1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 #include <linux/padata.h>
41 #include <asm/pgalloc.h>
45 #include <linux/hugetlb.h>
46 #include <linux/hugetlb_cgroup.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
50 #include "hugetlb_vmemmap.h"
52 int hugetlb_max_hstate __read_mostly
;
53 unsigned int default_hstate_idx
;
54 struct hstate hstates
[HUGE_MAX_HSTATE
];
57 static struct cma
*hugetlb_cma
[MAX_NUMNODES
];
58 static unsigned long hugetlb_cma_size_in_node
[MAX_NUMNODES
] __initdata
;
60 static unsigned long hugetlb_cma_size __initdata
;
62 __initdata
struct list_head huge_boot_pages
[MAX_NUMNODES
];
64 /* for command line parsing */
65 static struct hstate
* __initdata parsed_hstate
;
66 static unsigned long __initdata default_hstate_max_huge_pages
;
67 static bool __initdata parsed_valid_hugepagesz
= true;
68 static bool __initdata parsed_default_hugepagesz
;
69 static unsigned int default_hugepages_in_node
[MAX_NUMNODES
] __initdata
;
72 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
73 * free_huge_pages, and surplus_huge_pages.
75 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(hugetlb_lock
);
78 * Serializes faults on the same logical page. This is used to
79 * prevent spurious OOMs when the hugepage pool is fully utilized.
81 static int num_fault_mutexes __ro_after_init
;
82 struct mutex
*hugetlb_fault_mutex_table __ro_after_init
;
84 /* Forward declaration */
85 static int hugetlb_acct_memory(struct hstate
*h
, long delta
);
86 static void hugetlb_vma_lock_free(struct vm_area_struct
*vma
);
87 static void hugetlb_vma_lock_alloc(struct vm_area_struct
*vma
);
88 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct
*vma
);
89 static void hugetlb_unshare_pmds(struct vm_area_struct
*vma
,
90 unsigned long start
, unsigned long end
);
91 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
);
93 static void hugetlb_free_folio(struct folio
*folio
)
96 int nid
= folio_nid(folio
);
98 if (cma_free_folio(hugetlb_cma
[nid
], folio
))
104 static inline bool subpool_is_free(struct hugepage_subpool
*spool
)
108 if (spool
->max_hpages
!= -1)
109 return spool
->used_hpages
== 0;
110 if (spool
->min_hpages
!= -1)
111 return spool
->rsv_hpages
== spool
->min_hpages
;
116 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
,
117 unsigned long irq_flags
)
119 spin_unlock_irqrestore(&spool
->lock
, irq_flags
);
121 /* If no pages are used, and no other handles to the subpool
122 * remain, give up any reservations based on minimum size and
123 * free the subpool */
124 if (subpool_is_free(spool
)) {
125 if (spool
->min_hpages
!= -1)
126 hugetlb_acct_memory(spool
->hstate
,
132 struct hugepage_subpool
*hugepage_new_subpool(struct hstate
*h
, long max_hpages
,
135 struct hugepage_subpool
*spool
;
137 spool
= kzalloc(sizeof(*spool
), GFP_KERNEL
);
141 spin_lock_init(&spool
->lock
);
143 spool
->max_hpages
= max_hpages
;
145 spool
->min_hpages
= min_hpages
;
147 if (min_hpages
!= -1 && hugetlb_acct_memory(h
, min_hpages
)) {
151 spool
->rsv_hpages
= min_hpages
;
156 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
160 spin_lock_irqsave(&spool
->lock
, flags
);
161 BUG_ON(!spool
->count
);
163 unlock_or_release_subpool(spool
, flags
);
167 * Subpool accounting for allocating and reserving pages.
168 * Return -ENOMEM if there are not enough resources to satisfy the
169 * request. Otherwise, return the number of pages by which the
170 * global pools must be adjusted (upward). The returned value may
171 * only be different than the passed value (delta) in the case where
172 * a subpool minimum size must be maintained.
174 static long hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
182 spin_lock_irq(&spool
->lock
);
184 if (spool
->max_hpages
!= -1) { /* maximum size accounting */
185 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
)
186 spool
->used_hpages
+= delta
;
193 /* minimum size accounting */
194 if (spool
->min_hpages
!= -1 && spool
->rsv_hpages
) {
195 if (delta
> spool
->rsv_hpages
) {
197 * Asking for more reserves than those already taken on
198 * behalf of subpool. Return difference.
200 ret
= delta
- spool
->rsv_hpages
;
201 spool
->rsv_hpages
= 0;
203 ret
= 0; /* reserves already accounted for */
204 spool
->rsv_hpages
-= delta
;
209 spin_unlock_irq(&spool
->lock
);
214 * Subpool accounting for freeing and unreserving pages.
215 * Return the number of global page reservations that must be dropped.
216 * The return value may only be different than the passed value (delta)
217 * in the case where a subpool minimum size must be maintained.
219 static long hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
228 spin_lock_irqsave(&spool
->lock
, flags
);
230 if (spool
->max_hpages
!= -1) /* maximum size accounting */
231 spool
->used_hpages
-= delta
;
233 /* minimum size accounting */
234 if (spool
->min_hpages
!= -1 && spool
->used_hpages
< spool
->min_hpages
) {
235 if (spool
->rsv_hpages
+ delta
<= spool
->min_hpages
)
238 ret
= spool
->rsv_hpages
+ delta
- spool
->min_hpages
;
240 spool
->rsv_hpages
+= delta
;
241 if (spool
->rsv_hpages
> spool
->min_hpages
)
242 spool
->rsv_hpages
= spool
->min_hpages
;
246 * If hugetlbfs_put_super couldn't free spool due to an outstanding
247 * quota reference, free it now.
249 unlock_or_release_subpool(spool
, flags
);
254 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
256 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
259 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
261 return subpool_inode(file_inode(vma
->vm_file
));
265 * hugetlb vma_lock helper routines
267 void hugetlb_vma_lock_read(struct vm_area_struct
*vma
)
269 if (__vma_shareable_lock(vma
)) {
270 struct hugetlb_vma_lock
*vma_lock
= vma
->vm_private_data
;
272 down_read(&vma_lock
->rw_sema
);
273 } else if (__vma_private_lock(vma
)) {
274 struct resv_map
*resv_map
= vma_resv_map(vma
);
276 down_read(&resv_map
->rw_sema
);
280 void hugetlb_vma_unlock_read(struct vm_area_struct
*vma
)
282 if (__vma_shareable_lock(vma
)) {
283 struct hugetlb_vma_lock
*vma_lock
= vma
->vm_private_data
;
285 up_read(&vma_lock
->rw_sema
);
286 } else if (__vma_private_lock(vma
)) {
287 struct resv_map
*resv_map
= vma_resv_map(vma
);
289 up_read(&resv_map
->rw_sema
);
293 void hugetlb_vma_lock_write(struct vm_area_struct
*vma
)
295 if (__vma_shareable_lock(vma
)) {
296 struct hugetlb_vma_lock
*vma_lock
= vma
->vm_private_data
;
298 down_write(&vma_lock
->rw_sema
);
299 } else if (__vma_private_lock(vma
)) {
300 struct resv_map
*resv_map
= vma_resv_map(vma
);
302 down_write(&resv_map
->rw_sema
);
306 void hugetlb_vma_unlock_write(struct vm_area_struct
*vma
)
308 if (__vma_shareable_lock(vma
)) {
309 struct hugetlb_vma_lock
*vma_lock
= vma
->vm_private_data
;
311 up_write(&vma_lock
->rw_sema
);
312 } else if (__vma_private_lock(vma
)) {
313 struct resv_map
*resv_map
= vma_resv_map(vma
);
315 up_write(&resv_map
->rw_sema
);
319 int hugetlb_vma_trylock_write(struct vm_area_struct
*vma
)
322 if (__vma_shareable_lock(vma
)) {
323 struct hugetlb_vma_lock
*vma_lock
= vma
->vm_private_data
;
325 return down_write_trylock(&vma_lock
->rw_sema
);
326 } else if (__vma_private_lock(vma
)) {
327 struct resv_map
*resv_map
= vma_resv_map(vma
);
329 return down_write_trylock(&resv_map
->rw_sema
);
335 void hugetlb_vma_assert_locked(struct vm_area_struct
*vma
)
337 if (__vma_shareable_lock(vma
)) {
338 struct hugetlb_vma_lock
*vma_lock
= vma
->vm_private_data
;
340 lockdep_assert_held(&vma_lock
->rw_sema
);
341 } else if (__vma_private_lock(vma
)) {
342 struct resv_map
*resv_map
= vma_resv_map(vma
);
344 lockdep_assert_held(&resv_map
->rw_sema
);
348 void hugetlb_vma_lock_release(struct kref
*kref
)
350 struct hugetlb_vma_lock
*vma_lock
= container_of(kref
,
351 struct hugetlb_vma_lock
, refs
);
356 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock
*vma_lock
)
358 struct vm_area_struct
*vma
= vma_lock
->vma
;
361 * vma_lock structure may or not be released as a result of put,
362 * it certainly will no longer be attached to vma so clear pointer.
363 * Semaphore synchronizes access to vma_lock->vma field.
365 vma_lock
->vma
= NULL
;
366 vma
->vm_private_data
= NULL
;
367 up_write(&vma_lock
->rw_sema
);
368 kref_put(&vma_lock
->refs
, hugetlb_vma_lock_release
);
371 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct
*vma
)
373 if (__vma_shareable_lock(vma
)) {
374 struct hugetlb_vma_lock
*vma_lock
= vma
->vm_private_data
;
376 __hugetlb_vma_unlock_write_put(vma_lock
);
377 } else if (__vma_private_lock(vma
)) {
378 struct resv_map
*resv_map
= vma_resv_map(vma
);
380 /* no free for anon vmas, but still need to unlock */
381 up_write(&resv_map
->rw_sema
);
385 static void hugetlb_vma_lock_free(struct vm_area_struct
*vma
)
388 * Only present in sharable vmas.
390 if (!vma
|| !__vma_shareable_lock(vma
))
393 if (vma
->vm_private_data
) {
394 struct hugetlb_vma_lock
*vma_lock
= vma
->vm_private_data
;
396 down_write(&vma_lock
->rw_sema
);
397 __hugetlb_vma_unlock_write_put(vma_lock
);
401 static void hugetlb_vma_lock_alloc(struct vm_area_struct
*vma
)
403 struct hugetlb_vma_lock
*vma_lock
;
405 /* Only establish in (flags) sharable vmas */
406 if (!vma
|| !(vma
->vm_flags
& VM_MAYSHARE
))
409 /* Should never get here with non-NULL vm_private_data */
410 if (vma
->vm_private_data
)
413 vma_lock
= kmalloc(sizeof(*vma_lock
), GFP_KERNEL
);
416 * If we can not allocate structure, then vma can not
417 * participate in pmd sharing. This is only a possible
418 * performance enhancement and memory saving issue.
419 * However, the lock is also used to synchronize page
420 * faults with truncation. If the lock is not present,
421 * unlikely races could leave pages in a file past i_size
422 * until the file is removed. Warn in the unlikely case of
423 * allocation failure.
425 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
429 kref_init(&vma_lock
->refs
);
430 init_rwsem(&vma_lock
->rw_sema
);
432 vma
->vm_private_data
= vma_lock
;
435 /* Helper that removes a struct file_region from the resv_map cache and returns
438 static struct file_region
*
439 get_file_region_entry_from_cache(struct resv_map
*resv
, long from
, long to
)
441 struct file_region
*nrg
;
443 VM_BUG_ON(resv
->region_cache_count
<= 0);
445 resv
->region_cache_count
--;
446 nrg
= list_first_entry(&resv
->region_cache
, struct file_region
, link
);
447 list_del(&nrg
->link
);
455 static void copy_hugetlb_cgroup_uncharge_info(struct file_region
*nrg
,
456 struct file_region
*rg
)
458 #ifdef CONFIG_CGROUP_HUGETLB
459 nrg
->reservation_counter
= rg
->reservation_counter
;
466 /* Helper that records hugetlb_cgroup uncharge info. */
467 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup
*h_cg
,
469 struct resv_map
*resv
,
470 struct file_region
*nrg
)
472 #ifdef CONFIG_CGROUP_HUGETLB
474 nrg
->reservation_counter
=
475 &h_cg
->rsvd_hugepage
[hstate_index(h
)];
476 nrg
->css
= &h_cg
->css
;
478 * The caller will hold exactly one h_cg->css reference for the
479 * whole contiguous reservation region. But this area might be
480 * scattered when there are already some file_regions reside in
481 * it. As a result, many file_regions may share only one css
482 * reference. In order to ensure that one file_region must hold
483 * exactly one h_cg->css reference, we should do css_get for
484 * each file_region and leave the reference held by caller
488 if (!resv
->pages_per_hpage
)
489 resv
->pages_per_hpage
= pages_per_huge_page(h
);
490 /* pages_per_hpage should be the same for all entries in
493 VM_BUG_ON(resv
->pages_per_hpage
!= pages_per_huge_page(h
));
495 nrg
->reservation_counter
= NULL
;
501 static void put_uncharge_info(struct file_region
*rg
)
503 #ifdef CONFIG_CGROUP_HUGETLB
509 static bool has_same_uncharge_info(struct file_region
*rg
,
510 struct file_region
*org
)
512 #ifdef CONFIG_CGROUP_HUGETLB
513 return rg
->reservation_counter
== org
->reservation_counter
&&
521 static void coalesce_file_region(struct resv_map
*resv
, struct file_region
*rg
)
523 struct file_region
*nrg
, *prg
;
525 prg
= list_prev_entry(rg
, link
);
526 if (&prg
->link
!= &resv
->regions
&& prg
->to
== rg
->from
&&
527 has_same_uncharge_info(prg
, rg
)) {
531 put_uncharge_info(rg
);
537 nrg
= list_next_entry(rg
, link
);
538 if (&nrg
->link
!= &resv
->regions
&& nrg
->from
== rg
->to
&&
539 has_same_uncharge_info(nrg
, rg
)) {
540 nrg
->from
= rg
->from
;
543 put_uncharge_info(rg
);
549 hugetlb_resv_map_add(struct resv_map
*map
, struct list_head
*rg
, long from
,
550 long to
, struct hstate
*h
, struct hugetlb_cgroup
*cg
,
551 long *regions_needed
)
553 struct file_region
*nrg
;
555 if (!regions_needed
) {
556 nrg
= get_file_region_entry_from_cache(map
, from
, to
);
557 record_hugetlb_cgroup_uncharge_info(cg
, h
, map
, nrg
);
558 list_add(&nrg
->link
, rg
);
559 coalesce_file_region(map
, nrg
);
561 *regions_needed
+= 1;
567 * Must be called with resv->lock held.
569 * Calling this with regions_needed != NULL will count the number of pages
570 * to be added but will not modify the linked list. And regions_needed will
571 * indicate the number of file_regions needed in the cache to carry out to add
572 * the regions for this range.
574 static long add_reservation_in_range(struct resv_map
*resv
, long f
, long t
,
575 struct hugetlb_cgroup
*h_cg
,
576 struct hstate
*h
, long *regions_needed
)
579 struct list_head
*head
= &resv
->regions
;
580 long last_accounted_offset
= f
;
581 struct file_region
*iter
, *trg
= NULL
;
582 struct list_head
*rg
= NULL
;
587 /* In this loop, we essentially handle an entry for the range
588 * [last_accounted_offset, iter->from), at every iteration, with some
591 list_for_each_entry_safe(iter
, trg
, head
, link
) {
592 /* Skip irrelevant regions that start before our range. */
593 if (iter
->from
< f
) {
594 /* If this region ends after the last accounted offset,
595 * then we need to update last_accounted_offset.
597 if (iter
->to
> last_accounted_offset
)
598 last_accounted_offset
= iter
->to
;
602 /* When we find a region that starts beyond our range, we've
605 if (iter
->from
>= t
) {
606 rg
= iter
->link
.prev
;
610 /* Add an entry for last_accounted_offset -> iter->from, and
611 * update last_accounted_offset.
613 if (iter
->from
> last_accounted_offset
)
614 add
+= hugetlb_resv_map_add(resv
, iter
->link
.prev
,
615 last_accounted_offset
,
619 last_accounted_offset
= iter
->to
;
622 /* Handle the case where our range extends beyond
623 * last_accounted_offset.
627 if (last_accounted_offset
< t
)
628 add
+= hugetlb_resv_map_add(resv
, rg
, last_accounted_offset
,
629 t
, h
, h_cg
, regions_needed
);
634 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
636 static int allocate_file_region_entries(struct resv_map
*resv
,
638 __must_hold(&resv
->lock
)
640 LIST_HEAD(allocated_regions
);
641 int to_allocate
= 0, i
= 0;
642 struct file_region
*trg
= NULL
, *rg
= NULL
;
644 VM_BUG_ON(regions_needed
< 0);
647 * Check for sufficient descriptors in the cache to accommodate
648 * the number of in progress add operations plus regions_needed.
650 * This is a while loop because when we drop the lock, some other call
651 * to region_add or region_del may have consumed some region_entries,
652 * so we keep looping here until we finally have enough entries for
653 * (adds_in_progress + regions_needed).
655 while (resv
->region_cache_count
<
656 (resv
->adds_in_progress
+ regions_needed
)) {
657 to_allocate
= resv
->adds_in_progress
+ regions_needed
-
658 resv
->region_cache_count
;
660 /* At this point, we should have enough entries in the cache
661 * for all the existing adds_in_progress. We should only be
662 * needing to allocate for regions_needed.
664 VM_BUG_ON(resv
->region_cache_count
< resv
->adds_in_progress
);
666 spin_unlock(&resv
->lock
);
667 for (i
= 0; i
< to_allocate
; i
++) {
668 trg
= kmalloc(sizeof(*trg
), GFP_KERNEL
);
671 list_add(&trg
->link
, &allocated_regions
);
674 spin_lock(&resv
->lock
);
676 list_splice(&allocated_regions
, &resv
->region_cache
);
677 resv
->region_cache_count
+= to_allocate
;
683 list_for_each_entry_safe(rg
, trg
, &allocated_regions
, link
) {
691 * Add the huge page range represented by [f, t) to the reserve
692 * map. Regions will be taken from the cache to fill in this range.
693 * Sufficient regions should exist in the cache due to the previous
694 * call to region_chg with the same range, but in some cases the cache will not
695 * have sufficient entries due to races with other code doing region_add or
696 * region_del. The extra needed entries will be allocated.
698 * regions_needed is the out value provided by a previous call to region_chg.
700 * Return the number of new huge pages added to the map. This number is greater
701 * than or equal to zero. If file_region entries needed to be allocated for
702 * this operation and we were not able to allocate, it returns -ENOMEM.
703 * region_add of regions of length 1 never allocate file_regions and cannot
704 * fail; region_chg will always allocate at least 1 entry and a region_add for
705 * 1 page will only require at most 1 entry.
707 static long region_add(struct resv_map
*resv
, long f
, long t
,
708 long in_regions_needed
, struct hstate
*h
,
709 struct hugetlb_cgroup
*h_cg
)
711 long add
= 0, actual_regions_needed
= 0;
713 spin_lock(&resv
->lock
);
716 /* Count how many regions are actually needed to execute this add. */
717 add_reservation_in_range(resv
, f
, t
, NULL
, NULL
,
718 &actual_regions_needed
);
721 * Check for sufficient descriptors in the cache to accommodate
722 * this add operation. Note that actual_regions_needed may be greater
723 * than in_regions_needed, as the resv_map may have been modified since
724 * the region_chg call. In this case, we need to make sure that we
725 * allocate extra entries, such that we have enough for all the
726 * existing adds_in_progress, plus the excess needed for this
729 if (actual_regions_needed
> in_regions_needed
&&
730 resv
->region_cache_count
<
731 resv
->adds_in_progress
+
732 (actual_regions_needed
- in_regions_needed
)) {
733 /* region_add operation of range 1 should never need to
734 * allocate file_region entries.
