1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memfd.h>
9 #include <linux/memremap.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/secretmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/rwsem.h>
18 #include <linux/hugetlb.h>
19 #include <linux/migrate.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/sched/mm.h>
23 #include <linux/shmem_fs.h>
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
30 struct follow_page_context
{
31 struct dev_pagemap
*pgmap
;
32 unsigned int page_mask
;
35 static inline void sanity_check_pinned_pages(struct page
**pages
,
38 if (!IS_ENABLED(CONFIG_DEBUG_VM
))
42 * We only pin anonymous pages if they are exclusive. Once pinned, we
43 * can no longer turn them possibly shared and PageAnonExclusive() will
44 * stick around until the page is freed.
46 * We'd like to verify that our pinned anonymous pages are still mapped
47 * exclusively. The issue with anon THP is that we don't know how
48 * they are/were mapped when pinning them. However, for anon
49 * THP we can assume that either the given page (PTE-mapped THP) or
50 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
51 * neither is the case, there is certainly something wrong.
53 for (; npages
; npages
--, pages
++) {
54 struct page
*page
= *pages
;
55 struct folio
*folio
= page_folio(page
);
57 if (is_zero_page(page
) ||
58 !folio_test_anon(folio
))
60 if (!folio_test_large(folio
) || folio_test_hugetlb(folio
))
61 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio
->page
), page
);
63 /* Either a PTE-mapped or a PMD-mapped THP. */
64 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio
->page
) &&
65 !PageAnonExclusive(page
), page
);
70 * Return the folio with ref appropriately incremented,
71 * or NULL if that failed.
73 static inline struct folio
*try_get_folio(struct page
*page
, int refs
)
78 folio
= page_folio(page
);
79 if (WARN_ON_ONCE(folio_ref_count(folio
) < 0))
81 if (unlikely(!folio_ref_try_add(folio
, refs
)))
85 * At this point we have a stable reference to the folio; but it
86 * could be that between calling page_folio() and the refcount
87 * increment, the folio was split, in which case we'd end up
88 * holding a reference on a folio that has nothing to do with the page
89 * we were given anymore.
90 * So now that the folio is stable, recheck that the page still
91 * belongs to this folio.
93 if (unlikely(page_folio(page
) != folio
)) {
94 if (!put_devmap_managed_folio_refs(folio
, refs
))
95 folio_put_refs(folio
, refs
);
102 static void gup_put_folio(struct folio
*folio
, int refs
, unsigned int flags
)
104 if (flags
& FOLL_PIN
) {
105 if (is_zero_folio(folio
))
107 node_stat_mod_folio(folio
, NR_FOLL_PIN_RELEASED
, refs
);
108 if (folio_test_large(folio
))
109 atomic_sub(refs
, &folio
->_pincount
);
111 refs
*= GUP_PIN_COUNTING_BIAS
;
114 if (!put_devmap_managed_folio_refs(folio
, refs
))
115 folio_put_refs(folio
, refs
);
119 * try_grab_folio() - add a folio's refcount by a flag-dependent amount
120 * @folio: pointer to folio to be grabbed
121 * @refs: the value to (effectively) add to the folio's refcount
122 * @flags: gup flags: these are the FOLL_* flag values
124 * This might not do anything at all, depending on the flags argument.
126 * "grab" names in this file mean, "look at flags to decide whether to use
127 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
129 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
132 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
133 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
135 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not
138 * It is called when we have a stable reference for the folio, typically in
141 int __must_check
try_grab_folio(struct folio
*folio
, int refs
,
144 if (WARN_ON_ONCE(folio_ref_count(folio
) <= 0))
147 if (unlikely(!(flags
& FOLL_PCI_P2PDMA
) && is_pci_p2pdma_page(&folio
->page
)))
150 if (flags
& FOLL_GET
)
151 folio_ref_add(folio
, refs
);
152 else if (flags
& FOLL_PIN
) {
154 * Don't take a pin on the zero page - it's not going anywhere
155 * and it is used in a *lot* of places.
157 if (is_zero_folio(folio
))
161 * Increment the normal page refcount field at least once,
162 * so that the page really is pinned.
164 if (folio_test_large(folio
)) {
165 folio_ref_add(folio
, refs
);
166 atomic_add(refs
, &folio
->_pincount
);
168 folio_ref_add(folio
, refs
* GUP_PIN_COUNTING_BIAS
);
171 node_stat_mod_folio(folio
, NR_FOLL_PIN_ACQUIRED
, refs
);
178 * unpin_user_page() - release a dma-pinned page
179 * @page: pointer to page to be released
181 * Pages that were pinned via pin_user_pages*() must be released via either
182 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
183 * that such pages can be separately tracked and uniquely handled. In
184 * particular, interactions with RDMA and filesystems need special handling.
186 void unpin_user_page(struct page
*page
)
188 sanity_check_pinned_pages(&page
, 1);
189 gup_put_folio(page_folio(page
), 1, FOLL_PIN
);
191 EXPORT_SYMBOL(unpin_user_page
);
194 * unpin_folio() - release a dma-pinned folio
195 * @folio: pointer to folio to be released
197 * Folios that were pinned via memfd_pin_folios() or other similar routines
198 * must be released either using unpin_folio() or unpin_folios().
200 void unpin_folio(struct folio
*folio
)
202 gup_put_folio(folio
, 1, FOLL_PIN
);
204 EXPORT_SYMBOL_GPL(unpin_folio
);
207 * folio_add_pin - Try to get an additional pin on a pinned folio
208 * @folio: The folio to be pinned
210 * Get an additional pin on a folio we already have a pin on. Makes no change
211 * if the folio is a zero_page.
213 void folio_add_pin(struct folio
*folio
)
215 if (is_zero_folio(folio
))
219 * Similar to try_grab_folio(): be sure to *also* increment the normal
220 * page refcount field at least once, so that the page really is
223 if (folio_test_large(folio
)) {
224 WARN_ON_ONCE(atomic_read(&folio
->_pincount
) < 1);
225 folio_ref_inc(folio
);
226 atomic_inc(&folio
->_pincount
);
228 WARN_ON_ONCE(folio_ref_count(folio
) < GUP_PIN_COUNTING_BIAS
);
229 folio_ref_add(folio
, GUP_PIN_COUNTING_BIAS
);
233 static inline struct folio
*gup_folio_range_next(struct page
*start
,
234 unsigned long npages
, unsigned long i
, unsigned int *ntails
)
236 struct page
*next
= nth_page(start
, i
);
237 struct folio
*folio
= page_folio(next
);
240 if (folio_test_large(folio
))
241 nr
= min_t(unsigned int, npages
- i
,
242 folio_nr_pages(folio
) - folio_page_idx(folio
, next
));
248 static inline struct folio
*gup_folio_next(struct page
**list
,
249 unsigned long npages
, unsigned long i
, unsigned int *ntails
)
251 struct folio
*folio
= page_folio(list
[i
]);
254 for (nr
= i
+ 1; nr
< npages
; nr
++) {
255 if (page_folio(list
[nr
]) != folio
)
264 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
265 * @pages: array of pages to be maybe marked dirty, and definitely released.
266 * @npages: number of pages in the @pages array.
267 * @make_dirty: whether to mark the pages dirty
269 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
270 * variants called on that page.
272 * For each page in the @pages array, make that page (or its head page, if a
273 * compound page) dirty, if @make_dirty is true, and if the page was previously
274 * listed as clean. In any case, releases all pages using unpin_user_page(),
275 * possibly via unpin_user_pages(), for the non-dirty case.
277 * Please see the unpin_user_page() documentation for details.
279 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
280 * required, then the caller should a) verify that this is really correct,
281 * because _lock() is usually required, and b) hand code it:
282 * set_page_dirty_lock(), unpin_user_page().
285 void unpin_user_pages_dirty_lock(struct page
**pages
, unsigned long npages
,
293 unpin_user_pages(pages
, npages
);
297 sanity_check_pinned_pages(pages
, npages
);
298 for (i
= 0; i
< npages
; i
+= nr
) {
299 folio
= gup_folio_next(pages
, npages
, i
, &nr
);
301 * Checking PageDirty at this point may race with
302 * clear_page_dirty_for_io(), but that's OK. Two key
305 * 1) This code sees the page as already dirty, so it
306 * skips the call to set_page_dirty(). That could happen
307 * because clear_page_dirty_for_io() called
308 * folio_mkclean(), followed by set_page_dirty().
309 * However, now the page is going to get written back,
310 * which meets the original intention of setting it
311 * dirty, so all is well: clear_page_dirty_for_io() goes
312 * on to call TestClearPageDirty(), and write the page
315 * 2) This code sees the page as clean, so it calls
316 * set_page_dirty(). The page stays dirty, despite being
317 * written back, so it gets written back again in the
318 * next writeback cycle. This is harmless.
320 if (!folio_test_dirty(folio
)) {
322 folio_mark_dirty(folio
);
325 gup_put_folio(folio
, nr
, FOLL_PIN
);
328 EXPORT_SYMBOL(unpin_user_pages_dirty_lock
);
331 * unpin_user_page_range_dirty_lock() - release and optionally dirty
332 * gup-pinned page range
334 * @page: the starting page of a range maybe marked dirty, and definitely released.
335 * @npages: number of consecutive pages to release.
336 * @make_dirty: whether to mark the pages dirty
338 * "gup-pinned page range" refers to a range of pages that has had one of the
339 * pin_user_pages() variants called on that page.
341 * For the page ranges defined by [page .. page+npages], make that range (or
342 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
343 * page range was previously listed as clean.
345 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
346 * required, then the caller should a) verify that this is really correct,
347 * because _lock() is usually required, and b) hand code it:
348 * set_page_dirty_lock(), unpin_user_page().
351 void unpin_user_page_range_dirty_lock(struct page
*page
, unsigned long npages
,
358 for (i
= 0; i
< npages
; i
+= nr
) {
359 folio
= gup_folio_range_next(page
, npages
, i
, &nr
);
360 if (make_dirty
&& !folio_test_dirty(folio
)) {
362 folio_mark_dirty(folio
);
365 gup_put_folio(folio
, nr
, FOLL_PIN
);
368 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock
);
370 static void gup_fast_unpin_user_pages(struct page
**pages
, unsigned long npages
)
377 * Don't perform any sanity checks because we might have raced with
378 * fork() and some anonymous pages might now actually be shared --
379 * which is why we're unpinning after all.
381 for (i
= 0; i
< npages
; i
+= nr
) {
382 folio
= gup_folio_next(pages
, npages
, i
, &nr
);
383 gup_put_folio(folio
, nr
, FOLL_PIN
);
388 * unpin_user_pages() - release an array of gup-pinned pages.
389 * @pages: array of pages to be marked dirty and released.
390 * @npages: number of pages in the @pages array.
392 * For each page in the @pages array, release the page using unpin_user_page().
394 * Please see the unpin_user_page() documentation for details.
396 void unpin_user_pages(struct page
**pages
, unsigned long npages
)
403 * If this WARN_ON() fires, then the system *might* be leaking pages (by
404 * leaving them pinned), but probably not. More likely, gup/pup returned
405 * a hard -ERRNO error to the caller, who erroneously passed it here.
407 if (WARN_ON(IS_ERR_VALUE(npages
)))
410 sanity_check_pinned_pages(pages
, npages
);
411 for (i
= 0; i
< npages
; i
+= nr
) {
412 folio
= gup_folio_next(pages
, npages
, i
, &nr
);
413 gup_put_folio(folio
, nr
, FOLL_PIN
);
416 EXPORT_SYMBOL(unpin_user_pages
);
419 * unpin_user_folio() - release pages of a folio
420 * @folio: pointer to folio to be released
421 * @npages: number of pages of same folio
423 * Release npages of the folio
425 void unpin_user_folio(struct folio
*folio
, unsigned long npages
)
427 gup_put_folio(folio
, npages
, FOLL_PIN
);
429 EXPORT_SYMBOL(unpin_user_folio
);
432 * unpin_folios() - release an array of gup-pinned folios.
433 * @folios: array of folios to be marked dirty and released.
434 * @nfolios: number of folios in the @folios array.
436 * For each folio in the @folios array, release the folio using gup_put_folio.
438 * Please see the unpin_folio() documentation for details.
440 void unpin_folios(struct folio
**folios
, unsigned long nfolios
)
442 unsigned long i
= 0, j
;
445 * If this WARN_ON() fires, then the system *might* be leaking folios
446 * (by leaving them pinned), but probably not. More likely, gup/pup
447 * returned a hard -ERRNO error to the caller, who erroneously passed
450 if (WARN_ON(IS_ERR_VALUE(nfolios
)))
453 while (i
< nfolios
) {
454 for (j
= i
+ 1; j
< nfolios
; j
++)
455 if (folios
[i
] != folios
[j
])
459 gup_put_folio(folios
[i
], j
- i
, FOLL_PIN
);
463 EXPORT_SYMBOL_GPL(unpin_folios
);
466 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
467 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
468 * cache bouncing on large SMP machines for concurrent pinned gups.
