execute=false here
1317 if (!arch_vma_access_permitted(vma, write, false, foreign))
1318 return -EFAULT;
1319 return 0;
1323 * This is "vma_lookup()", but with a warning if we would have
1324 * historically expanded the stack in the GUP code.
1326 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1327 unsigned long addr)
1329 #ifdef CONFIG_STACK_GROWSUP
1330 return vma_lookup(mm, addr);
1331 #else
1332 static volatile unsigned long next_warn;
1333 struct vm_area_struct *vma;
1334 unsigned long now, next;
1336 vma = find_vma(mm, addr);
1337 if (!vma || (addr >= vma->vm_start))
1338 return vma;
1340 /* Only warn for half-way relevant accesses */
1341 if (!(vma->vm_flags & VM_GROWSDOWN))
1342 return NULL;
1343 if (vma->vm_start - addr > 65536)
1344 return NULL;
1346 /* Let's not warn more than once an hour.. */
1347 now = jiffies; next = next_warn;
1348 if (next && time_before(now, next))
1349 return NULL;
1350 next_warn = now + 60*60*HZ;
1352 /* Let people know things may have changed. */
1353 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1354 current->comm, task_pid_nr(current),
1355 vma->vm_start, vma->vm_end, addr);
1356 dump_stack();
1357 return NULL;
1358 #endif
1362 * __get_user_pages() - pin user pages in memory
1363 * @mm: mm_struct of target mm
1364 * @start: starting user address
1365 * @nr_pages: number of pages from start to pin
1366 * @gup_flags: flags modifying pin behaviour
1367 * @pages: array that receives pointers to the pages pinned.
1368 * Should be at least nr_pages long. Or NULL, if caller
1369 * only intends to ensure the pages are faulted in.
1370 * @locked: whether we're still with the mmap_lock held
1372 * Returns either number of pages pinned (which may be less than the
1373 * number requested), or an error. Details about the return value:
1375 * -- If nr_pages is 0, returns 0.
1376 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1377 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1378 * pages pinned. Again, this may be less than nr_pages.
1379 * -- 0 return value is possible when the fault would need to be retried.
1381 * The caller is responsible for releasing returned @pages, via put_page().
1383 * Must be called with mmap_lock held. It may be released. See below.
1385 * __get_user_pages walks a process's page tables and takes a reference to
1386 * each struct page that each user address corresponds to at a given
1387 * instant. That is, it takes the page that would be accessed if a user
1388 * thread accesses the given user virtual address at that instant.
1390 * This does not guarantee that the page exists in the user mappings when
1391 * __get_user_pages returns, and there may even be a completely different
1392 * page there in some cases (eg. if mmapped pagecache has been invalidated
1393 * and subsequently re-faulted). However it does guarantee that the page
1394 * won't be freed completely. And mostly callers simply care that the page
1395 * contains data that was valid *at some point in time*. Typically, an IO
1396 * or similar operation cannot guarantee anything stronger anyway because
1397 * locks can't be held over the syscall boundary.
1399 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1400 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1401 * appropriate) must be called after the page is finished with, and
1402 * before put_page is called.
1404 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1405 * be released. If this happens *@locked will be set to 0 on return.
1407 * A caller using such a combination of @gup_flags must therefore hold the
1408 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1409 * it must be held for either reading or writing and will not be released.
1411 * In most cases, get_user_pages or get_user_pages_fast should be used
1412 * instead of __get_user_pages. __get_user_pages should be used only if
1413 * you need some special @gup_flags.
1415 static long __get_user_pages(struct mm_struct *mm,
1416 unsigned long start, unsigned long nr_pages,
1417 unsigned int gup_flags, struct page **pages,
1418 int *locked)
1420 long ret = 0, i = 0;
1421 struct vm_area_struct *vma = NULL;
1422 struct follow_page_context ctx = { NULL };
1424 if (!nr_pages)
1425 return 0;
1427 start = untagged_addr_remote(mm, start);
1429 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1431 do {
1432 struct page *page;
1433 unsigned int page_increm;
1435 /* first iteration or cross vma bound */
1436 if (!vma || start >= vma->vm_end) {
1438 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1439 * lookups+error reporting differently.
1441 if (gup_flags & FOLL_MADV_POPULATE) {
1442 vma = vma_lookup(mm, start);
1443 if (!vma) {
1444 ret = -ENOMEM;
1445 goto out;
1447 if (check_vma_flags(vma, gup_flags)) {
1448 ret = -EINVAL;
1449 goto out;
1451 goto retry;
1453 vma = gup_vma_lookup(mm, start);
1454 if (!vma && in_gate_area(mm, start)) {
1455 ret = get_gate_page(mm, start & PAGE_MASK,
1456 gup_flags, &vma,
1457 pages ? &page : NULL);
1458 if (ret)
1459 goto out;
1460 ctx.page_mask = 0;
1461 goto next_page;
1464 if (!vma) {
1465 ret = -EFAULT;
1466 goto out;
1468 ret = check_vma_flags(vma, gup_flags);
1469 if (ret)
1470 goto out;
1472 retry:
1474 * If we have a pending SIGKILL, don't keep faulting pages and
1475 * potentially allocating memory.
1477 if (fatal_signal_pending(current)) {
1478 ret = -EINTR;
1479 goto out;
1481 cond_resched();
1483 page = follow_page_mask(vma, start, gup_flags, &ctx);
1484 if (!page || PTR_ERR(page) == -EMLINK) {
1485 ret = faultin_page(vma, start, gup_flags,
1486 PTR_ERR(page) == -EMLINK, locked);
1487 switch (ret) {
1488 case 0:
1489 goto retry;
1490 case -EBUSY:
1491 case -EAGAIN:
1492 ret = 0;
1493 fallthrough;
1494 case -EFAULT:
1495 case -ENOMEM:
1496 case -EHWPOISON:
1497 goto out;
1499 BUG();
1500 } else if (PTR_ERR(page) == -EEXIST) {
1502 * Proper page table entry exists, but no corresponding
1503 * struct page. If the caller expects **pages to be
1504 * filled in, bail out now, because that can't be done
1505 * for this page.
1507 if (pages) {
1508 ret = PTR_ERR(page);
1509 goto out;
1511 } else if (IS_ERR(page)) {
1512 ret = PTR_ERR(page);
1513 goto out;
1515 next_page:
1516 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1517 if (page_increm > nr_pages)
1518 page_increm = nr_pages;
1520 if (pages) {
1521 struct page *subpage;
1522 unsigned int j;
1525 * This must be a large folio (and doesn't need to
1526 * be the whole folio; it can be part of it), do
1527 * the refcount work for all the subpages too.
1529 * NOTE: here the page may not be the head page
1530 * e.g. when start addr is not thp-size aligned.
1531 * try_grab_folio() should have taken care of tail
1532 * pages.
1534 if (page_increm > 1) {
1535 struct folio *folio = page_folio(page);
1538 * Since we already hold refcount on the
1539 * large folio, this should never fail.
1541 if (try_grab_folio(folio, page_increm - 1,
1542 gup_flags)) {
1544 * Release the 1st page ref if the
1545 * folio is problematic, fail hard.
1547 gup_put_folio(folio, 1, gup_flags);
1548 ret = -EFAULT;
1549 goto out;
1553 for (j = 0; j < page_increm; j++) {
1554 subpage = nth_page(page, j);
1555 pages[i + j] = subpage;
1556 flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1557 flush_dcache_page(subpage);
1561 i += page_increm;
1562 start += page_increm * PAGE_SIZE;
1563 nr_pages -= page_increm;
1564 } while (nr_pages);
1565 out:
1566 if (ctx.pgmap)
1567 put_dev_pagemap(ctx.pgmap);
1568 return i ? i : ret;
1571 static bool vma_permits_fault(struct vm_area_struct *vma,
1572 unsigned int fault_flags)
1574 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1575 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1576 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1578 if (!(vm_flags & vma->vm_flags))
1579 return false;
1582 * The architecture might have a hardware protection
1583 * mechanism other than read/write that can deny access.
1585 * gup always represents data access, not instruction
1586 * fetches, so execute=false here:
1588 if (!arch_vma_access_permitted(vma, write, false, foreign))
1589 return false;
1591 return true;
1595 * fixup_user_fault() - manually resolve a user page fault
1596 * @mm: mm_struct of target mm
1597 * @address: user address
1598 * @fault_flags:flags to pass down to handle_mm_fault()
1599 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1600 * does not allow retry. If NULL, the caller must guarantee
1601 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1603 * This is meant to be called in the specific scenario where for locking reasons
1604 * we try to access user memory in atomic context (within a pagefault_disable()
1605 * section), this returns -EFAULT, and we want to resolve the user fault before
1606 * trying again.