736 VM_BUG_ON(t
- f
<= 1);
738 if (allocate_file_region_entries(
739 resv
, actual_regions_needed
- in_regions_needed
)) {
746 add
= add_reservation_in_range(resv
, f
, t
, h_cg
, h
, NULL
);
748 resv
->adds_in_progress
-= in_regions_needed
;
750 spin_unlock(&resv
->lock
);
755 * Examine the existing reserve map and determine how many
756 * huge pages in the specified range [f, t) are NOT currently
757 * represented. This routine is called before a subsequent
758 * call to region_add that will actually modify the reserve
759 * map to add the specified range [f, t). region_chg does
760 * not change the number of huge pages represented by the
761 * map. A number of new file_region structures is added to the cache as a
762 * placeholder, for the subsequent region_add call to use. At least 1
763 * file_region structure is added.
765 * out_regions_needed is the number of regions added to the
766 * resv->adds_in_progress. This value needs to be provided to a follow up call
767 * to region_add or region_abort for proper accounting.
769 * Returns the number of huge pages that need to be added to the existing
770 * reservation map for the range [f, t). This number is greater or equal to
771 * zero. -ENOMEM is returned if a new file_region structure or cache entry
772 * is needed and can not be allocated.
774 static long region_chg(struct resv_map
*resv
, long f
, long t
,
775 long *out_regions_needed
)
779 spin_lock(&resv
->lock
);
781 /* Count how many hugepages in this range are NOT represented. */
782 chg
= add_reservation_in_range(resv
, f
, t
, NULL
, NULL
,
785 if (*out_regions_needed
== 0)
786 *out_regions_needed
= 1;
788 if (allocate_file_region_entries(resv
, *out_regions_needed
))
791 resv
->adds_in_progress
+= *out_regions_needed
;
793 spin_unlock(&resv
->lock
);
798 * Abort the in progress add operation. The adds_in_progress field
799 * of the resv_map keeps track of the operations in progress between
800 * calls to region_chg and region_add. Operations are sometimes
801 * aborted after the call to region_chg. In such cases, region_abort
802 * is called to decrement the adds_in_progress counter. regions_needed
803 * is the value returned by the region_chg call, it is used to decrement
804 * the adds_in_progress counter.
806 * NOTE: The range arguments [f, t) are not needed or used in this
807 * routine. They are kept to make reading the calling code easier as
808 * arguments will match the associated region_chg call.
810 static void region_abort(struct resv_map
*resv
, long f
, long t
,
813 spin_lock(&resv
->lock
);
814 VM_BUG_ON(!resv
->region_cache_count
);
815 resv
->adds_in_progress
-= regions_needed
;
816 spin_unlock(&resv
->lock
);
820 * Delete the specified range [f, t) from the reserve map. If the
821 * t parameter is LONG_MAX, this indicates that ALL regions after f
822 * should be deleted. Locate the regions which intersect [f, t)
823 * and either trim, delete or split the existing regions.
825 * Returns the number of huge pages deleted from the reserve map.
826 * In the normal case, the return value is zero or more. In the
827 * case where a region must be split, a new region descriptor must
828 * be allocated. If the allocation fails, -ENOMEM will be returned.
829 * NOTE: If the parameter t == LONG_MAX, then we will never split
830 * a region and possibly return -ENOMEM. Callers specifying
831 * t == LONG_MAX do not need to check for -ENOMEM error.
833 static long region_del(struct resv_map
*resv
, long f
, long t
)
835 struct list_head
*head
= &resv
->regions
;
836 struct file_region
*rg
, *trg
;
837 struct file_region
*nrg
= NULL
;
841 spin_lock(&resv
->lock
);
842 list_for_each_entry_safe(rg
, trg
, head
, link
) {
844 * Skip regions before the range to be deleted. file_region
845 * ranges are normally of the form [from, to). However, there
846 * may be a "placeholder" entry in the map which is of the form
847 * (from, to) with from == to. Check for placeholder entries
848 * at the beginning of the range to be deleted.
850 if (rg
->to
<= f
&& (rg
->to
!= rg
->from
|| rg
->to
!= f
))
856 if (f
> rg
->from
&& t
< rg
->to
) { /* Must split region */
858 * Check for an entry in the cache before dropping
859 * lock and attempting allocation.
862 resv
->region_cache_count
> resv
->adds_in_progress
) {
863 nrg
= list_first_entry(&resv
->region_cache
,
866 list_del(&nrg
->link
);
867 resv
->region_cache_count
--;
871 spin_unlock(&resv
->lock
);
872 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
879 hugetlb_cgroup_uncharge_file_region(
880 resv
, rg
, t
- f
, false);
882 /* New entry for end of split region */
886 copy_hugetlb_cgroup_uncharge_info(nrg
, rg
);
888 INIT_LIST_HEAD(&nrg
->link
);
890 /* Original entry is trimmed */
893 list_add(&nrg
->link
, &rg
->link
);
898 if (f
<= rg
->from
&& t
>= rg
->to
) { /* Remove entire region */
899 del
+= rg
->to
- rg
->from
;
900 hugetlb_cgroup_uncharge_file_region(resv
, rg
,
901 rg
->to
- rg
->from
, true);
907 if (f
<= rg
->from
) { /* Trim beginning of region */
908 hugetlb_cgroup_uncharge_file_region(resv
, rg
,
909 t
- rg
->from
, false);
913 } else { /* Trim end of region */
914 hugetlb_cgroup_uncharge_file_region(resv
, rg
,
922 spin_unlock(&resv
->lock
);
928 * A rare out of memory error was encountered which prevented removal of
929 * the reserve map region for a page. The huge page itself was free'ed
930 * and removed from the page cache. This routine will adjust the subpool
931 * usage count, and the global reserve count if needed. By incrementing
932 * these counts, the reserve map entry which could not be deleted will
933 * appear as a "reserved" entry instead of simply dangling with incorrect
936 void hugetlb_fix_reserve_counts(struct inode
*inode
)
938 struct hugepage_subpool
*spool
= subpool_inode(inode
);
940 bool reserved
= false;
942 rsv_adjust
= hugepage_subpool_get_pages(spool
, 1);
943 if (rsv_adjust
> 0) {
944 struct hstate
*h
= hstate_inode(inode
);
946 if (!hugetlb_acct_memory(h
, 1))
948 } else if (!rsv_adjust
) {
953 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
957 * Count and return the number of huge pages in the reserve map
958 * that intersect with the range [f, t).
960 static long region_count(struct resv_map
*resv
, long f
, long t
)
962 struct list_head
*head
= &resv
->regions
;
963 struct file_region
*rg
;
966 spin_lock(&resv
->lock
);
967 /* Locate each segment we overlap with, and count that overlap. */
968 list_for_each_entry(rg
, head
, link
) {
977 seg_from
= max(rg
->from
, f
);
978 seg_to
= min(rg
->to
, t
);
980 chg
+= seg_to
- seg_from
;
982 spin_unlock(&resv
->lock
);
988 * Convert the address within this vma to the page offset within
989 * the mapping, huge page units here.
991 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
992 struct vm_area_struct
*vma
, unsigned long address
)
994 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
995 (vma
->vm_pgoff
>> huge_page_order(h
));
999 * vma_kernel_pagesize - Page size granularity for this VMA.
1000 * @vma: The user mapping.
1002 * Folios in this VMA will be aligned to, and at least the size of the
1003 * number of bytes returned by this function.
1005 * Return: The default size of the folios allocated when backing a VMA.
1007 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
1009 if (vma
->vm_ops
&& vma
->vm_ops
->pagesize
)
1010 return vma
->vm_ops
->pagesize(vma
);
1013 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
1016 * Return the page size being used by the MMU to back a VMA. In the majority
1017 * of cases, the page size used by the kernel matches the MMU size. On
1018 * architectures where it differs, an architecture-specific 'strong'
1019 * version of this symbol is required.
1021 __weak
unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
1023 return vma_kernel_pagesize(vma
);
1027 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1028 * bits of the reservation map pointer, which are always clear due to
1031 #define HPAGE_RESV_OWNER (1UL << 0)
1032 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1033 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1036 * These helpers are used to track how many pages are reserved for
1037 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1038 * is guaranteed to have their future faults succeed.
1040 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1041 * the reserve counters are updated with the hugetlb_lock held. It is safe
1042 * to reset the VMA at fork() time as it is not in use yet and there is no
1043 * chance of the global counters getting corrupted as a result of the values.
1045 * The private mapping reservation is represented in a subtly different
1046 * manner to a shared mapping. A shared mapping has a region map associated
1047 * with the underlying file, this region map represents the backing file
1048 * pages which have ever had a reservation assigned which this persists even
1049 * after the page is instantiated. A private mapping has a region map
1050 * associated with the original mmap which is attached to all VMAs which
1051 * reference it, this region map represents those offsets which have consumed
1052 * reservation ie. where pages have been instantiated.
1054 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
1056 return (unsigned long)vma
->vm_private_data
;
1059 static void set_vma_private_data(struct vm_area_struct
*vma
,
1060 unsigned long value
)
1062 vma
->vm_private_data
= (void *)value
;
1066 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map
*resv_map
,
1067 struct hugetlb_cgroup
*h_cg
,
1070 #ifdef CONFIG_CGROUP_HUGETLB
1072 resv_map
->reservation_counter
= NULL
;
1073 resv_map
->pages_per_hpage
= 0;
1074 resv_map
->css
= NULL
;
1076 resv_map
->reservation_counter
=
1077 &h_cg
->rsvd_hugepage
[hstate_index(h
)];
1078 resv_map
->pages_per_hpage
= pages_per_huge_page(h
);
1079 resv_map
->css
= &h_cg
->css
;
1084 struct resv_map
*resv_map_alloc(void)
1086 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
1087 struct file_region
*rg
= kmalloc(sizeof(*rg
), GFP_KERNEL
);
1089 if (!resv_map
|| !rg
) {
1095 kref_init(&resv_map
->refs
);
1096 spin_lock_init(&resv_map
->lock
);
1097 INIT_LIST_HEAD(&resv_map
->regions
);
1098 init_rwsem(&resv_map
->rw_sema
);
1100 resv_map
->adds_in_progress
= 0;
1102 * Initialize these to 0. On shared mappings, 0's here indicate these
1103 * fields don't do cgroup accounting. On private mappings, these will be
1104 * re-initialized to the proper values, to indicate that hugetlb cgroup
1105 * reservations are to be un-charged from here.
1107 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map
, NULL
, NULL
);
1109 INIT_LIST_HEAD(&resv_map
->region_cache
);
1110 list_add(&rg
->link
, &resv_map
->region_cache
);
1111 resv_map
->region_cache_count
= 1;
1116 void resv_map_release(struct kref
*ref
)
1118 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
1119 struct list_head
*head
= &resv_map
->region_cache
;
1120 struct file_region
*rg
, *trg
;
1122 /* Clear out any active regions before we release the map. */
1123 region_del(resv_map
, 0, LONG_MAX
);
1125 /* ... and any entries left in the cache */
1126 list_for_each_entry_safe(rg
, trg
, head
, link
) {
1127 list_del(&rg
->link
);
1131 VM_BUG_ON(resv_map
->adds_in_progress
);
1136 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
1139 * At inode evict time, i_mapping may not point to the original
1140 * address space within the inode. This original address space
1141 * contains the pointer to the resv_map. So, always use the
1142 * address space embedded within the inode.
1143 * The VERY common case is inode->mapping == &inode->i_data but,
1144 * this may not be true for device special inodes.
1146 return (struct resv_map
*)(&inode
->i_data
)->i_private_data
;
1149 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
1151 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
1152 if (vma
->vm_flags
& VM_MAYSHARE
) {
1153 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1154 struct inode
*inode
= mapping
->host
;
1156 return inode_resv_map(inode
);
1159 return (struct resv_map
*)(get_vma_private_data(vma
) &
1164 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
1166 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
1167 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
1169 set_vma_private_data(vma
, (unsigned long)map
);
1172 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
1174 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
1175 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
1177 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
1180 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
1182 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
1184 return (get_vma_private_data(vma
) & flag
) != 0;
1187 bool __vma_private_lock(struct vm_area_struct
*vma
)
1189 return !(vma
->vm_flags
& VM_MAYSHARE
) &&
1190 get_vma_private_data(vma
) & ~HPAGE_RESV_MASK
&&
1191 is_vma_resv_set(vma
, HPAGE_RESV_OWNER
);
1194 void hugetlb_dup_vma_private(struct vm_area_struct
*vma
)
1196 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
1198 * Clear vm_private_data
1199 * - For shared mappings this is a per-vma semaphore that may be
1200 * allocated in a subsequent call to hugetlb_vm_op_open.
1201 * Before clearing, make sure pointer is not associated with vma
1202 * as this will leak the structure. This is the case when called
1203 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1204 * been called to allocate a new structure.
1205 * - For MAP_PRIVATE mappings, this is the reserve map which does
1206 * not apply to children. Faults generated by the children are
1207 * not guaranteed to succeed, even if read-only.
1209 if (vma
->vm_flags
& VM_MAYSHARE
) {
1210 struct hugetlb_vma_lock
*vma_lock
= vma
->vm_private_data
;
1212 if (vma_lock
&& vma_lock
->vma
!= vma
)
1213 vma
->vm_private_data
= NULL
;
1215 vma
->vm_private_data
= NULL
;
1219 * Reset and decrement one ref on hugepage private reservation.
1220 * Called with mm->mmap_lock writer semaphore held.
1221 * This function should be only used by move_vma() and operate on
1222 * same sized vma. It should never come here with last ref on the
1225 void clear_vma_resv_huge_pages(struct vm_area_struct
*vma
)
1228 * Clear the old hugetlb private page reservation.
1229 * It has already been transferred to new_vma.
1231 * During a mremap() operation of a hugetlb vma we call move_vma()
1232 * which copies vma into new_vma and unmaps vma. After the copy
1233 * operation both new_vma and vma share a reference to the resv_map
1234 * struct, and at that point vma is about to be unmapped. We don't
1235 * want to return the reservation to the pool at unmap of vma because
1236 * the reservation still lives on in new_vma, so simply decrement the
1237 * ref here and remove the resv_map reference from this vma.
1239 struct resv_map
*reservations
= vma_resv_map(vma
);
1241 if (reservations
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1242 resv_map_put_hugetlb_cgroup_uncharge_info(reservations
);
1243 kref_put(&reservations
->refs
, resv_map_release
);
1246 hugetlb_dup_vma_private(vma
);
1249 /* Returns true if the VMA has associated reserve pages */
1250 static bool vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
1252 if (vma
->vm_flags
& VM_NORESERVE
) {
1254 * This address is already reserved by other process(chg == 0),
1255 * so, we should decrement reserved count. Without decrementing,
1256 * reserve count remains after releasing inode, because this
1257 * allocated page will go into page cache and is regarded as
1258 * coming from reserved pool in releasing step. Currently, we
1259 * don't have any other solution to deal with this situation
1260 * properly, so add work-around here.
1262 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
1268 /* Shared mappings always use reserves */
1269 if (vma
->vm_flags
& VM_MAYSHARE
) {
1271 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1272 * be a region map for all pages. The only situation where
1273 * there is no region map is if a hole was punched via
1274 * fallocate. In this case, there really are no reserves to
1275 * use. This situation is indicated if chg != 0.
1284 * Only the process that called mmap() has reserves for
1287 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1289 * Like the shared case above, a hole punch or truncate
1290 * could have been performed on the private mapping.
1291 * Examine the value of chg to determine if reserves
1292 * actually exist or were previously consumed.
1293 * Very Subtle - The value of chg comes from a previous
1294 * call to vma_needs_reserves(). The reserve map for
1295 * private mappings has different (opposite) semantics
1296 * than that of shared mappings. vma_needs_reserves()
1297 * has already taken this difference in semantics into
1298 * account. Therefore, the meaning of chg is the same
1299 * as in the shared case above. Code could easily be
1300 * combined, but keeping it separate draws attention to
1301 * subtle differences.
1312 static void enqueue_hugetlb_folio(struct hstate
*h
, struct folio
*folio
)
1314 int nid
= folio_nid(folio
);
1316 lockdep_assert_held(&hugetlb_lock
);
1317 VM_BUG_ON_FOLIO(folio_ref_count(folio
), folio
);
1319 list_move(&folio
->lru
, &h
->hugepage_freelists
[nid
]);
1320 h
->free_huge_pages
++;
1321 h
->free_huge_pages_node
[nid
]++;
1322 folio_set_hugetlb_freed(folio
);
1325 static struct folio
*dequeue_hugetlb_folio_node_exact(struct hstate
*h
,
1328 struct folio
*folio
;
1329 bool pin
= !!(current
->flags
& PF_MEMALLOC_PIN
);
1331 lockdep_assert_held(&hugetlb_lock
);
1332 list_for_each_entry(folio
, &h
->hugepage_freelists
[nid
], lru
) {
1333 if (pin
&& !folio_is_longterm_pinnable(folio
))
1336 if (folio_test_hwpoison(folio
))
1339 list_move(&folio
->lru
, &h
->hugepage_activelist
);
1340 folio_ref_unfreeze(folio
, 1);
1341 folio_clear_hugetlb_freed(folio
);
1342 h
->free_huge_pages
--;
1343 h
->free_huge_pages_node
[nid
]--;
1350 static struct folio
*dequeue_hugetlb_folio_nodemask(struct hstate
*h
, gfp_t gfp_mask
,
1351 int nid
, nodemask_t
*nmask
)
1353 unsigned int cpuset_mems_cookie
;
1354 struct zonelist
*zonelist
;
1357 int node
= NUMA_NO_NODE
;
1359 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1360 if (nid
== NUMA_NO_NODE
)
1361 nid
= numa_node_id();
1363 zonelist
= node_zonelist(nid
, gfp_mask
);
1366 cpuset_mems_cookie
= read_mems_allowed_begin();
1367 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, gfp_zone(gfp_mask
), nmask
) {
1368 struct folio
*folio
;
1370 if (!cpuset_zone_allowed(zone
, gfp_mask
))
1373 * no need to ask again on the same node. Pool is node rather than
1376 if (zone_to_nid(zone
) == node
)
1378 node
= zone_to_nid(zone
);
1380 folio
= dequeue_hugetlb_folio_node_exact(h
, node
);
1384 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie
)))
1390 static unsigned long available_huge_pages(struct hstate
*h
)
1392 return h
->free_huge_pages
- h
->resv_huge_pages
;
1395 static struct folio
*dequeue_hugetlb_folio_vma(struct hstate
*h
,
1396 struct vm_area_struct
*vma
,
1397 unsigned long address
, int avoid_reserve
,
1400 struct folio
*folio
= NULL
;
1401 struct mempolicy
*mpol
;
1403 nodemask_t
*nodemask
;
1407 * A child process with MAP_PRIVATE mappings created by their parent
1408 * have no page reserves. This check ensures that reservations are
1409 * not "stolen". The child may still get SIGKILLed
1411 if (!vma_has_reserves(vma
, chg
) && !available_huge_pages(h
))
1414 /* If reserves cannot be used, ensure enough pages are in the pool */
1415 if (avoid_reserve
&& !available_huge_pages(h
))
1418 gfp_mask
= htlb_alloc_mask(h
);
1419 nid
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
1421 if (mpol_is_preferred_many(mpol
)) {
1422 folio
= dequeue_hugetlb_folio_nodemask(h
, gfp_mask
,
1425 /* Fallback to all nodes if page==NULL */
1430 folio
= dequeue_hugetlb_folio_nodemask(h
, gfp_mask
,
1433 if (folio
&& !avoid_reserve
&& vma_has_reserves(vma
, chg
)) {
1434 folio_set_hugetlb_restore_reserve(folio
);
1435 h
->resv_huge_pages
--;
1438 mpol_cond_put(mpol
);
1446 * common helper functions for hstate_next_node_to_{alloc|free}.
1447 * We may have allocated or freed a huge page based on a different
1448 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1449 * be outside of *nodes_allowed. Ensure that we use an allowed
1450 * node for alloc or free.