470 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags
)
472 if (!test_bit(MMF_HAS_PINNED
, mm_flags
))
473 set_bit(MMF_HAS_PINNED
, mm_flags
);
478 #ifdef CONFIG_HAVE_GUP_FAST
479 static int record_subpages(struct page
*page
, unsigned long sz
,
480 unsigned long addr
, unsigned long end
,
483 struct page
*start_page
;
486 start_page
= nth_page(page
, (addr
& (sz
- 1)) >> PAGE_SHIFT
);
487 for (nr
= 0; addr
!= end
; nr
++, addr
+= PAGE_SIZE
)
488 pages
[nr
] = nth_page(start_page
, nr
);
494 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
495 * @page: pointer to page to be grabbed
496 * @refs: the value to (effectively) add to the folio's refcount
497 * @flags: gup flags: these are the FOLL_* flag values.
499 * "grab" names in this file mean, "look at flags to decide whether to use
500 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
502 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
503 * same time. (That's true throughout the get_user_pages*() and
504 * pin_user_pages*() APIs.) Cases:
506 * FOLL_GET: folio's refcount will be incremented by @refs.
508 * FOLL_PIN on large folios: folio's refcount will be incremented by
509 * @refs, and its pincount will be incremented by @refs.
511 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
512 * @refs * GUP_PIN_COUNTING_BIAS.
514 * Return: The folio containing @page (with refcount appropriately
515 * incremented) for success, or NULL upon failure. If neither FOLL_GET
516 * nor FOLL_PIN was set, that's considered failure, and furthermore,
517 * a likely bug in the caller, so a warning is also emitted.
519 * It uses add ref unless zero to elevate the folio refcount and must be called
522 static struct folio
*try_grab_folio_fast(struct page
*page
, int refs
,
527 /* Raise warn if it is not called in fast GUP */
528 VM_WARN_ON_ONCE(!irqs_disabled());
530 if (WARN_ON_ONCE((flags
& (FOLL_GET
| FOLL_PIN
)) == 0))
533 if (unlikely(!(flags
& FOLL_PCI_P2PDMA
) && is_pci_p2pdma_page(page
)))
536 if (flags
& FOLL_GET
)
537 return try_get_folio(page
, refs
);
539 /* FOLL_PIN is set */
542 * Don't take a pin on the zero page - it's not going anywhere
543 * and it is used in a *lot* of places.
545 if (is_zero_page(page
))
546 return page_folio(page
);
548 folio
= try_get_folio(page
, refs
);
553 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
554 * right zone, so fail and let the caller fall back to the slow
557 if (unlikely((flags
& FOLL_LONGTERM
) &&
558 !folio_is_longterm_pinnable(folio
))) {
559 if (!put_devmap_managed_folio_refs(folio
, refs
))
560 folio_put_refs(folio
, refs
);
565 * When pinning a large folio, use an exact count to track it.
567 * However, be sure to *also* increment the normal folio
568 * refcount field at least once, so that the folio really
569 * is pinned. That's why the refcount from the earlier
570 * try_get_folio() is left intact.
572 if (folio_test_large(folio
))
573 atomic_add(refs
, &folio
->_pincount
);
576 refs
* (GUP_PIN_COUNTING_BIAS
- 1));
578 * Adjust the pincount before re-checking the PTE for changes.
579 * This is essentially a smp_mb() and is paired with a memory
580 * barrier in folio_try_share_anon_rmap_*().
582 smp_mb__after_atomic();
584 node_stat_mod_folio(folio
, NR_FOLL_PIN_ACQUIRED
, refs
);
588 #endif /* CONFIG_HAVE_GUP_FAST */
590 static struct page
*no_page_table(struct vm_area_struct
*vma
,
591 unsigned int flags
, unsigned long address
)
593 if (!(flags
& FOLL_DUMP
))
597 * When core dumping, we don't want to allocate unnecessary pages or
598 * page tables. Return error instead of NULL to skip handle_mm_fault,
599 * then get_dump_page() will return NULL to leave a hole in the dump.
600 * But we can only make this optimization where a hole would surely
601 * be zero-filled if handle_mm_fault() actually did handle it.
603 if (is_vm_hugetlb_page(vma
)) {
604 struct hstate
*h
= hstate_vma(vma
);
606 if (!hugetlbfs_pagecache_present(h
, vma
, address
))
607 return ERR_PTR(-EFAULT
);
608 } else if ((vma_is_anonymous(vma
) || !vma
->vm_ops
->fault
)) {
609 return ERR_PTR(-EFAULT
);
615 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
616 static struct page
*follow_huge_pud(struct vm_area_struct
*vma
,
617 unsigned long addr
, pud_t
*pudp
,
618 int flags
, struct follow_page_context
*ctx
)
620 struct mm_struct
*mm
= vma
->vm_mm
;
623 unsigned long pfn
= pud_pfn(pud
);
626 assert_spin_locked(pud_lockptr(mm
, pudp
));
628 if ((flags
& FOLL_WRITE
) && !pud_write(pud
))
631 if (!pud_present(pud
))
634 pfn
+= (addr
& ~PUD_MASK
) >> PAGE_SHIFT
;
636 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
) &&
639 * device mapped pages can only be returned if the caller
640 * will manage the page reference count.
642 * At least one of FOLL_GET | FOLL_PIN must be set, so
645 if (!(flags
& (FOLL_GET
| FOLL_PIN
)))
646 return ERR_PTR(-EEXIST
);
648 if (flags
& FOLL_TOUCH
)
649 touch_pud(vma
, addr
, pudp
, flags
& FOLL_WRITE
);
651 ctx
->pgmap
= get_dev_pagemap(pfn
, ctx
->pgmap
);
653 return ERR_PTR(-EFAULT
);
656 page
= pfn_to_page(pfn
);
658 if (!pud_devmap(pud
) && !pud_write(pud
) &&
659 gup_must_unshare(vma
, flags
, page
))
660 return ERR_PTR(-EMLINK
);
662 ret
= try_grab_folio(page_folio(page
), 1, flags
);
666 ctx
->page_mask
= HPAGE_PUD_NR
- 1;
671 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
672 static inline bool can_follow_write_pmd(pmd_t pmd
, struct page
*page
,
673 struct vm_area_struct
*vma
,
676 /* If the pmd is writable, we can write to the page. */
680 /* Maybe FOLL_FORCE is set to override it? */
681 if (!(flags
& FOLL_FORCE
))
684 /* But FOLL_FORCE has no effect on shared mappings */
685 if (vma
->vm_flags
& (VM_MAYSHARE
| VM_SHARED
))
688 /* ... or read-only private ones */
689 if (!(vma
->vm_flags
& VM_MAYWRITE
))
692 /* ... or already writable ones that just need to take a write fault */
693 if (vma
->vm_flags
& VM_WRITE
)
697 * See can_change_pte_writable(): we broke COW and could map the page
698 * writable if we have an exclusive anonymous page ...
700 if (!page
|| !PageAnon(page
) || !PageAnonExclusive(page
))
703 /* ... and a write-fault isn't required for other reasons. */
704 if (pmd_needs_soft_dirty_wp(vma
, pmd
))
706 return !userfaultfd_huge_pmd_wp(vma
, pmd
);
709 static struct page
*follow_huge_pmd(struct vm_area_struct
*vma
,
710 unsigned long addr
, pmd_t
*pmd
,
712 struct follow_page_context
*ctx
)
714 struct mm_struct
*mm
= vma
->vm_mm
;
719 assert_spin_locked(pmd_lockptr(mm
, pmd
));
721 page
= pmd_page(pmdval
);
722 if ((flags
& FOLL_WRITE
) &&
723 !can_follow_write_pmd(pmdval
, page
, vma
, flags
))
726 /* Avoid dumping huge zero page */
727 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(pmdval
))
728 return ERR_PTR(-EFAULT
);
730 if (pmd_protnone(*pmd
) && !gup_can_follow_protnone(vma
, flags
))
733 if (!pmd_write(pmdval
) && gup_must_unshare(vma
, flags
, page
))
734 return ERR_PTR(-EMLINK
);
736 VM_BUG_ON_PAGE((flags
& FOLL_PIN
) && PageAnon(page
) &&
737 !PageAnonExclusive(page
), page
);
739 ret
= try_grab_folio(page_folio(page
), 1, flags
);
743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
744 if (pmd_trans_huge(pmdval
) && (flags
& FOLL_TOUCH
))
745 touch_pmd(vma
, addr
, pmd
, flags
& FOLL_WRITE
);
746 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
748 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
749 ctx
->page_mask
= HPAGE_PMD_NR
- 1;
754 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
755 static struct page
*follow_huge_pud(struct vm_area_struct
*vma
,
756 unsigned long addr
, pud_t
*pudp
,
757 int flags
, struct follow_page_context
*ctx
)
762 static struct page
*follow_huge_pmd(struct vm_area_struct
*vma
,
763 unsigned long addr
, pmd_t
*pmd
,
765 struct follow_page_context
*ctx
)
769 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
771 static int follow_pfn_pte(struct vm_area_struct
*vma
, unsigned long address
,
772 pte_t
*pte
, unsigned int flags
)
774 if (flags
& FOLL_TOUCH
) {
775 pte_t orig_entry
= ptep_get(pte
);
776 pte_t entry
= orig_entry
;
778 if (flags
& FOLL_WRITE
)
779 entry
= pte_mkdirty(entry
);
780 entry
= pte_mkyoung(entry
);
782 if (!pte_same(orig_entry
, entry
)) {
783 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
784 update_mmu_cache(vma
, address
, pte
);
788 /* Proper page table entry exists, but no corresponding struct page */
792 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
793 static inline bool can_follow_write_pte(pte_t pte
, struct page
*page
,
794 struct vm_area_struct
*vma
,
797 /* If the pte is writable, we can write to the page. */
801 /* Maybe FOLL_FORCE is set to override it? */
802 if (!(flags
& FOLL_FORCE
))
805 /* But FOLL_FORCE has no effect on shared mappings */
806 if (vma
->vm_flags
& (VM_MAYSHARE
| VM_SHARED
))
809 /* ... or read-only private ones */
810 if (!(vma
->vm_flags
& VM_MAYWRITE
))
813 /* ... or already writable ones that just need to take a write fault */
814 if (vma
->vm_flags
& VM_WRITE
)
818 * See can_change_pte_writable(): we broke COW and could map the page
819 * writable if we have an exclusive anonymous page ...
821 if (!page
|| !PageAnon(page
) || !PageAnonExclusive(page
))
824 /* ... and a write-fault isn't required for other reasons. */
825 if (pte_needs_soft_dirty_wp(vma
, pte
))
827 return !userfaultfd_pte_wp(vma
, pte
);
830 static struct page
*follow_page_pte(struct vm_area_struct
*vma
,
831 unsigned long address
, pmd_t
*pmd
, unsigned int flags
,
832 struct dev_pagemap
**pgmap
)
834 struct mm_struct
*mm
= vma
->vm_mm
;
841 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
842 if (WARN_ON_ONCE((flags
& (FOLL_PIN
| FOLL_GET
)) ==
843 (FOLL_PIN
| FOLL_GET
)))
844 return ERR_PTR(-EINVAL
);
846 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
848 return no_page_table(vma
, flags
, address
);
849 pte
= ptep_get(ptep
);
850 if (!pte_present(pte
))
852 if (pte_protnone(pte
) && !gup_can_follow_protnone(vma
, flags
))
855 page
= vm_normal_page(vma
, address
, pte
);
858 * We only care about anon pages in can_follow_write_pte() and don't
859 * have to worry about pte_devmap() because they are never anon.
861 if ((flags
& FOLL_WRITE
) &&
862 !can_follow_write_pte(pte
, page
, vma
, flags
)) {
867 if (!page
&& pte_devmap(pte
) && (flags
& (FOLL_GET
| FOLL_PIN
))) {
869 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
870 * case since they are only valid while holding the pgmap
873 *pgmap
= get_dev_pagemap(pte_pfn(pte
), *pgmap
);
875 page
= pte_page(pte
);
878 } else if (unlikely(!page
)) {
879 if (flags
& FOLL_DUMP
) {
880 /* Avoid special (like zero) pages in core dumps */
881 page
= ERR_PTR(-EFAULT
);
885 if (is_zero_pfn(pte_pfn(pte
))) {
886 page
= pte_page(pte
);
888 ret
= follow_pfn_pte(vma
, address
, ptep
, flags
);
893 folio
= page_folio(page
);
895 if (!pte_write(pte
) && gup_must_unshare(vma
, flags
, page
)) {
896 page
= ERR_PTR(-EMLINK
);
900 VM_BUG_ON_PAGE((flags
& FOLL_PIN
) && PageAnon(page
) &&
901 !PageAnonExclusive(page
), page
);
903 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
904 ret
= try_grab_folio(folio
, 1, flags
);
911 * We need to make the page accessible if and only if we are going
912 * to access its content (the FOLL_PIN case). Please see
913 * Documentation/core-api/pin_user_pages.rst for details.
915 if (flags
& FOLL_PIN
) {
916 ret
= arch_make_folio_accessible(folio
);
918 unpin_user_page(page
);
923 if (flags
& FOLL_TOUCH
) {
924 if ((flags
& FOLL_WRITE
) &&
925 !pte_dirty(pte
) && !folio_test_dirty(folio
))
926 folio_mark_dirty(folio
);
928 * pte_mkyoung() would be more correct here, but atomic care
929 * is needed to avoid losing the dirty bit: it is easier to use
930 * folio_mark_accessed().