1608 * Typically this is meant to be used by the futex code.
1610 * The main difference with get_user_pages() is that this function will
1611 * unconditionally call handle_mm_fault() which will in turn perform all the
1612 * necessary SW fixup of the dirty and young bits in the PTE, while
1613 * get_user_pages() only guarantees to update these in the struct page.
1615 * This is important for some architectures where those bits also gate the
1616 * access permission to the page because they are maintained in software. On
1617 * such architectures, gup() will not be enough to make a subsequent access
1618 * succeed.
1620 * This function will not return with an unlocked mmap_lock. So it has not the
1621 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1623 int fixup_user_fault(struct mm_struct *mm,
1624 unsigned long address, unsigned int fault_flags,
1625 bool *unlocked)
1627 struct vm_area_struct *vma;
1628 vm_fault_t ret;
1630 address = untagged_addr_remote(mm, address);
1632 if (unlocked)
1633 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1635 retry:
1636 vma = gup_vma_lookup(mm, address);
1637 if (!vma)
1638 return -EFAULT;
1640 if (!vma_permits_fault(vma, fault_flags))
1641 return -EFAULT;
1643 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1644 fatal_signal_pending(current))
1645 return -EINTR;
1647 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1649 if (ret & VM_FAULT_COMPLETED) {
1651 * NOTE: it's a pity that we need to retake the lock here
1652 * to pair with the unlock() in the callers. Ideally we
1653 * could tell the callers so they do not need to unlock.
1655 mmap_read_lock(mm);
1656 *unlocked = true;
1657 return 0;
1660 if (ret & VM_FAULT_ERROR) {
1661 int err = vm_fault_to_errno(ret, 0);
1663 if (err)
1664 return err;
1665 BUG();
1668 if (ret & VM_FAULT_RETRY) {
1669 mmap_read_lock(mm);
1670 *unlocked = true;
1671 fault_flags |= FAULT_FLAG_TRIED;
1672 goto retry;
1675 return 0;
1677 EXPORT_SYMBOL_GPL(fixup_user_fault);
1680 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1681 * specified, it'll also respond to generic signals. The caller of GUP
1682 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1684 static bool gup_signal_pending(unsigned int flags)
1686 if (fatal_signal_pending(current))
1687 return true;
1689 if (!(flags & FOLL_INTERRUPTIBLE))
1690 return false;
1692 return signal_pending(current);
1696 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1697 * the caller. This function may drop the mmap_lock. If it does so, then it will
1698 * set (*locked = 0).
1700 * (*locked == 0) means that the caller expects this function to acquire and
1701 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1702 * the function returns, even though it may have changed temporarily during
1703 * function execution.
1705 * Please note that this function, unlike __get_user_pages(), will not return 0
1706 * for nr_pages > 0, unless FOLL_NOWAIT is used.
1708 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1709 unsigned long start,
1710 unsigned long nr_pages,
1711 struct page **pages,
1712 int *locked,
1713 unsigned int flags)
1715 long ret, pages_done;
1716 bool must_unlock = false;
1718 if (!nr_pages)
1719 return 0;
1722 * The internal caller expects GUP to manage the lock internally and the
1723 * lock must be released when this returns.
1725 if (!*locked) {
1726 if (mmap_read_lock_killable(mm))
1727 return -EAGAIN;
1728 must_unlock = true;
1729 *locked = 1;
1731 else
1732 mmap_assert_locked(mm);
1734 if (flags & FOLL_PIN)
1735 mm_set_has_pinned_flag(&mm->flags);
1738 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1739 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1740 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1741 * for FOLL_GET, not for the newer FOLL_PIN.
1743 * FOLL_PIN always expects pages to be non-null, but no need to assert
1744 * that here, as any failures will be obvious enough.
1746 if (pages && !(flags & FOLL_PIN))
1747 flags |= FOLL_GET;
1749 pages_done = 0;
1750 for (;;) {
1751 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1752 locked);
1753 if (!(flags & FOLL_UNLOCKABLE)) {
1754 /* VM_FAULT_RETRY couldn't trigger, bypass */
1755 pages_done = ret;
1756 break;
1759 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1760 if (!*locked) {
1761 BUG_ON(ret < 0);
1762 BUG_ON(ret >= nr_pages);
1765 if (ret > 0) {
1766 nr_pages -= ret;
1767 pages_done += ret;
1768 if (!nr_pages)
1769 break;
1771 if (*locked) {
1773 * VM_FAULT_RETRY didn't trigger or it was a
1774 * FOLL_NOWAIT.
1776 if (!pages_done)
1777 pages_done = ret;
1778 break;
1781 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1782 * For the prefault case (!pages) we only update counts.
1784 if (likely(pages))
1785 pages += ret;
1786 start += ret << PAGE_SHIFT;
1788 /* The lock was temporarily dropped, so we must unlock later */
1789 must_unlock = true;
1791 retry:
1793 * Repeat on the address that fired VM_FAULT_RETRY
1794 * with both FAULT_FLAG_ALLOW_RETRY and
1795 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1796 * by fatal signals of even common signals, depending on
1797 * the caller's request. So we need to check it before we
1798 * start trying again otherwise it can loop forever.
1800 if (gup_signal_pending(flags)) {
1801 if (!pages_done)
1802 pages_done = -EINTR;
1803 break;
1806 ret = mmap_read_lock_killable(mm);
1807 if (ret) {
1808 BUG_ON(ret > 0);
1809 if (!pages_done)
1810 pages_done = ret;
1811 break;
1814 *locked = 1;
1815 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1816 pages, locked);
1817 if (!*locked) {
1818 /* Continue to retry until we succeeded */
1819 BUG_ON(ret != 0);
1820 goto retry;
1822 if (ret != 1) {
1823 BUG_ON(ret > 1);
1824 if (!pages_done)
1825 pages_done = ret;
1826 break;
1828 nr_pages--;
1829 pages_done++;
1830 if (!nr_pages)
1831 break;
1832 if (likely(pages))
1833 pages++;
1834 start += PAGE_SIZE;
1836 if (must_unlock && *locked) {
1838 * We either temporarily dropped the lock, or the caller
1839 * requested that we both acquire and drop the lock. Either way,
1840 * we must now unlock, and notify the caller of that state.
1842 mmap_read_unlock(mm);
1843 *locked = 0;
1847 * Failing to pin anything implies something has gone wrong (except when
1848 * FOLL_NOWAIT is specified).
1850 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1851 return -EFAULT;
1853 return pages_done;
1857 * populate_vma_page_range() - populate a range of pages in the vma.
1858 * @vma: target vma
1859 * @start: start address
1860 * @end: end address
1861 * @locked: whether the mmap_lock is still held
1863 * This takes care of mlocking the pages too if VM_LOCKED is set.
1865 * Return either number of pages pinned in the vma, or a negative error
1866 * code on error.
1868 * vma->vm_mm->mmap_lock must be held.
1870 * If @locked is NULL, it may be held for read or write and will
1871 * be unperturbed.
1873 * If @locked is non-NULL, it must held for read only and may be
1874 * released. If it's released, *@locked will be set to 0.
1876 long populate_vma_page_range(struct vm_area_struct *vma,
1877 unsigned long start, unsigned long end, int *locked)
1879 struct mm_struct *mm = vma->vm_mm;
1880 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1881 int local_locked = 1;
1882 int gup_flags;
1883 long ret;
1885 VM_BUG_ON(!PAGE_ALIGNED(start));
1886 VM_BUG_ON(!PAGE_ALIGNED(end));
1887 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1888 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1889 mmap_assert_locked(mm);
1892 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1893 * faultin_page() to break COW, so it has no work to do here.
1895 if (vma->vm_flags & VM_LOCKONFAULT)
1896 return nr_pages;
1898 /* ... similarly, we've never faulted in PROT_NONE pages */
1899 if (!vma_is_accessible(vma))
1900 return -EFAULT;
1902 gup_flags = FOLL_TOUCH;
1904 * We want to touch writable mappings with a write fault in order
1905 * to break COW, except for shared mappings because these don't COW
1906 * and we would not want to dirty them for nothing.
1908 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1909 * readable (ie write-only or executable).
1911 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1912 gup_flags |= FOLL_WRITE;
1913 else
1914 gup_flags |= FOLL_FORCE;
1916 if (locked)
1917 gup_flags |= FOLL_UNLOCKABLE;
1920 * We made sure addr is within a VMA, so the following will
1921 * not result in a stack expansion that recurses back here.