1452 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
1454 nid
= next_node_in(nid
, *nodes_allowed
);
1455 VM_BUG_ON(nid
>= MAX_NUMNODES
);
1460 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
1462 if (!node_isset(nid
, *nodes_allowed
))
1463 nid
= next_node_allowed(nid
, nodes_allowed
);
1468 * returns the previously saved node ["this node"] from which to
1469 * allocate a persistent huge page for the pool and advance the
1470 * next node from which to allocate, handling wrap at end of node
1473 static int hstate_next_node_to_alloc(int *next_node
,
1474 nodemask_t
*nodes_allowed
)
1478 VM_BUG_ON(!nodes_allowed
);
1480 nid
= get_valid_node_allowed(*next_node
, nodes_allowed
);
1481 *next_node
= next_node_allowed(nid
, nodes_allowed
);
1487 * helper for remove_pool_hugetlb_folio() - return the previously saved
1488 * node ["this node"] from which to free a huge page. Advance the
1489 * next node id whether or not we find a free huge page to free so
1490 * that the next attempt to free addresses the next node.
1492 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1496 VM_BUG_ON(!nodes_allowed
);
1498 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
1499 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
1504 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \
1505 for (nr_nodes = nodes_weight(*mask); \
1507 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \
1510 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1511 for (nr_nodes = nodes_weight(*mask); \
1513 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1516 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1517 #ifdef CONFIG_CONTIG_ALLOC
1518 static struct folio
*alloc_gigantic_folio(struct hstate
*h
, gfp_t gfp_mask
,
1519 int nid
, nodemask_t
*nodemask
)
1521 struct folio
*folio
;
1522 int order
= huge_page_order(h
);
1523 bool retried
= false;
1525 if (nid
== NUMA_NO_NODE
)
1526 nid
= numa_mem_id();
1533 if (hugetlb_cma
[nid
])
1534 folio
= cma_alloc_folio(hugetlb_cma
[nid
], order
, gfp_mask
);
1536 if (!folio
&& !(gfp_mask
& __GFP_THISNODE
)) {
1537 for_each_node_mask(node
, *nodemask
) {
1538 if (node
== nid
|| !hugetlb_cma
[node
])
1541 folio
= cma_alloc_folio(hugetlb_cma
[node
], order
, gfp_mask
);
1549 folio
= folio_alloc_gigantic(order
, gfp_mask
, nid
, nodemask
);
1554 if (folio_ref_freeze(folio
, 1))
1557 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio
));
1558 hugetlb_free_folio(folio
);
1566 #else /* !CONFIG_CONTIG_ALLOC */
1567 static struct folio
*alloc_gigantic_folio(struct hstate
*h
, gfp_t gfp_mask
,
1568 int nid
, nodemask_t
*nodemask
)
1572 #endif /* CONFIG_CONTIG_ALLOC */
1574 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1575 static struct folio
*alloc_gigantic_folio(struct hstate
*h
, gfp_t gfp_mask
,
1576 int nid
, nodemask_t
*nodemask
)
1583 * Remove hugetlb folio from lists.
1584 * If vmemmap exists for the folio, clear the hugetlb flag so that the
1585 * folio appears as just a compound page. Otherwise, wait until after
1586 * allocating vmemmap to clear the flag.
1588 * Must be called with hugetlb lock held.
1590 static void remove_hugetlb_folio(struct hstate
*h
, struct folio
*folio
,
1591 bool adjust_surplus
)
1593 int nid
= folio_nid(folio
);
1595 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio
), folio
);
1596 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio
), folio
);
1598 lockdep_assert_held(&hugetlb_lock
);
1599 if (hstate_is_gigantic(h
) && !gigantic_page_runtime_supported())
1602 list_del(&folio
->lru
);
1604 if (folio_test_hugetlb_freed(folio
)) {
1605 folio_clear_hugetlb_freed(folio
);
1606 h
->free_huge_pages
--;
1607 h
->free_huge_pages_node
[nid
]--;
1609 if (adjust_surplus
) {
1610 h
->surplus_huge_pages
--;
1611 h
->surplus_huge_pages_node
[nid
]--;
1615 * We can only clear the hugetlb flag after allocating vmemmap
1616 * pages. Otherwise, someone (memory error handling) may try to write
1617 * to tail struct pages.
1619 if (!folio_test_hugetlb_vmemmap_optimized(folio
))
1620 __folio_clear_hugetlb(folio
);
1623 h
->nr_huge_pages_node
[nid
]--;
1626 static void add_hugetlb_folio(struct hstate
*h
, struct folio
*folio
,
1627 bool adjust_surplus
)
1629 int nid
= folio_nid(folio
);
1631 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio
), folio
);
1633 lockdep_assert_held(&hugetlb_lock
);
1635 INIT_LIST_HEAD(&folio
->lru
);
1637 h
->nr_huge_pages_node
[nid
]++;
1639 if (adjust_surplus
) {
1640 h
->surplus_huge_pages
++;
1641 h
->surplus_huge_pages_node
[nid
]++;
1644 __folio_set_hugetlb(folio
);
1645 folio_change_private(folio
, NULL
);
1647 * We have to set hugetlb_vmemmap_optimized again as above
1648 * folio_change_private(folio, NULL) cleared it.
1650 folio_set_hugetlb_vmemmap_optimized(folio
);
1652 arch_clear_hugetlb_flags(folio
);
1653 enqueue_hugetlb_folio(h
, folio
);
1656 static void __update_and_free_hugetlb_folio(struct hstate
*h
,
1657 struct folio
*folio
)
1659 bool clear_flag
= folio_test_hugetlb_vmemmap_optimized(folio
);
1661 if (hstate_is_gigantic(h
) && !gigantic_page_runtime_supported())
1665 * If we don't know which subpages are hwpoisoned, we can't free
1666 * the hugepage, so it's leaked intentionally.
1668 if (folio_test_hugetlb_raw_hwp_unreliable(folio
))
1672 * If folio is not vmemmap optimized (!clear_flag), then the folio
1673 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
1674 * can only be passed hugetlb pages and will BUG otherwise.
1676 if (clear_flag
&& hugetlb_vmemmap_restore_folio(h
, folio
)) {
1677 spin_lock_irq(&hugetlb_lock
);
1679 * If we cannot allocate vmemmap pages, just refuse to free the
1680 * page and put the page back on the hugetlb free list and treat
1681 * as a surplus page.
1683 add_hugetlb_folio(h
, folio
, true);
1684 spin_unlock_irq(&hugetlb_lock
);
1689 * If vmemmap pages were allocated above, then we need to clear the
1690 * hugetlb flag under the hugetlb lock.
1692 if (folio_test_hugetlb(folio
)) {
1693 spin_lock_irq(&hugetlb_lock
);
1694 __folio_clear_hugetlb(folio
);
1695 spin_unlock_irq(&hugetlb_lock
);
1699 * Move PageHWPoison flag from head page to the raw error pages,
1700 * which makes any healthy subpages reusable.
1702 if (unlikely(folio_test_hwpoison(folio
)))
1703 folio_clear_hugetlb_hwpoison(folio
);
1705 folio_ref_unfreeze(folio
, 1);
1707 INIT_LIST_HEAD(&folio
->_deferred_list
);
1708 hugetlb_free_folio(folio
);
1712 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1713 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1714 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1715 * the vmemmap pages.
1717 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1718 * freed and frees them one-by-one. As the page->mapping pointer is going
1719 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1720 * structure of a lockless linked list of huge pages to be freed.
1722 static LLIST_HEAD(hpage_freelist
);
1724 static void free_hpage_workfn(struct work_struct
*work
)
1726 struct llist_node
*node
;
1728 node
= llist_del_all(&hpage_freelist
);
1731 struct folio
*folio
;
1734 folio
= container_of((struct address_space
**)node
,
1735 struct folio
, mapping
);
1737 folio
->mapping
= NULL
;
1739 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1740 * folio_hstate() is going to trigger because a previous call to
1741 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1742 * not use folio_hstate() directly.
1744 h
= size_to_hstate(folio_size(folio
));
1746 __update_and_free_hugetlb_folio(h
, folio
);
1751 static DECLARE_WORK(free_hpage_work
, free_hpage_workfn
);
1753 static inline void flush_free_hpage_work(struct hstate
*h
)
1755 if (hugetlb_vmemmap_optimizable(h
))
1756 flush_work(&free_hpage_work
);
1759 static void update_and_free_hugetlb_folio(struct hstate
*h
, struct folio
*folio
,
1762 if (!folio_test_hugetlb_vmemmap_optimized(folio
) || !atomic
) {
1763 __update_and_free_hugetlb_folio(h
, folio
);
1768 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1770 * Only call schedule_work() if hpage_freelist is previously
1771 * empty. Otherwise, schedule_work() had been called but the workfn
1772 * hasn't retrieved the list yet.
1774 if (llist_add((struct llist_node
*)&folio
->mapping
, &hpage_freelist
))
1775 schedule_work(&free_hpage_work
);
1778 static void bulk_vmemmap_restore_error(struct hstate
*h
,
1779 struct list_head
*folio_list
,
1780 struct list_head
*non_hvo_folios
)
1782 struct folio
*folio
, *t_folio
;
1784 if (!list_empty(non_hvo_folios
)) {
1786 * Free any restored hugetlb pages so that restore of the
1787 * entire list can be retried.
1788 * The idea is that in the common case of ENOMEM errors freeing
1789 * hugetlb pages with vmemmap we will free up memory so that we
1790 * can allocate vmemmap for more hugetlb pages.
1792 list_for_each_entry_safe(folio
, t_folio
, non_hvo_folios
, lru
) {
1793 list_del(&folio
->lru
);
1794 spin_lock_irq(&hugetlb_lock
);
1795 __folio_clear_hugetlb(folio
);
1796 spin_unlock_irq(&hugetlb_lock
);
1797 update_and_free_hugetlb_folio(h
, folio
, false);
1802 * In the case where there are no folios which can be
1803 * immediately freed, we loop through the list trying to restore
1804 * vmemmap individually in the hope that someone elsewhere may
1805 * have done something to cause success (such as freeing some
1806 * memory). If unable to restore a hugetlb page, the hugetlb
1807 * page is made a surplus page and removed from the list.
1808 * If are able to restore vmemmap and free one hugetlb page, we
1809 * quit processing the list to retry the bulk operation.
1811 list_for_each_entry_safe(folio
, t_folio
, folio_list
, lru
)
1812 if (hugetlb_vmemmap_restore_folio(h
, folio
)) {
1813 list_del(&folio
->lru
);
1814 spin_lock_irq(&hugetlb_lock
);
1815 add_hugetlb_folio(h
, folio
, true);
1816 spin_unlock_irq(&hugetlb_lock
);
1818 list_del(&folio
->lru
);
1819 spin_lock_irq(&hugetlb_lock
);
1820 __folio_clear_hugetlb(folio
);
1821 spin_unlock_irq(&hugetlb_lock
);
1822 update_and_free_hugetlb_folio(h
, folio
, false);
1829 static void update_and_free_pages_bulk(struct hstate
*h
,
1830 struct list_head
*folio_list
)
1833 struct folio
*folio
, *t_folio
;
1834 LIST_HEAD(non_hvo_folios
);
1837 * First allocate required vmemmmap (if necessary) for all folios.
1838 * Carefully handle errors and free up any available hugetlb pages
1839 * in an effort to make forward progress.
1842 ret
= hugetlb_vmemmap_restore_folios(h
, folio_list
, &non_hvo_folios
);
1844 bulk_vmemmap_restore_error(h
, folio_list
, &non_hvo_folios
);
1849 * At this point, list should be empty, ret should be >= 0 and there
1850 * should only be pages on the non_hvo_folios list.
1851 * Do note that the non_hvo_folios list could be empty.
1852 * Without HVO enabled, ret will be 0 and there is no need to call
1853 * __folio_clear_hugetlb as this was done previously.
1855 VM_WARN_ON(!list_empty(folio_list
));
1856 VM_WARN_ON(ret
< 0);
1857 if (!list_empty(&non_hvo_folios
) && ret
) {
1858 spin_lock_irq(&hugetlb_lock
);
1859 list_for_each_entry(folio
, &non_hvo_folios
, lru
)
1860 __folio_clear_hugetlb(folio
);
1861 spin_unlock_irq(&hugetlb_lock
);
1864 list_for_each_entry_safe(folio
, t_folio
, &non_hvo_folios
, lru
) {
1865 update_and_free_hugetlb_folio(h
, folio
, false);
1870 struct hstate
*size_to_hstate(unsigned long size
)
1874 for_each_hstate(h
) {
1875 if (huge_page_size(h
) == size
)
1881 void free_huge_folio(struct folio
*folio
)
1884 * Can't pass hstate in here because it is called from the
1887 struct hstate
*h
= folio_hstate(folio
);
1888 int nid
= folio_nid(folio
);
1889 struct hugepage_subpool
*spool
= hugetlb_folio_subpool(folio
);
1890 bool restore_reserve
;
1891 unsigned long flags
;
1893 VM_BUG_ON_FOLIO(folio_ref_count(folio
), folio
);
1894 VM_BUG_ON_FOLIO(folio_mapcount(folio
), folio
);
1896 hugetlb_set_folio_subpool(folio
, NULL
);
1897 if (folio_test_anon(folio
))
1898 __ClearPageAnonExclusive(&folio
->page
);
1899 folio
->mapping
= NULL
;
1900 restore_reserve
= folio_test_hugetlb_restore_reserve(folio
);
1901 folio_clear_hugetlb_restore_reserve(folio
);
1904 * If HPageRestoreReserve was set on page, page allocation consumed a
1905 * reservation. If the page was associated with a subpool, there
1906 * would have been a page reserved in the subpool before allocation
1907 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1908 * reservation, do not call hugepage_subpool_put_pages() as this will
1909 * remove the reserved page from the subpool.
1911 if (!restore_reserve
) {
1913 * A return code of zero implies that the subpool will be
1914 * under its minimum size if the reservation is not restored
1915 * after page is free. Therefore, force restore_reserve
1918 if (hugepage_subpool_put_pages(spool
, 1) == 0)
1919 restore_reserve
= true;
1922 spin_lock_irqsave(&hugetlb_lock
, flags
);
1923 folio_clear_hugetlb_migratable(folio
);
1924 hugetlb_cgroup_uncharge_folio(hstate_index(h
),
1925 pages_per_huge_page(h
), folio
);
1926 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h
),
1927 pages_per_huge_page(h
), folio
);
1928 lruvec_stat_mod_folio(folio
, NR_HUGETLB
, -pages_per_huge_page(h
));
1929 mem_cgroup_uncharge(folio
);
1930 if (restore_reserve
)
1931 h
->resv_huge_pages
++;
1933 if (folio_test_hugetlb_temporary(folio
)) {
1934 remove_hugetlb_folio(h
, folio
, false);
1935 spin_unlock_irqrestore(&hugetlb_lock
, flags
);
1936 update_and_free_hugetlb_folio(h
, folio
, true);
1937 } else if (h
->surplus_huge_pages_node
[nid
]) {
1938 /* remove the page from active list */
1939 remove_hugetlb_folio(h
, folio
, true);
1940 spin_unlock_irqrestore(&hugetlb_lock
, flags
);
1941 update_and_free_hugetlb_folio(h
, folio
, true);
1943 arch_clear_hugetlb_flags(folio
);
1944 enqueue_hugetlb_folio(h
, folio
);
1945 spin_unlock_irqrestore(&hugetlb_lock
, flags
);
1950 * Must be called with the hugetlb lock held
1952 static void __prep_account_new_huge_page(struct hstate
*h
, int nid
)
1954 lockdep_assert_held(&hugetlb_lock
);
1956 h
->nr_huge_pages_node
[nid
]++;
1959 static void init_new_hugetlb_folio(struct hstate
*h
, struct folio
*folio
)
1961 __folio_set_hugetlb(folio
);
1962 INIT_LIST_HEAD(&folio
->lru
);
1963 hugetlb_set_folio_subpool(folio
, NULL
);
1964 set_hugetlb_cgroup(folio
, NULL
);
1965 set_hugetlb_cgroup_rsvd(folio
, NULL
);
1968 static void __prep_new_hugetlb_folio(struct hstate
*h
, struct folio
*folio
)
1970 init_new_hugetlb_folio(h
, folio
);
1971 hugetlb_vmemmap_optimize_folio(h
, folio
);
1974 static void prep_new_hugetlb_folio(struct hstate
*h
, struct folio
*folio
, int nid
)
1976 __prep_new_hugetlb_folio(h
, folio
);
1977 spin_lock_irq(&hugetlb_lock
);
1978 __prep_account_new_huge_page(h
, nid
);
1979 spin_unlock_irq(&hugetlb_lock
);
1983 * Find and lock address space (mapping) in write mode.
1985 * Upon entry, the folio is locked which means that folio_mapping() is
1986 * stable. Due to locking order, we can only trylock_write. If we can
1987 * not get the lock, simply return NULL to caller.
1989 struct address_space
*hugetlb_folio_mapping_lock_write(struct folio
*folio
)
1991 struct address_space
*mapping
= folio_mapping(folio
);
1996 if (i_mmap_trylock_write(mapping
))
2002 static struct folio
*alloc_buddy_hugetlb_folio(struct hstate
*h
,
2003 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
,
2004 nodemask_t
*node_alloc_noretry
)
2006 int order
= huge_page_order(h
);
2007 struct folio
*folio
;
2008 bool alloc_try_hard
= true;
2012 * By default we always try hard to allocate the folio with
2013 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in
2014 * a loop (to adjust global huge page counts) and previous allocation
2015 * failed, do not continue to try hard on the same node. Use the
2016 * node_alloc_noretry bitmap to manage this state information.
2018 if (node_alloc_noretry
&& node_isset(nid
, *node_alloc_noretry
))
2019 alloc_try_hard
= false;
2021 gfp_mask
|= __GFP_RETRY_MAYFAIL
;
2022 if (nid
== NUMA_NO_NODE
)
2023 nid
= numa_mem_id();
2025 folio
= __folio_alloc(gfp_mask
, order
, nid
, nmask
);
2026 /* Ensure hugetlb folio won't have large_rmappable flag set. */
2028 folio_clear_large_rmappable(folio
);
2030 if (folio
&& !folio_ref_freeze(folio
, 1)) {
2032 if (retry
) { /* retry once */
2036 /* WOW! twice in a row. */
2037 pr_warn("HugeTLB unexpected inflated folio ref count\n");
2042 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
2043 * folio this indicates an overall state change. Clear bit so
2044 * that we resume normal 'try hard' allocations.
2046 if (node_alloc_noretry
&& folio
&& !alloc_try_hard
)
2047 node_clear(nid
, *node_alloc_noretry
);
2050 * If we tried hard to get a folio but failed, set bit so that
2051 * subsequent attempts will not try as hard until there is an
2052 * overall state change.
2054 if (node_alloc_noretry
&& !folio
&& alloc_try_hard
)
2055 node_set(nid
, *node_alloc_noretry
);
2058 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
2062 __count_vm_event(HTLB_BUDDY_PGALLOC
);
2066 static struct folio
*only_alloc_fresh_hugetlb_folio(struct hstate
*h
,
2067 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
,
2068 nodemask_t
*node_alloc_noretry
)
2070 struct folio
*folio
;
2072 if (hstate_is_gigantic(h
))
2073 folio
= alloc_gigantic_folio(h
, gfp_mask
, nid
, nmask
);
2075 folio
= alloc_buddy_hugetlb_folio(h
, gfp_mask
, nid
, nmask
, node_alloc_noretry
);
2077 init_new_hugetlb_folio(h
, folio
);
2082 * Common helper to allocate a fresh hugetlb page. All specific allocators
2083 * should use this function to get new hugetlb pages
2085 * Note that returned page is 'frozen': ref count of head page and all tail
2088 static struct folio
*alloc_fresh_hugetlb_folio(struct hstate
*h
,
2089 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
)
2091 struct folio
*folio
;
2093 if (hstate_is_gigantic(h
))
2094 folio
= alloc_gigantic_folio(h
, gfp_mask
, nid
, nmask
);
2096 folio
= alloc_buddy_hugetlb_folio(h
, gfp_mask
, nid
, nmask
, NULL
);
2100 prep_new_hugetlb_folio(h
, folio
, folio_nid(folio
));
2104 static void prep_and_add_allocated_folios(struct hstate
*h
,
2105 struct list_head
*folio_list
)
2107 unsigned long flags
;
2108 struct folio
*folio
, *tmp_f
;
2110 /* Send list for bulk vmemmap optimization processing */
2111 hugetlb_vmemmap_optimize_folios(h
, folio_list
);
2113 /* Add all new pool pages to free lists in one lock cycle */
2114 spin_lock_irqsave(&hugetlb_lock
, flags
);
2115 list_for_each_entry_safe(folio
, tmp_f
, folio_list
, lru
) {
2116 __prep_account_new_huge_page(h
, folio_nid(folio
));
2117 enqueue_hugetlb_folio(h
, folio
);
2119 spin_unlock_irqrestore(&hugetlb_lock
, flags
);
2123 * Allocates a fresh hugetlb page in a node interleaved manner. The page
2124 * will later be added to the appropriate hugetlb pool.