932 folio_mark_accessed(folio
);
935 pte_unmap_unlock(ptep
, ptl
);
938 pte_unmap_unlock(ptep
, ptl
);
941 return no_page_table(vma
, flags
, address
);
944 static struct page
*follow_pmd_mask(struct vm_area_struct
*vma
,
945 unsigned long address
, pud_t
*pudp
,
947 struct follow_page_context
*ctx
)
952 struct mm_struct
*mm
= vma
->vm_mm
;
954 pmd
= pmd_offset(pudp
, address
);
955 pmdval
= pmdp_get_lockless(pmd
);
956 if (pmd_none(pmdval
))
957 return no_page_table(vma
, flags
, address
);
958 if (!pmd_present(pmdval
))
959 return no_page_table(vma
, flags
, address
);
960 if (pmd_devmap(pmdval
)) {
961 ptl
= pmd_lock(mm
, pmd
);
962 page
= follow_devmap_pmd(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
966 return no_page_table(vma
, flags
, address
);
968 if (likely(!pmd_leaf(pmdval
)))
969 return follow_page_pte(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
971 if (pmd_protnone(pmdval
) && !gup_can_follow_protnone(vma
, flags
))
972 return no_page_table(vma
, flags
, address
);
974 ptl
= pmd_lock(mm
, pmd
);
976 if (unlikely(!pmd_present(pmdval
))) {
978 return no_page_table(vma
, flags
, address
);
980 if (unlikely(!pmd_leaf(pmdval
))) {
982 return follow_page_pte(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
984 if (pmd_trans_huge(pmdval
) && (flags
& FOLL_SPLIT_PMD
)) {
986 split_huge_pmd(vma
, pmd
, address
);
987 /* If pmd was left empty, stuff a page table in there quickly */
988 return pte_alloc(mm
, pmd
) ? ERR_PTR(-ENOMEM
) :
989 follow_page_pte(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
991 page
= follow_huge_pmd(vma
, address
, pmd
, flags
, ctx
);
996 static struct page
*follow_pud_mask(struct vm_area_struct
*vma
,
997 unsigned long address
, p4d_t
*p4dp
,
999 struct follow_page_context
*ctx
)
1004 struct mm_struct
*mm
= vma
->vm_mm
;
1006 pudp
= pud_offset(p4dp
, address
);
1007 pud
= READ_ONCE(*pudp
);
1008 if (!pud_present(pud
))
1009 return no_page_table(vma
, flags
, address
);
1010 if (pud_leaf(pud
)) {
1011 ptl
= pud_lock(mm
, pudp
);
1012 page
= follow_huge_pud(vma
, address
, pudp
, flags
, ctx
);
1016 return no_page_table(vma
, flags
, address
);
1018 if (unlikely(pud_bad(pud
)))
1019 return no_page_table(vma
, flags
, address
);
1021 return follow_pmd_mask(vma
, address
, pudp
, flags
, ctx
);
1024 static struct page
*follow_p4d_mask(struct vm_area_struct
*vma
,
1025 unsigned long address
, pgd_t
*pgdp
,
1027 struct follow_page_context
*ctx
)
1031 p4dp
= p4d_offset(pgdp
, address
);
1032 p4d
= READ_ONCE(*p4dp
);
1033 BUILD_BUG_ON(p4d_leaf(p4d
));
1035 if (!p4d_present(p4d
) || p4d_bad(p4d
))
1036 return no_page_table(vma
, flags
, address
);
1038 return follow_pud_mask(vma
, address
, p4dp
, flags
, ctx
);
1042 * follow_page_mask - look up a page descriptor from a user-virtual address
1043 * @vma: vm_area_struct mapping @address
1044 * @address: virtual address to look up
1045 * @flags: flags modifying lookup behaviour
1046 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1047 * pointer to output page_mask
1049 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1051 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1052 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1054 * When getting an anonymous page and the caller has to trigger unsharing
1055 * of a shared anonymous page first, -EMLINK is returned. The caller should
1056 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1057 * relevant with FOLL_PIN and !FOLL_WRITE.
1059 * On output, the @ctx->page_mask is set according to the size of the page.
1061 * Return: the mapped (struct page *), %NULL if no mapping exists, or
1062 * an error pointer if there is a mapping to something not represented
1063 * by a page descriptor (see also vm_normal_page()).
1065 static struct page
*follow_page_mask(struct vm_area_struct
*vma
,
1066 unsigned long address
, unsigned int flags
,
1067 struct follow_page_context
*ctx
)
1070 struct mm_struct
*mm
= vma
->vm_mm
;
1073 vma_pgtable_walk_begin(vma
);
1076 pgd
= pgd_offset(mm
, address
);
1078 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1079 page
= no_page_table(vma
, flags
, address
);
1081 page
= follow_p4d_mask(vma
, address
, pgd
, flags
, ctx
);
1083 vma_pgtable_walk_end(vma
);
1088 static int get_gate_page(struct mm_struct
*mm
, unsigned long address
,
1089 unsigned int gup_flags
, struct vm_area_struct
**vma
,
1100 /* user gate pages are read-only */
1101 if (gup_flags
& FOLL_WRITE
)
1103 if (address
> TASK_SIZE
)
1104 pgd
= pgd_offset_k(address
);
1106 pgd
= pgd_offset_gate(mm
, address
);
1109 p4d
= p4d_offset(pgd
, address
);
1112 pud
= pud_offset(p4d
, address
);
1115 pmd
= pmd_offset(pud
, address
);
1116 if (!pmd_present(*pmd
))
1118 pte
= pte_offset_map(pmd
, address
);
1121 entry
= ptep_get(pte
);
1122 if (pte_none(entry
))
1124 *vma
= get_gate_vma(mm
);
1127 *page
= vm_normal_page(*vma
, address
, entry
);
1129 if ((gup_flags
& FOLL_DUMP
) || !is_zero_pfn(pte_pfn(entry
)))
1131 *page
= pte_page(entry
);
1133 ret
= try_grab_folio(page_folio(*page
), 1, gup_flags
);
1144 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
1145 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
1146 * to 0 and -EBUSY returned.
1148 static int faultin_page(struct vm_area_struct
*vma
,
1149 unsigned long address
, unsigned int flags
, bool unshare
,
1152 unsigned int fault_flags
= 0;
1155 if (flags
& FOLL_NOFAULT
)
1157 if (flags
& FOLL_WRITE
)
1158 fault_flags
|= FAULT_FLAG_WRITE
;
1159 if (flags
& FOLL_REMOTE
)
1160 fault_flags
|= FAULT_FLAG_REMOTE
;
1161 if (flags
& FOLL_UNLOCKABLE
) {
1162 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
1164 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1165 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1166 * That's because some callers may not be prepared to
1167 * handle early exits caused by non-fatal signals.
1169 if (flags
& FOLL_INTERRUPTIBLE
)
1170 fault_flags
|= FAULT_FLAG_INTERRUPTIBLE
;
1172 if (flags
& FOLL_NOWAIT
)
1173 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
;
1174 if (flags
& FOLL_TRIED
) {
1176 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1179 fault_flags
|= FAULT_FLAG_TRIED
;
1182 fault_flags
|= FAULT_FLAG_UNSHARE
;
1183 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1184 VM_BUG_ON(fault_flags
& FAULT_FLAG_WRITE
);
1187 ret
= handle_mm_fault(vma
, address
, fault_flags
, NULL
);
1189 if (ret
& VM_FAULT_COMPLETED
) {
1191 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1192 * mmap lock in the page fault handler. Sanity check this.
1194 WARN_ON_ONCE(fault_flags
& FAULT_FLAG_RETRY_NOWAIT
);
1198 * We should do the same as VM_FAULT_RETRY, but let's not
1199 * return -EBUSY since that's not reflecting the reality of
1200 * what has happened - we've just fully completed a page
1201 * fault, with the mmap lock released. Use -EAGAIN to show
1202 * that we want to take the mmap lock _again_.
1207 if (ret
& VM_FAULT_ERROR
) {
1208 int err
= vm_fault_to_errno(ret
, flags
);
1215 if (ret
& VM_FAULT_RETRY
) {
1216 if (!(fault_flags
& FAULT_FLAG_RETRY_NOWAIT
))
1225 * Writing to file-backed mappings which require folio dirty tracking using GUP
1226 * is a fundamentally broken operation, as kernel write access to GUP mappings
1227 * do not adhere to the semantics expected by a file system.
1229 * Consider the following scenario:-
1231 * 1. A folio is written to via GUP which write-faults the memory, notifying
1232 * the file system and dirtying the folio.
1233 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1234 * the PTE being marked read-only.
1235 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1237 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1238 * (though it does not have to).
1240 * This results in both data being written to a folio without writenotify, and
1241 * the folio being dirtied unexpectedly (if the caller decides to do so).
1243 static bool writable_file_mapping_allowed(struct vm_area_struct
*vma
,
1244 unsigned long gup_flags
)
1247 * If we aren't pinning then no problematic write can occur. A long term
1248 * pin is the most egregious case so this is the case we disallow.
1250 if ((gup_flags
& (FOLL_PIN
| FOLL_LONGTERM
)) !=
1251 (FOLL_PIN
| FOLL_LONGTERM
))
1255 * If the VMA does not require dirty tracking then no problematic write
1258 return !vma_needs_dirty_tracking(vma
);
1261 static int check_vma_flags(struct vm_area_struct
*vma
, unsigned long gup_flags
)
1263 vm_flags_t vm_flags
= vma
->vm_flags
;
1264 int write
= (gup_flags
& FOLL_WRITE
);
1265 int foreign
= (gup_flags
& FOLL_REMOTE
);
1266 bool vma_anon
= vma_is_anonymous(vma
);
1268 if (vm_flags
& (VM_IO
| VM_PFNMAP
))
1271 if ((gup_flags
& FOLL_ANON
) && !vma_anon
)
1274 if ((gup_flags
& FOLL_LONGTERM
) && vma_is_fsdax(vma
))
1277 if (vma_is_secretmem(vma
))
1282 !writable_file_mapping_allowed(vma
, gup_flags
))
1285 if (!(vm_flags
& VM_WRITE
) || (vm_flags
& VM_SHADOW_STACK
)) {
1286 if (!(gup_flags
& FOLL_FORCE
))
1288 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1289 if (is_vm_hugetlb_page(vma
))
1292 * We used to let the write,force case do COW in a
1293 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1294 * set a breakpoint in a read-only mapping of an
1295 * executable, without corrupting the file (yet only
1296 * when that file had been opened for writing!).
1297 * Anon pages in shared mappings are surprising: now
1300 if (!is_cow_mapping(vm_flags
))
1303 } else if (!(vm_flags
& VM_READ
)) {
1304 if (!(gup_flags
& FOLL_FORCE
))
1307 * Is there actually any vma we can reach here which does not
1308 * have VM_MAYREAD set?
1310 if (!(vm_flags
& VM_MAYREAD
))
1314 * gups are always data accesses, not instruction
1315 * fetches, so execute=false here
1317 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
1323 * This is "vma_lookup()", but with a warning if we would have
1324 * historically expanded the stack in the GUP code.
1326 static struct vm_area_struct
*gup_vma_lookup(struct mm_struct
*mm
,
1329 #ifdef CONFIG_STACK_GROWSUP
1330 return vma_lookup(mm
, addr
);
1332 static volatile unsigned long next_warn
;
1333 struct vm_area_struct
*vma
;
1334 unsigned long now
, next
;
1336 vma
= find_vma(mm
, addr
);
1337 if (!vma
|| (addr
>= vma
->vm_start
))
1340 /* Only warn for half-way relevant accesses */
1341 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
1343 if (vma
->vm_start
- addr
> 65536)
1346 /* Let's not warn more than once an hour.. */
1347 now
= jiffies
; next
= next_warn
;
1348 if (next
&& time_before(now
, next
))
1350 next_warn
= now
+ 60*60*HZ
;
1352 /* Let people know things may have changed. */
1353 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1354 current
->comm
, task_pid_nr(current
),
1355 vma
->vm_start
, vma
->vm_end
, addr
);
1362 * __get_user_pages() - pin user pages in memory
1363 * @mm: mm_struct of target mm
1364 * @start: starting user address
1365 * @nr_pages: number of pages from start to pin
1366 * @gup_flags: flags modifying pin behaviour
1367 * @pages: array that receives pointers to the pages pinned.
1368 * Should be at least nr_pages long. Or NULL, if caller
1369 * only intends to ensure the pages are faulted in.
1370 * @locked: whether we're still with the mmap_lock held
1372 * Returns either number of pages pinned (which may be less than the
1373 * number requested), or an error. Details about the return value:
1375 * -- If nr_pages is 0, returns 0.
1376 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1377 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1378 * pages pinned. Again, this may be less than nr_pages.
1379 * -- 0 return value is possible when the fault would need to be retried.
1381 * The caller is responsible for releasing returned @pages, via put_page().
1383 * Must be called with mmap_lock held. It may be released. See below.
1385 * __get_user_pages walks a process's page tables and takes a reference to
1386 * each struct page that each user address corresponds to at a given
1387 * instant. That is, it takes the page that would be accessed if a user
1388 * thread accesses the given user virtual address at that instant.
1390 * This does not guarantee that the page exists in the user mappings when
1391 * __get_user_pages returns, and there may even be a completely different
1392 * page there in some cases (eg. if mmapped pagecache has been invalidated
1393 * and subsequently re-faulted). However it does guarantee that the page
1394 * won't be freed completely. And mostly callers simply care that the page
1395 * contains data that was valid *at some point in time*. Typically, an IO
1396 * or similar operation cannot guarantee anything stronger anyway because
1397 * locks can't be held over the syscall boundary.