1923 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1924 NULL, locked ? locked : &local_locked);
1925 lru_add_drain();
1926 return ret;
1930 * faultin_page_range() - populate (prefault) page tables inside the
1931 * given range readable/writable
1933 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1935 * @mm: the mm to populate page tables in
1936 * @start: start address
1937 * @end: end address
1938 * @write: whether to prefault readable or writable
1939 * @locked: whether the mmap_lock is still held
1941 * Returns either number of processed pages in the MM, or a negative error
1942 * code on error (see __get_user_pages()). Note that this function reports
1943 * errors related to VMAs, such as incompatible mappings, as expected by
1944 * MADV_POPULATE_(READ|WRITE).
1946 * The range must be page-aligned.
1948 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1950 long faultin_page_range(struct mm_struct *mm, unsigned long start,
1951 unsigned long end, bool write, int *locked)
1953 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1954 int gup_flags;
1955 long ret;
1957 VM_BUG_ON(!PAGE_ALIGNED(start));
1958 VM_BUG_ON(!PAGE_ALIGNED(end));
1959 mmap_assert_locked(mm);
1962 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1963 * the page dirty with FOLL_WRITE -- which doesn't make a
1964 * difference with !FOLL_FORCE, because the page is writable
1965 * in the page table.
1966 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1967 * a poisoned page.
1968 * !FOLL_FORCE: Require proper access permissions.
1970 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1971 FOLL_MADV_POPULATE;
1972 if (write)
1973 gup_flags |= FOLL_WRITE;
1975 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1976 gup_flags);
1977 lru_add_drain();
1978 return ret;
1982 * __mm_populate - populate and/or mlock pages within a range of address space.
1984 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1985 * flags. VMAs must be already marked with the desired vm_flags, and
1986 * mmap_lock must not be held.
1988 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1990 struct mm_struct *mm = current->mm;
1991 unsigned long end, nstart, nend;
1992 struct vm_area_struct *vma = NULL;
1993 int locked = 0;
1994 long ret = 0;
1996 end = start + len;
1998 for (nstart = start; nstart < end; nstart = nend) {
2000 * We want to fault in pages for [nstart; end) address range.
2001 * Find first corresponding VMA.
2003 if (!locked) {
2004 locked = 1;
2005 mmap_read_lock(mm);
2006 vma = find_vma_intersection(mm, nstart, end);
2007 } else if (nstart >= vma->vm_end)
2008 vma = find_vma_intersection(mm, vma->vm_end, end);
2010 if (!vma)
2011 break;
2013 * Set [nstart; nend) to intersection of desired address
2014 * range with the first VMA. Also, skip undesirable VMA types.
2016 nend = min(end, vma->vm_end);
2017 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2018 continue;
2019 if (nstart < vma->vm_start)
2020 nstart = vma->vm_start;
2022 * Now fault in a range of pages. populate_vma_page_range()
2023 * double checks the vma flags, so that it won't mlock pages
2024 * if the vma was already munlocked.
2026 ret = populate_vma_page_range(vma, nstart, nend, &locked);
2027 if (ret < 0) {
2028 if (ignore_errors) {
2029 ret = 0;
2030 continue; /* continue at next VMA */
2032 break;
2034 nend = nstart + ret * PAGE_SIZE;
2035 ret = 0;
2037 if (locked)
2038 mmap_read_unlock(mm);
2039 return ret; /* 0 or negative error code */
2041 #else /* CONFIG_MMU */
2042 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2043 unsigned long nr_pages, struct page **pages,
2044 int *locked, unsigned int foll_flags)
2046 struct vm_area_struct *vma;
2047 bool must_unlock = false;
2048 unsigned long vm_flags;
2049 long i;
2051 if (!nr_pages)
2052 return 0;
2055 * The internal caller expects GUP to manage the lock internally and the
2056 * lock must be released when this returns.
2058 if (!*locked) {
2059 if (mmap_read_lock_killable(mm))
2060 return -EAGAIN;
2061 must_unlock = true;
2062 *locked = 1;
2065 /* calculate required read or write permissions.
2066 * If FOLL_FORCE is set, we only require the "MAY" flags.
2068 vm_flags = (foll_flags & FOLL_WRITE) ?
2069 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2070 vm_flags &= (foll_flags & FOLL_FORCE) ?
2071 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2073 for (i = 0; i < nr_pages; i++) {
2074 vma = find_vma(mm, start);
2075 if (!vma)
2076 break;
2078 /* protect what we can, including chardevs */
2079 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2080 !(vm_flags & vma->vm_flags))
2081 break;
2083 if (pages) {
2084 pages[i] = virt_to_page((void *)start);
2085 if (pages[i])
2086 get_page(pages[i]);
2089 start = (start + PAGE_SIZE) & PAGE_MASK;
2092 if (must_unlock && *locked) {
2093 mmap_read_unlock(mm);
2094 *locked = 0;
2097 return i ? : -EFAULT;
2099 #endif /* !CONFIG_MMU */
2102 * fault_in_writeable - fault in userspace address range for writing
2103 * @uaddr: start of address range
2104 * @size: size of address range
2106 * Returns the number of bytes not faulted in (like copy_to_user() and
2107 * copy_from_user()).
2109 size_t fault_in_writeable(char __user *uaddr, size_t size)
2111 char __user *start = uaddr, *end;
2113 if (unlikely(size == 0))
2114 return 0;
2115 if (!user_write_access_begin(uaddr, size))
2116 return size;
2117 if (!PAGE_ALIGNED(uaddr)) {
2118 unsafe_put_user(0, uaddr, out);
2119 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
2121 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
2122 if (unlikely(end < start))
2123 end = NULL;
2124 while (uaddr != end) {
2125 unsafe_put_user(0, uaddr, out);
2126 uaddr += PAGE_SIZE;
2129 out:
2130 user_write_access_end();
2131 if (size > uaddr - start)
2132 return size - (uaddr - start);
2133 return 0;
2135 EXPORT_SYMBOL(fault_in_writeable);
2138 * fault_in_subpage_writeable - fault in an address range for writing
2139 * @uaddr: start of address range
2140 * @size: size of address range
2142 * Fault in a user address range for writing while checking for permissions at
2143 * sub-page granularity (e.g. arm64 MTE). This function should be used when
2144 * the caller cannot guarantee forward progress of a copy_to_user() loop.
2146 * Returns the number of bytes not faulted in (like copy_to_user() and
2147 * copy_from_user()).
2149 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2151 size_t faulted_in;
2154 * Attempt faulting in at page granularity first for page table
2155 * permission checking. The arch-specific probe_subpage_writeable()
2156 * functions may not check for this.
2158 faulted_in = size - fault_in_writeable(uaddr, size);
2159 if (faulted_in)
2160 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2162 return size - faulted_in;
2164 EXPORT_SYMBOL(fault_in_subpage_writeable);
2167 * fault_in_safe_writeable - fault in an address range for writing
2168 * @uaddr: start of address range
2169 * @size: length of address range
2171 * Faults in an address range for writing. This is primarily useful when we
2172 * already know that some or all of the pages in the address range aren't in
2173 * memory.
2175 * Unlike fault_in_writeable(), this function is non-destructive.
2177 * Note that we don't pin or otherwise hold the pages referenced that we fault
2178 * in. There's no guarantee that they'll stay in memory for any duration of
2179 * time.
2181 * Returns the number of bytes not faulted in, like copy_to_user() and
2182 * copy_from_user().
2184 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2186 unsigned long start = (unsigned long)uaddr, end;
2187 struct mm_struct *mm = current->mm;
2188 bool unlocked = false;
2190 if (unlikely(size == 0))
2191 return 0;
2192 end = PAGE_ALIGN(start + size);
2193 if (end < start)
2194 end = 0;
2196 mmap_read_lock(mm);
2197 do {
2198 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
2199 break;
2200 start = (start + PAGE_SIZE) & PAGE_MASK;
2201 } while (start != end);
2202 mmap_read_unlock(mm);
2204 if (size > (unsigned long)uaddr - start)
2205 return size - ((unsigned long)uaddr - start);
2206 return 0;
2208 EXPORT_SYMBOL(fault_in_safe_writeable);
2211 * fault_in_readable - fault in userspace address range for reading
2212 * @uaddr: start of user address range
2213 * @size: size of user address range
2215 * Returns the number of bytes not faulted in (like copy_to_user() and
2216 * copy_from_user()).