2126 static struct folio
*alloc_pool_huge_folio(struct hstate
*h
,
2127 nodemask_t
*nodes_allowed
,
2128 nodemask_t
*node_alloc_noretry
,
2131 gfp_t gfp_mask
= htlb_alloc_mask(h
) | __GFP_THISNODE
;
2134 for_each_node_mask_to_alloc(next_node
, nr_nodes
, node
, nodes_allowed
) {
2135 struct folio
*folio
;
2137 folio
= only_alloc_fresh_hugetlb_folio(h
, gfp_mask
, node
,
2138 nodes_allowed
, node_alloc_noretry
);
2147 * Remove huge page from pool from next node to free. Attempt to keep
2148 * persistent huge pages more or less balanced over allowed nodes.
2149 * This routine only 'removes' the hugetlb page. The caller must make
2150 * an additional call to free the page to low level allocators.
2151 * Called with hugetlb_lock locked.
2153 static struct folio
*remove_pool_hugetlb_folio(struct hstate
*h
,
2154 nodemask_t
*nodes_allowed
, bool acct_surplus
)
2157 struct folio
*folio
= NULL
;
2159 lockdep_assert_held(&hugetlb_lock
);
2160 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
2162 * If we're returning unused surplus pages, only examine
2163 * nodes with surplus pages.
2165 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
2166 !list_empty(&h
->hugepage_freelists
[node
])) {
2167 folio
= list_entry(h
->hugepage_freelists
[node
].next
,
2169 remove_hugetlb_folio(h
, folio
, acct_surplus
);
2178 * Dissolve a given free hugetlb folio into free buddy pages. This function
2179 * does nothing for in-use hugetlb folios and non-hugetlb folios.
2180 * This function returns values like below:
2182 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2183 * when the system is under memory pressure and the feature of
2184 * freeing unused vmemmap pages associated with each hugetlb page
2186 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2187 * (allocated or reserved.)
2188 * 0: successfully dissolved free hugepages or the page is not a
2189 * hugepage (considered as already dissolved)
2191 int dissolve_free_hugetlb_folio(struct folio
*folio
)
2196 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2197 if (!folio_test_hugetlb(folio
))
2200 spin_lock_irq(&hugetlb_lock
);
2201 if (!folio_test_hugetlb(folio
)) {
2206 if (!folio_ref_count(folio
)) {
2207 struct hstate
*h
= folio_hstate(folio
);
2208 if (!available_huge_pages(h
))
2212 * We should make sure that the page is already on the free list
2213 * when it is dissolved.
2215 if (unlikely(!folio_test_hugetlb_freed(folio
))) {
2216 spin_unlock_irq(&hugetlb_lock
);
2220 * Theoretically, we should return -EBUSY when we
2221 * encounter this race. In fact, we have a chance
2222 * to successfully dissolve the page if we do a
2223 * retry. Because the race window is quite small.
2224 * If we seize this opportunity, it is an optimization
2225 * for increasing the success rate of dissolving page.
2230 remove_hugetlb_folio(h
, folio
, false);
2231 h
->max_huge_pages
--;
2232 spin_unlock_irq(&hugetlb_lock
);
2235 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2236 * before freeing the page. update_and_free_hugtlb_folio will fail to
2237 * free the page if it can not allocate required vmemmap. We
2238 * need to adjust max_huge_pages if the page is not freed.
2239 * Attempt to allocate vmemmmap here so that we can take
2240 * appropriate action on failure.
2242 * The folio_test_hugetlb check here is because
2243 * remove_hugetlb_folio will clear hugetlb folio flag for
2244 * non-vmemmap optimized hugetlb folios.
2246 if (folio_test_hugetlb(folio
)) {
2247 rc
= hugetlb_vmemmap_restore_folio(h
, folio
);
2249 spin_lock_irq(&hugetlb_lock
);
2250 add_hugetlb_folio(h
, folio
, false);
2251 h
->max_huge_pages
++;
2257 update_and_free_hugetlb_folio(h
, folio
, false);
2261 spin_unlock_irq(&hugetlb_lock
);
2266 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2267 * make specified memory blocks removable from the system.
2268 * Note that this will dissolve a free gigantic hugepage completely, if any
2269 * part of it lies within the given range.
2270 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2271 * free hugetlb folios that were dissolved before that error are lost.
2273 int dissolve_free_hugetlb_folios(unsigned long start_pfn
, unsigned long end_pfn
)
2276 struct folio
*folio
;
2281 if (!hugepages_supported())
2284 order
= huge_page_order(&default_hstate
);
2286 order
= min(order
, huge_page_order(h
));
2288 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << order
) {
2289 folio
= pfn_folio(pfn
);
2290 rc
= dissolve_free_hugetlb_folio(folio
);
2299 * Allocates a fresh surplus page from the page allocator.
2301 static struct folio
*alloc_surplus_hugetlb_folio(struct hstate
*h
,
2302 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
)
2304 struct folio
*folio
= NULL
;
2306 if (hstate_is_gigantic(h
))
2309 spin_lock_irq(&hugetlb_lock
);
2310 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
)
2312 spin_unlock_irq(&hugetlb_lock
);
2314 folio
= alloc_fresh_hugetlb_folio(h
, gfp_mask
, nid
, nmask
);
2318 spin_lock_irq(&hugetlb_lock
);
2320 * We could have raced with the pool size change.
2321 * Double check that and simply deallocate the new page
2322 * if we would end up overcommiting the surpluses. Abuse
2323 * temporary page to workaround the nasty free_huge_folio
2326 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
2327 folio_set_hugetlb_temporary(folio
);
2328 spin_unlock_irq(&hugetlb_lock
);
2329 free_huge_folio(folio
);
2333 h
->surplus_huge_pages
++;
2334 h
->surplus_huge_pages_node
[folio_nid(folio
)]++;
2337 spin_unlock_irq(&hugetlb_lock
);
2342 static struct folio
*alloc_migrate_hugetlb_folio(struct hstate
*h
, gfp_t gfp_mask
,
2343 int nid
, nodemask_t
*nmask
)
2345 struct folio
*folio
;
2347 if (hstate_is_gigantic(h
))
2350 folio
= alloc_fresh_hugetlb_folio(h
, gfp_mask
, nid
, nmask
);
2354 /* fresh huge pages are frozen */
2355 folio_ref_unfreeze(folio
, 1);
2357 * We do not account these pages as surplus because they are only
2358 * temporary and will be released properly on the last reference
2360 folio_set_hugetlb_temporary(folio
);
2366 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2369 struct folio
*alloc_buddy_hugetlb_folio_with_mpol(struct hstate
*h
,
2370 struct vm_area_struct
*vma
, unsigned long addr
)
2372 struct folio
*folio
= NULL
;
2373 struct mempolicy
*mpol
;
2374 gfp_t gfp_mask
= htlb_alloc_mask(h
);
2376 nodemask_t
*nodemask
;
2378 nid
= huge_node(vma
, addr
, gfp_mask
, &mpol
, &nodemask
);
2379 if (mpol_is_preferred_many(mpol
)) {
2380 gfp_t gfp
= gfp_mask
& ~(__GFP_DIRECT_RECLAIM
| __GFP_NOFAIL
);
2382 folio
= alloc_surplus_hugetlb_folio(h
, gfp
, nid
, nodemask
);
2384 /* Fallback to all nodes if page==NULL */
2389 folio
= alloc_surplus_hugetlb_folio(h
, gfp_mask
, nid
, nodemask
);
2390 mpol_cond_put(mpol
);
2394 struct folio
*alloc_hugetlb_folio_reserve(struct hstate
*h
, int preferred_nid
,
2395 nodemask_t
*nmask
, gfp_t gfp_mask
)
2397 struct folio
*folio
;
2399 spin_lock_irq(&hugetlb_lock
);
2400 folio
= dequeue_hugetlb_folio_nodemask(h
, gfp_mask
, preferred_nid
,
2403 VM_BUG_ON(!h
->resv_huge_pages
);
2404 h
->resv_huge_pages
--;
2407 spin_unlock_irq(&hugetlb_lock
);
2411 /* folio migration callback function */
2412 struct folio
*alloc_hugetlb_folio_nodemask(struct hstate
*h
, int preferred_nid
,
2413 nodemask_t
*nmask
, gfp_t gfp_mask
, bool allow_alloc_fallback
)
2415 spin_lock_irq(&hugetlb_lock
);
2416 if (available_huge_pages(h
)) {
2417 struct folio
*folio
;
2419 folio
= dequeue_hugetlb_folio_nodemask(h
, gfp_mask
,
2420 preferred_nid
, nmask
);
2422 spin_unlock_irq(&hugetlb_lock
);
2426 spin_unlock_irq(&hugetlb_lock
);
2428 /* We cannot fallback to other nodes, as we could break the per-node pool. */
2429 if (!allow_alloc_fallback
)
2430 gfp_mask
|= __GFP_THISNODE
;
2432 return alloc_migrate_hugetlb_folio(h
, gfp_mask
, preferred_nid
, nmask
);
2435 static nodemask_t
*policy_mbind_nodemask(gfp_t gfp
)
2438 struct mempolicy
*mpol
= get_task_policy(current
);
2441 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2442 * (from policy_nodemask) specifically for hugetlb case
2444 if (mpol
->mode
== MPOL_BIND
&&
2445 (apply_policy_zone(mpol
, gfp_zone(gfp
)) &&
2446 cpuset_nodemask_valid_mems_allowed(&mpol
->nodes
)))
2447 return &mpol
->nodes
;
2453 * Increase the hugetlb pool such that it can accommodate a reservation
2456 static int gather_surplus_pages(struct hstate
*h
, long delta
)
2457 __must_hold(&hugetlb_lock
)
2459 LIST_HEAD(surplus_list
);
2460 struct folio
*folio
, *tmp
;
2463 long needed
, allocated
;
2464 bool alloc_ok
= true;
2466 nodemask_t
*mbind_nodemask
= policy_mbind_nodemask(htlb_alloc_mask(h
));
2468 lockdep_assert_held(&hugetlb_lock
);
2469 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
2471 h
->resv_huge_pages
+= delta
;
2479 spin_unlock_irq(&hugetlb_lock
);
2480 for (i
= 0; i
< needed
; i
++) {
2482 for_each_node_mask(node
, cpuset_current_mems_allowed
) {
2483 if (!mbind_nodemask
|| node_isset(node
, *mbind_nodemask
)) {
2484 folio
= alloc_surplus_hugetlb_folio(h
, htlb_alloc_mask(h
),
2494 list_add(&folio
->lru
, &surplus_list
);
2500 * After retaking hugetlb_lock, we need to recalculate 'needed'
2501 * because either resv_huge_pages or free_huge_pages may have changed.
2503 spin_lock_irq(&hugetlb_lock
);
2504 needed
= (h
->resv_huge_pages
+ delta
) -
2505 (h
->free_huge_pages
+ allocated
);
2510 * We were not able to allocate enough pages to
2511 * satisfy the entire reservation so we free what
2512 * we've allocated so far.
2517 * The surplus_list now contains _at_least_ the number of extra pages
2518 * needed to accommodate the reservation. Add the appropriate number
2519 * of pages to the hugetlb pool and free the extras back to the buddy
2520 * allocator. Commit the entire reservation here to prevent another
2521 * process from stealing the pages as they are added to the pool but
2522 * before they are reserved.
2524 needed
+= allocated
;
2525 h
->resv_huge_pages
+= delta
;
2528 /* Free the needed pages to the hugetlb pool */
2529 list_for_each_entry_safe(folio
, tmp
, &surplus_list
, lru
) {
2532 /* Add the page to the hugetlb allocator */
2533 enqueue_hugetlb_folio(h
, folio
);
2536 spin_unlock_irq(&hugetlb_lock
);
2539 * Free unnecessary surplus pages to the buddy allocator.
2540 * Pages have no ref count, call free_huge_folio directly.
2542 list_for_each_entry_safe(folio
, tmp
, &surplus_list
, lru
)
2543 free_huge_folio(folio
);
2544 spin_lock_irq(&hugetlb_lock
);
2550 * This routine has two main purposes:
2551 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2552 * in unused_resv_pages. This corresponds to the prior adjustments made
2553 * to the associated reservation map.
2554 * 2) Free any unused surplus pages that may have been allocated to satisfy
2555 * the reservation. As many as unused_resv_pages may be freed.
2557 static void return_unused_surplus_pages(struct hstate
*h
,
2558 unsigned long unused_resv_pages
)
2560 unsigned long nr_pages
;
2561 LIST_HEAD(page_list
);
2563 lockdep_assert_held(&hugetlb_lock
);
2564 /* Uncommit the reservation */
2565 h
->resv_huge_pages
-= unused_resv_pages
;
2567 if (hstate_is_gigantic(h
) && !gigantic_page_runtime_supported())
2571 * Part (or even all) of the reservation could have been backed
2572 * by pre-allocated pages. Only free surplus pages.
2574 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
2577 * We want to release as many surplus pages as possible, spread
2578 * evenly across all nodes with memory. Iterate across these nodes
2579 * until we can no longer free unreserved surplus pages. This occurs
2580 * when the nodes with surplus pages have no free pages.
2581 * remove_pool_hugetlb_folio() will balance the freed pages across the
2582 * on-line nodes with memory and will handle the hstate accounting.
2584 while (nr_pages
--) {
2585 struct folio
*folio
;
2587 folio
= remove_pool_hugetlb_folio(h
, &node_states
[N_MEMORY
], 1);
2591 list_add(&folio
->lru
, &page_list
);
2595 spin_unlock_irq(&hugetlb_lock
);
2596 update_and_free_pages_bulk(h
, &page_list
);
2597 spin_lock_irq(&hugetlb_lock
);
2602 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2603 * are used by the huge page allocation routines to manage reservations.
2605 * vma_needs_reservation is called to determine if the huge page at addr
2606 * within the vma has an associated reservation. If a reservation is
2607 * needed, the value 1 is returned. The caller is then responsible for
2608 * managing the global reservation and subpool usage counts. After
2609 * the huge page has been allocated, vma_commit_reservation is called
2610 * to add the page to the reservation map. If the page allocation fails,
2611 * the reservation must be ended instead of committed. vma_end_reservation
2612 * is called in such cases.
2614 * In the normal case, vma_commit_reservation returns the same value
2615 * as the preceding vma_needs_reservation call. The only time this
2616 * is not the case is if a reserve map was changed between calls. It
2617 * is the responsibility of the caller to notice the difference and
2618 * take appropriate action.
2620 * vma_add_reservation is used in error paths where a reservation must
2621 * be restored when a newly allocated huge page must be freed. It is
2622 * to be called after calling vma_needs_reservation to determine if a
2623 * reservation exists.
2625 * vma_del_reservation is used in error paths where an entry in the reserve
2626 * map was created during huge page allocation and must be removed. It is to
2627 * be called after calling vma_needs_reservation to determine if a reservation
2630 enum vma_resv_mode
{
2637 static long __vma_reservation_common(struct hstate
*h
,
2638 struct vm_area_struct
*vma
, unsigned long addr
,
2639 enum vma_resv_mode mode
)
2641 struct resv_map
*resv
;
2644 long dummy_out_regions_needed
;
2646 resv
= vma_resv_map(vma
);
2650 idx
= vma_hugecache_offset(h
, vma
, addr
);
2652 case VMA_NEEDS_RESV
:
2653 ret
= region_chg(resv
, idx
, idx
+ 1, &dummy_out_regions_needed
);
2654 /* We assume that vma_reservation_* routines always operate on
2655 * 1 page, and that adding to resv map a 1 page entry can only
2656 * ever require 1 region.
2658 VM_BUG_ON(dummy_out_regions_needed
!= 1);
2660 case VMA_COMMIT_RESV
:
2661 ret
= region_add(resv
, idx
, idx
+ 1, 1, NULL
, NULL
);
2662 /* region_add calls of range 1 should never fail. */
2666 region_abort(resv
, idx
, idx
+ 1, 1);
2670 if (vma
->vm_flags
& VM_MAYSHARE
) {
2671 ret
= region_add(resv
, idx
, idx
+ 1, 1, NULL
, NULL
);
2672 /* region_add calls of range 1 should never fail. */
2675 region_abort(resv
, idx
, idx
+ 1, 1);
2676 ret
= region_del(resv
, idx
, idx
+ 1);
2680 if (vma
->vm_flags
& VM_MAYSHARE
) {
2681 region_abort(resv
, idx
, idx
+ 1, 1);
2682 ret
= region_del(resv
, idx
, idx
+ 1);
2684 ret
= region_add(resv
, idx
, idx
+ 1, 1, NULL
, NULL
);
2685 /* region_add calls of range 1 should never fail. */
2693 if (vma
->vm_flags
& VM_MAYSHARE
|| mode
== VMA_DEL_RESV
)
2696 * We know private mapping must have HPAGE_RESV_OWNER set.
2698 * In most cases, reserves always exist for private mappings.
2699 * However, a file associated with mapping could have been
2700 * hole punched or truncated after reserves were consumed.
2701 * As subsequent fault on such a range will not use reserves.
2702 * Subtle - The reserve map for private mappings has the
2703 * opposite meaning than that of shared mappings. If NO
2704 * entry is in the reserve map, it means a reservation exists.
2705 * If an entry exists in the reserve map, it means the
2706 * reservation has already been consumed. As a result, the
2707 * return value of this routine is the opposite of the
2708 * value returned from reserve map manipulation routines above.
2717 static long vma_needs_reservation(struct hstate
*h
,
2718 struct vm_area_struct
*vma
, unsigned long addr
)
2720 return __vma_reservation_common(h
, vma
, addr
, VMA_NEEDS_RESV
);
2723 static long vma_commit_reservation(struct hstate
*h
,
2724 struct vm_area_struct
*vma
, unsigned long addr
)
2726 return __vma_reservation_common(h
, vma
, addr
, VMA_COMMIT_RESV
);
2729 static void vma_end_reservation(struct hstate
*h
,
2730 struct vm_area_struct
*vma
, unsigned long addr
)
2732 (void)__vma_reservation_common(h
, vma
, addr
, VMA_END_RESV
);
2735 static long vma_add_reservation(struct hstate
*h
,
2736 struct vm_area_struct
*vma
, unsigned long addr
)
2738 return __vma_reservation_common(h
, vma
, addr
, VMA_ADD_RESV
);
2741 static long vma_del_reservation(struct hstate
*h
,
2742 struct vm_area_struct
*vma
, unsigned long addr
)
2744 return __vma_reservation_common(h
, vma
, addr
, VMA_DEL_RESV
);
2748 * This routine is called to restore reservation information on error paths.
2749 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2750 * and the hugetlb mutex should remain held when calling this routine.
2752 * It handles two specific cases:
2753 * 1) A reservation was in place and the folio consumed the reservation.
2754 * hugetlb_restore_reserve is set in the folio.
2755 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2756 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2758 * In case 1, free_huge_folio later in the error path will increment the
2759 * global reserve count. But, free_huge_folio does not have enough context
2760 * to adjust the reservation map. This case deals primarily with private
2761 * mappings. Adjust the reserve map here to be consistent with global
2762 * reserve count adjustments to be made by free_huge_folio. Make sure the
2763 * reserve map indicates there is a reservation present.
2765 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2767 void restore_reserve_on_error(struct hstate
*h
, struct vm_area_struct
*vma
,
2768 unsigned long address
, struct folio
*folio
)
2770 long rc
= vma_needs_reservation(h
, vma
, address
);
2772 if (folio_test_hugetlb_restore_reserve(folio
)) {
2773 if (unlikely(rc
< 0))
2775 * Rare out of memory condition in reserve map
2776 * manipulation. Clear hugetlb_restore_reserve so
2777 * that global reserve count will not be incremented
2778 * by free_huge_folio. This will make it appear
2779 * as though the reservation for this folio was
2780 * consumed. This may prevent the task from
2781 * faulting in the folio at a later time. This
2782 * is better than inconsistent global huge page
2783 * accounting of reserve counts.