1399 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1400 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1401 * appropriate) must be called after the page is finished with, and
1402 * before put_page is called.
1404 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1405 * be released. If this happens *@locked will be set to 0 on return.
1407 * A caller using such a combination of @gup_flags must therefore hold the
1408 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1409 * it must be held for either reading or writing and will not be released.
1411 * In most cases, get_user_pages or get_user_pages_fast should be used
1412 * instead of __get_user_pages. __get_user_pages should be used only if
1413 * you need some special @gup_flags.
1415 static long __get_user_pages(struct mm_struct
*mm
,
1416 unsigned long start
, unsigned long nr_pages
,
1417 unsigned int gup_flags
, struct page
**pages
,
1420 long ret
= 0, i
= 0;
1421 struct vm_area_struct
*vma
= NULL
;
1422 struct follow_page_context ctx
= { NULL
};
1427 start
= untagged_addr_remote(mm
, start
);
1429 VM_BUG_ON(!!pages
!= !!(gup_flags
& (FOLL_GET
| FOLL_PIN
)));
1433 unsigned int page_increm
;
1435 /* first iteration or cross vma bound */
1436 if (!vma
|| start
>= vma
->vm_end
) {
1438 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1439 * lookups+error reporting differently.
1441 if (gup_flags
& FOLL_MADV_POPULATE
) {
1442 vma
= vma_lookup(mm
, start
);
1447 if (check_vma_flags(vma
, gup_flags
)) {
1453 vma
= gup_vma_lookup(mm
, start
);
1454 if (!vma
&& in_gate_area(mm
, start
)) {
1455 ret
= get_gate_page(mm
, start
& PAGE_MASK
,
1457 pages
? &page
: NULL
);
1468 ret
= check_vma_flags(vma
, gup_flags
);
1474 * If we have a pending SIGKILL, don't keep faulting pages and
1475 * potentially allocating memory.
1477 if (fatal_signal_pending(current
)) {
1483 page
= follow_page_mask(vma
, start
, gup_flags
, &ctx
);
1484 if (!page
|| PTR_ERR(page
) == -EMLINK
) {
1485 ret
= faultin_page(vma
, start
, gup_flags
,
1486 PTR_ERR(page
) == -EMLINK
, locked
);
1500 } else if (PTR_ERR(page
) == -EEXIST
) {
1502 * Proper page table entry exists, but no corresponding
1503 * struct page. If the caller expects **pages to be
1504 * filled in, bail out now, because that can't be done
1508 ret
= PTR_ERR(page
);
1511 } else if (IS_ERR(page
)) {
1512 ret
= PTR_ERR(page
);
1516 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & ctx
.page_mask
);
1517 if (page_increm
> nr_pages
)
1518 page_increm
= nr_pages
;
1521 struct page
*subpage
;
1525 * This must be a large folio (and doesn't need to
1526 * be the whole folio; it can be part of it), do
1527 * the refcount work for all the subpages too.
1529 * NOTE: here the page may not be the head page
1530 * e.g. when start addr is not thp-size aligned.
1531 * try_grab_folio() should have taken care of tail
1534 if (page_increm
> 1) {
1535 struct folio
*folio
= page_folio(page
);
1538 * Since we already hold refcount on the
1539 * large folio, this should never fail.
1541 if (try_grab_folio(folio
, page_increm
- 1,
1544 * Release the 1st page ref if the
1545 * folio is problematic, fail hard.
1547 gup_put_folio(folio
, 1, gup_flags
);
1553 for (j
= 0; j
< page_increm
; j
++) {
1554 subpage
= nth_page(page
, j
);
1555 pages
[i
+ j
] = subpage
;
1556 flush_anon_page(vma
, subpage
, start
+ j
* PAGE_SIZE
);
1557 flush_dcache_page(subpage
);
1562 start
+= page_increm
* PAGE_SIZE
;
1563 nr_pages
-= page_increm
;
1567 put_dev_pagemap(ctx
.pgmap
);
1571 static bool vma_permits_fault(struct vm_area_struct
*vma
,
1572 unsigned int fault_flags
)
1574 bool write
= !!(fault_flags
& FAULT_FLAG_WRITE
);
1575 bool foreign
= !!(fault_flags
& FAULT_FLAG_REMOTE
);
1576 vm_flags_t vm_flags
= write
? VM_WRITE
: VM_READ
;
1578 if (!(vm_flags
& vma
->vm_flags
))
1582 * The architecture might have a hardware protection
1583 * mechanism other than read/write that can deny access.
1585 * gup always represents data access, not instruction
1586 * fetches, so execute=false here:
1588 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
1595 * fixup_user_fault() - manually resolve a user page fault
1596 * @mm: mm_struct of target mm
1597 * @address: user address
1598 * @fault_flags:flags to pass down to handle_mm_fault()
1599 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1600 * does not allow retry. If NULL, the caller must guarantee
1601 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1603 * This is meant to be called in the specific scenario where for locking reasons
1604 * we try to access user memory in atomic context (within a pagefault_disable()
1605 * section), this returns -EFAULT, and we want to resolve the user fault before
1608 * Typically this is meant to be used by the futex code.
1610 * The main difference with get_user_pages() is that this function will
1611 * unconditionally call handle_mm_fault() which will in turn perform all the
1612 * necessary SW fixup of the dirty and young bits in the PTE, while
1613 * get_user_pages() only guarantees to update these in the struct page.
1615 * This is important for some architectures where those bits also gate the
1616 * access permission to the page because they are maintained in software. On
1617 * such architectures, gup() will not be enough to make a subsequent access
1620 * This function will not return with an unlocked mmap_lock. So it has not the
1621 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1623 int fixup_user_fault(struct mm_struct
*mm
,
1624 unsigned long address
, unsigned int fault_flags
,
1627 struct vm_area_struct
*vma
;
1630 address
= untagged_addr_remote(mm
, address
);
1633 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
1636 vma
= gup_vma_lookup(mm
, address
);
1640 if (!vma_permits_fault(vma
, fault_flags
))
1643 if ((fault_flags
& FAULT_FLAG_KILLABLE
) &&
1644 fatal_signal_pending(current
))
1647 ret
= handle_mm_fault(vma
, address
, fault_flags
, NULL
);
1649 if (ret
& VM_FAULT_COMPLETED
) {
1651 * NOTE: it's a pity that we need to retake the lock here
1652 * to pair with the unlock() in the callers. Ideally we
1653 * could tell the callers so they do not need to unlock.
1660 if (ret
& VM_FAULT_ERROR
) {
1661 int err
= vm_fault_to_errno(ret
, 0);
1668 if (ret
& VM_FAULT_RETRY
) {
1671 fault_flags
|= FAULT_FLAG_TRIED
;
1677 EXPORT_SYMBOL_GPL(fixup_user_fault
);
1680 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1681 * specified, it'll also respond to generic signals. The caller of GUP
1682 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1684 static bool gup_signal_pending(unsigned int flags
)
1686 if (fatal_signal_pending(current
))
1689 if (!(flags
& FOLL_INTERRUPTIBLE
))
1692 return signal_pending(current
);
1696 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1697 * the caller. This function may drop the mmap_lock. If it does so, then it will
1698 * set (*locked = 0).
1700 * (*locked == 0) means that the caller expects this function to acquire and
1701 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1702 * the function returns, even though it may have changed temporarily during
1703 * function execution.
1705 * Please note that this function, unlike __get_user_pages(), will not return 0
1706 * for nr_pages > 0, unless FOLL_NOWAIT is used.
1708 static __always_inline
long __get_user_pages_locked(struct mm_struct
*mm
,
1709 unsigned long start
,
1710 unsigned long nr_pages
,
1711 struct page
**pages
,
1715 long ret
, pages_done
;
1716 bool must_unlock
= false;
1722 * The internal caller expects GUP to manage the lock internally and the
1723 * lock must be released when this returns.
1726 if (mmap_read_lock_killable(mm
))
1732 mmap_assert_locked(mm
);
1734 if (flags
& FOLL_PIN
)
1735 mm_set_has_pinned_flag(&mm
->flags
);
1738 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1739 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1740 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1741 * for FOLL_GET, not for the newer FOLL_PIN.
1743 * FOLL_PIN always expects pages to be non-null, but no need to assert
1744 * that here, as any failures will be obvious enough.
1746 if (pages
&& !(flags
& FOLL_PIN
))
1751 ret
= __get_user_pages(mm
, start
, nr_pages
, flags
, pages
,
1753 if (!(flags
& FOLL_UNLOCKABLE
)) {
1754 /* VM_FAULT_RETRY couldn't trigger, bypass */
1759 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1762 BUG_ON(ret
>= nr_pages
);
1773 * VM_FAULT_RETRY didn't trigger or it was a
1781 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1782 * For the prefault case (!pages) we only update counts.
1786 start
+= ret
<< PAGE_SHIFT
;
1788 /* The lock was temporarily dropped, so we must unlock later */
1793 * Repeat on the address that fired VM_FAULT_RETRY
1794 * with both FAULT_FLAG_ALLOW_RETRY and
1795 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1796 * by fatal signals of even common signals, depending on
1797 * the caller's request. So we need to check it before we
1798 * start trying again otherwise it can loop forever.
1800 if (gup_signal_pending(flags
)) {
1802 pages_done
= -EINTR
;
1806 ret
= mmap_read_lock_killable(mm
);
1815 ret
= __get_user_pages(mm
, start
, 1, flags
| FOLL_TRIED
,
1818 /* Continue to retry until we succeeded */
1836 if (must_unlock
&& *locked
) {
1838 * We either temporarily dropped the lock, or the caller
1839 * requested that we both acquire and drop the lock. Either way,
1840 * we must now unlock, and notify the caller of that state.
1842 mmap_read_unlock(mm
);
1847 * Failing to pin anything implies something has gone wrong (except when
1848 * FOLL_NOWAIT is specified).
1850 if (WARN_ON_ONCE(pages_done
== 0 && !(flags
& FOLL_NOWAIT
)))
1857 * populate_vma_page_range() - populate a range of pages in the vma.
1859 * @start: start address
1861 * @locked: whether the mmap_lock is still held
1863 * This takes care of mlocking the pages too if VM_LOCKED is set.
1865 * Return either number of pages pinned in the vma, or a negative error
1868 * vma->vm_mm->mmap_lock must be held.
1870 * If @locked is NULL, it may be held for read or write and will
1873 * If @locked is non-NULL, it must held for read only and may be
1874 * released. If it's released, *@locked will be set to 0.
1876 long populate_vma_page_range(struct vm_area_struct
*vma
,
1877 unsigned long start
, unsigned long end
, int *locked
)
1879 struct mm_struct
*mm
= vma
->vm_mm
;
1880 unsigned long nr_pages
= (end
- start
) / PAGE_SIZE
;
1881 int local_locked
= 1;
1885 VM_BUG_ON(!PAGE_ALIGNED(start
));
1886 VM_BUG_ON(!PAGE_ALIGNED(end
));
1887 VM_BUG_ON_VMA(start
< vma
->vm_start
, vma
);
1888 VM_BUG_ON_VMA(end
> vma
->vm_end
, vma
);
1889 mmap_assert_locked(mm
);
1892 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1893 * faultin_page() to break COW, so it has no work to do here.
1895 if (vma
->vm_flags
& VM_LOCKONFAULT
)
1898 /* ... similarly, we've never faulted in PROT_NONE pages */
1899 if (!vma_is_accessible(vma
))
1902 gup_flags
= FOLL_TOUCH
;
1904 * We want to touch writable mappings with a write fault in order
1905 * to break COW, except for shared mappings because these don't COW
1906 * and we would not want to dirty them for nothing.
1908 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1909 * readable (ie write-only or executable).
1911 if ((vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
)
1912 gup_flags
|= FOLL_WRITE
;
1914 gup_flags
|= FOLL_FORCE
;
1917 gup_flags
|= FOLL_UNLOCKABLE
;
1920 * We made sure addr is within a VMA, so the following will
1921 * not result in a stack expansion that recurses back here.
1923 ret
= __get_user_pages(mm
, start
, nr_pages
, gup_flags
,
1924 NULL
, locked
? locked
: &local_locked
);
1930 * faultin_page_range() - populate (prefault) page tables inside the
1931 * given range readable/writable
1933 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1935 * @mm: the mm to populate page tables in
1936 * @start: start address
1938 * @write: whether to prefault readable or writable
1939 * @locked: whether the mmap_lock is still held
1941 * Returns either number of processed pages in the MM, or a negative error
1942 * code on error (see __get_user_pages()). Note that this function reports
1943 * errors related to VMAs, such as incompatible mappings, as expected by
1944 * MADV_POPULATE_(READ|WRITE).
1946 * The range must be page-aligned.
1948 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1950 long faultin_page_range(struct mm_struct
*mm
, unsigned long start
,
1951 unsigned long end
, bool write
, int *locked
)
1953 unsigned long nr_pages
= (end
- start
) / PAGE_SIZE
;
1957 VM_BUG_ON(!PAGE_ALIGNED(start
));
1958 VM_BUG_ON(!PAGE_ALIGNED(end
));
1959 mmap_assert_locked(mm
);
1962 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1963 * the page dirty with FOLL_WRITE -- which doesn't make a
1964 * difference with !FOLL_FORCE, because the page is writable
1965 * in the page table.
1966 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1968 * !FOLL_FORCE: Require proper access permissions.