2218 size_t fault_in_readable(const char __user *uaddr, size_t size)
2220 const char __user *start = uaddr, *end;
2221 volatile char c;
2223 if (unlikely(size == 0))
2224 return 0;
2225 if (!user_read_access_begin(uaddr, size))
2226 return size;
2227 if (!PAGE_ALIGNED(uaddr)) {
2228 unsafe_get_user(c, uaddr, out);
2229 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2231 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2232 if (unlikely(end < start))
2233 end = NULL;
2234 while (uaddr != end) {
2235 unsafe_get_user(c, uaddr, out);
2236 uaddr += PAGE_SIZE;
2239 out:
2240 user_read_access_end();
2241 (void)c;
2242 if (size > uaddr - start)
2243 return size - (uaddr - start);
2244 return 0;
2246 EXPORT_SYMBOL(fault_in_readable);
2249 * get_dump_page() - pin user page in memory while writing it to core dump
2250 * @addr: user address
2252 * Returns struct page pointer of user page pinned for dump,
2253 * to be freed afterwards by put_page().
2255 * Returns NULL on any kind of failure - a hole must then be inserted into
2256 * the corefile, to preserve alignment with its headers; and also returns
2257 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2258 * allowing a hole to be left in the corefile to save disk space.
2260 * Called without mmap_lock (takes and releases the mmap_lock by itself).
2262 #ifdef CONFIG_ELF_CORE
2263 struct page *get_dump_page(unsigned long addr)
2265 struct page *page;
2266 int locked = 0;
2267 int ret;
2269 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2270 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2271 return (ret == 1) ? page : NULL;
2273 #endif /* CONFIG_ELF_CORE */
2275 #ifdef CONFIG_MIGRATION
2278 * An array of either pages or folios ("pofs"). Although it may seem tempting to
2279 * avoid this complication, by simply interpreting a list of folios as a list of
2280 * pages, that approach won't work in the longer term, because eventually the
2281 * layouts of struct page and struct folio will become completely different.
2282 * Furthermore, this pof approach avoids excessive page_folio() calls.
2284 struct pages_or_folios {
2285 union {
2286 struct page **pages;
2287 struct folio **folios;
2288 void **entries;
2290 bool has_folios;
2291 long nr_entries;
2294 static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i)
2296 if (pofs->has_folios)
2297 return pofs->folios[i];
2298 return page_folio(pofs->pages[i]);
2301 static void pofs_clear_entry(struct pages_or_folios *pofs, long i)
2303 pofs->entries[i] = NULL;
2306 static void pofs_unpin(struct pages_or_folios *pofs)
2308 if (pofs->has_folios)
2309 unpin_folios(pofs->folios, pofs->nr_entries);
2310 else
2311 unpin_user_pages(pofs->pages, pofs->nr_entries);
2315 * Returns the number of collected folios. Return value is always >= 0.
2317 static unsigned long collect_longterm_unpinnable_folios(
2318 struct list_head *movable_folio_list,
2319 struct pages_or_folios *pofs)
2321 unsigned long i, collected = 0;
2322 struct folio *prev_folio = NULL;
2323 bool drain_allow = true;
2325 for (i = 0; i < pofs->nr_entries; i++) {
2326 struct folio *folio = pofs_get_folio(pofs, i);
2328 if (folio == prev_folio)
2329 continue;
2330 prev_folio = folio;
2332 if (folio_is_longterm_pinnable(folio))
2333 continue;
2335 collected++;
2337 if (folio_is_device_coherent(folio))
2338 continue;
2340 if (folio_test_hugetlb(folio)) {
2341 isolate_hugetlb(folio, movable_folio_list);
2342 continue;
2345 if (!folio_test_lru(folio) && drain_allow) {
2346 lru_add_drain_all();
2347 drain_allow = false;
2350 if (!folio_isolate_lru(folio))
2351 continue;
2353 list_add_tail(&folio->lru, movable_folio_list);
2354 node_stat_mod_folio(folio,
2355 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2356 folio_nr_pages(folio));
2359 return collected;
2363 * Unpins all folios and migrates device coherent folios and movable_folio_list.
2364 * Returns -EAGAIN if all folios were successfully migrated or -errno for
2365 * failure (or partial success).
2367 static int
2368 migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list,
2369 struct pages_or_folios *pofs)
2371 int ret;
2372 unsigned long i;
2374 for (i = 0; i < pofs->nr_entries; i++) {
2375 struct folio *folio = pofs_get_folio(pofs, i);
2377 if (folio_is_device_coherent(folio)) {
2379 * Migration will fail if the folio is pinned, so
2380 * convert the pin on the source folio to a normal
2381 * reference.
2383 pofs_clear_entry(pofs, i);
2384 folio_get(folio);
2385 gup_put_folio(folio, 1, FOLL_PIN);
2387 if (migrate_device_coherent_folio(folio)) {
2388 ret = -EBUSY;
2389 goto err;
2392 continue;
2396 * We can't migrate folios with unexpected references, so drop
2397 * the reference obtained by __get_user_pages_locked().
2398 * Migrating folios have been added to movable_folio_list after
2399 * calling folio_isolate_lru() which takes a reference so the
2400 * folio won't be freed if it's migrating.
2402 unpin_folio(folio);
2403 pofs_clear_entry(pofs, i);
2406 if (!list_empty(movable_folio_list)) {
2407 struct migration_target_control mtc = {
2408 .nid = NUMA_NO_NODE,
2409 .gfp_mask = GFP_USER | __GFP_NOWARN,
2410 .reason = MR_LONGTERM_PIN,
2413 if (migrate_pages(movable_folio_list, alloc_migration_target,
2414 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2415 MR_LONGTERM_PIN, NULL)) {
2416 ret = -ENOMEM;
2417 goto err;
2421 putback_movable_pages(movable_folio_list);
2423 return -EAGAIN;
2425 err:
2426 pofs_unpin(pofs);
2427 putback_movable_pages(movable_folio_list);
2429 return ret;
2432 static long
2433 check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs)
2435 LIST_HEAD(movable_folio_list);
2436 unsigned long collected;
2438 collected = collect_longterm_unpinnable_folios(&movable_folio_list,
2439 pofs);
2440 if (!collected)
2441 return 0;
2443 return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs);
2447 * Check whether all folios are *allowed* to be pinned indefinitely (long term).
2448 * Rather confusingly, all folios in the range are required to be pinned via
2449 * FOLL_PIN, before calling this routine.
2451 * Return values:
2453 * 0: if everything is OK and all folios in the range are allowed to be pinned,
2454 * then this routine leaves all folios pinned and returns zero for success.
2456 * -EAGAIN: if any folios in the range are not allowed to be pinned, then this
2457 * routine will migrate those folios away, unpin all the folios in the range. If
2458 * migration of the entire set of folios succeeds, then -EAGAIN is returned. The
2459 * caller should re-pin the entire range with FOLL_PIN and then call this
2460 * routine again.
2462 * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this
2463 * indicates a migration failure. The caller should give up, and propagate the
2464 * error back up the call stack. The caller does not need to unpin any folios in
2465 * that case, because this routine will do the unpinning.
2467 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2468 struct folio **folios)
2470 struct pages_or_folios pofs = {
2471 .folios = folios,
2472 .has_folios = true,
2473 .nr_entries = nr_folios,
2476 return check_and_migrate_movable_pages_or_folios(&pofs);
2480 * Return values and behavior are the same as those for
2481 * check_and_migrate_movable_folios().
2483 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2484 struct page **pages)
2486 struct pages_or_folios pofs = {
2487 .pages = pages,
2488 .has_folios = false,
2489 .nr_entries = nr_pages,
2492 return check_and_migrate_movable_pages_or_folios(&pofs);
2494 #else
2495 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2496 struct page **pages)
2498 return 0;
2501 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2502 struct folio **folios)
2504 return 0;
2506 #endif /* CONFIG_MIGRATION */
2509 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2510 * allows us to process the FOLL_LONGTERM flag.
2512 static long __gup_longterm_locked(struct mm_struct *mm,
2513 unsigned long start,
2514 unsigned long nr_pages,
2515 struct page **pages,
2516 int *locked,
2517 unsigned int gup_flags)
2519 unsigned int flags;
2520 long rc, nr_pinned_pages;
2522 if (!(gup_flags & FOLL_LONGTERM))
2523 return __get_user_pages_locked(mm, start, nr_pages, pages,
2524 locked, gup_flags);
2526 flags = memalloc_pin_save();
2527 do {
2528 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2529 pages, locked,
2530 gup_flags);
2531 if (nr_pinned_pages <= 0) {
2532 rc = nr_pinned_pages;
2533 break;
2536 /* FOLL_LONGTERM implies FOLL_PIN */
2537 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2538 } while (rc == -EAGAIN);
2539 memalloc_pin_restore(flags);
2540 return rc ? rc : nr_pinned_pages;
2544 * Check that the given flags are valid for the exported gup/pup interface, and
2545 * update them with the required flags that the caller must have set.