2785 folio_clear_hugetlb_restore_reserve(folio
);
2787 (void)vma_add_reservation(h
, vma
, address
);
2789 vma_end_reservation(h
, vma
, address
);
2793 * This indicates there is an entry in the reserve map
2794 * not added by alloc_hugetlb_folio. We know it was added
2795 * before the alloc_hugetlb_folio call, otherwise
2796 * hugetlb_restore_reserve would be set on the folio.
2797 * Remove the entry so that a subsequent allocation
2798 * does not consume a reservation.
2800 rc
= vma_del_reservation(h
, vma
, address
);
2803 * VERY rare out of memory condition. Since
2804 * we can not delete the entry, set
2805 * hugetlb_restore_reserve so that the reserve
2806 * count will be incremented when the folio
2807 * is freed. This reserve will be consumed
2808 * on a subsequent allocation.
2810 folio_set_hugetlb_restore_reserve(folio
);
2811 } else if (rc
< 0) {
2813 * Rare out of memory condition from
2814 * vma_needs_reservation call. Memory allocation is
2815 * only attempted if a new entry is needed. Therefore,
2816 * this implies there is not an entry in the
2819 * For shared mappings, no entry in the map indicates
2820 * no reservation. We are done.
2822 if (!(vma
->vm_flags
& VM_MAYSHARE
))
2824 * For private mappings, no entry indicates
2825 * a reservation is present. Since we can
2826 * not add an entry, set hugetlb_restore_reserve
2827 * on the folio so reserve count will be
2828 * incremented when freed. This reserve will
2829 * be consumed on a subsequent allocation.
2831 folio_set_hugetlb_restore_reserve(folio
);
2834 * No reservation present, do nothing
2836 vma_end_reservation(h
, vma
, address
);
2841 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2843 * @h: struct hstate old page belongs to
2844 * @old_folio: Old folio to dissolve
2845 * @list: List to isolate the page in case we need to
2846 * Returns 0 on success, otherwise negated error.
2848 static int alloc_and_dissolve_hugetlb_folio(struct hstate
*h
,
2849 struct folio
*old_folio
, struct list_head
*list
)
2851 gfp_t gfp_mask
= htlb_alloc_mask(h
) | __GFP_THISNODE
;
2852 int nid
= folio_nid(old_folio
);
2853 struct folio
*new_folio
= NULL
;
2857 spin_lock_irq(&hugetlb_lock
);
2858 if (!folio_test_hugetlb(old_folio
)) {
2860 * Freed from under us. Drop new_folio too.
2863 } else if (folio_ref_count(old_folio
)) {
2867 * Someone has grabbed the folio, try to isolate it here.
2868 * Fail with -EBUSY if not possible.
2870 spin_unlock_irq(&hugetlb_lock
);
2871 isolated
= isolate_hugetlb(old_folio
, list
);
2872 ret
= isolated
? 0 : -EBUSY
;
2873 spin_lock_irq(&hugetlb_lock
);
2875 } else if (!folio_test_hugetlb_freed(old_folio
)) {
2877 * Folio's refcount is 0 but it has not been enqueued in the
2878 * freelist yet. Race window is small, so we can succeed here if
2881 spin_unlock_irq(&hugetlb_lock
);
2886 spin_unlock_irq(&hugetlb_lock
);
2887 new_folio
= alloc_buddy_hugetlb_folio(h
, gfp_mask
, nid
,
2891 __prep_new_hugetlb_folio(h
, new_folio
);
2896 * Ok, old_folio is still a genuine free hugepage. Remove it from
2897 * the freelist and decrease the counters. These will be
2898 * incremented again when calling __prep_account_new_huge_page()
2899 * and enqueue_hugetlb_folio() for new_folio. The counters will
2900 * remain stable since this happens under the lock.
2902 remove_hugetlb_folio(h
, old_folio
, false);
2905 * Ref count on new_folio is already zero as it was dropped
2906 * earlier. It can be directly added to the pool free list.
2908 __prep_account_new_huge_page(h
, nid
);
2909 enqueue_hugetlb_folio(h
, new_folio
);
2912 * Folio has been replaced, we can safely free the old one.
2914 spin_unlock_irq(&hugetlb_lock
);
2915 update_and_free_hugetlb_folio(h
, old_folio
, false);
2921 spin_unlock_irq(&hugetlb_lock
);
2923 update_and_free_hugetlb_folio(h
, new_folio
, false);
2928 int isolate_or_dissolve_huge_page(struct page
*page
, struct list_head
*list
)
2931 struct folio
*folio
= page_folio(page
);
2935 * The page might have been dissolved from under our feet, so make sure
2936 * to carefully check the state under the lock.
2937 * Return success when racing as if we dissolved the page ourselves.
2939 spin_lock_irq(&hugetlb_lock
);
2940 if (folio_test_hugetlb(folio
)) {
2941 h
= folio_hstate(folio
);
2943 spin_unlock_irq(&hugetlb_lock
);
2946 spin_unlock_irq(&hugetlb_lock
);
2949 * Fence off gigantic pages as there is a cyclic dependency between
2950 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2951 * of bailing out right away without further retrying.
2953 if (hstate_is_gigantic(h
))
2956 if (folio_ref_count(folio
) && isolate_hugetlb(folio
, list
))
2958 else if (!folio_ref_count(folio
))
2959 ret
= alloc_and_dissolve_hugetlb_folio(h
, folio
, list
);
2964 struct folio
*alloc_hugetlb_folio(struct vm_area_struct
*vma
,
2965 unsigned long addr
, int avoid_reserve
)
2967 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2968 struct hstate
*h
= hstate_vma(vma
);
2969 struct folio
*folio
;
2970 long map_chg
, map_commit
, nr_pages
= pages_per_huge_page(h
);
2972 int memcg_charge_ret
, ret
, idx
;
2973 struct hugetlb_cgroup
*h_cg
= NULL
;
2974 struct mem_cgroup
*memcg
;
2975 bool deferred_reserve
;
2976 gfp_t gfp
= htlb_alloc_mask(h
) | __GFP_RETRY_MAYFAIL
;
2978 memcg
= get_mem_cgroup_from_current();
2979 memcg_charge_ret
= mem_cgroup_hugetlb_try_charge(memcg
, gfp
, nr_pages
);
2980 if (memcg_charge_ret
== -ENOMEM
) {
2981 mem_cgroup_put(memcg
);
2982 return ERR_PTR(-ENOMEM
);
2985 idx
= hstate_index(h
);
2987 * Examine the region/reserve map to determine if the process
2988 * has a reservation for the page to be allocated. A return
2989 * code of zero indicates a reservation exists (no change).
2991 map_chg
= gbl_chg
= vma_needs_reservation(h
, vma
, addr
);
2993 if (!memcg_charge_ret
)
2994 mem_cgroup_cancel_charge(memcg
, nr_pages
);
2995 mem_cgroup_put(memcg
);
2996 return ERR_PTR(-ENOMEM
);
3000 * Processes that did not create the mapping will have no
3001 * reserves as indicated by the region/reserve map. Check
3002 * that the allocation will not exceed the subpool limit.
3003 * Allocations for MAP_NORESERVE mappings also need to be
3004 * checked against any subpool limit.
3006 if (map_chg
|| avoid_reserve
) {
3007 gbl_chg
= hugepage_subpool_get_pages(spool
, 1);
3009 goto out_end_reservation
;
3012 * Even though there was no reservation in the region/reserve
3013 * map, there could be reservations associated with the
3014 * subpool that can be used. This would be indicated if the
3015 * return value of hugepage_subpool_get_pages() is zero.
3016 * However, if avoid_reserve is specified we still avoid even
3017 * the subpool reservations.
3023 /* If this allocation is not consuming a reservation, charge it now.
3025 deferred_reserve
= map_chg
|| avoid_reserve
;
3026 if (deferred_reserve
) {
3027 ret
= hugetlb_cgroup_charge_cgroup_rsvd(
3028 idx
, pages_per_huge_page(h
), &h_cg
);
3030 goto out_subpool_put
;
3033 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
3035 goto out_uncharge_cgroup_reservation
;
3037 spin_lock_irq(&hugetlb_lock
);
3039 * glb_chg is passed to indicate whether or not a page must be taken
3040 * from the global free pool (global change). gbl_chg == 0 indicates
3041 * a reservation exists for the allocation.
3043 folio
= dequeue_hugetlb_folio_vma(h
, vma
, addr
, avoid_reserve
, gbl_chg
);
3045 spin_unlock_irq(&hugetlb_lock
);
3046 folio
= alloc_buddy_hugetlb_folio_with_mpol(h
, vma
, addr
);
3048 goto out_uncharge_cgroup
;
3049 spin_lock_irq(&hugetlb_lock
);
3050 if (!avoid_reserve
&& vma_has_reserves(vma
, gbl_chg
)) {
3051 folio_set_hugetlb_restore_reserve(folio
);
3052 h
->resv_huge_pages
--;
3054 list_add(&folio
->lru
, &h
->hugepage_activelist
);
3055 folio_ref_unfreeze(folio
, 1);
3059 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, folio
);
3060 /* If allocation is not consuming a reservation, also store the
3061 * hugetlb_cgroup pointer on the page.
3063 if (deferred_reserve
) {
3064 hugetlb_cgroup_commit_charge_rsvd(idx
, pages_per_huge_page(h
),
3068 spin_unlock_irq(&hugetlb_lock
);
3070 hugetlb_set_folio_subpool(folio
, spool
);
3072 map_commit
= vma_commit_reservation(h
, vma
, addr
);
3073 if (unlikely(map_chg
> map_commit
)) {
3075 * The page was added to the reservation map between
3076 * vma_needs_reservation and vma_commit_reservation.
3077 * This indicates a race with hugetlb_reserve_pages.
3078 * Adjust for the subpool count incremented above AND
3079 * in hugetlb_reserve_pages for the same page. Also,
3080 * the reservation count added in hugetlb_reserve_pages
3081 * no longer applies.
3085 rsv_adjust
= hugepage_subpool_put_pages(spool
, 1);
3086 hugetlb_acct_memory(h
, -rsv_adjust
);
3087 if (deferred_reserve
) {
3088 spin_lock_irq(&hugetlb_lock
);
3089 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h
),
3090 pages_per_huge_page(h
), folio
);
3091 spin_unlock_irq(&hugetlb_lock
);
3095 if (!memcg_charge_ret
)
3096 mem_cgroup_commit_charge(folio
, memcg
);
3097 lruvec_stat_mod_folio(folio
, NR_HUGETLB
, pages_per_huge_page(h
));
3098 mem_cgroup_put(memcg
);
3102 out_uncharge_cgroup
:
3103 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
3104 out_uncharge_cgroup_reservation
:
3105 if (deferred_reserve
)
3106 hugetlb_cgroup_uncharge_cgroup_rsvd(idx
, pages_per_huge_page(h
),
3109 if (map_chg
|| avoid_reserve
)
3110 hugepage_subpool_put_pages(spool
, 1);
3111 out_end_reservation
:
3112 vma_end_reservation(h
, vma
, addr
);
3113 if (!memcg_charge_ret
)
3114 mem_cgroup_cancel_charge(memcg
, nr_pages
);
3115 mem_cgroup_put(memcg
);
3116 return ERR_PTR(-ENOSPC
);
3119 int alloc_bootmem_huge_page(struct hstate
*h
, int nid
)
3120 __attribute__ ((weak
, alias("__alloc_bootmem_huge_page")));
3121 int __alloc_bootmem_huge_page(struct hstate
*h
, int nid
)
3123 struct huge_bootmem_page
*m
= NULL
; /* initialize for clang */
3124 int nr_nodes
, node
= nid
;
3126 /* do node specific alloc */
3127 if (nid
!= NUMA_NO_NODE
) {
3128 m
= memblock_alloc_try_nid_raw(huge_page_size(h
), huge_page_size(h
),
3129 0, MEMBLOCK_ALLOC_ACCESSIBLE
, nid
);
3134 /* allocate from next node when distributing huge pages */
3135 for_each_node_mask_to_alloc(&h
->next_nid_to_alloc
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
3136 m
= memblock_alloc_try_nid_raw(
3137 huge_page_size(h
), huge_page_size(h
),
3138 0, MEMBLOCK_ALLOC_ACCESSIBLE
, node
);
3140 * Use the beginning of the huge page to store the
3141 * huge_bootmem_page struct (until gather_bootmem
3142 * puts them into the mem_map).
3152 * Only initialize the head struct page in memmap_init_reserved_pages,
3153 * rest of the struct pages will be initialized by the HugeTLB
3155 * The head struct page is used to get folio information by the HugeTLB
3156 * subsystem like zone id and node id.
3158 memblock_reserved_mark_noinit(virt_to_phys((void *)m
+ PAGE_SIZE
),
3159 huge_page_size(h
) - PAGE_SIZE
);
3160 /* Put them into a private list first because mem_map is not up yet */
3161 INIT_LIST_HEAD(&m
->list
);
3162 list_add(&m
->list
, &huge_boot_pages
[node
]);
3167 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3168 static void __init
hugetlb_folio_init_tail_vmemmap(struct folio
*folio
,
3169 unsigned long start_page_number
,
3170 unsigned long end_page_number
)
3172 enum zone_type zone
= zone_idx(folio_zone(folio
));
3173 int nid
= folio_nid(folio
);
3174 unsigned long head_pfn
= folio_pfn(folio
);
3175 unsigned long pfn
, end_pfn
= head_pfn
+ end_page_number
;
3178 for (pfn
= head_pfn
+ start_page_number
; pfn
< end_pfn
; pfn
++) {
3179 struct page
*page
= pfn_to_page(pfn
);
3181 __ClearPageReserved(folio_page(folio
, pfn
- head_pfn
));
3182 __init_single_page(page
, pfn
, zone
, nid
);
3183 prep_compound_tail((struct page
*)folio
, pfn
- head_pfn
);
3184 ret
= page_ref_freeze(page
, 1);
3189 static void __init
hugetlb_folio_init_vmemmap(struct folio
*folio
,
3191 unsigned long nr_pages
)
3195 /* Prepare folio head */
3196 __folio_clear_reserved(folio
);
3197 __folio_set_head(folio
);
3198 ret
= folio_ref_freeze(folio
, 1);
3200 /* Initialize the necessary tail struct pages */
3201 hugetlb_folio_init_tail_vmemmap(folio
, 1, nr_pages
);
3202 prep_compound_head((struct page
*)folio
, huge_page_order(h
));
3205 static void __init
prep_and_add_bootmem_folios(struct hstate
*h
,
3206 struct list_head
*folio_list
)
3208 unsigned long flags
;
3209 struct folio
*folio
, *tmp_f
;
3211 /* Send list for bulk vmemmap optimization processing */
3212 hugetlb_vmemmap_optimize_folios(h
, folio_list
);
3214 list_for_each_entry_safe(folio
, tmp_f
, folio_list
, lru
) {
3215 if (!folio_test_hugetlb_vmemmap_optimized(folio
)) {
3217 * If HVO fails, initialize all tail struct pages
3218 * We do not worry about potential long lock hold
3219 * time as this is early in boot and there should
3222 hugetlb_folio_init_tail_vmemmap(folio
,
3223 HUGETLB_VMEMMAP_RESERVE_PAGES
,
3224 pages_per_huge_page(h
));
3226 /* Subdivide locks to achieve better parallel performance */
3227 spin_lock_irqsave(&hugetlb_lock
, flags
);
3228 __prep_account_new_huge_page(h
, folio_nid(folio
));
3229 enqueue_hugetlb_folio(h
, folio
);
3230 spin_unlock_irqrestore(&hugetlb_lock
, flags
);
3235 * Put bootmem huge pages into the standard lists after mem_map is up.
3236 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3238 static void __init
gather_bootmem_prealloc_node(unsigned long nid
)
3240 LIST_HEAD(folio_list
);
3241 struct huge_bootmem_page
*m
;
3242 struct hstate
*h
= NULL
, *prev_h
= NULL
;
3244 list_for_each_entry(m
, &huge_boot_pages
[nid
], list
) {
3245 struct page
*page
= virt_to_page(m
);
3246 struct folio
*folio
= (void *)page
;
3250 * It is possible to have multiple huge page sizes (hstates)
3251 * in this list. If so, process each size separately.
3253 if (h
!= prev_h
&& prev_h
!= NULL
)
3254 prep_and_add_bootmem_folios(prev_h
, &folio_list
);
3257 VM_BUG_ON(!hstate_is_gigantic(h
));
3258 WARN_ON(folio_ref_count(folio
) != 1);
3260 hugetlb_folio_init_vmemmap(folio
, h
,
3261 HUGETLB_VMEMMAP_RESERVE_PAGES
);
3262 init_new_hugetlb_folio(h
, folio
);
3263 list_add(&folio
->lru
, &folio_list
);
3266 * We need to restore the 'stolen' pages to totalram_pages
3267 * in order to fix confusing memory reports from free(1) and
3268 * other side-effects, like CommitLimit going negative.
3270 adjust_managed_page_count(page
, pages_per_huge_page(h
));
3274 prep_and_add_bootmem_folios(h
, &folio_list
);
3277 static void __init
gather_bootmem_prealloc_parallel(unsigned long start
,
3278 unsigned long end
, void *arg
)
3282 for (nid
= start
; nid
< end
; nid
++)
3283 gather_bootmem_prealloc_node(nid
);
3286 static void __init
gather_bootmem_prealloc(void)
3288 struct padata_mt_job job
= {
3289 .thread_fn
= gather_bootmem_prealloc_parallel
,
3292 .size
= num_node_state(N_MEMORY
),
3295 .max_threads
= num_node_state(N_MEMORY
),
3299 padata_do_multithreaded(&job
);
3302 static void __init
hugetlb_hstate_alloc_pages_onenode(struct hstate
*h
, int nid
)
3306 LIST_HEAD(folio_list
);
3308 for (i
= 0; i
< h
->max_huge_pages_node
[nid
]; ++i
) {
3309 if (hstate_is_gigantic(h
)) {
3310 if (!alloc_bootmem_huge_page(h
, nid
))
3313 struct folio
*folio
;
3314 gfp_t gfp_mask
= htlb_alloc_mask(h
) | __GFP_THISNODE
;
3316 folio
= only_alloc_fresh_hugetlb_folio(h
, gfp_mask
, nid
,
3317 &node_states
[N_MEMORY
], NULL
);
3320 list_add(&folio
->lru
, &folio_list
);
3325 if (!list_empty(&folio_list
))
3326 prep_and_add_allocated_folios(h
, &folio_list
);
3328 if (i
== h
->max_huge_pages_node
[nid
])
3331 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
3332 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3333 h
->max_huge_pages_node
[nid
], buf
, nid
, i
);
3334 h
->max_huge_pages
-= (h
->max_huge_pages_node
[nid
] - i
);
3335 h
->max_huge_pages_node
[nid
] = i
;
3338 static bool __init
hugetlb_hstate_alloc_pages_specific_nodes(struct hstate
*h
)
3341 bool node_specific_alloc
= false;
3343 for_each_online_node(i
) {
3344 if (h
->max_huge_pages_node
[i
] > 0) {
3345 hugetlb_hstate_alloc_pages_onenode(h
, i
);
3346 node_specific_alloc
= true;
3350 return node_specific_alloc
;
3353 static void __init
hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated
, struct hstate
*h
)
3355 if (allocated
< h
->max_huge_pages
) {
3358 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
3359 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3360 h
->max_huge_pages
, buf
, allocated
);
3361 h
->max_huge_pages
= allocated
;
3365 static void __init
hugetlb_pages_alloc_boot_node(unsigned long start
, unsigned long end
, void *arg
)
3367 struct hstate
*h
= (struct hstate
*)arg
;
3368 int i
, num
= end
- start
;
3369 nodemask_t node_alloc_noretry
;
3370 LIST_HEAD(folio_list
);
3371 int next_node
= first_online_node
;
3373 /* Bit mask controlling how hard we retry per-node allocations.*/
3374 nodes_clear(node_alloc_noretry
);
3376 for (i
= 0; i
< num
; ++i
) {
3377 struct folio
*folio
= alloc_pool_huge_folio(h
, &node_states
[N_MEMORY
],
3378 &node_alloc_noretry
, &next_node
);
3382 list_move(&folio
->lru
, &folio_list
);
3386 prep_and_add_allocated_folios(h
, &folio_list
);
3389 static unsigned long __init
hugetlb_gigantic_pages_alloc_boot(struct hstate
*h
)
3393 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
3394 if (!alloc_bootmem_huge_page(h
, NUMA_NO_NODE
))
3402 static unsigned long __init
hugetlb_pages_alloc_boot(struct hstate
*h
)
3404 struct padata_mt_job job
= {
3410 job
.thread_fn
= hugetlb_pages_alloc_boot_node
;
3412 job
.size
= h
->max_huge_pages
;
3415 * job.max_threads is twice the num_node_state(N_MEMORY),
3417 * Tests below indicate that a multiplier of 2 significantly improves
3418 * performance, and although larger values also provide improvements,
3419 * the gains are marginal.