1970 gup_flags
= FOLL_TOUCH
| FOLL_HWPOISON
| FOLL_UNLOCKABLE
|
1973 gup_flags
|= FOLL_WRITE
;
1975 ret
= __get_user_pages_locked(mm
, start
, nr_pages
, NULL
, locked
,
1982 * __mm_populate - populate and/or mlock pages within a range of address space.
1984 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1985 * flags. VMAs must be already marked with the desired vm_flags, and
1986 * mmap_lock must not be held.
1988 int __mm_populate(unsigned long start
, unsigned long len
, int ignore_errors
)
1990 struct mm_struct
*mm
= current
->mm
;
1991 unsigned long end
, nstart
, nend
;
1992 struct vm_area_struct
*vma
= NULL
;
1998 for (nstart
= start
; nstart
< end
; nstart
= nend
) {
2000 * We want to fault in pages for [nstart; end) address range.
2001 * Find first corresponding VMA.
2006 vma
= find_vma_intersection(mm
, nstart
, end
);
2007 } else if (nstart
>= vma
->vm_end
)
2008 vma
= find_vma_intersection(mm
, vma
->vm_end
, end
);
2013 * Set [nstart; nend) to intersection of desired address
2014 * range with the first VMA. Also, skip undesirable VMA types.
2016 nend
= min(end
, vma
->vm_end
);
2017 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
2019 if (nstart
< vma
->vm_start
)
2020 nstart
= vma
->vm_start
;
2022 * Now fault in a range of pages. populate_vma_page_range()
2023 * double checks the vma flags, so that it won't mlock pages
2024 * if the vma was already munlocked.
2026 ret
= populate_vma_page_range(vma
, nstart
, nend
, &locked
);
2028 if (ignore_errors
) {
2030 continue; /* continue at next VMA */
2034 nend
= nstart
+ ret
* PAGE_SIZE
;
2038 mmap_read_unlock(mm
);
2039 return ret
; /* 0 or negative error code */
2041 #else /* CONFIG_MMU */
2042 static long __get_user_pages_locked(struct mm_struct
*mm
, unsigned long start
,
2043 unsigned long nr_pages
, struct page
**pages
,
2044 int *locked
, unsigned int foll_flags
)
2046 struct vm_area_struct
*vma
;
2047 bool must_unlock
= false;
2048 unsigned long vm_flags
;
2055 * The internal caller expects GUP to manage the lock internally and the
2056 * lock must be released when this returns.
2059 if (mmap_read_lock_killable(mm
))
2065 /* calculate required read or write permissions.
2066 * If FOLL_FORCE is set, we only require the "MAY" flags.
2068 vm_flags
= (foll_flags
& FOLL_WRITE
) ?
2069 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
2070 vm_flags
&= (foll_flags
& FOLL_FORCE
) ?
2071 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
2073 for (i
= 0; i
< nr_pages
; i
++) {
2074 vma
= find_vma(mm
, start
);
2078 /* protect what we can, including chardevs */
2079 if ((vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
2080 !(vm_flags
& vma
->vm_flags
))
2084 pages
[i
] = virt_to_page((void *)start
);
2089 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
2092 if (must_unlock
&& *locked
) {
2093 mmap_read_unlock(mm
);
2097 return i
? : -EFAULT
;
2099 #endif /* !CONFIG_MMU */
2102 * fault_in_writeable - fault in userspace address range for writing
2103 * @uaddr: start of address range
2104 * @size: size of address range
2106 * Returns the number of bytes not faulted in (like copy_to_user() and
2107 * copy_from_user()).
2109 size_t fault_in_writeable(char __user
*uaddr
, size_t size
)
2111 char __user
*start
= uaddr
, *end
;
2113 if (unlikely(size
== 0))
2115 if (!user_write_access_begin(uaddr
, size
))
2117 if (!PAGE_ALIGNED(uaddr
)) {
2118 unsafe_put_user(0, uaddr
, out
);
2119 uaddr
= (char __user
*)PAGE_ALIGN((unsigned long)uaddr
);
2121 end
= (char __user
*)PAGE_ALIGN((unsigned long)start
+ size
);
2122 if (unlikely(end
< start
))
2124 while (uaddr
!= end
) {
2125 unsafe_put_user(0, uaddr
, out
);
2130 user_write_access_end();
2131 if (size
> uaddr
- start
)
2132 return size
- (uaddr
- start
);
2135 EXPORT_SYMBOL(fault_in_writeable
);
2138 * fault_in_subpage_writeable - fault in an address range for writing
2139 * @uaddr: start of address range
2140 * @size: size of address range
2142 * Fault in a user address range for writing while checking for permissions at
2143 * sub-page granularity (e.g. arm64 MTE). This function should be used when
2144 * the caller cannot guarantee forward progress of a copy_to_user() loop.
2146 * Returns the number of bytes not faulted in (like copy_to_user() and
2147 * copy_from_user()).
2149 size_t fault_in_subpage_writeable(char __user
*uaddr
, size_t size
)
2154 * Attempt faulting in at page granularity first for page table
2155 * permission checking. The arch-specific probe_subpage_writeable()
2156 * functions may not check for this.
2158 faulted_in
= size
- fault_in_writeable(uaddr
, size
);
2160 faulted_in
-= probe_subpage_writeable(uaddr
, faulted_in
);
2162 return size
- faulted_in
;
2164 EXPORT_SYMBOL(fault_in_subpage_writeable
);
2167 * fault_in_safe_writeable - fault in an address range for writing
2168 * @uaddr: start of address range
2169 * @size: length of address range
2171 * Faults in an address range for writing. This is primarily useful when we
2172 * already know that some or all of the pages in the address range aren't in
2175 * Unlike fault_in_writeable(), this function is non-destructive.
2177 * Note that we don't pin or otherwise hold the pages referenced that we fault
2178 * in. There's no guarantee that they'll stay in memory for any duration of
2181 * Returns the number of bytes not faulted in, like copy_to_user() and
2184 size_t fault_in_safe_writeable(const char __user
*uaddr
, size_t size
)
2186 unsigned long start
= (unsigned long)uaddr
, end
;
2187 struct mm_struct
*mm
= current
->mm
;
2188 bool unlocked
= false;
2190 if (unlikely(size
== 0))
2192 end
= PAGE_ALIGN(start
+ size
);
2198 if (fixup_user_fault(mm
, start
, FAULT_FLAG_WRITE
, &unlocked
))
2200 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
2201 } while (start
!= end
);
2202 mmap_read_unlock(mm
);
2204 if (size
> (unsigned long)uaddr
- start
)
2205 return size
- ((unsigned long)uaddr
- start
);
2208 EXPORT_SYMBOL(fault_in_safe_writeable
);
2211 * fault_in_readable - fault in userspace address range for reading
2212 * @uaddr: start of user address range
2213 * @size: size of user address range
2215 * Returns the number of bytes not faulted in (like copy_to_user() and
2216 * copy_from_user()).
2218 size_t fault_in_readable(const char __user
*uaddr
, size_t size
)
2220 const char __user
*start
= uaddr
, *end
;
2223 if (unlikely(size
== 0))
2225 if (!user_read_access_begin(uaddr
, size
))
2227 if (!PAGE_ALIGNED(uaddr
)) {
2228 unsafe_get_user(c
, uaddr
, out
);
2229 uaddr
= (const char __user
*)PAGE_ALIGN((unsigned long)uaddr
);
2231 end
= (const char __user
*)PAGE_ALIGN((unsigned long)start
+ size
);
2232 if (unlikely(end
< start
))
2234 while (uaddr
!= end
) {
2235 unsafe_get_user(c
, uaddr
, out
);
2240 user_read_access_end();
2242 if (size
> uaddr
- start
)
2243 return size
- (uaddr
- start
);
2246 EXPORT_SYMBOL(fault_in_readable
);
2249 * get_dump_page() - pin user page in memory while writing it to core dump
2250 * @addr: user address
2252 * Returns struct page pointer of user page pinned for dump,
2253 * to be freed afterwards by put_page().
2255 * Returns NULL on any kind of failure - a hole must then be inserted into
2256 * the corefile, to preserve alignment with its headers; and also returns
2257 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2258 * allowing a hole to be left in the corefile to save disk space.
2260 * Called without mmap_lock (takes and releases the mmap_lock by itself).
2262 #ifdef CONFIG_ELF_CORE
2263 struct page
*get_dump_page(unsigned long addr
)
2269 ret
= __get_user_pages_locked(current
->mm
, addr
, 1, &page
, &locked
,
2270 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
);
2271 return (ret
== 1) ? page
: NULL
;
2273 #endif /* CONFIG_ELF_CORE */
2275 #ifdef CONFIG_MIGRATION
2278 * An array of either pages or folios ("pofs"). Although it may seem tempting to
2279 * avoid this complication, by simply interpreting a list of folios as a list of
2280 * pages, that approach won't work in the longer term, because eventually the
2281 * layouts of struct page and struct folio will become completely different.
2282 * Furthermore, this pof approach avoids excessive page_folio() calls.
2284 struct pages_or_folios
{
2286 struct page
**pages
;
2287 struct folio
**folios
;
2294 static struct folio
*pofs_get_folio(struct pages_or_folios
*pofs
, long i
)
2296 if (pofs
->has_folios
)
2297 return pofs
->folios
[i
];
2298 return page_folio(pofs
->pages
[i
]);
2301 static void pofs_clear_entry(struct pages_or_folios
*pofs
, long i
)
2303 pofs
->entries
[i
] = NULL
;
2306 static void pofs_unpin(struct pages_or_folios
*pofs
)
2308 if (pofs
->has_folios
)
2309 unpin_folios(pofs
->folios
, pofs
->nr_entries
);
2311 unpin_user_pages(pofs
->pages
, pofs
->nr_entries
);
2315 * Returns the number of collected folios. Return value is always >= 0.
2317 static unsigned long collect_longterm_unpinnable_folios(
2318 struct list_head
*movable_folio_list
,
2319 struct pages_or_folios
*pofs
)
2321 unsigned long i
, collected
= 0;
2322 struct folio
*prev_folio
= NULL
;
2323 bool drain_allow
= true;
2325 for (i
= 0; i
< pofs
->nr_entries
; i
++) {
2326 struct folio
*folio
= pofs_get_folio(pofs
, i
);
2328 if (folio
== prev_folio
)
2332 if (folio_is_longterm_pinnable(folio
))
2337 if (folio_is_device_coherent(folio
))
2340 if (folio_test_hugetlb(folio
)) {
2341 isolate_hugetlb(folio
, movable_folio_list
);
2345 if (!folio_test_lru(folio
) && drain_allow
) {
2346 lru_add_drain_all();
2347 drain_allow
= false;
2350 if (!folio_isolate_lru(folio
))
2353 list_add_tail(&folio
->lru
, movable_folio_list
);
2354 node_stat_mod_folio(folio
,
2355 NR_ISOLATED_ANON
+ folio_is_file_lru(folio
),
2356 folio_nr_pages(folio
));
2363 * Unpins all folios and migrates device coherent folios and movable_folio_list.
2364 * Returns -EAGAIN if all folios were successfully migrated or -errno for
2365 * failure (or partial success).
2368 migrate_longterm_unpinnable_folios(struct list_head
*movable_folio_list
,
2369 struct pages_or_folios
*pofs
)
2374 for (i
= 0; i
< pofs
->nr_entries
; i
++) {
2375 struct folio
*folio
= pofs_get_folio(pofs
, i
);
2377 if (folio_is_device_coherent(folio
)) {
2379 * Migration will fail if the folio is pinned, so
2380 * convert the pin on the source folio to a normal
2383 pofs_clear_entry(pofs
, i
);
2385 gup_put_folio(folio
, 1, FOLL_PIN
);
2387 if (migrate_device_coherent_folio(folio
)) {
2396 * We can't migrate folios with unexpected references, so drop
2397 * the reference obtained by __get_user_pages_locked().
2398 * Migrating folios have been added to movable_folio_list after
2399 * calling folio_isolate_lru() which takes a reference so the
2400 * folio won't be freed if it's migrating.
2403 pofs_clear_entry(pofs
, i
);
2406 if (!list_empty(movable_folio_list
)) {
2407 struct migration_target_control mtc
= {
2408 .nid
= NUMA_NO_NODE
,
2409 .gfp_mask
= GFP_USER
| __GFP_NOWARN
,
2410 .reason
= MR_LONGTERM_PIN
,
2413 if (migrate_pages(movable_folio_list
, alloc_migration_target
,
2414 NULL
, (unsigned long)&mtc
, MIGRATE_SYNC
,
2415 MR_LONGTERM_PIN
, NULL
)) {
2421 putback_movable_pages(movable_folio_list
);
2427 putback_movable_pages(movable_folio_list
);
2433 check_and_migrate_movable_pages_or_folios(struct pages_or_folios
*pofs
)
2435 LIST_HEAD(movable_folio_list
);
2436 unsigned long collected
;
2438 collected
= collect_longterm_unpinnable_folios(&movable_folio_list
,
2443 return migrate_longterm_unpinnable_folios(&movable_folio_list
, pofs
);
2447 * Check whether all folios are *allowed* to be pinned indefinitely (long term).
2448 * Rather confusingly, all folios in the range are required to be pinned via
2449 * FOLL_PIN, before calling this routine.
2453 * 0: if everything is OK and all folios in the range are allowed to be pinned,
2454 * then this routine leaves all folios pinned and returns zero for success.