2547 static bool is_valid_gup_args(struct page **pages, int *locked,
2548 unsigned int *gup_flags_p, unsigned int to_set)
2550 unsigned int gup_flags = *gup_flags_p;
2553 * These flags not allowed to be specified externally to the gup
2554 * interfaces:
2555 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2556 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
2557 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2559 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2560 return false;
2562 gup_flags |= to_set;
2563 if (locked) {
2564 /* At the external interface locked must be set */
2565 if (WARN_ON_ONCE(*locked != 1))
2566 return false;
2568 gup_flags |= FOLL_UNLOCKABLE;
2571 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2572 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2573 (FOLL_PIN | FOLL_GET)))
2574 return false;
2576 /* LONGTERM can only be specified when pinning */
2577 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2578 return false;
2580 /* Pages input must be given if using GET/PIN */
2581 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2582 return false;
2584 /* We want to allow the pgmap to be hot-unplugged at all times */
2585 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2586 (gup_flags & FOLL_PCI_P2PDMA)))
2587 return false;
2589 *gup_flags_p = gup_flags;
2590 return true;
2593 #ifdef CONFIG_MMU
2595 * get_user_pages_remote() - pin user pages in memory
2596 * @mm: mm_struct of target mm
2597 * @start: starting user address
2598 * @nr_pages: number of pages from start to pin
2599 * @gup_flags: flags modifying lookup behaviour
2600 * @pages: array that receives pointers to the pages pinned.
2601 * Should be at least nr_pages long. Or NULL, if caller
2602 * only intends to ensure the pages are faulted in.
2603 * @locked: pointer to lock flag indicating whether lock is held and
2604 * subsequently whether VM_FAULT_RETRY functionality can be
2605 * utilised. Lock must initially be held.
2607 * Returns either number of pages pinned (which may be less than the
2608 * number requested), or an error. Details about the return value:
2610 * -- If nr_pages is 0, returns 0.
2611 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2612 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2613 * pages pinned. Again, this may be less than nr_pages.
2615 * The caller is responsible for releasing returned @pages, via put_page().
2617 * Must be called with mmap_lock held for read or write.
2619 * get_user_pages_remote walks a process's page tables and takes a reference
2620 * to each struct page that each user address corresponds to at a given
2621 * instant. That is, it takes the page that would be accessed if a user
2622 * thread accesses the given user virtual address at that instant.
2624 * This does not guarantee that the page exists in the user mappings when
2625 * get_user_pages_remote returns, and there may even be a completely different
2626 * page there in some cases (eg. if mmapped pagecache has been invalidated
2627 * and subsequently re-faulted). However it does guarantee that the page
2628 * won't be freed completely. And mostly callers simply care that the page
2629 * contains data that was valid *at some point in time*. Typically, an IO
2630 * or similar operation cannot guarantee anything stronger anyway because
2631 * locks can't be held over the syscall boundary.
2633 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2634 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2635 * be called after the page is finished with, and before put_page is called.
2637 * get_user_pages_remote is typically used for fewer-copy IO operations,
2638 * to get a handle on the memory by some means other than accesses
2639 * via the user virtual addresses. The pages may be submitted for
2640 * DMA to devices or accessed via their kernel linear mapping (via the
2641 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2643 * See also get_user_pages_fast, for performance critical applications.
2645 * get_user_pages_remote should be phased out in favor of
2646 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2647 * should use get_user_pages_remote because it cannot pass
2648 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2650 long get_user_pages_remote(struct mm_struct *mm,
2651 unsigned long start, unsigned long nr_pages,
2652 unsigned int gup_flags, struct page **pages,
2653 int *locked)
2655 int local_locked = 1;
2657 if (!is_valid_gup_args(pages, locked, &gup_flags,
2658 FOLL_TOUCH | FOLL_REMOTE))
2659 return -EINVAL;
2661 return __get_user_pages_locked(mm, start, nr_pages, pages,
2662 locked ? locked : &local_locked,
2663 gup_flags);
2665 EXPORT_SYMBOL(get_user_pages_remote);
2667 #else /* CONFIG_MMU */
2668 long get_user_pages_remote(struct mm_struct *mm,
2669 unsigned long start, unsigned long nr_pages,
2670 unsigned int gup_flags, struct page **pages,
2671 int *locked)
2673 return 0;
2675 #endif /* !CONFIG_MMU */
2678 * get_user_pages() - pin user pages in memory
2679 * @start: starting user address
2680 * @nr_pages: number of pages from start to pin
2681 * @gup_flags: flags modifying lookup behaviour
2682 * @pages: array that receives pointers to the pages pinned.
2683 * Should be at least nr_pages long. Or NULL, if caller
2684 * only intends to ensure the pages are faulted in.
2686 * This is the same as get_user_pages_remote(), just with a less-flexible
2687 * calling convention where we assume that the mm being operated on belongs to
2688 * the current task, and doesn't allow passing of a locked parameter. We also
2689 * obviously don't pass FOLL_REMOTE in here.
2691 long get_user_pages(unsigned long start, unsigned long nr_pages,
2692 unsigned int gup_flags, struct page **pages)
2694 int locked = 1;
2696 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2697 return -EINVAL;
2699 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2700 &locked, gup_flags);
2702 EXPORT_SYMBOL(get_user_pages);
2705 * get_user_pages_unlocked() is suitable to replace the form:
2707 * mmap_read_lock(mm);
2708 * get_user_pages(mm, ..., pages, NULL);
2709 * mmap_read_unlock(mm);
2711 * with:
2713 * get_user_pages_unlocked(mm, ..., pages);
2715 * It is functionally equivalent to get_user_pages_fast so
2716 * get_user_pages_fast should be used instead if specific gup_flags
2717 * (e.g. FOLL_FORCE) are not required.
2719 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2720 struct page **pages, unsigned int gup_flags)
2722 int locked = 0;
2724 if (!is_valid_gup_args(pages, NULL, &gup_flags,
2725 FOLL_TOUCH | FOLL_UNLOCKABLE))
2726 return -EINVAL;
2728 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2729 &locked, gup_flags);
2731 EXPORT_SYMBOL(get_user_pages_unlocked);
2734 * GUP-fast
2736 * get_user_pages_fast attempts to pin user pages by walking the page
2737 * tables directly and avoids taking locks. Thus the walker needs to be
2738 * protected from page table pages being freed from under it, and should
2739 * block any THP splits.
2741 * One way to achieve this is to have the walker disable interrupts, and
2742 * rely on IPIs from the TLB flushing code blocking before the page table
2743 * pages are freed. This is unsuitable for architectures that do not need
2744 * to broadcast an IPI when invalidating TLBs.
2746 * Another way to achieve this is to batch up page table containing pages
2747 * belonging to more than one mm_user, then rcu_sched a callback to free those
2748 * pages. Disabling interrupts will allow the gup_fast() walker to both block
2749 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2750 * (which is a relatively rare event). The code below adopts this strategy.
2752 * Before activating this code, please be aware that the following assumptions
2753 * are currently made:
2755 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2756 * free pages containing page tables or TLB flushing requires IPI broadcast.
2758 * *) ptes can be read atomically by the architecture.
2760 * *) access_ok is sufficient to validate userspace address ranges.
2762 * The last two assumptions can be relaxed by the addition of helper functions.
2764 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2766 #ifdef CONFIG_HAVE_GUP_FAST
2768 * Used in the GUP-fast path to determine whether GUP is permitted to work on
2769 * a specific folio.
2771 * This call assumes the caller has pinned the folio, that the lowest page table
2772 * level still points to this folio, and that interrupts have been disabled.
2774 * GUP-fast must reject all secretmem folios.
2776 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2777 * (see comment describing the writable_file_mapping_allowed() function). We
2778 * therefore try to avoid the most egregious case of a long-term mapping doing
2779 * so.
2781 * This function cannot be as thorough as that one as the VMA is not available
2782 * in the fast path, so instead we whitelist known good cases and if in doubt,
2783 * fall back to the slow path.
2785 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2787 bool reject_file_backed = false;
2788 struct address_space *mapping;
2789 bool check_secretmem = false;
2790 unsigned long mapping_flags;
2793 * If we aren't pinning then no problematic write can occur. A long term
2794 * pin is the most egregious case so this is the one we disallow.
2796 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2797 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2798 reject_file_backed = true;
2800 /* We hold a folio reference, so we can safely access folio fields. */
2802 /* secretmem folios are always order-0 folios. */
2803 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2804 check_secretmem = true;
2806 if (!reject_file_backed && !check_secretmem)
2807 return true;
2809 if (WARN_ON_ONCE(folio_test_slab(folio)))
2810 return false;
2812 /* hugetlb neither requires dirty-tracking nor can be secretmem. */
2813 if (folio_test_hugetlb(folio))
2814 return true;
2817 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2818 * cannot proceed, which means no actions performed under RCU can
2819 * proceed either.