3421 * Therefore, choosing 2 as the multiplier strikes a good balance between
3422 * enhancing parallel processing capabilities and maintaining efficient
3423 * resource management.
3425 * +------------+-------+-------+-------+-------+-------+
3426 * | multiplier | 1 | 2 | 3 | 4 | 5 |
3427 * +------------+-------+-------+-------+-------+-------+
3428 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3429 * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3430 * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms |
3431 * +------------+-------+-------+-------+-------+-------+
3433 job
.max_threads
= num_node_state(N_MEMORY
) * 2;
3434 job
.min_chunk
= h
->max_huge_pages
/ num_node_state(N_MEMORY
) / 2;
3435 padata_do_multithreaded(&job
);
3437 return h
->nr_huge_pages
;
3441 * NOTE: this routine is called in different contexts for gigantic and
3442 * non-gigantic pages.
3443 * - For gigantic pages, this is called early in the boot process and
3444 * pages are allocated from memblock allocated or something similar.
3445 * Gigantic pages are actually added to pools later with the routine
3446 * gather_bootmem_prealloc.
3447 * - For non-gigantic pages, this is called later in the boot process after
3448 * all of mm is up and functional. Pages are allocated from buddy and
3449 * then added to hugetlb pools.
3451 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
3453 unsigned long allocated
;
3454 static bool initialized __initdata
;
3456 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3457 if (hstate_is_gigantic(h
) && hugetlb_cma_size
) {
3458 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3462 /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3466 for (i
= 0; i
< MAX_NUMNODES
; i
++)
3467 INIT_LIST_HEAD(&huge_boot_pages
[i
]);
3471 /* do node specific alloc */
3472 if (hugetlb_hstate_alloc_pages_specific_nodes(h
))
3475 /* below will do all node balanced alloc */
3476 if (hstate_is_gigantic(h
))
3477 allocated
= hugetlb_gigantic_pages_alloc_boot(h
);
3479 allocated
= hugetlb_pages_alloc_boot(h
);
3481 hugetlb_hstate_alloc_pages_errcheck(allocated
, h
);
3484 static void __init
hugetlb_init_hstates(void)
3486 struct hstate
*h
, *h2
;
3488 for_each_hstate(h
) {
3489 /* oversize hugepages were init'ed in early boot */
3490 if (!hstate_is_gigantic(h
))
3491 hugetlb_hstate_alloc_pages(h
);
3494 * Set demote order for each hstate. Note that
3495 * h->demote_order is initially 0.
3496 * - We can not demote gigantic pages if runtime freeing
3497 * is not supported, so skip this.
3498 * - If CMA allocation is possible, we can not demote
3499 * HUGETLB_PAGE_ORDER or smaller size pages.
3501 if (hstate_is_gigantic(h
) && !gigantic_page_runtime_supported())
3503 if (hugetlb_cma_size
&& h
->order
<= HUGETLB_PAGE_ORDER
)
3505 for_each_hstate(h2
) {
3508 if (h2
->order
< h
->order
&&
3509 h2
->order
> h
->demote_order
)
3510 h
->demote_order
= h2
->order
;
3515 static void __init
report_hugepages(void)
3519 for_each_hstate(h
) {
3522 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
3523 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3524 buf
, h
->free_huge_pages
);
3525 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3526 hugetlb_vmemmap_optimizable_size(h
) / SZ_1K
, buf
);
3530 #ifdef CONFIG_HIGHMEM
3531 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
3532 nodemask_t
*nodes_allowed
)
3535 LIST_HEAD(page_list
);
3537 lockdep_assert_held(&hugetlb_lock
);
3538 if (hstate_is_gigantic(h
))
3542 * Collect pages to be freed on a list, and free after dropping lock
3544 for_each_node_mask(i
, *nodes_allowed
) {
3545 struct folio
*folio
, *next
;
3546 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
3547 list_for_each_entry_safe(folio
, next
, freel
, lru
) {
3548 if (count
>= h
->nr_huge_pages
)
3550 if (folio_test_highmem(folio
))
3552 remove_hugetlb_folio(h
, folio
, false);
3553 list_add(&folio
->lru
, &page_list
);
3558 spin_unlock_irq(&hugetlb_lock
);
3559 update_and_free_pages_bulk(h
, &page_list
);
3560 spin_lock_irq(&hugetlb_lock
);
3563 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
3564 nodemask_t
*nodes_allowed
)
3570 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3571 * balanced by operating on them in a round-robin fashion.
3572 * Returns 1 if an adjustment was made.
3574 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
3579 lockdep_assert_held(&hugetlb_lock
);
3580 VM_BUG_ON(delta
!= -1 && delta
!= 1);
3583 for_each_node_mask_to_alloc(&h
->next_nid_to_alloc
, nr_nodes
, node
, nodes_allowed
) {
3584 if (h
->surplus_huge_pages_node
[node
])
3588 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
3589 if (h
->surplus_huge_pages_node
[node
] <
3590 h
->nr_huge_pages_node
[node
])
3597 h
->surplus_huge_pages
+= delta
;
3598 h
->surplus_huge_pages_node
[node
] += delta
;
3602 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3603 static int set_max_huge_pages(struct hstate
*h
, unsigned long count
, int nid
,
3604 nodemask_t
*nodes_allowed
)
3606 unsigned long min_count
;
3607 unsigned long allocated
;
3608 struct folio
*folio
;
3609 LIST_HEAD(page_list
);
3610 NODEMASK_ALLOC(nodemask_t
, node_alloc_noretry
, GFP_KERNEL
);
3613 * Bit mask controlling how hard we retry per-node allocations.
3614 * If we can not allocate the bit mask, do not attempt to allocate
3615 * the requested huge pages.
3617 if (node_alloc_noretry
)
3618 nodes_clear(*node_alloc_noretry
);
3623 * resize_lock mutex prevents concurrent adjustments to number of
3624 * pages in hstate via the proc/sysfs interfaces.
3626 mutex_lock(&h
->resize_lock
);
3627 flush_free_hpage_work(h
);
3628 spin_lock_irq(&hugetlb_lock
);
3631 * Check for a node specific request.
3632 * Changing node specific huge page count may require a corresponding
3633 * change to the global count. In any case, the passed node mask
3634 * (nodes_allowed) will restrict alloc/free to the specified node.
3636 if (nid
!= NUMA_NO_NODE
) {
3637 unsigned long old_count
= count
;
3639 count
+= persistent_huge_pages(h
) -
3640 (h
->nr_huge_pages_node
[nid
] -
3641 h
->surplus_huge_pages_node
[nid
]);
3643 * User may have specified a large count value which caused the
3644 * above calculation to overflow. In this case, they wanted
3645 * to allocate as many huge pages as possible. Set count to
3646 * largest possible value to align with their intention.
3648 if (count
< old_count
)
3653 * Gigantic pages runtime allocation depend on the capability for large
3654 * page range allocation.
3655 * If the system does not provide this feature, return an error when
3656 * the user tries to allocate gigantic pages but let the user free the
3657 * boottime allocated gigantic pages.
3659 if (hstate_is_gigantic(h
) && !IS_ENABLED(CONFIG_CONTIG_ALLOC
)) {
3660 if (count
> persistent_huge_pages(h
)) {
3661 spin_unlock_irq(&hugetlb_lock
);
3662 mutex_unlock(&h
->resize_lock
);
3663 NODEMASK_FREE(node_alloc_noretry
);
3666 /* Fall through to decrease pool */
3670 * Increase the pool size
3671 * First take pages out of surplus state. Then make up the
3672 * remaining difference by allocating fresh huge pages.
3674 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3675 * to convert a surplus huge page to a normal huge page. That is
3676 * not critical, though, it just means the overall size of the
3677 * pool might be one hugepage larger than it needs to be, but
3678 * within all the constraints specified by the sysctls.
3680 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
3681 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
3686 while (count
> (persistent_huge_pages(h
) + allocated
)) {
3688 * If this allocation races such that we no longer need the
3689 * page, free_huge_folio will handle it by freeing the page
3690 * and reducing the surplus.
3692 spin_unlock_irq(&hugetlb_lock
);
3694 /* yield cpu to avoid soft lockup */
3697 folio
= alloc_pool_huge_folio(h
, nodes_allowed
,
3699 &h
->next_nid_to_alloc
);
3701 prep_and_add_allocated_folios(h
, &page_list
);
3702 spin_lock_irq(&hugetlb_lock
);
3706 list_add(&folio
->lru
, &page_list
);
3709 /* Bail for signals. Probably ctrl-c from user */
3710 if (signal_pending(current
)) {
3711 prep_and_add_allocated_folios(h
, &page_list
);
3712 spin_lock_irq(&hugetlb_lock
);
3716 spin_lock_irq(&hugetlb_lock
);
3719 /* Add allocated pages to the pool */
3720 if (!list_empty(&page_list
)) {
3721 spin_unlock_irq(&hugetlb_lock
);
3722 prep_and_add_allocated_folios(h
, &page_list
);
3723 spin_lock_irq(&hugetlb_lock
);
3727 * Decrease the pool size
3728 * First return free pages to the buddy allocator (being careful
3729 * to keep enough around to satisfy reservations). Then place
3730 * pages into surplus state as needed so the pool will shrink
3731 * to the desired size as pages become free.
3733 * By placing pages into the surplus state independent of the
3734 * overcommit value, we are allowing the surplus pool size to
3735 * exceed overcommit. There are few sane options here. Since
3736 * alloc_surplus_hugetlb_folio() is checking the global counter,
3737 * though, we'll note that we're not allowed to exceed surplus
3738 * and won't grow the pool anywhere else. Not until one of the
3739 * sysctls are changed, or the surplus pages go out of use.
3741 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
3742 min_count
= max(count
, min_count
);
3743 try_to_free_low(h
, min_count
, nodes_allowed
);
3746 * Collect pages to be removed on list without dropping lock
3748 while (min_count
< persistent_huge_pages(h
)) {
3749 folio
= remove_pool_hugetlb_folio(h
, nodes_allowed
, 0);
3753 list_add(&folio
->lru
, &page_list
);
3755 /* free the pages after dropping lock */
3756 spin_unlock_irq(&hugetlb_lock
);
3757 update_and_free_pages_bulk(h
, &page_list
);
3758 flush_free_hpage_work(h
);
3759 spin_lock_irq(&hugetlb_lock
);
3761 while (count
< persistent_huge_pages(h
)) {
3762 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
3766 h
->max_huge_pages
= persistent_huge_pages(h
);
3767 spin_unlock_irq(&hugetlb_lock
);
3768 mutex_unlock(&h
->resize_lock
);
3770 NODEMASK_FREE(node_alloc_noretry
);
3775 static long demote_free_hugetlb_folios(struct hstate
*src
, struct hstate
*dst
,
3776 struct list_head
*src_list
)
3779 struct folio
*folio
, *next
;
3780 LIST_HEAD(dst_list
);
3781 LIST_HEAD(ret_list
);
3783 rc
= hugetlb_vmemmap_restore_folios(src
, src_list
, &ret_list
);
3784 list_splice_init(&ret_list
, src_list
);
3787 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3788 * Without the mutex, pages added to target hstate could be marked
3791 * Note that we already hold src->resize_lock. To prevent deadlock,
3792 * use the convention of always taking larger size hstate mutex first.
3794 mutex_lock(&dst
->resize_lock
);
3796 list_for_each_entry_safe(folio
, next
, src_list
, lru
) {
3799 if (folio_test_hugetlb_vmemmap_optimized(folio
))
3802 list_del(&folio
->lru
);
3804 split_page_owner(&folio
->page
, huge_page_order(src
), huge_page_order(dst
));
3805 pgalloc_tag_split(folio
, huge_page_order(src
), huge_page_order(dst
));
3807 for (i
= 0; i
< pages_per_huge_page(src
); i
+= pages_per_huge_page(dst
)) {
3808 struct page
*page
= folio_page(folio
, i
);
3810 page
->mapping
= NULL
;
3811 clear_compound_head(page
);
3812 prep_compound_page(page
, dst
->order
);
3814 init_new_hugetlb_folio(dst
, page_folio(page
));
3815 list_add(&page
->lru
, &dst_list
);
3819 prep_and_add_allocated_folios(dst
, &dst_list
);
3821 mutex_unlock(&dst
->resize_lock
);
3826 static long demote_pool_huge_page(struct hstate
*src
, nodemask_t
*nodes_allowed
,
3827 unsigned long nr_to_demote
)
3828 __must_hold(&hugetlb_lock
)
3833 long nr_demoted
= 0;
3835 lockdep_assert_held(&hugetlb_lock
);
3837 /* We should never get here if no demote order */
3838 if (!src
->demote_order
) {
3839 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3840 return -EINVAL
; /* internal error */
3842 dst
= size_to_hstate(PAGE_SIZE
<< src
->demote_order
);
3844 for_each_node_mask_to_free(src
, nr_nodes
, node
, nodes_allowed
) {
3846 struct folio
*folio
, *next
;
3848 list_for_each_entry_safe(folio
, next
, &src
->hugepage_freelists
[node
], lru
) {
3849 if (folio_test_hwpoison(folio
))
3852 remove_hugetlb_folio(src
, folio
, false);
3853 list_add(&folio
->lru
, &list
);
3855 if (++nr_demoted
== nr_to_demote
)
3859 spin_unlock_irq(&hugetlb_lock
);
3861 rc
= demote_free_hugetlb_folios(src
, dst
, &list
);
3863 spin_lock_irq(&hugetlb_lock
);
3865 list_for_each_entry_safe(folio
, next
, &list
, lru
) {
3866 list_del(&folio
->lru
);
3867 add_hugetlb_folio(src
, folio
, false);
3872 if (rc
< 0 || nr_demoted
== nr_to_demote
)
3877 * Not absolutely necessary, but for consistency update max_huge_pages
3878 * based on pool changes for the demoted page.
3880 src
->max_huge_pages
-= nr_demoted
;
3881 dst
->max_huge_pages
+= nr_demoted
<< (huge_page_order(src
) - huge_page_order(dst
));
3889 * Only way to get here is if all pages on free lists are poisoned.
3890 * Return -EBUSY so that caller will not retry.
3895 #define HSTATE_ATTR_RO(_name) \
3896 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3898 #define HSTATE_ATTR_WO(_name) \
3899 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3901 #define HSTATE_ATTR(_name) \
3902 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3904 static struct kobject
*hugepages_kobj
;
3905 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
3907 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
3909 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
3913 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
3914 if (hstate_kobjs
[i
] == kobj
) {
3916 *nidp
= NUMA_NO_NODE
;
3920 return kobj_to_node_hstate(kobj
, nidp
);
3923 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
3924 struct kobj_attribute
*attr
, char *buf
)
3927 unsigned long nr_huge_pages
;
3930 h
= kobj_to_hstate(kobj
, &nid
);
3931 if (nid
== NUMA_NO_NODE
)
3932 nr_huge_pages
= h
->nr_huge_pages
;
3934 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
3936 return sysfs_emit(buf
, "%lu\n", nr_huge_pages
);
3939 static ssize_t
__nr_hugepages_store_common(bool obey_mempolicy
,
3940 struct hstate
*h
, int nid
,
3941 unsigned long count
, size_t len
)
3944 nodemask_t nodes_allowed
, *n_mask
;
3946 if (hstate_is_gigantic(h
) && !gigantic_page_runtime_supported())
3949 if (nid
== NUMA_NO_NODE
) {
3951 * global hstate attribute
3953 if (!(obey_mempolicy
&&
3954 init_nodemask_of_mempolicy(&nodes_allowed
)))
3955 n_mask
= &node_states
[N_MEMORY
];
3957 n_mask
= &nodes_allowed
;
3960 * Node specific request. count adjustment happens in
3961 * set_max_huge_pages() after acquiring hugetlb_lock.
3963 init_nodemask_of_node(&nodes_allowed
, nid
);
3964 n_mask
= &nodes_allowed
;
3967 err
= set_max_huge_pages(h
, count
, nid
, n_mask
);
3969 return err
? err
: len
;
3972 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
3973 struct kobject
*kobj
, const char *buf
,
3977 unsigned long count
;
3981 err
= kstrtoul(buf
, 10, &count
);
3985 h
= kobj_to_hstate(kobj
, &nid
);
3986 return __nr_hugepages_store_common(obey_mempolicy
, h
, nid
, count
, len
);
3989 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
3990 struct kobj_attribute
*attr
, char *buf
)
3992 return nr_hugepages_show_common(kobj
, attr
, buf
);
3995 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
3996 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
3998 return nr_hugepages_store_common(false, kobj
, buf
, len
);
4000 HSTATE_ATTR(nr_hugepages
);
4005 * hstate attribute for optionally mempolicy-based constraint on persistent
4006 * huge page alloc/free.
4008 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
4009 struct kobj_attribute
*attr
,
4012 return nr_hugepages_show_common(kobj
, attr
, buf
);
4015 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
4016 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
4018 return nr_hugepages_store_common(true, kobj
, buf
, len
);
4020 HSTATE_ATTR(nr_hugepages_mempolicy
);
4024 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
4025 struct kobj_attribute
*attr
, char *buf
)
4027 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
4028 return sysfs_emit(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
4031 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
4032 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
4035 unsigned long input
;
4036 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
4038 if (hstate_is_gigantic(h
))
4041 err
= kstrtoul(buf
, 10, &input
);
4045 spin_lock_irq(&hugetlb_lock
);
4046 h
->nr_overcommit_huge_pages
= input
;
4047 spin_unlock_irq(&hugetlb_lock
);
4051 HSTATE_ATTR(nr_overcommit_hugepages
);
4053 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
4054 struct kobj_attribute
*attr
, char *buf
)
4057 unsigned long free_huge_pages
;
4060 h
= kobj_to_hstate(kobj
, &nid
);
4061 if (nid
== NUMA_NO_NODE
)
4062 free_huge_pages
= h
->free_huge_pages
;
4064 free_huge_pages
= h
->free_huge_pages_node
[nid
];
4066 return sysfs_emit(buf
, "%lu\n", free_huge_pages
);
4068 HSTATE_ATTR_RO(free_hugepages
);
4070 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
4071 struct kobj_attribute
*attr
, char *buf
)
4073 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
4074 return sysfs_emit(buf
, "%lu\n", h
->resv_huge_pages
);
4076 HSTATE_ATTR_RO(resv_hugepages
);
4078 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
4079 struct kobj_attribute
*attr
, char *buf
)
4082 unsigned long surplus_huge_pages
;
4085 h
= kobj_to_hstate(kobj
, &nid
);
4086 if (nid
== NUMA_NO_NODE
)
4087 surplus_huge_pages
= h
->surplus_huge_pages
;
4089 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
4091 return sysfs_emit(buf
, "%lu\n", surplus_huge_pages
);
4093 HSTATE_ATTR_RO(surplus_hugepages
);
4095 static ssize_t
demote_store(struct kobject
*kobj
,
4096 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
4098 unsigned long nr_demote
;
4099 unsigned long nr_available
;
4100 nodemask_t nodes_allowed
, *n_mask
;
4105 err
= kstrtoul(buf
, 10, &nr_demote
);
4108 h
= kobj_to_hstate(kobj
, &nid
);
4110 if (nid
!= NUMA_NO_NODE
) {
4111 init_nodemask_of_node(&nodes_allowed
, nid
);
4112 n_mask
= &nodes_allowed
;
4114 n_mask
= &node_states
[N_MEMORY
];
4117 /* Synchronize with other sysfs operations modifying huge pages */
4118 mutex_lock(&h
->resize_lock
);
4119 spin_lock_irq(&hugetlb_lock
);
4125 * Check for available pages to demote each time thorough the
4126 * loop as demote_pool_huge_page will drop hugetlb_lock.