2456 * -EAGAIN: if any folios in the range are not allowed to be pinned, then this
2457 * routine will migrate those folios away, unpin all the folios in the range. If
2458 * migration of the entire set of folios succeeds, then -EAGAIN is returned. The
2459 * caller should re-pin the entire range with FOLL_PIN and then call this
2462 * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this
2463 * indicates a migration failure. The caller should give up, and propagate the
2464 * error back up the call stack. The caller does not need to unpin any folios in
2465 * that case, because this routine will do the unpinning.
2467 static long check_and_migrate_movable_folios(unsigned long nr_folios
,
2468 struct folio
**folios
)
2470 struct pages_or_folios pofs
= {
2473 .nr_entries
= nr_folios
,
2476 return check_and_migrate_movable_pages_or_folios(&pofs
);
2480 * Return values and behavior are the same as those for
2481 * check_and_migrate_movable_folios().
2483 static long check_and_migrate_movable_pages(unsigned long nr_pages
,
2484 struct page
**pages
)
2486 struct pages_or_folios pofs
= {
2488 .has_folios
= false,
2489 .nr_entries
= nr_pages
,
2492 return check_and_migrate_movable_pages_or_folios(&pofs
);
2495 static long check_and_migrate_movable_pages(unsigned long nr_pages
,
2496 struct page
**pages
)
2501 static long check_and_migrate_movable_folios(unsigned long nr_folios
,
2502 struct folio
**folios
)
2506 #endif /* CONFIG_MIGRATION */
2509 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2510 * allows us to process the FOLL_LONGTERM flag.
2512 static long __gup_longterm_locked(struct mm_struct
*mm
,
2513 unsigned long start
,
2514 unsigned long nr_pages
,
2515 struct page
**pages
,
2517 unsigned int gup_flags
)
2520 long rc
, nr_pinned_pages
;
2522 if (!(gup_flags
& FOLL_LONGTERM
))
2523 return __get_user_pages_locked(mm
, start
, nr_pages
, pages
,
2526 flags
= memalloc_pin_save();
2528 nr_pinned_pages
= __get_user_pages_locked(mm
, start
, nr_pages
,
2531 if (nr_pinned_pages
<= 0) {
2532 rc
= nr_pinned_pages
;
2536 /* FOLL_LONGTERM implies FOLL_PIN */
2537 rc
= check_and_migrate_movable_pages(nr_pinned_pages
, pages
);
2538 } while (rc
== -EAGAIN
);
2539 memalloc_pin_restore(flags
);
2540 return rc
? rc
: nr_pinned_pages
;
2544 * Check that the given flags are valid for the exported gup/pup interface, and
2545 * update them with the required flags that the caller must have set.
2547 static bool is_valid_gup_args(struct page
**pages
, int *locked
,
2548 unsigned int *gup_flags_p
, unsigned int to_set
)
2550 unsigned int gup_flags
= *gup_flags_p
;
2553 * These flags not allowed to be specified externally to the gup
2555 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2556 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
2557 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2559 if (WARN_ON_ONCE(gup_flags
& INTERNAL_GUP_FLAGS
))
2562 gup_flags
|= to_set
;
2564 /* At the external interface locked must be set */
2565 if (WARN_ON_ONCE(*locked
!= 1))
2568 gup_flags
|= FOLL_UNLOCKABLE
;
2571 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2572 if (WARN_ON_ONCE((gup_flags
& (FOLL_PIN
| FOLL_GET
)) ==
2573 (FOLL_PIN
| FOLL_GET
)))
2576 /* LONGTERM can only be specified when pinning */
2577 if (WARN_ON_ONCE(!(gup_flags
& FOLL_PIN
) && (gup_flags
& FOLL_LONGTERM
)))
2580 /* Pages input must be given if using GET/PIN */
2581 if (WARN_ON_ONCE((gup_flags
& (FOLL_GET
| FOLL_PIN
)) && !pages
))
2584 /* We want to allow the pgmap to be hot-unplugged at all times */
2585 if (WARN_ON_ONCE((gup_flags
& FOLL_LONGTERM
) &&
2586 (gup_flags
& FOLL_PCI_P2PDMA
)))
2589 *gup_flags_p
= gup_flags
;
2595 * get_user_pages_remote() - pin user pages in memory
2596 * @mm: mm_struct of target mm
2597 * @start: starting user address
2598 * @nr_pages: number of pages from start to pin
2599 * @gup_flags: flags modifying lookup behaviour
2600 * @pages: array that receives pointers to the pages pinned.
2601 * Should be at least nr_pages long. Or NULL, if caller
2602 * only intends to ensure the pages are faulted in.
2603 * @locked: pointer to lock flag indicating whether lock is held and
2604 * subsequently whether VM_FAULT_RETRY functionality can be
2605 * utilised. Lock must initially be held.
2607 * Returns either number of pages pinned (which may be less than the
2608 * number requested), or an error. Details about the return value:
2610 * -- If nr_pages is 0, returns 0.
2611 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2612 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2613 * pages pinned. Again, this may be less than nr_pages.
2615 * The caller is responsible for releasing returned @pages, via put_page().
2617 * Must be called with mmap_lock held for read or write.
2619 * get_user_pages_remote walks a process's page tables and takes a reference
2620 * to each struct page that each user address corresponds to at a given
2621 * instant. That is, it takes the page that would be accessed if a user
2622 * thread accesses the given user virtual address at that instant.
2624 * This does not guarantee that the page exists in the user mappings when
2625 * get_user_pages_remote returns, and there may even be a completely different
2626 * page there in some cases (eg. if mmapped pagecache has been invalidated
2627 * and subsequently re-faulted). However it does guarantee that the page
2628 * won't be freed completely. And mostly callers simply care that the page
2629 * contains data that was valid *at some point in time*. Typically, an IO
2630 * or similar operation cannot guarantee anything stronger anyway because
2631 * locks can't be held over the syscall boundary.
2633 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2634 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2635 * be called after the page is finished with, and before put_page is called.
2637 * get_user_pages_remote is typically used for fewer-copy IO operations,
2638 * to get a handle on the memory by some means other than accesses
2639 * via the user virtual addresses. The pages may be submitted for
2640 * DMA to devices or accessed via their kernel linear mapping (via the
2641 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2643 * See also get_user_pages_fast, for performance critical applications.
2645 * get_user_pages_remote should be phased out in favor of
2646 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2647 * should use get_user_pages_remote because it cannot pass
2648 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2650 long get_user_pages_remote(struct mm_struct
*mm
,
2651 unsigned long start
, unsigned long nr_pages
,
2652 unsigned int gup_flags
, struct page
**pages
,
2655 int local_locked
= 1;
2657 if (!is_valid_gup_args(pages
, locked
, &gup_flags
,
2658 FOLL_TOUCH
| FOLL_REMOTE
))
2661 return __get_user_pages_locked(mm
, start
, nr_pages
, pages
,
2662 locked
? locked
: &local_locked
,
2665 EXPORT_SYMBOL(get_user_pages_remote
);
2667 #else /* CONFIG_MMU */
2668 long get_user_pages_remote(struct mm_struct
*mm
,
2669 unsigned long start
, unsigned long nr_pages
,
2670 unsigned int gup_flags
, struct page
**pages
,
2675 #endif /* !CONFIG_MMU */
2678 * get_user_pages() - pin user pages in memory
2679 * @start: starting user address
2680 * @nr_pages: number of pages from start to pin
2681 * @gup_flags: flags modifying lookup behaviour
2682 * @pages: array that receives pointers to the pages pinned.
2683 * Should be at least nr_pages long. Or NULL, if caller
2684 * only intends to ensure the pages are faulted in.
2686 * This is the same as get_user_pages_remote(), just with a less-flexible
2687 * calling convention where we assume that the mm being operated on belongs to
2688 * the current task, and doesn't allow passing of a locked parameter. We also
2689 * obviously don't pass FOLL_REMOTE in here.
2691 long get_user_pages(unsigned long start
, unsigned long nr_pages
,
2692 unsigned int gup_flags
, struct page
**pages
)
2696 if (!is_valid_gup_args(pages
, NULL
, &gup_flags
, FOLL_TOUCH
))
2699 return __get_user_pages_locked(current
->mm
, start
, nr_pages
, pages
,
2700 &locked
, gup_flags
);
2702 EXPORT_SYMBOL(get_user_pages
);
2705 * get_user_pages_unlocked() is suitable to replace the form:
2707 * mmap_read_lock(mm);
2708 * get_user_pages(mm, ..., pages, NULL);
2709 * mmap_read_unlock(mm);
2713 * get_user_pages_unlocked(mm, ..., pages);
2715 * It is functionally equivalent to get_user_pages_fast so
2716 * get_user_pages_fast should be used instead if specific gup_flags
2717 * (e.g. FOLL_FORCE) are not required.
2719 long get_user_pages_unlocked(unsigned long start
, unsigned long nr_pages
,
2720 struct page
**pages
, unsigned int gup_flags
)
2724 if (!is_valid_gup_args(pages
, NULL
, &gup_flags
,
2725 FOLL_TOUCH
| FOLL_UNLOCKABLE
))
2728 return __get_user_pages_locked(current
->mm
, start
, nr_pages
, pages
,
2729 &locked
, gup_flags
);
2731 EXPORT_SYMBOL(get_user_pages_unlocked
);
2736 * get_user_pages_fast attempts to pin user pages by walking the page
2737 * tables directly and avoids taking locks. Thus the walker needs to be
2738 * protected from page table pages being freed from under it, and should
2739 * block any THP splits.
2741 * One way to achieve this is to have the walker disable interrupts, and
2742 * rely on IPIs from the TLB flushing code blocking before the page table
2743 * pages are freed. This is unsuitable for architectures that do not need
2744 * to broadcast an IPI when invalidating TLBs.
2746 * Another way to achieve this is to batch up page table containing pages
2747 * belonging to more than one mm_user, then rcu_sched a callback to free those
2748 * pages. Disabling interrupts will allow the gup_fast() walker to both block
2749 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2750 * (which is a relatively rare event). The code below adopts this strategy.
2752 * Before activating this code, please be aware that the following assumptions
2753 * are currently made:
2755 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2756 * free pages containing page tables or TLB flushing requires IPI broadcast.
2758 * *) ptes can be read atomically by the architecture.
2760 * *) access_ok is sufficient to validate userspace address ranges.
2762 * The last two assumptions can be relaxed by the addition of helper functions.
2764 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2766 #ifdef CONFIG_HAVE_GUP_FAST
2768 * Used in the GUP-fast path to determine whether GUP is permitted to work on
2771 * This call assumes the caller has pinned the folio, that the lowest page table
2772 * level still points to this folio, and that interrupts have been disabled.
2774 * GUP-fast must reject all secretmem folios.
2776 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2777 * (see comment describing the writable_file_mapping_allowed() function). We
2778 * therefore try to avoid the most egregious case of a long-term mapping doing
2781 * This function cannot be as thorough as that one as the VMA is not available
2782 * in the fast path, so instead we whitelist known good cases and if in doubt,
2783 * fall back to the slow path.
2785 static bool gup_fast_folio_allowed(struct folio
*folio
, unsigned int flags
)
2787 bool reject_file_backed
= false;
2788 struct address_space
*mapping
;
2789 bool check_secretmem
= false;
2790 unsigned long mapping_flags
;
2793 * If we aren't pinning then no problematic write can occur. A long term
2794 * pin is the most egregious case so this is the one we disallow.
2796 if ((flags
& (FOLL_PIN
| FOLL_LONGTERM
| FOLL_WRITE
)) ==
2797 (FOLL_PIN
| FOLL_LONGTERM
| FOLL_WRITE
))
2798 reject_file_backed
= true;
2800 /* We hold a folio reference, so we can safely access folio fields. */
2802 /* secretmem folios are always order-0 folios. */
2803 if (IS_ENABLED(CONFIG_SECRETMEM
) && !folio_test_large(folio
))
2804 check_secretmem
= true;
2806 if (!reject_file_backed
&& !check_secretmem
)
2809 if (WARN_ON_ONCE(folio_test_slab(folio
)))
2812 /* hugetlb neither requires dirty-tracking nor can be secretmem. */
2813 if (folio_test_hugetlb(folio
))
2817 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2818 * cannot proceed, which means no actions performed under RCU can
2821 * inodes and thus their mappings are freed under RCU, which means the
2822 * mapping cannot be freed beneath us and thus we can safely dereference
2825 lockdep_assert_irqs_disabled();
2828 * However, there may be operations which _alter_ the mapping, so ensure
2829 * we read it once and only once.
2831 mapping
= READ_ONCE(folio
->mapping
);
2834 * The mapping may have been truncated, in any case we cannot determine
2835 * if this mapping is safe - fall back to slow path to determine how to
2841 /* Anonymous folios pose no problem. */
2842 mapping_flags
= (unsigned long)mapping
& PAGE_MAPPING_FLAGS
;
2844 return mapping_flags
& PAGE_MAPPING_ANON
;
2847 * At this point, we know the mapping is non-null and points to an
2848 * address_space object.