2821 * inodes and thus their mappings are freed under RCU, which means the
2822 * mapping cannot be freed beneath us and thus we can safely dereference
2823 * it.
2825 lockdep_assert_irqs_disabled();
2828 * However, there may be operations which _alter_ the mapping, so ensure
2829 * we read it once and only once.
2831 mapping = READ_ONCE(folio->mapping);
2834 * The mapping may have been truncated, in any case we cannot determine
2835 * if this mapping is safe - fall back to slow path to determine how to
2836 * proceed.
2838 if (!mapping)
2839 return false;
2841 /* Anonymous folios pose no problem. */
2842 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2843 if (mapping_flags)
2844 return mapping_flags & PAGE_MAPPING_ANON;
2847 * At this point, we know the mapping is non-null and points to an
2848 * address_space object.
2850 if (check_secretmem && secretmem_mapping(mapping))
2851 return false;
2852 /* The only remaining allowed file system is shmem. */
2853 return !reject_file_backed || shmem_mapping(mapping);
2856 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2857 unsigned int flags, struct page **pages)
2859 while ((*nr) - nr_start) {
2860 struct folio *folio = page_folio(pages[--(*nr)]);
2862 folio_clear_referenced(folio);
2863 gup_put_folio(folio, 1, flags);
2867 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2869 * GUP-fast relies on pte change detection to avoid concurrent pgtable
2870 * operations.
2872 * To pin the page, GUP-fast needs to do below in order:
2873 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2875 * For the rest of pgtable operations where pgtable updates can be racy
2876 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2877 * is pinned.
2879 * Above will work for all pte-level operations, including THP split.
2881 * For THP collapse, it's a bit more complicated because GUP-fast may be
2882 * walking a pgtable page that is being freed (pte is still valid but pmd
2883 * can be cleared already). To avoid race in such condition, we need to
2884 * also check pmd here to make sure pmd doesn't change (corresponds to
2885 * pmdp_collapse_flush() in the THP collapse code path).
2887 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2888 unsigned long end, unsigned int flags, struct page **pages,
2889 int *nr)
2891 struct dev_pagemap *pgmap = NULL;
2892 int nr_start = *nr, ret = 0;
2893 pte_t *ptep, *ptem;
2895 ptem = ptep = pte_offset_map(&pmd, addr);
2896 if (!ptep)
2897 return 0;
2898 do {
2899 pte_t pte = ptep_get_lockless(ptep);
2900 struct page *page;
2901 struct folio *folio;
2904 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2905 * pte_access_permitted() better should reject these pages
2906 * either way: otherwise, GUP-fast might succeed in
2907 * cases where ordinary GUP would fail due to VMA access
2908 * permissions.
2910 if (pte_protnone(pte))
2911 goto pte_unmap;
2913 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2914 goto pte_unmap;
2916 if (pte_devmap(pte)) {
2917 if (unlikely(flags & FOLL_LONGTERM))
2918 goto pte_unmap;
2920 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2921 if (unlikely(!pgmap)) {
2922 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2923 goto pte_unmap;
2925 } else if (pte_special(pte))
2926 goto pte_unmap;
2928 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2929 page = pte_page(pte);
2931 folio = try_grab_folio_fast(page, 1, flags);
2932 if (!folio)
2933 goto pte_unmap;
2935 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2936 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2937 gup_put_folio(folio, 1, flags);
2938 goto pte_unmap;
2941 if (!gup_fast_folio_allowed(folio, flags)) {
2942 gup_put_folio(folio, 1, flags);
2943 goto pte_unmap;
2946 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2947 gup_put_folio(folio, 1, flags);
2948 goto pte_unmap;
2952 * We need to make the page accessible if and only if we are
2953 * going to access its content (the FOLL_PIN case). Please
2954 * see Documentation/core-api/pin_user_pages.rst for
2955 * details.
2957 if (flags & FOLL_PIN) {
2958 ret = arch_make_folio_accessible(folio);
2959 if (ret) {
2960 gup_put_folio(folio, 1, flags);
2961 goto pte_unmap;
2964 folio_set_referenced(folio);
2965 pages[*nr] = page;
2966 (*nr)++;
2967 } while (ptep++, addr += PAGE_SIZE, addr != end);
2969 ret = 1;
2971 pte_unmap:
2972 if (pgmap)
2973 put_dev_pagemap(pgmap);
2974 pte_unmap(ptem);
2975 return ret;
2977 #else
2980 * If we can't determine whether or not a pte is special, then fail immediately
2981 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2982 * to be special.
2984 * For a futex to be placed on a THP tail page, get_futex_key requires a
2985 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2986 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2988 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2989 unsigned long end, unsigned int flags, struct page **pages,
2990 int *nr)
2992 return 0;
2994 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2996 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2997 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
2998 unsigned long end, unsigned int flags, struct page **pages, int *nr)
3000 int nr_start = *nr;
3001 struct dev_pagemap *pgmap = NULL;
3003 do {
3004 struct folio *folio;
3005 struct page *page = pfn_to_page(pfn);
3007 pgmap = get_dev_pagemap(pfn, pgmap);
3008 if (unlikely(!pgmap)) {
3009 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3010 break;
3013 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
3014 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3015 break;
3018 folio = try_grab_folio_fast(page, 1, flags);
3019 if (!folio) {
3020 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3021 break;
3023 folio_set_referenced(folio);
3024 pages[*nr] = page;
3025 (*nr)++;
3026 pfn++;
3027 } while (addr += PAGE_SIZE, addr != end);
3029 put_dev_pagemap(pgmap);
3030 return addr == end;
3033 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3034 unsigned long end, unsigned int flags, struct page **pages,
3035 int *nr)
3037 unsigned long fault_pfn;
3038 int nr_start = *nr;
3040 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
3041 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3042 return 0;
3044 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3045 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3046 return 0;
3048 return 1;
3051 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3052 unsigned long end, unsigned int flags, struct page **pages,
3053 int *nr)
3055 unsigned long fault_pfn;
3056 int nr_start = *nr;
3058 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
3059 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3060 return 0;
3062 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3063 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3064 return 0;
3066 return 1;
3068 #else
3069 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3070 unsigned long end, unsigned int flags, struct page **pages,
3071 int *nr)
3073 BUILD_BUG();
3074 return 0;
3077 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
3078 unsigned long end, unsigned int flags, struct page **pages,
3079 int *nr)
3081 BUILD_BUG();
3082 return 0;
3084 #endif
3086 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3087 unsigned long end, unsigned int flags, struct page **pages,
3088 int *nr)
3090 struct page *page;
3091 struct folio *folio;
3092 int refs;
3094 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
3095 return 0;
3097 if (pmd_special(orig))
3098 return 0;
3100 if (pmd_devmap(orig)) {
3101 if (unlikely(flags & FOLL_LONGTERM))
3102 return 0;
3103 return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
3104 pages, nr);
3107 page = pmd_page(orig);
3108 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
3110 folio = try_grab_folio_fast(page, refs, flags);
3111 if (!folio)
3112 return 0;
3114 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3115 gup_put_folio(folio, refs, flags);
3116 return 0;
3119 if (!gup_fast_folio_allowed(folio, flags)) {
3120 gup_put_folio(folio, refs, flags);
3121 return 0;
3123 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3124 gup_put_folio(folio, refs, flags);
3125 return 0;
3128 *nr += refs;
3129 folio_set_referenced(folio);
3130 return 1;
3133 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3134 unsigned long end, unsigned int flags, struct page **pages,
3135 int *nr)
3137 struct page *page;
3138 struct folio *folio;
3139 int refs;
3141 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3142 return 0;
3144 if (pud_special(orig))
3145 return 0;
3147 if (pud_devmap(orig)) {
3148 if (unlikely(flags & FOLL_LONGTERM))
3149 return 0;
3150 return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
3151 pages, nr);
3154 page = pud_page(orig);
3155 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3157 folio = try_grab_folio_fast(page, refs, flags);
3158 if (!folio)
3159 return 0;
3161 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3162 gup_put_folio(folio, refs, flags);
3163 return 0;
3166 if (!gup_fast_folio_allowed(folio, flags)) {
3167 gup_put_folio(folio, refs, flags);
3168 return 0;
3171 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3172 gup_put_folio(folio, refs, flags);
3173 return 0;
3176 *nr += refs;
3177 folio_set_referenced(folio);
3178 return 1;