4128 if (nid
!= NUMA_NO_NODE
)
4129 nr_available
= h
->free_huge_pages_node
[nid
];
4131 nr_available
= h
->free_huge_pages
;
4132 nr_available
-= h
->resv_huge_pages
;
4136 rc
= demote_pool_huge_page(h
, n_mask
, nr_demote
);
4145 spin_unlock_irq(&hugetlb_lock
);
4146 mutex_unlock(&h
->resize_lock
);
4152 HSTATE_ATTR_WO(demote
);
4154 static ssize_t
demote_size_show(struct kobject
*kobj
,
4155 struct kobj_attribute
*attr
, char *buf
)
4157 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
4158 unsigned long demote_size
= (PAGE_SIZE
<< h
->demote_order
) / SZ_1K
;
4160 return sysfs_emit(buf
, "%lukB\n", demote_size
);
4163 static ssize_t
demote_size_store(struct kobject
*kobj
,
4164 struct kobj_attribute
*attr
,
4165 const char *buf
, size_t count
)
4167 struct hstate
*h
, *demote_hstate
;
4168 unsigned long demote_size
;
4169 unsigned int demote_order
;
4171 demote_size
= (unsigned long)memparse(buf
, NULL
);
4173 demote_hstate
= size_to_hstate(demote_size
);
4176 demote_order
= demote_hstate
->order
;
4177 if (demote_order
< HUGETLB_PAGE_ORDER
)
4180 /* demote order must be smaller than hstate order */
4181 h
= kobj_to_hstate(kobj
, NULL
);
4182 if (demote_order
>= h
->order
)
4185 /* resize_lock synchronizes access to demote size and writes */
4186 mutex_lock(&h
->resize_lock
);
4187 h
->demote_order
= demote_order
;
4188 mutex_unlock(&h
->resize_lock
);
4192 HSTATE_ATTR(demote_size
);
4194 static struct attribute
*hstate_attrs
[] = {
4195 &nr_hugepages_attr
.attr
,
4196 &nr_overcommit_hugepages_attr
.attr
,
4197 &free_hugepages_attr
.attr
,
4198 &resv_hugepages_attr
.attr
,
4199 &surplus_hugepages_attr
.attr
,
4201 &nr_hugepages_mempolicy_attr
.attr
,
4206 static const struct attribute_group hstate_attr_group
= {
4207 .attrs
= hstate_attrs
,
4210 static struct attribute
*hstate_demote_attrs
[] = {
4211 &demote_size_attr
.attr
,
4216 static const struct attribute_group hstate_demote_attr_group
= {
4217 .attrs
= hstate_demote_attrs
,
4220 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
4221 struct kobject
**hstate_kobjs
,
4222 const struct attribute_group
*hstate_attr_group
)
4225 int hi
= hstate_index(h
);
4227 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
4228 if (!hstate_kobjs
[hi
])
4231 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
4233 kobject_put(hstate_kobjs
[hi
]);
4234 hstate_kobjs
[hi
] = NULL
;
4238 if (h
->demote_order
) {
4239 retval
= sysfs_create_group(hstate_kobjs
[hi
],
4240 &hstate_demote_attr_group
);
4242 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h
->name
);
4243 sysfs_remove_group(hstate_kobjs
[hi
], hstate_attr_group
);
4244 kobject_put(hstate_kobjs
[hi
]);
4245 hstate_kobjs
[hi
] = NULL
;
4254 static bool hugetlb_sysfs_initialized __ro_after_init
;
4257 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4258 * with node devices in node_devices[] using a parallel array. The array
4259 * index of a node device or _hstate == node id.
4260 * This is here to avoid any static dependency of the node device driver, in
4261 * the base kernel, on the hugetlb module.
4263 struct node_hstate
{
4264 struct kobject
*hugepages_kobj
;
4265 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
4267 static struct node_hstate node_hstates
[MAX_NUMNODES
];
4270 * A subset of global hstate attributes for node devices
4272 static struct attribute
*per_node_hstate_attrs
[] = {
4273 &nr_hugepages_attr
.attr
,
4274 &free_hugepages_attr
.attr
,
4275 &surplus_hugepages_attr
.attr
,
4279 static const struct attribute_group per_node_hstate_attr_group
= {
4280 .attrs
= per_node_hstate_attrs
,
4284 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4285 * Returns node id via non-NULL nidp.
4287 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
4291 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
4292 struct node_hstate
*nhs
= &node_hstates
[nid
];
4294 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
4295 if (nhs
->hstate_kobjs
[i
] == kobj
) {
4307 * Unregister hstate attributes from a single node device.
4308 * No-op if no hstate attributes attached.
4310 void hugetlb_unregister_node(struct node
*node
)
4313 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
4315 if (!nhs
->hugepages_kobj
)
4316 return; /* no hstate attributes */
4318 for_each_hstate(h
) {
4319 int idx
= hstate_index(h
);
4320 struct kobject
*hstate_kobj
= nhs
->hstate_kobjs
[idx
];
4324 if (h
->demote_order
)
4325 sysfs_remove_group(hstate_kobj
, &hstate_demote_attr_group
);
4326 sysfs_remove_group(hstate_kobj
, &per_node_hstate_attr_group
);
4327 kobject_put(hstate_kobj
);
4328 nhs
->hstate_kobjs
[idx
] = NULL
;
4331 kobject_put(nhs
->hugepages_kobj
);
4332 nhs
->hugepages_kobj
= NULL
;
4337 * Register hstate attributes for a single node device.
4338 * No-op if attributes already registered.
4340 void hugetlb_register_node(struct node
*node
)
4343 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
4346 if (!hugetlb_sysfs_initialized
)
4349 if (nhs
->hugepages_kobj
)
4350 return; /* already allocated */
4352 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
4354 if (!nhs
->hugepages_kobj
)
4357 for_each_hstate(h
) {
4358 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
4360 &per_node_hstate_attr_group
);
4362 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4363 h
->name
, node
->dev
.id
);
4364 hugetlb_unregister_node(node
);
4371 * hugetlb init time: register hstate attributes for all registered node
4372 * devices of nodes that have memory. All on-line nodes should have
4373 * registered their associated device by this time.
4375 static void __init
hugetlb_register_all_nodes(void)
4379 for_each_online_node(nid
)
4380 hugetlb_register_node(node_devices
[nid
]);
4382 #else /* !CONFIG_NUMA */
4384 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
4392 static void hugetlb_register_all_nodes(void) { }
4397 static void __init
hugetlb_cma_check(void);
4399 static inline __init
void hugetlb_cma_check(void)
4404 static void __init
hugetlb_sysfs_init(void)
4409 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
4410 if (!hugepages_kobj
)
4413 for_each_hstate(h
) {
4414 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
4415 hstate_kobjs
, &hstate_attr_group
);
4417 pr_err("HugeTLB: Unable to add hstate %s", h
->name
);
4421 hugetlb_sysfs_initialized
= true;
4423 hugetlb_register_all_nodes();
4426 #ifdef CONFIG_SYSCTL
4427 static void hugetlb_sysctl_init(void);
4429 static inline void hugetlb_sysctl_init(void) { }
4432 static int __init
hugetlb_init(void)
4436 BUILD_BUG_ON(sizeof_field(struct page
, private) * BITS_PER_BYTE
<
4439 if (!hugepages_supported()) {
4440 if (hugetlb_max_hstate
|| default_hstate_max_huge_pages
)
4441 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4446 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4447 * architectures depend on setup being done here.
4449 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
4450 if (!parsed_default_hugepagesz
) {
4452 * If we did not parse a default huge page size, set
4453 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4454 * number of huge pages for this default size was implicitly
4455 * specified, set that here as well.
4456 * Note that the implicit setting will overwrite an explicit
4457 * setting. A warning will be printed in this case.
4459 default_hstate_idx
= hstate_index(size_to_hstate(HPAGE_SIZE
));
4460 if (default_hstate_max_huge_pages
) {
4461 if (default_hstate
.max_huge_pages
) {
4464 string_get_size(huge_page_size(&default_hstate
),
4465 1, STRING_UNITS_2
, buf
, 32);
4466 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4467 default_hstate
.max_huge_pages
, buf
);
4468 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4469 default_hstate_max_huge_pages
);
4471 default_hstate
.max_huge_pages
=
4472 default_hstate_max_huge_pages
;
4474 for_each_online_node(i
)
4475 default_hstate
.max_huge_pages_node
[i
] =
4476 default_hugepages_in_node
[i
];
4480 hugetlb_cma_check();
4481 hugetlb_init_hstates();
4482 gather_bootmem_prealloc();
4485 hugetlb_sysfs_init();
4486 hugetlb_cgroup_file_init();
4487 hugetlb_sysctl_init();
4490 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
4492 num_fault_mutexes
= 1;
4494 hugetlb_fault_mutex_table
=
4495 kmalloc_array(num_fault_mutexes
, sizeof(struct mutex
),
4497 BUG_ON(!hugetlb_fault_mutex_table
);
4499 for (i
= 0; i
< num_fault_mutexes
; i
++)
4500 mutex_init(&hugetlb_fault_mutex_table
[i
]);
4503 subsys_initcall(hugetlb_init
);
4505 /* Overwritten by architectures with more huge page sizes */
4506 bool __init
__attribute((weak
)) arch_hugetlb_valid_size(unsigned long size
)
4508 return size
== HPAGE_SIZE
;
4511 void __init
hugetlb_add_hstate(unsigned int order
)
4516 if (size_to_hstate(PAGE_SIZE
<< order
)) {
4519 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
4520 BUG_ON(order
< order_base_2(__NR_USED_SUBPAGE
));
4521 h
= &hstates
[hugetlb_max_hstate
++];
4522 __mutex_init(&h
->resize_lock
, "resize mutex", &h
->resize_key
);
4524 h
->mask
= ~(huge_page_size(h
) - 1);
4525 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
4526 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
4527 INIT_LIST_HEAD(&h
->hugepage_activelist
);
4528 h
->next_nid_to_alloc
= first_memory_node
;
4529 h
->next_nid_to_free
= first_memory_node
;
4530 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
4531 huge_page_size(h
)/SZ_1K
);
4536 bool __init __weak
hugetlb_node_alloc_supported(void)
4541 static void __init
hugepages_clear_pages_in_node(void)
4543 if (!hugetlb_max_hstate
) {
4544 default_hstate_max_huge_pages
= 0;
4545 memset(default_hugepages_in_node
, 0,
4546 sizeof(default_hugepages_in_node
));
4548 parsed_hstate
->max_huge_pages
= 0;
4549 memset(parsed_hstate
->max_huge_pages_node
, 0,
4550 sizeof(parsed_hstate
->max_huge_pages_node
));
4555 * hugepages command line processing
4556 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4557 * specification. If not, ignore the hugepages value. hugepages can also
4558 * be the first huge page command line option in which case it implicitly
4559 * specifies the number of huge pages for the default size.
4561 static int __init
hugepages_setup(char *s
)
4564 static unsigned long *last_mhp
;
4565 int node
= NUMA_NO_NODE
;
4570 if (!parsed_valid_hugepagesz
) {
4571 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s
);
4572 parsed_valid_hugepagesz
= true;
4577 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4578 * yet, so this hugepages= parameter goes to the "default hstate".
4579 * Otherwise, it goes with the previously parsed hugepagesz or
4580 * default_hugepagesz.
4582 else if (!hugetlb_max_hstate
)
4583 mhp
= &default_hstate_max_huge_pages
;
4585 mhp
= &parsed_hstate
->max_huge_pages
;
4587 if (mhp
== last_mhp
) {
4588 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s
);
4594 if (sscanf(p
, "%lu%n", &tmp
, &count
) != 1)
4596 /* Parameter is node format */
4597 if (p
[count
] == ':') {
4598 if (!hugetlb_node_alloc_supported()) {
4599 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4602 if (tmp
>= MAX_NUMNODES
|| !node_online(tmp
))
4604 node
= array_index_nospec(tmp
, MAX_NUMNODES
);
4606 /* Parse hugepages */
4607 if (sscanf(p
, "%lu%n", &tmp
, &count
) != 1)
4609 if (!hugetlb_max_hstate
)
4610 default_hugepages_in_node
[node
] = tmp
;
4612 parsed_hstate
->max_huge_pages_node
[node
] = tmp
;
4614 /* Go to parse next node*/
4615 if (p
[count
] == ',')
4628 * Global state is always initialized later in hugetlb_init.
4629 * But we need to allocate gigantic hstates here early to still
4630 * use the bootmem allocator.
4632 if (hugetlb_max_hstate
&& hstate_is_gigantic(parsed_hstate
))
4633 hugetlb_hstate_alloc_pages(parsed_hstate
);
4640 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p
);
4641 hugepages_clear_pages_in_node();
4644 __setup("hugepages=", hugepages_setup
);
4647 * hugepagesz command line processing
4648 * A specific huge page size can only be specified once with hugepagesz.
4649 * hugepagesz is followed by hugepages on the command line. The global
4650 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4651 * hugepagesz argument was valid.
4653 static int __init
hugepagesz_setup(char *s
)
4658 parsed_valid_hugepagesz
= false;
4659 size
= (unsigned long)memparse(s
, NULL
);
4661 if (!arch_hugetlb_valid_size(size
)) {
4662 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s
);
4666 h
= size_to_hstate(size
);
4669 * hstate for this size already exists. This is normally
4670 * an error, but is allowed if the existing hstate is the
4671 * default hstate. More specifically, it is only allowed if
4672 * the number of huge pages for the default hstate was not
4673 * previously specified.
4675 if (!parsed_default_hugepagesz
|| h
!= &default_hstate
||
4676 default_hstate
.max_huge_pages
) {
4677 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s
);
4682 * No need to call hugetlb_add_hstate() as hstate already
4683 * exists. But, do set parsed_hstate so that a following
4684 * hugepages= parameter will be applied to this hstate.
4687 parsed_valid_hugepagesz
= true;
4691 hugetlb_add_hstate(ilog2(size
) - PAGE_SHIFT
);
4692 parsed_valid_hugepagesz
= true;
4695 __setup("hugepagesz=", hugepagesz_setup
);
4698 * default_hugepagesz command line input
4699 * Only one instance of default_hugepagesz allowed on command line.
4701 static int __init
default_hugepagesz_setup(char *s
)
4706 parsed_valid_hugepagesz
= false;
4707 if (parsed_default_hugepagesz
) {
4708 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s
);
4712 size
= (unsigned long)memparse(s
, NULL
);
4714 if (!arch_hugetlb_valid_size(size
)) {
4715 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s
);
4719 hugetlb_add_hstate(ilog2(size
) - PAGE_SHIFT
);
4720 parsed_valid_hugepagesz
= true;
4721 parsed_default_hugepagesz
= true;
4722 default_hstate_idx
= hstate_index(size_to_hstate(size
));
4725 * The number of default huge pages (for this size) could have been
4726 * specified as the first hugetlb parameter: hugepages=X. If so,
4727 * then default_hstate_max_huge_pages is set. If the default huge
4728 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4729 * allocated here from bootmem allocator.
4731 if (default_hstate_max_huge_pages
) {
4732 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
4733 for_each_online_node(i
)
4734 default_hstate
.max_huge_pages_node
[i
] =
4735 default_hugepages_in_node
[i
];
4736 if (hstate_is_gigantic(&default_hstate
))
4737 hugetlb_hstate_alloc_pages(&default_hstate
);
4738 default_hstate_max_huge_pages
= 0;
4743 __setup("default_hugepagesz=", default_hugepagesz_setup
);
4745 static unsigned int allowed_mems_nr(struct hstate
*h
)
4748 unsigned int nr
= 0;
4749 nodemask_t
*mbind_nodemask
;
4750 unsigned int *array
= h
->free_huge_pages_node
;
4751 gfp_t gfp_mask
= htlb_alloc_mask(h
);
4753 mbind_nodemask
= policy_mbind_nodemask(gfp_mask
);
4754 for_each_node_mask(node
, cpuset_current_mems_allowed
) {
4755 if (!mbind_nodemask
|| node_isset(node
, *mbind_nodemask
))
4762 #ifdef CONFIG_SYSCTL
4763 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table
*table
, int write
,
4764 void *buffer
, size_t *length
,
4765 loff_t
*ppos
, unsigned long *out
)
4767 struct ctl_table dup_table
;
4770 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4771 * can duplicate the @table and alter the duplicate of it.
4774 dup_table
.data
= out
;
4776 return proc_doulongvec_minmax(&dup_table
, write
, buffer
, length
, ppos
);
4779 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
4780 const struct ctl_table
*table
, int write
,
4781 void *buffer
, size_t *length
, loff_t
*ppos
)
4783 struct hstate
*h
= &default_hstate
;
4784 unsigned long tmp
= h
->max_huge_pages
;
4787 if (!hugepages_supported())
4790 ret
= proc_hugetlb_doulongvec_minmax(table
, write
, buffer
, length
, ppos
,
4796 ret
= __nr_hugepages_store_common(obey_mempolicy
, h
,
4797 NUMA_NO_NODE
, tmp
, *length
);
4802 static int hugetlb_sysctl_handler(const struct ctl_table
*table
, int write
,
4803 void *buffer
, size_t *length
, loff_t
*ppos
)
4806 return hugetlb_sysctl_handler_common(false, table
, write
,
4807 buffer
, length
, ppos
);
4811 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table
*table
, int write
,
4812 void *buffer
, size_t *length
, loff_t
*ppos
)
4814 return hugetlb_sysctl_handler_common(true, table
, write
,
4815 buffer
, length
, ppos
);
4817 #endif /* CONFIG_NUMA */
4819 static int hugetlb_overcommit_handler(const struct ctl_table
*table
, int write
,
4820 void *buffer
, size_t *length
, loff_t
*ppos
)
4822 struct hstate
*h
= &default_hstate
;
4826 if (!hugepages_supported())
4829 tmp
= h
->nr_overcommit_huge_pages
;
4831 if (write
&& hstate_is_gigantic(h
))
4834 ret
= proc_hugetlb_doulongvec_minmax(table
, write
, buffer
, length
, ppos
,
4840 spin_lock_irq(&hugetlb_lock
);
4841 h
->nr_overcommit_huge_pages
= tmp
;
4842 spin_unlock_irq(&hugetlb_lock
);
4848 static struct ctl_table hugetlb_table
[] = {
4850 .procname
= "nr_hugepages",
4852 .maxlen
= sizeof(unsigned long),
4854 .proc_handler
= hugetlb_sysctl_handler
,
4858 .procname
= "nr_hugepages_mempolicy",
4860 .maxlen
= sizeof(unsigned long),
4862 .proc_handler
= &hugetlb_mempolicy_sysctl_handler
,
4866 .procname
= "hugetlb_shm_group",
4867 .data
= &sysctl_hugetlb_shm_group
,
4868 .maxlen
= sizeof(gid_t
),
4870 .proc_handler
= proc_dointvec
,
4873 .procname
= "nr_overcommit_hugepages",
4875 .maxlen
= sizeof(unsigned long),
4877 .proc_handler
= hugetlb_overcommit_handler
,
4881 static void hugetlb_sysctl_init(void)
4883 register_sysctl_init("vm", hugetlb_table
);
4885 #endif /* CONFIG_SYSCTL */
4887 void hugetlb_report_meminfo(struct seq_file
*m
)
4890 unsigned long total
= 0;
4892 if (!hugepages_supported())
4895 for_each_hstate(h
) {
4896 unsigned long count
= h
->nr_huge_pages
;
4898 total
+= huge_page_size(h
) * count
;
4900 if (h
== &default_hstate
)
4902 "HugePages_Total: %5lu\n"
4903 "HugePages_Free: %5lu\n"
4904 "HugePages_Rsvd: %5lu\n"
4905 "HugePages_Surp: %5lu\n"
4906 "Hugepagesize: %8lu kB\n",
4910 h
->surplus_huge_pages
,
4911 huge_page_size(h
) / SZ_1K
);
4914 seq_printf(m
, "Hugetlb: %8lu kB\n", total
/ SZ_1K
);
4917 int hugetlb_report_node_meminfo(char *buf
, int len
, int nid
)
4919 struct hstate
*h
= &default_hstate
;
4921 if (!hugepages_supported())
4924 return sysfs_emit_at(buf
, len
,
4925 "Node %d HugePages_Total: %5u\n"
4926 "Node %d HugePages_Free: %5u\n"
4927 "Node %d HugePages_Surp: %5u\n",
4928 nid
, h
->nr_huge_pages_node
[nid
],
4929 nid
, h
->free_huge_pages_node
[nid
],
4930 nid
, h
->surplus_huge_pages_node
[nid
]);
4933 void hugetlb_show_meminfo_node(int nid
)
4937 if (!hugepages_supported())
4941 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4943 h
->nr_huge_pages_node
[nid
],
4944 h
->free_huge_pages_node
[nid
],
4945 h
->surplus_huge_pages_node
[nid
],
4946 huge_page_size(h
) / SZ_1K
);
4949 void hugetlb_report_usage(struct seq_file
*m
, struct mm_struct
*mm
)
4951 seq_printf(m
, "HugetlbPages:\t%8lu kB\n",
4952 K(atomic_long_read(&mm
->hugetlb_usage
)));
4955 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4956 unsigned long hugetlb_total_pages(void)
4959 unsigned long nr_total_pages
= 0;
4962 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
4963 return nr_total_pages
;
4966 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
4973 spin_lock_irq(&hugetlb_lock
);
4975 * When cpuset is configured, it breaks the strict hugetlb page
4976 * reservation as the accounting is done on a global variable. Such
4977 * reservation is completely rubbish in the presence of cpuset because
4978 * the reservation is not checked against page availability for the
4979 * current cpuset. Application can still potentially OOM'ed by kernel
4980 * with lack of free htlb page in cpuset that the task is in.