2850 if (check_secretmem
&& secretmem_mapping(mapping
))
2852 /* The only remaining allowed file system is shmem. */
2853 return !reject_file_backed
|| shmem_mapping(mapping
);
2856 static void __maybe_unused
gup_fast_undo_dev_pagemap(int *nr
, int nr_start
,
2857 unsigned int flags
, struct page
**pages
)
2859 while ((*nr
) - nr_start
) {
2860 struct folio
*folio
= page_folio(pages
[--(*nr
)]);
2862 folio_clear_referenced(folio
);
2863 gup_put_folio(folio
, 1, flags
);
2867 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2869 * GUP-fast relies on pte change detection to avoid concurrent pgtable
2872 * To pin the page, GUP-fast needs to do below in order:
2873 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2875 * For the rest of pgtable operations where pgtable updates can be racy
2876 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2879 * Above will work for all pte-level operations, including THP split.
2881 * For THP collapse, it's a bit more complicated because GUP-fast may be
2882 * walking a pgtable page that is being freed (pte is still valid but pmd
2883 * can be cleared already). To avoid race in such condition, we need to
2884 * also check pmd here to make sure pmd doesn't change (corresponds to
2885 * pmdp_collapse_flush() in the THP collapse code path).
2887 static int gup_fast_pte_range(pmd_t pmd
, pmd_t
*pmdp
, unsigned long addr
,
2888 unsigned long end
, unsigned int flags
, struct page
**pages
,
2891 struct dev_pagemap
*pgmap
= NULL
;
2892 int nr_start
= *nr
, ret
= 0;
2895 ptem
= ptep
= pte_offset_map(&pmd
, addr
);
2899 pte_t pte
= ptep_get_lockless(ptep
);
2901 struct folio
*folio
;
2904 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2905 * pte_access_permitted() better should reject these pages
2906 * either way: otherwise, GUP-fast might succeed in
2907 * cases where ordinary GUP would fail due to VMA access
2910 if (pte_protnone(pte
))
2913 if (!pte_access_permitted(pte
, flags
& FOLL_WRITE
))
2916 if (pte_devmap(pte
)) {
2917 if (unlikely(flags
& FOLL_LONGTERM
))
2920 pgmap
= get_dev_pagemap(pte_pfn(pte
), pgmap
);
2921 if (unlikely(!pgmap
)) {
2922 gup_fast_undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
2925 } else if (pte_special(pte
))
2928 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
2929 page
= pte_page(pte
);
2931 folio
= try_grab_folio_fast(page
, 1, flags
);
2935 if (unlikely(pmd_val(pmd
) != pmd_val(*pmdp
)) ||
2936 unlikely(pte_val(pte
) != pte_val(ptep_get(ptep
)))) {
2937 gup_put_folio(folio
, 1, flags
);
2941 if (!gup_fast_folio_allowed(folio
, flags
)) {
2942 gup_put_folio(folio
, 1, flags
);
2946 if (!pte_write(pte
) && gup_must_unshare(NULL
, flags
, page
)) {
2947 gup_put_folio(folio
, 1, flags
);
2952 * We need to make the page accessible if and only if we are
2953 * going to access its content (the FOLL_PIN case). Please
2954 * see Documentation/core-api/pin_user_pages.rst for
2957 if (flags
& FOLL_PIN
) {
2958 ret
= arch_make_folio_accessible(folio
);
2960 gup_put_folio(folio
, 1, flags
);
2964 folio_set_referenced(folio
);
2967 } while (ptep
++, addr
+= PAGE_SIZE
, addr
!= end
);
2973 put_dev_pagemap(pgmap
);
2980 * If we can't determine whether or not a pte is special, then fail immediately
2981 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2984 * For a futex to be placed on a THP tail page, get_futex_key requires a
2985 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2986 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2988 static int gup_fast_pte_range(pmd_t pmd
, pmd_t
*pmdp
, unsigned long addr
,
2989 unsigned long end
, unsigned int flags
, struct page
**pages
,
2994 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2996 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2997 static int gup_fast_devmap_leaf(unsigned long pfn
, unsigned long addr
,
2998 unsigned long end
, unsigned int flags
, struct page
**pages
, int *nr
)
3001 struct dev_pagemap
*pgmap
= NULL
;
3004 struct folio
*folio
;
3005 struct page
*page
= pfn_to_page(pfn
);
3007 pgmap
= get_dev_pagemap(pfn
, pgmap
);
3008 if (unlikely(!pgmap
)) {
3009 gup_fast_undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
3013 if (!(flags
& FOLL_PCI_P2PDMA
) && is_pci_p2pdma_page(page
)) {
3014 gup_fast_undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
3018 folio
= try_grab_folio_fast(page
, 1, flags
);
3020 gup_fast_undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
3023 folio_set_referenced(folio
);
3027 } while (addr
+= PAGE_SIZE
, addr
!= end
);
3029 put_dev_pagemap(pgmap
);
3033 static int gup_fast_devmap_pmd_leaf(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
3034 unsigned long end
, unsigned int flags
, struct page
**pages
,
3037 unsigned long fault_pfn
;
3040 fault_pfn
= pmd_pfn(orig
) + ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
3041 if (!gup_fast_devmap_leaf(fault_pfn
, addr
, end
, flags
, pages
, nr
))
3044 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
3045 gup_fast_undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
3051 static int gup_fast_devmap_pud_leaf(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
3052 unsigned long end
, unsigned int flags
, struct page
**pages
,
3055 unsigned long fault_pfn
;
3058 fault_pfn
= pud_pfn(orig
) + ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
3059 if (!gup_fast_devmap_leaf(fault_pfn
, addr
, end
, flags
, pages
, nr
))
3062 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
3063 gup_fast_undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
3069 static int gup_fast_devmap_pmd_leaf(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
3070 unsigned long end
, unsigned int flags
, struct page
**pages
,
3077 static int gup_fast_devmap_pud_leaf(pud_t pud
, pud_t
*pudp
, unsigned long addr
,
3078 unsigned long end
, unsigned int flags
, struct page
**pages
,
3086 static int gup_fast_pmd_leaf(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
3087 unsigned long end
, unsigned int flags
, struct page
**pages
,
3091 struct folio
*folio
;
3094 if (!pmd_access_permitted(orig
, flags
& FOLL_WRITE
))
3097 if (pmd_special(orig
))
3100 if (pmd_devmap(orig
)) {
3101 if (unlikely(flags
& FOLL_LONGTERM
))
3103 return gup_fast_devmap_pmd_leaf(orig
, pmdp
, addr
, end
, flags
,
3107 page
= pmd_page(orig
);
3108 refs
= record_subpages(page
, PMD_SIZE
, addr
, end
, pages
+ *nr
);
3110 folio
= try_grab_folio_fast(page
, refs
, flags
);
3114 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
3115 gup_put_folio(folio
, refs
, flags
);
3119 if (!gup_fast_folio_allowed(folio
, flags
)) {
3120 gup_put_folio(folio
, refs
, flags
);
3123 if (!pmd_write(orig
) && gup_must_unshare(NULL
, flags
, &folio
->page
)) {
3124 gup_put_folio(folio
, refs
, flags
);
3129 folio_set_referenced(folio
);
3133 static int gup_fast_pud_leaf(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
3134 unsigned long end
, unsigned int flags
, struct page
**pages
,
3138 struct folio
*folio
;
3141 if (!pud_access_permitted(orig
, flags
& FOLL_WRITE
))
3144 if (pud_special(orig
))
3147 if (pud_devmap(orig
)) {
3148 if (unlikely(flags
& FOLL_LONGTERM
))
3150 return gup_fast_devmap_pud_leaf(orig
, pudp
, addr
, end
, flags
,
3154 page
= pud_page(orig
);
3155 refs
= record_subpages(page
, PUD_SIZE
, addr
, end
, pages
+ *nr
);
3157 folio
= try_grab_folio_fast(page
, refs
, flags
);
3161 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
3162 gup_put_folio(folio
, refs
, flags
);
3166 if (!gup_fast_folio_allowed(folio
, flags
)) {
3167 gup_put_folio(folio
, refs
, flags
);
3171 if (!pud_write(orig
) && gup_must_unshare(NULL
, flags
, &folio
->page
)) {
3172 gup_put_folio(folio
, refs
, flags
);
3177 folio_set_referenced(folio
);
3181 static int gup_fast_pgd_leaf(pgd_t orig
, pgd_t
*pgdp
, unsigned long addr
,
3182 unsigned long end
, unsigned int flags
, struct page
**pages
,
3187 struct folio
*folio
;
3189 if (!pgd_access_permitted(orig
, flags
& FOLL_WRITE
))
3192 BUILD_BUG_ON(pgd_devmap(orig
));
3194 page
= pgd_page(orig
);
3195 refs
= record_subpages(page
, PGDIR_SIZE
, addr
, end
, pages
+ *nr
);
3197 folio
= try_grab_folio_fast(page
, refs
, flags
);
3201 if (unlikely(pgd_val(orig
) != pgd_val(*pgdp
))) {
3202 gup_put_folio(folio
, refs
, flags
);
3206 if (!pgd_write(orig
) && gup_must_unshare(NULL
, flags
, &folio
->page
)) {
3207 gup_put_folio(folio
, refs
, flags
);
3211 if (!gup_fast_folio_allowed(folio
, flags
)) {
3212 gup_put_folio(folio
, refs
, flags
);
3217 folio_set_referenced(folio
);
3221 static int gup_fast_pmd_range(pud_t
*pudp
, pud_t pud
, unsigned long addr
,
3222 unsigned long end
, unsigned int flags
, struct page
**pages
,
3228 pmdp
= pmd_offset_lockless(pudp
, pud
, addr
);
3230 pmd_t pmd
= pmdp_get_lockless(pmdp
);
3232 next
= pmd_addr_end(addr
, end
);
3233 if (!pmd_present(pmd
))
3236 if (unlikely(pmd_leaf(pmd
))) {
3237 /* See gup_fast_pte_range() */
3238 if (pmd_protnone(pmd
))
3241 if (!gup_fast_pmd_leaf(pmd
, pmdp
, addr
, next
, flags
,
3245 } else if (!gup_fast_pte_range(pmd
, pmdp
, addr
, next
, flags
,
3248 } while (pmdp
++, addr
= next
, addr
!= end
);
3253 static int gup_fast_pud_range(p4d_t
*p4dp
, p4d_t p4d
, unsigned long addr
,
3254 unsigned long end
, unsigned int flags
, struct page
**pages
,
3260 pudp
= pud_offset_lockless(p4dp
, p4d
, addr
);
3262 pud_t pud
= READ_ONCE(*pudp
);
3264 next
= pud_addr_end(addr
, end
);
3265 if (unlikely(!pud_present(pud
)))
3267 if (unlikely(pud_leaf(pud
))) {
3268 if (!gup_fast_pud_leaf(pud
, pudp
, addr
, next
, flags
,
3271 } else if (!gup_fast_pmd_range(pudp
, pud
, addr
, next
, flags
,
3274 } while (pudp
++, addr
= next
, addr
!= end
);
3279 static int gup_fast_p4d_range(pgd_t
*pgdp
, pgd_t pgd
, unsigned long addr
,
3280 unsigned long end
, unsigned int flags
, struct page
**pages
,
3286 p4dp
= p4d_offset_lockless(pgdp
, pgd
, addr
);
3288 p4d_t p4d
= READ_ONCE(*p4dp
);
3290 next
= p4d_addr_end(addr
, end
);
3291 if (!p4d_present(p4d
))
3293 BUILD_BUG_ON(p4d_leaf(p4d
));
3294 if (!gup_fast_pud_range(p4dp
, p4d
, addr
, next
, flags
,
3297 } while (p4dp
++, addr
= next
, addr
!= end
);
3302 static void gup_fast_pgd_range(unsigned long addr
, unsigned long end
,
3303 unsigned int flags
, struct page
**pages
, int *nr
)
3308 pgdp
= pgd_offset(current
->mm
, addr
);
3310 pgd_t pgd
= READ_ONCE(*pgdp
);
3312 next
= pgd_addr_end(addr
, end
);
3315 if (unlikely(pgd_leaf(pgd
))) {
3316 if (!gup_fast_pgd_leaf(pgd
, pgdp
, addr
, next
, flags
,
3319 } else if (!gup_fast_p4d_range(pgdp
, pgd
, addr
, next
, flags
,
3322 } while (pgdp
++, addr
= next
, addr
!= end
);
3325 static inline void gup_fast_pgd_range(unsigned long addr
, unsigned long end
,
3326 unsigned int flags
, struct page
**pages
, int *nr
)
3329 #endif /* CONFIG_HAVE_GUP_FAST */
3331 #ifndef gup_fast_permitted
3333 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3334 * we need to fall back to the slow version:
3336 static bool gup_fast_permitted(unsigned long start
, unsigned long end
)
3342 static unsigned long gup_fast(unsigned long start
, unsigned long end
,
3343 unsigned int gup_flags
, struct page
**pages
)
3345 unsigned long flags
;
3349 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST
) ||
3350 !gup_fast_permitted(start
, end
))
3353 if (gup_flags
& FOLL_PIN
) {
3354 seq
= raw_read_seqcount(¤t
->mm
->write_protect_seq
);
3360 * Disable interrupts. The nested form is used, in order to allow full,
3361 * general purpose use of this routine.
3363 * With interrupts disabled, we block page table pages from being freed
3364 * from under us. See struct mmu_table_batch comments in
3365 * include/asm-generic/tlb.h for more details.
3367 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3368 * that come from THPs splitting.