3181 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr,
3182 unsigned long end, unsigned int flags, struct page **pages,
3183 int *nr)
3185 int refs;
3186 struct page *page;
3187 struct folio *folio;
3189 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
3190 return 0;
3192 BUILD_BUG_ON(pgd_devmap(orig));
3194 page = pgd_page(orig);
3195 refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr);
3197 folio = try_grab_folio_fast(page, refs, flags);
3198 if (!folio)
3199 return 0;
3201 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3202 gup_put_folio(folio, refs, flags);
3203 return 0;
3206 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3207 gup_put_folio(folio, refs, flags);
3208 return 0;
3211 if (!gup_fast_folio_allowed(folio, flags)) {
3212 gup_put_folio(folio, refs, flags);
3213 return 0;
3216 *nr += refs;
3217 folio_set_referenced(folio);
3218 return 1;
3221 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3222 unsigned long end, unsigned int flags, struct page **pages,
3223 int *nr)
3225 unsigned long next;
3226 pmd_t *pmdp;
3228 pmdp = pmd_offset_lockless(pudp, pud, addr);
3229 do {
3230 pmd_t pmd = pmdp_get_lockless(pmdp);
3232 next = pmd_addr_end(addr, end);
3233 if (!pmd_present(pmd))
3234 return 0;
3236 if (unlikely(pmd_leaf(pmd))) {
3237 /* See gup_fast_pte_range() */
3238 if (pmd_protnone(pmd))
3239 return 0;
3241 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3242 pages, nr))
3243 return 0;
3245 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3246 pages, nr))
3247 return 0;
3248 } while (pmdp++, addr = next, addr != end);
3250 return 1;
3253 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3254 unsigned long end, unsigned int flags, struct page **pages,
3255 int *nr)
3257 unsigned long next;
3258 pud_t *pudp;
3260 pudp = pud_offset_lockless(p4dp, p4d, addr);
3261 do {
3262 pud_t pud = READ_ONCE(*pudp);
3264 next = pud_addr_end(addr, end);
3265 if (unlikely(!pud_present(pud)))
3266 return 0;
3267 if (unlikely(pud_leaf(pud))) {
3268 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3269 pages, nr))
3270 return 0;
3271 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3272 pages, nr))
3273 return 0;
3274 } while (pudp++, addr = next, addr != end);
3276 return 1;
3279 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3280 unsigned long end, unsigned int flags, struct page **pages,
3281 int *nr)
3283 unsigned long next;
3284 p4d_t *p4dp;
3286 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3287 do {
3288 p4d_t p4d = READ_ONCE(*p4dp);
3290 next = p4d_addr_end(addr, end);
3291 if (!p4d_present(p4d))
3292 return 0;
3293 BUILD_BUG_ON(p4d_leaf(p4d));
3294 if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3295 pages, nr))
3296 return 0;
3297 } while (p4dp++, addr = next, addr != end);
3299 return 1;
3302 static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3303 unsigned int flags, struct page **pages, int *nr)
3305 unsigned long next;
3306 pgd_t *pgdp;
3308 pgdp = pgd_offset(current->mm, addr);
3309 do {
3310 pgd_t pgd = READ_ONCE(*pgdp);
3312 next = pgd_addr_end(addr, end);
3313 if (pgd_none(pgd))
3314 return;
3315 if (unlikely(pgd_leaf(pgd))) {
3316 if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags,
3317 pages, nr))
3318 return;
3319 } else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3320 pages, nr))
3321 return;
3322 } while (pgdp++, addr = next, addr != end);
3324 #else
3325 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3326 unsigned int flags, struct page **pages, int *nr)
3329 #endif /* CONFIG_HAVE_GUP_FAST */
3331 #ifndef gup_fast_permitted
3333 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3334 * we need to fall back to the slow version:
3336 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3338 return true;
3340 #endif
3342 static unsigned long gup_fast(unsigned long start, unsigned long end,
3343 unsigned int gup_flags, struct page **pages)
3345 unsigned long flags;
3346 int nr_pinned = 0;
3347 unsigned seq;
3349 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3350 !gup_fast_permitted(start, end))
3351 return 0;
3353 if (gup_flags & FOLL_PIN) {
3354 seq = raw_read_seqcount(&current->mm->write_protect_seq);
3355 if (seq & 1)
3356 return 0;
3360 * Disable interrupts. The nested form is used, in order to allow full,
3361 * general purpose use of this routine.
3363 * With interrupts disabled, we block page table pages from being freed
3364 * from under us. See struct mmu_table_batch comments in
3365 * include/asm-generic/tlb.h for more details.
3367 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3368 * that come from THPs splitting.
3370 local_irq_save(flags);
3371 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3372 local_irq_restore(flags);
3375 * When pinning pages for DMA there could be a concurrent write protect
3376 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3378 if (gup_flags & FOLL_PIN) {
3379 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3380 gup_fast_unpin_user_pages(pages, nr_pinned);
3381 return 0;
3382 } else {
3383 sanity_check_pinned_pages(pages, nr_pinned);
3386 return nr_pinned;
3389 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3390 unsigned int gup_flags, struct page **pages)
3392 unsigned long len, end;
3393 unsigned long nr_pinned;
3394 int locked = 0;
3395 int ret;
3397 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3398 FOLL_FORCE | FOLL_PIN | FOLL_GET |
3399 FOLL_FAST_ONLY | FOLL_NOFAULT |
3400 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3401 return -EINVAL;
3403 if (gup_flags & FOLL_PIN)
3404 mm_set_has_pinned_flag(&current->mm->flags);
3406 if (!(gup_flags & FOLL_FAST_ONLY))
3407 might_lock_read(&current->mm->mmap_lock);
3409 start = untagged_addr(start) & PAGE_MASK;
3410 len = nr_pages << PAGE_SHIFT;
3411 if (check_add_overflow(start, len, &end))
3412 return -EOVERFLOW;
3413 if (end > TASK_SIZE_MAX)
3414 return -EFAULT;
3415 if (unlikely(!access_ok((void __user *)start, len)))
3416 return -EFAULT;
3418 nr_pinned = gup_fast(start, end, gup_flags, pages);
3419 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3420 return nr_pinned;
3422 /* Slow path: try to get the remaining pages with get_user_pages */
3423 start += nr_pinned << PAGE_SHIFT;
3424 pages += nr_pinned;
3425 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3426 pages, &locked,
3427 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3428 if (ret < 0) {
3430 * The caller has to unpin the pages we already pinned so
3431 * returning -errno is not an option
3433 if (nr_pinned)
3434 return nr_pinned;
3435 return ret;
3437 return ret + nr_pinned;
3441 * get_user_pages_fast_only() - pin user pages in memory
3442 * @start: starting user address
3443 * @nr_pages: number of pages from start to pin
3444 * @gup_flags: flags modifying pin behaviour
3445 * @pages: array that receives pointers to the pages pinned.
3446 * Should be at least nr_pages long.
3448 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3449 * the regular GUP.
3451 * If the architecture does not support this function, simply return with no
3452 * pages pinned.
3454 * Careful, careful! COW breaking can go either way, so a non-write
3455 * access can get ambiguous page results. If you call this function without
3456 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3458 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3459 unsigned int gup_flags, struct page **pages)
3462 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3463 * because gup fast is always a "pin with a +1 page refcount" request.
3465 * FOLL_FAST_ONLY is required in order to match the API description of
3466 * this routine: no fall back to regular ("slow") GUP.
3468 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3469 FOLL_GET | FOLL_FAST_ONLY))
3470 return -EINVAL;
3472 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3474 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3477 * get_user_pages_fast() - pin user pages in memory
3478 * @start: starting user address
3479 * @nr_pages: number of pages from start to pin
3480 * @gup_flags: flags modifying pin behaviour
3481 * @pages: array that receives pointers to the pages pinned.
3482 * Should be at least nr_pages long.
3484 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3485 * If not successful, it will fall back to taking the lock and
3486 * calling get_user_pages().
3488 * Returns number of pages pinned. This may be fewer than the number requested.
3489 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3490 * -errno.
3492 int get_user_pages_fast(unsigned long start, int nr_pages,
3493 unsigned int gup_flags, struct page **pages)
3496 * The caller may or may not have explicitly set FOLL_GET; either way is
3497 * OK. However, internally (within mm/gup.c), gup fast variants must set
3498 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3499 * request.
3501 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3502 return -EINVAL;
3503 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3505 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3508 * pin_user_pages_fast() - pin user pages in memory without taking locks
3510 * @start: starting user address
3511 * @nr_pages: number of pages from start to pin
3512 * @gup_flags: flags modifying pin behaviour
3513 * @pages: array that receives pointers to the pages pinned.