3370 local_irq_save(flags
);
3371 gup_fast_pgd_range(start
, end
, gup_flags
, pages
, &nr_pinned
);
3372 local_irq_restore(flags
);
3375 * When pinning pages for DMA there could be a concurrent write protect
3376 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3378 if (gup_flags
& FOLL_PIN
) {
3379 if (read_seqcount_retry(¤t
->mm
->write_protect_seq
, seq
)) {
3380 gup_fast_unpin_user_pages(pages
, nr_pinned
);
3383 sanity_check_pinned_pages(pages
, nr_pinned
);
3389 static int gup_fast_fallback(unsigned long start
, unsigned long nr_pages
,
3390 unsigned int gup_flags
, struct page
**pages
)
3392 unsigned long len
, end
;
3393 unsigned long nr_pinned
;
3397 if (WARN_ON_ONCE(gup_flags
& ~(FOLL_WRITE
| FOLL_LONGTERM
|
3398 FOLL_FORCE
| FOLL_PIN
| FOLL_GET
|
3399 FOLL_FAST_ONLY
| FOLL_NOFAULT
|
3400 FOLL_PCI_P2PDMA
| FOLL_HONOR_NUMA_FAULT
)))
3403 if (gup_flags
& FOLL_PIN
)
3404 mm_set_has_pinned_flag(¤t
->mm
->flags
);
3406 if (!(gup_flags
& FOLL_FAST_ONLY
))
3407 might_lock_read(¤t
->mm
->mmap_lock
);
3409 start
= untagged_addr(start
) & PAGE_MASK
;
3410 len
= nr_pages
<< PAGE_SHIFT
;
3411 if (check_add_overflow(start
, len
, &end
))
3413 if (end
> TASK_SIZE_MAX
)
3415 if (unlikely(!access_ok((void __user
*)start
, len
)))
3418 nr_pinned
= gup_fast(start
, end
, gup_flags
, pages
);
3419 if (nr_pinned
== nr_pages
|| gup_flags
& FOLL_FAST_ONLY
)
3422 /* Slow path: try to get the remaining pages with get_user_pages */
3423 start
+= nr_pinned
<< PAGE_SHIFT
;
3425 ret
= __gup_longterm_locked(current
->mm
, start
, nr_pages
- nr_pinned
,
3427 gup_flags
| FOLL_TOUCH
| FOLL_UNLOCKABLE
);
3430 * The caller has to unpin the pages we already pinned so
3431 * returning -errno is not an option
3437 return ret
+ nr_pinned
;
3441 * get_user_pages_fast_only() - pin user pages in memory
3442 * @start: starting user address
3443 * @nr_pages: number of pages from start to pin
3444 * @gup_flags: flags modifying pin behaviour
3445 * @pages: array that receives pointers to the pages pinned.
3446 * Should be at least nr_pages long.
3448 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3451 * If the architecture does not support this function, simply return with no
3454 * Careful, careful! COW breaking can go either way, so a non-write
3455 * access can get ambiguous page results. If you call this function without
3456 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3458 int get_user_pages_fast_only(unsigned long start
, int nr_pages
,
3459 unsigned int gup_flags
, struct page
**pages
)
3462 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3463 * because gup fast is always a "pin with a +1 page refcount" request.
3465 * FOLL_FAST_ONLY is required in order to match the API description of
3466 * this routine: no fall back to regular ("slow") GUP.
3468 if (!is_valid_gup_args(pages
, NULL
, &gup_flags
,
3469 FOLL_GET
| FOLL_FAST_ONLY
))
3472 return gup_fast_fallback(start
, nr_pages
, gup_flags
, pages
);
3474 EXPORT_SYMBOL_GPL(get_user_pages_fast_only
);
3477 * get_user_pages_fast() - pin user pages in memory
3478 * @start: starting user address
3479 * @nr_pages: number of pages from start to pin
3480 * @gup_flags: flags modifying pin behaviour
3481 * @pages: array that receives pointers to the pages pinned.
3482 * Should be at least nr_pages long.
3484 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3485 * If not successful, it will fall back to taking the lock and
3486 * calling get_user_pages().
3488 * Returns number of pages pinned. This may be fewer than the number requested.
3489 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3492 int get_user_pages_fast(unsigned long start
, int nr_pages
,
3493 unsigned int gup_flags
, struct page
**pages
)
3496 * The caller may or may not have explicitly set FOLL_GET; either way is
3497 * OK. However, internally (within mm/gup.c), gup fast variants must set
3498 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3501 if (!is_valid_gup_args(pages
, NULL
, &gup_flags
, FOLL_GET
))
3503 return gup_fast_fallback(start
, nr_pages
, gup_flags
, pages
);
3505 EXPORT_SYMBOL_GPL(get_user_pages_fast
);
3508 * pin_user_pages_fast() - pin user pages in memory without taking locks
3510 * @start: starting user address
3511 * @nr_pages: number of pages from start to pin
3512 * @gup_flags: flags modifying pin behaviour
3513 * @pages: array that receives pointers to the pages pinned.
3514 * Should be at least nr_pages long.
3516 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3517 * get_user_pages_fast() for documentation on the function arguments, because
3518 * the arguments here are identical.
3520 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3521 * see Documentation/core-api/pin_user_pages.rst for further details.
3523 * Note that if a zero_page is amongst the returned pages, it will not have
3524 * pins in it and unpin_user_page() will not remove pins from it.
3526 int pin_user_pages_fast(unsigned long start
, int nr_pages
,
3527 unsigned int gup_flags
, struct page
**pages
)
3529 if (!is_valid_gup_args(pages
, NULL
, &gup_flags
, FOLL_PIN
))
3531 return gup_fast_fallback(start
, nr_pages
, gup_flags
, pages
);
3533 EXPORT_SYMBOL_GPL(pin_user_pages_fast
);
3536 * pin_user_pages_remote() - pin pages of a remote process
3538 * @mm: mm_struct of target mm
3539 * @start: starting user address
3540 * @nr_pages: number of pages from start to pin
3541 * @gup_flags: flags modifying lookup behaviour
3542 * @pages: array that receives pointers to the pages pinned.
3543 * Should be at least nr_pages long.
3544 * @locked: pointer to lock flag indicating whether lock is held and
3545 * subsequently whether VM_FAULT_RETRY functionality can be
3546 * utilised. Lock must initially be held.
3548 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3549 * get_user_pages_remote() for documentation on the function arguments, because
3550 * the arguments here are identical.
3552 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3553 * see Documentation/core-api/pin_user_pages.rst for details.
3555 * Note that if a zero_page is amongst the returned pages, it will not have
3556 * pins in it and unpin_user_page*() will not remove pins from it.
3558 long pin_user_pages_remote(struct mm_struct
*mm
,
3559 unsigned long start
, unsigned long nr_pages
,
3560 unsigned int gup_flags
, struct page
**pages
,
3563 int local_locked
= 1;
3565 if (!is_valid_gup_args(pages
, locked
, &gup_flags
,
3566 FOLL_PIN
| FOLL_TOUCH
| FOLL_REMOTE
))
3568 return __gup_longterm_locked(mm
, start
, nr_pages
, pages
,
3569 locked
? locked
: &local_locked
,
3572 EXPORT_SYMBOL(pin_user_pages_remote
);
3575 * pin_user_pages() - pin user pages in memory for use by other devices
3577 * @start: starting user address
3578 * @nr_pages: number of pages from start to pin
3579 * @gup_flags: flags modifying lookup behaviour
3580 * @pages: array that receives pointers to the pages pinned.
3581 * Should be at least nr_pages long.
3583 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3586 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3587 * see Documentation/core-api/pin_user_pages.rst for details.
3589 * Note that if a zero_page is amongst the returned pages, it will not have
3590 * pins in it and unpin_user_page*() will not remove pins from it.
3592 long pin_user_pages(unsigned long start
, unsigned long nr_pages
,
3593 unsigned int gup_flags
, struct page
**pages
)
3597 if (!is_valid_gup_args(pages
, NULL
, &gup_flags
, FOLL_PIN
))
3599 return __gup_longterm_locked(current
->mm
, start
, nr_pages
,
3600 pages
, &locked
, gup_flags
);
3602 EXPORT_SYMBOL(pin_user_pages
);
3605 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3606 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3607 * FOLL_PIN and rejects FOLL_GET.
3609 * Note that if a zero_page is amongst the returned pages, it will not have
3610 * pins in it and unpin_user_page*() will not remove pins from it.
3612 long pin_user_pages_unlocked(unsigned long start
, unsigned long nr_pages
,
3613 struct page
**pages
, unsigned int gup_flags
)
3617 if (!is_valid_gup_args(pages
, NULL
, &gup_flags
,
3618 FOLL_PIN
| FOLL_TOUCH
| FOLL_UNLOCKABLE
))
3621 return __gup_longterm_locked(current
->mm
, start
, nr_pages
, pages
,
3622 &locked
, gup_flags
);
3624 EXPORT_SYMBOL(pin_user_pages_unlocked
);
3627 * memfd_pin_folios() - pin folios associated with a memfd
3628 * @memfd: the memfd whose folios are to be pinned
3629 * @start: the first memfd offset
3630 * @end: the last memfd offset (inclusive)
3631 * @folios: array that receives pointers to the folios pinned
3632 * @max_folios: maximum number of entries in @folios
3633 * @offset: the offset into the first folio
3635 * Attempt to pin folios associated with a memfd in the contiguous range
3636 * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3637 * the folios can either be found in the page cache or need to be allocated
3638 * if necessary. Once the folios are located, they are all pinned via
3639 * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3640 * And, eventually, these pinned folios must be released either using
3641 * unpin_folios() or unpin_folio().
3643 * It must be noted that the folios may be pinned for an indefinite amount
3644 * of time. And, in most cases, the duration of time they may stay pinned
3645 * would be controlled by the userspace. This behavior is effectively the
3646 * same as using FOLL_LONGTERM with other GUP APIs.
3648 * Returns number of folios pinned, which could be less than @max_folios
3649 * as it depends on the folio sizes that cover the range [start, end].
3650 * If no folios were pinned, it returns -errno.
3652 long memfd_pin_folios(struct file
*memfd
, loff_t start
, loff_t end
,
3653 struct folio
**folios
, unsigned int max_folios
,
3656 unsigned int flags
, nr_folios
, nr_found
;
3657 unsigned int i
, pgshift
= PAGE_SHIFT
;
3658 pgoff_t start_idx
, end_idx
, next_idx
;
3659 struct folio
*folio
= NULL
;
3660 struct folio_batch fbatch
;
3664 if (start
< 0 || start
> end
|| !max_folios
)
3670 if (!shmem_file(memfd
) && !is_file_hugepages(memfd
))
3673 if (end
>= i_size_read(file_inode(memfd
)))
3676 if (is_file_hugepages(memfd
)) {
3677 h
= hstate_file(memfd
);
3678 pgshift
= huge_page_shift(h
);
3681 flags
= memalloc_pin_save();
3684 start_idx
= start
>> pgshift
;
3685 end_idx
= end
>> pgshift
;
3686 if (is_file_hugepages(memfd
)) {
3687 start_idx
<<= huge_page_order(h
);
3688 end_idx
<<= huge_page_order(h
);
3691 folio_batch_init(&fbatch
);
3692 while (start_idx
<= end_idx
&& nr_folios
< max_folios
) {
3694 * In most cases, we should be able to find the folios
3695 * in the page cache. If we cannot find them for some
3696 * reason, we try to allocate them and add them to the
3699 nr_found
= filemap_get_folios_contig(memfd
->f_mapping
,
3709 for (i
= 0; i
< nr_found
; i
++) {
3711 * As there can be multiple entries for a
3712 * given folio in the batch returned by
3713 * filemap_get_folios_contig(), the below
3714 * check is to ensure that we pin and return a
3715 * unique set of folios between start and end.
3718 next_idx
!= folio_index(fbatch
.folios
[i
]))
3721 folio
= page_folio(&fbatch
.folios
[i
]->page
);
3723 if (try_grab_folio(folio
, 1, FOLL_PIN
)) {
3724 folio_batch_release(&fbatch
);
3730 *offset
= offset_in_folio(folio
, start
);
3732 folios
[nr_folios
] = folio
;
3733 next_idx
= folio_next_index(folio
);
3734 if (++nr_folios
== max_folios
)
3739 folio_batch_release(&fbatch
);
3741 folio
= memfd_alloc_folio(memfd
, start_idx
);
3742 if (IS_ERR(folio
)) {
3743 ret
= PTR_ERR(folio
);
3751 ret
= check_and_migrate_movable_folios(nr_folios
, folios
);
3752 } while (ret
== -EAGAIN
);
3754 memalloc_pin_restore(flags
);
3755 return ret
? ret
: nr_folios
;
3757 memalloc_pin_restore(flags
);
3758 unpin_folios(folios
, nr_folios
);
3762 EXPORT_SYMBOL_GPL(memfd_pin_folios
);
3765 * folio_add_pins() - add pins to an already-pinned folio
3766 * @folio: the folio to add more pins to
3767 * @pins: number of pins to add
3769 * Try to add more pins to an already-pinned folio. The semantics
3770 * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot
3773 * This function is helpful when having obtained a pin on a large folio
3774 * using memfd_pin_folios(), but wanting to logically unpin parts
3775 * (e.g., individual pages) of the folio later, for example, using
3776 * unpin_user_page_range_dirty_lock().
3778 * This is not the right interface to initially pin a folio.
3780 int folio_add_pins(struct folio
*folio
, unsigned int pins
)
3782 VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio
));
3784 return try_grab_folio(folio
, pins
, FOLL_PIN
);
3786 EXPORT_SYMBOL_GPL(folio_add_pins
);