3514 * Should be at least nr_pages long.
3516 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3517 * get_user_pages_fast() for documentation on the function arguments, because
3518 * the arguments here are identical.
3520 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3521 * see Documentation/core-api/pin_user_pages.rst for further details.
3523 * Note that if a zero_page is amongst the returned pages, it will not have
3524 * pins in it and unpin_user_page() will not remove pins from it.
3526 int pin_user_pages_fast(unsigned long start, int nr_pages,
3527 unsigned int gup_flags, struct page **pages)
3529 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3530 return -EINVAL;
3531 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3533 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3536 * pin_user_pages_remote() - pin pages of a remote process
3538 * @mm: mm_struct of target mm
3539 * @start: starting user address
3540 * @nr_pages: number of pages from start to pin
3541 * @gup_flags: flags modifying lookup behaviour
3542 * @pages: array that receives pointers to the pages pinned.
3543 * Should be at least nr_pages long.
3544 * @locked: pointer to lock flag indicating whether lock is held and
3545 * subsequently whether VM_FAULT_RETRY functionality can be
3546 * utilised. Lock must initially be held.
3548 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3549 * get_user_pages_remote() for documentation on the function arguments, because
3550 * the arguments here are identical.
3552 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3553 * see Documentation/core-api/pin_user_pages.rst for details.
3555 * Note that if a zero_page is amongst the returned pages, it will not have
3556 * pins in it and unpin_user_page*() will not remove pins from it.
3558 long pin_user_pages_remote(struct mm_struct *mm,
3559 unsigned long start, unsigned long nr_pages,
3560 unsigned int gup_flags, struct page **pages,
3561 int *locked)
3563 int local_locked = 1;
3565 if (!is_valid_gup_args(pages, locked, &gup_flags,
3566 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3567 return 0;
3568 return __gup_longterm_locked(mm, start, nr_pages, pages,
3569 locked ? locked : &local_locked,
3570 gup_flags);
3572 EXPORT_SYMBOL(pin_user_pages_remote);
3575 * pin_user_pages() - pin user pages in memory for use by other devices
3577 * @start: starting user address
3578 * @nr_pages: number of pages from start to pin
3579 * @gup_flags: flags modifying lookup behaviour
3580 * @pages: array that receives pointers to the pages pinned.
3581 * Should be at least nr_pages long.
3583 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3584 * FOLL_PIN is set.
3586 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3587 * see Documentation/core-api/pin_user_pages.rst for details.
3589 * Note that if a zero_page is amongst the returned pages, it will not have
3590 * pins in it and unpin_user_page*() will not remove pins from it.
3592 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3593 unsigned int gup_flags, struct page **pages)
3595 int locked = 1;
3597 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3598 return 0;
3599 return __gup_longterm_locked(current->mm, start, nr_pages,
3600 pages, &locked, gup_flags);
3602 EXPORT_SYMBOL(pin_user_pages);
3605 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3606 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3607 * FOLL_PIN and rejects FOLL_GET.
3609 * Note that if a zero_page is amongst the returned pages, it will not have
3610 * pins in it and unpin_user_page*() will not remove pins from it.
3612 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3613 struct page **pages, unsigned int gup_flags)
3615 int locked = 0;
3617 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3618 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3619 return 0;
3621 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3622 &locked, gup_flags);
3624 EXPORT_SYMBOL(pin_user_pages_unlocked);
3627 * memfd_pin_folios() - pin folios associated with a memfd
3628 * @memfd: the memfd whose folios are to be pinned
3629 * @start: the first memfd offset
3630 * @end: the last memfd offset (inclusive)
3631 * @folios: array that receives pointers to the folios pinned
3632 * @max_folios: maximum number of entries in @folios
3633 * @offset: the offset into the first folio
3635 * Attempt to pin folios associated with a memfd in the contiguous range
3636 * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3637 * the folios can either be found in the page cache or need to be allocated
3638 * if necessary. Once the folios are located, they are all pinned via
3639 * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3640 * And, eventually, these pinned folios must be released either using
3641 * unpin_folios() or unpin_folio().
3643 * It must be noted that the folios may be pinned for an indefinite amount
3644 * of time. And, in most cases, the duration of time they may stay pinned
3645 * would be controlled by the userspace. This behavior is effectively the
3646 * same as using FOLL_LONGTERM with other GUP APIs.
3648 * Returns number of folios pinned, which could be less than @max_folios
3649 * as it depends on the folio sizes that cover the range [start, end].
3650 * If no folios were pinned, it returns -errno.
3652 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3653 struct folio **folios, unsigned int max_folios,
3654 pgoff_t *offset)
3656 unsigned int flags, nr_folios, nr_found;
3657 unsigned int i, pgshift = PAGE_SHIFT;
3658 pgoff_t start_idx, end_idx, next_idx;
3659 struct folio *folio = NULL;
3660 struct folio_batch fbatch;
3661 struct hstate *h;
3662 long ret = -EINVAL;
3664 if (start < 0 || start > end || !max_folios)
3665 return -EINVAL;
3667 if (!memfd)
3668 return -EINVAL;
3670 if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3671 return -EINVAL;
3673 if (end >= i_size_read(file_inode(memfd)))
3674 return -EINVAL;
3676 if (is_file_hugepages(memfd)) {
3677 h = hstate_file(memfd);
3678 pgshift = huge_page_shift(h);
3681 flags = memalloc_pin_save();
3682 do {
3683 nr_folios = 0;
3684 start_idx = start >> pgshift;
3685 end_idx = end >> pgshift;
3686 if (is_file_hugepages(memfd)) {
3687 start_idx <<= huge_page_order(h);
3688 end_idx <<= huge_page_order(h);
3691 folio_batch_init(&fbatch);
3692 while (start_idx <= end_idx && nr_folios < max_folios) {
3694 * In most cases, we should be able to find the folios
3695 * in the page cache. If we cannot find them for some
3696 * reason, we try to allocate them and add them to the
3697 * page cache.
3699 nr_found = filemap_get_folios_contig(memfd->f_mapping,
3700 &start_idx,
3701 end_idx,
3702 &fbatch);
3703 if (folio) {
3704 folio_put(folio);
3705 folio = NULL;
3708 next_idx = 0;
3709 for (i = 0; i < nr_found; i++) {
3711 * As there can be multiple entries for a
3712 * given folio in the batch returned by
3713 * filemap_get_folios_contig(), the below
3714 * check is to ensure that we pin and return a
3715 * unique set of folios between start and end.
3717 if (next_idx &&
3718 next_idx != folio_index(fbatch.folios[i]))
3719 continue;
3721 folio = page_folio(&fbatch.folios[i]->page);
3723 if (try_grab_folio(folio, 1, FOLL_PIN)) {
3724 folio_batch_release(&fbatch);
3725 ret = -EINVAL;
3726 goto err;
3729 if (nr_folios == 0)
3730 *offset = offset_in_folio(folio, start);
3732 folios[nr_folios] = folio;
3733 next_idx = folio_next_index(folio);
3734 if (++nr_folios == max_folios)
3735 break;
3738 folio = NULL;
3739 folio_batch_release(&fbatch);
3740 if (!nr_found) {
3741 folio = memfd_alloc_folio(memfd, start_idx);
3742 if (IS_ERR(folio)) {
3743 ret = PTR_ERR(folio);
3744 if (ret != -EEXIST)
3745 goto err;
3746 folio = NULL;
3751 ret = check_and_migrate_movable_folios(nr_folios, folios);
3752 } while (ret == -EAGAIN);
3754 memalloc_pin_restore(flags);
3755 return ret ? ret : nr_folios;
3756 err:
3757 memalloc_pin_restore(flags);
3758 unpin_folios(folios, nr_folios);
3760 return ret;
3762 EXPORT_SYMBOL_GPL(memfd_pin_folios);
3765 * folio_add_pins() - add pins to an already-pinned folio
3766 * @folio: the folio to add more pins to
3767 * @pins: number of pins to add
3769 * Try to add more pins to an already-pinned folio. The semantics
3770 * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot
3771 * be changed.
3773 * This function is helpful when having obtained a pin on a large folio
3774 * using memfd_pin_folios(), but wanting to logically unpin parts
3775 * (e.g., individual pages) of the folio later, for example, using
3776 * unpin_user_page_range_dirty_lock().
3778 * This is not the right interface to initially pin a folio.
3780 int folio_add_pins(struct folio *folio, unsigned int pins)
3782 VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio));
3784 return try_grab_folio(folio, pins, FOLL_PIN);
3786 EXPORT_SYMBOL_GPL(folio_add_pins);