4981 * Attempt to enforce strict accounting with cpuset is almost
4982 * impossible (or too ugly) because cpuset is too fluid that
4983 * task or memory node can be dynamically moved between cpusets.
4985 * The change of semantics for shared hugetlb mapping with cpuset is
4986 * undesirable. However, in order to preserve some of the semantics,
4987 * we fall back to check against current free page availability as
4988 * a best attempt and hopefully to minimize the impact of changing
4989 * semantics that cpuset has.
4991 * Apart from cpuset, we also have memory policy mechanism that
4992 * also determines from which node the kernel will allocate memory
4993 * in a NUMA system. So similar to cpuset, we also should consider
4994 * the memory policy of the current task. Similar to the description
4998 if (gather_surplus_pages(h
, delta
) < 0)
5001 if (delta
> allowed_mems_nr(h
)) {
5002 return_unused_surplus_pages(h
, delta
);
5009 return_unused_surplus_pages(h
, (unsigned long) -delta
);
5012 spin_unlock_irq(&hugetlb_lock
);
5016 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
5018 struct resv_map
*resv
= vma_resv_map(vma
);
5021 * HPAGE_RESV_OWNER indicates a private mapping.
5022 * This new VMA should share its siblings reservation map if present.
5023 * The VMA will only ever have a valid reservation map pointer where
5024 * it is being copied for another still existing VMA. As that VMA
5025 * has a reference to the reservation map it cannot disappear until
5026 * after this open call completes. It is therefore safe to take a
5027 * new reference here without additional locking.
5029 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
5030 resv_map_dup_hugetlb_cgroup_uncharge_info(resv
);
5031 kref_get(&resv
->refs
);
5035 * vma_lock structure for sharable mappings is vma specific.
5036 * Clear old pointer (if copied via vm_area_dup) and allocate
5037 * new structure. Before clearing, make sure vma_lock is not
5040 if (vma
->vm_flags
& VM_MAYSHARE
) {
5041 struct hugetlb_vma_lock
*vma_lock
= vma
->vm_private_data
;
5044 if (vma_lock
->vma
!= vma
) {
5045 vma
->vm_private_data
= NULL
;
5046 hugetlb_vma_lock_alloc(vma
);
5048 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__
);
5050 hugetlb_vma_lock_alloc(vma
);
5054 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
5056 struct hstate
*h
= hstate_vma(vma
);
5057 struct resv_map
*resv
;
5058 struct hugepage_subpool
*spool
= subpool_vma(vma
);
5059 unsigned long reserve
, start
, end
;
5062 hugetlb_vma_lock_free(vma
);
5064 resv
= vma_resv_map(vma
);
5065 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
5068 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
5069 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
5071 reserve
= (end
- start
) - region_count(resv
, start
, end
);
5072 hugetlb_cgroup_uncharge_counter(resv
, start
, end
);
5075 * Decrement reserve counts. The global reserve count may be
5076 * adjusted if the subpool has a minimum size.
5078 gbl_reserve
= hugepage_subpool_put_pages(spool
, reserve
);
5079 hugetlb_acct_memory(h
, -gbl_reserve
);
5082 kref_put(&resv
->refs
, resv_map_release
);
5085 static int hugetlb_vm_op_split(struct vm_area_struct
*vma
, unsigned long addr
)
5087 if (addr
& ~(huge_page_mask(hstate_vma(vma
))))
5091 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5092 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5093 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5095 if (addr
& ~PUD_MASK
) {
5097 * hugetlb_vm_op_split is called right before we attempt to
5098 * split the VMA. We will need to unshare PMDs in the old and
5099 * new VMAs, so let's unshare before we split.
5101 unsigned long floor
= addr
& PUD_MASK
;
5102 unsigned long ceil
= floor
+ PUD_SIZE
;
5104 if (floor
>= vma
->vm_start
&& ceil
<= vma
->vm_end
)
5105 hugetlb_unshare_pmds(vma
, floor
, ceil
);
5111 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct
*vma
)
5113 return huge_page_size(hstate_vma(vma
));
5117 * We cannot handle pagefaults against hugetlb pages at all. They cause
5118 * handle_mm_fault() to try to instantiate regular-sized pages in the
5119 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
5122 static vm_fault_t
hugetlb_vm_op_fault(struct vm_fault
*vmf
)
5129 * When a new function is introduced to vm_operations_struct and added
5130 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5131 * This is because under System V memory model, mappings created via
5132 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5133 * their original vm_ops are overwritten with shm_vm_ops.
5135 const struct vm_operations_struct hugetlb_vm_ops
= {
5136 .fault
= hugetlb_vm_op_fault
,
5137 .open
= hugetlb_vm_op_open
,
5138 .close
= hugetlb_vm_op_close
,
5139 .may_split
= hugetlb_vm_op_split
,
5140 .pagesize
= hugetlb_vm_op_pagesize
,
5143 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
5147 unsigned int shift
= huge_page_shift(hstate_vma(vma
));
5150 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
5151 vma
->vm_page_prot
)));
5153 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
5154 vma
->vm_page_prot
));
5156 entry
= pte_mkyoung(entry
);
5157 entry
= arch_make_huge_pte(entry
, shift
, vma
->vm_flags
);
5162 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
5163 unsigned long address
, pte_t
*ptep
)
5167 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma
->vm_mm
, address
, ptep
)));
5168 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
5169 update_mmu_cache(vma
, address
, ptep
);
5172 bool is_hugetlb_entry_migration(pte_t pte
)
5176 if (huge_pte_none(pte
) || pte_present(pte
))
5178 swp
= pte_to_swp_entry(pte
);
5179 if (is_migration_entry(swp
))
5185 bool is_hugetlb_entry_hwpoisoned(pte_t pte
)
5189 if (huge_pte_none(pte
) || pte_present(pte
))
5191 swp
= pte_to_swp_entry(pte
);
5192 if (is_hwpoison_entry(swp
))
5199 hugetlb_install_folio(struct vm_area_struct
*vma
, pte_t
*ptep
, unsigned long addr
,
5200 struct folio
*new_folio
, pte_t old
, unsigned long sz
)
5202 pte_t newpte
= make_huge_pte(vma
, &new_folio
->page
, 1);
5204 __folio_mark_uptodate(new_folio
);
5205 hugetlb_add_new_anon_rmap(new_folio
, vma
, addr
);
5206 if (userfaultfd_wp(vma
) && huge_pte_uffd_wp(old
))
5207 newpte
= huge_pte_mkuffd_wp(newpte
);
5208 set_huge_pte_at(vma
->vm_mm
, addr
, ptep
, newpte
, sz
);
5209 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma
)), vma
->vm_mm
);
5210 folio_set_hugetlb_migratable(new_folio
);
5213 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
5214 struct vm_area_struct
*dst_vma
,
5215 struct vm_area_struct
*src_vma
)
5217 pte_t
*src_pte
, *dst_pte
, entry
;
5218 struct folio
*pte_folio
;
5220 bool cow
= is_cow_mapping(src_vma
->vm_flags
);
5221 struct hstate
*h
= hstate_vma(src_vma
);
5222 unsigned long sz
= huge_page_size(h
);
5223 unsigned long npages
= pages_per_huge_page(h
);
5224 struct mmu_notifier_range range
;
5225 unsigned long last_addr_mask
;
5229 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, src
,
5232 mmu_notifier_invalidate_range_start(&range
);
5233 vma_assert_write_locked(src_vma
);
5234 raw_write_seqcount_begin(&src
->write_protect_seq
);
5237 * For shared mappings the vma lock must be held before
5238 * calling hugetlb_walk() in the src vma. Otherwise, the
5239 * returned ptep could go away if part of a shared pmd and
5240 * another thread calls huge_pmd_unshare.
5242 hugetlb_vma_lock_read(src_vma
);
5245 last_addr_mask
= hugetlb_mask_last_page(h
);
5246 for (addr
= src_vma
->vm_start
; addr
< src_vma
->vm_end
; addr
+= sz
) {
5247 spinlock_t
*src_ptl
, *dst_ptl
;
5248 src_pte
= hugetlb_walk(src_vma
, addr
, sz
);
5250 addr
|= last_addr_mask
;
5253 dst_pte
= huge_pte_alloc(dst
, dst_vma
, addr
, sz
);
5260 * If the pagetables are shared don't copy or take references.
5262 * dst_pte == src_pte is the common case of src/dest sharing.
5263 * However, src could have 'unshared' and dst shares with
5264 * another vma. So page_count of ptep page is checked instead
5265 * to reliably determine whether pte is shared.
5267 if (page_count(virt_to_page(dst_pte
)) > 1) {
5268 addr
|= last_addr_mask
;
5272 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
5273 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
5274 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
5275 entry
= huge_ptep_get(src_vma
->vm_mm
, addr
, src_pte
);
5277 if (huge_pte_none(entry
)) {
5279 * Skip if src entry none.
5282 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
))) {
5283 if (!userfaultfd_wp(dst_vma
))
5284 entry
= huge_pte_clear_uffd_wp(entry
);
5285 set_huge_pte_at(dst
, addr
, dst_pte
, entry
, sz
);
5286 } else if (unlikely(is_hugetlb_entry_migration(entry
))) {
5287 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
5288 bool uffd_wp
= pte_swp_uffd_wp(entry
);
5290 if (!is_readable_migration_entry(swp_entry
) && cow
) {
5292 * COW mappings require pages in both
5293 * parent and child to be set to read.
5295 swp_entry
= make_readable_migration_entry(
5296 swp_offset(swp_entry
));
5297 entry
= swp_entry_to_pte(swp_entry
);
5298 if (userfaultfd_wp(src_vma
) && uffd_wp
)
5299 entry
= pte_swp_mkuffd_wp(entry
);
5300 set_huge_pte_at(src
, addr
, src_pte
, entry
, sz
);
5302 if (!userfaultfd_wp(dst_vma
))
5303 entry
= huge_pte_clear_uffd_wp(entry
);
5304 set_huge_pte_at(dst
, addr
, dst_pte
, entry
, sz
);
5305 } else if (unlikely(is_pte_marker(entry
))) {
5306 pte_marker marker
= copy_pte_marker(
5307 pte_to_swp_entry(entry
), dst_vma
);
5310 set_huge_pte_at(dst
, addr
, dst_pte
,
5311 make_pte_marker(marker
), sz
);
5313 entry
= huge_ptep_get(src_vma
->vm_mm
, addr
, src_pte
);
5314 pte_folio
= page_folio(pte_page(entry
));
5315 folio_get(pte_folio
);
5318 * Failing to duplicate the anon rmap is a rare case
5319 * where we see pinned hugetlb pages while they're
5320 * prone to COW. We need to do the COW earlier during
5323 * When pre-allocating the page or copying data, we
5324 * need to be without the pgtable locks since we could
5325 * sleep during the process.
5327 if (!folio_test_anon(pte_folio
)) {
5328 hugetlb_add_file_rmap(pte_folio
);
5329 } else if (hugetlb_try_dup_anon_rmap(pte_folio
, src_vma
)) {
5330 pte_t src_pte_old
= entry
;
5331 struct folio
*new_folio
;
5333 spin_unlock(src_ptl
);
5334 spin_unlock(dst_ptl
);
5335 /* Do not use reserve as it's private owned */
5336 new_folio
= alloc_hugetlb_folio(dst_vma
, addr
, 1);
5337 if (IS_ERR(new_folio
)) {
5338 folio_put(pte_folio
);
5339 ret
= PTR_ERR(new_folio
);
5342 ret
= copy_user_large_folio(new_folio
, pte_folio
,
5343 ALIGN_DOWN(addr
, sz
), dst_vma
);
5344 folio_put(pte_folio
);
5346 folio_put(new_folio
);
5350 /* Install the new hugetlb folio if src pte stable */
5351 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
5352 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
5353 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
5354 entry
= huge_ptep_get(src_vma
->vm_mm
, addr
, src_pte
);
5355 if (!pte_same(src_pte_old
, entry
)) {
5356 restore_reserve_on_error(h
, dst_vma
, addr
,
5358 folio_put(new_folio
);
5359 /* huge_ptep of dst_pte won't change as in child */
5362 hugetlb_install_folio(dst_vma
, dst_pte
, addr
,
5363 new_folio
, src_pte_old
, sz
);
5364 spin_unlock(src_ptl
);
5365 spin_unlock(dst_ptl
);
5371 * No need to notify as we are downgrading page
5372 * table protection not changing it to point
5375 * See Documentation/mm/mmu_notifier.rst
5377 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
5378 entry
= huge_pte_wrprotect(entry
);
5381 if (!userfaultfd_wp(dst_vma
))
5382 entry
= huge_pte_clear_uffd_wp(entry
);
5384 set_huge_pte_at(dst
, addr
, dst_pte
, entry
, sz
);
5385 hugetlb_count_add(npages
, dst
);
5387 spin_unlock(src_ptl
);
5388 spin_unlock(dst_ptl
);
5392 raw_write_seqcount_end(&src
->write_protect_seq
);
5393 mmu_notifier_invalidate_range_end(&range
);
5395 hugetlb_vma_unlock_read(src_vma
);
5401 static void move_huge_pte(struct vm_area_struct
*vma
, unsigned long old_addr
,
5402 unsigned long new_addr
, pte_t
*src_pte
, pte_t
*dst_pte
,
5405 struct hstate
*h
= hstate_vma(vma
);
5406 struct mm_struct
*mm
= vma
->vm_mm
;
5407 spinlock_t
*src_ptl
, *dst_ptl
;
5410 dst_ptl
= huge_pte_lock(h
, mm
, dst_pte
);
5411 src_ptl
= huge_pte_lockptr(h
, mm
, src_pte
);
5414 * We don't have to worry about the ordering of src and dst ptlocks
5415 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5417 if (src_ptl
!= dst_ptl
)
5418 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
5420 pte
= huge_ptep_get_and_clear(mm
, old_addr
, src_pte
);
5421 set_huge_pte_at(mm
, new_addr
, dst_pte
, pte
, sz
);
5423 if (src_ptl
!= dst_ptl
)
5424 spin_unlock(src_ptl
);
5425 spin_unlock(dst_ptl
);
5428 int move_hugetlb_page_tables(struct vm_area_struct
*vma
,
5429 struct vm_area_struct
*new_vma
,
5430 unsigned long old_addr
, unsigned long new_addr
,
5433 struct hstate
*h
= hstate_vma(vma
);
5434 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
5435 unsigned long sz
= huge_page_size(h
);
5436 struct mm_struct
*mm
= vma
->vm_mm
;
5437 unsigned long old_end
= old_addr
+ len
;
5438 unsigned long last_addr_mask
;
5439 pte_t
*src_pte
, *dst_pte
;
5440 struct mmu_notifier_range range
;
5441 bool shared_pmd
= false;
5443 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, mm
, old_addr
,
5445 adjust_range_if_pmd_sharing_possible(vma
, &range
.start
, &range
.end
);
5447 * In case of shared PMDs, we should cover the maximum possible
5450 flush_cache_range(vma
, range
.start
, range
.end
);
5452 mmu_notifier_invalidate_range_start(&range
);
5453 last_addr_mask
= hugetlb_mask_last_page(h
);
5454 /* Prevent race with file truncation */
5455 hugetlb_vma_lock_write(vma
);
5456 i_mmap_lock_write(mapping
);
5457 for (; old_addr
< old_end
; old_addr
+= sz
, new_addr
+= sz
) {
5458 src_pte
= hugetlb_walk(vma
, old_addr
, sz
);
5460 old_addr
|= last_addr_mask
;
5461 new_addr
|= last_addr_mask
;
5464 if (huge_pte_none(huge_ptep_get(mm
, old_addr
, src_pte
)))
5467 if (huge_pmd_unshare(mm
, vma
, old_addr
, src_pte
)) {
5469 old_addr
|= last_addr_mask
;
5470 new_addr
|= last_addr_mask
;
5474 dst_pte
= huge_pte_alloc(mm
, new_vma
, new_addr
, sz
);
5478 move_huge_pte(vma
, old_addr
, new_addr
, src_pte
, dst_pte
, sz
);
5482 flush_hugetlb_tlb_range(vma
, range
.start
, range
.end
);
5484 flush_hugetlb_tlb_range(vma
, old_end
- len
, old_end
);
5485 mmu_notifier_invalidate_range_end(&range
);
5486 i_mmap_unlock_write(mapping
);
5487 hugetlb_vma_unlock_write(vma
);
5489 return len
+ old_addr
- old_end
;
5492 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
5493 unsigned long start
, unsigned long end
,
5494 struct page
*ref_page
, zap_flags_t zap_flags
)
5496 struct mm_struct
*mm
= vma
->vm_mm
;
5497 unsigned long address
;
5502 struct hstate
*h
= hstate_vma(vma
);
5503 unsigned long sz
= huge_page_size(h
);
5504 bool adjust_reservation
= false;
5505 unsigned long last_addr_mask
;
5506 bool force_flush
= false;
5508 WARN_ON(!is_vm_hugetlb_page(vma
));
5509 BUG_ON(start
& ~huge_page_mask(h
));
5510 BUG_ON(end
& ~huge_page_mask(h
));
5513 * This is a hugetlb vma, all the pte entries should point
5516 tlb_change_page_size(tlb
, sz
);
5517 tlb_start_vma(tlb
, vma
);
5519 last_addr_mask
= hugetlb_mask_last_page(h
);
5521 for (; address
< end
; address
+= sz
) {
5522 ptep
= hugetlb_walk(vma
, address
, sz
);
5524 address
|= last_addr_mask
;
5528 ptl
= huge_pte_lock(h
, mm
, ptep
);
5529 if (huge_pmd_unshare(mm
, vma
, address
, ptep
)) {
5531 tlb_flush_pmd_range(tlb
, address
& PUD_MASK
, PUD_SIZE
);
5533 address
|= last_addr_mask
;
5537 pte
= huge_ptep_get(mm
, address
, ptep
);
5538 if (huge_pte_none(pte
)) {
5544 * Migrating hugepage or HWPoisoned hugepage is already
5545 * unmapped and its refcount is dropped, so just clear pte here.
5547 if (unlikely(!pte_present(pte
))) {
5549 * If the pte was wr-protected by uffd-wp in any of the
5550 * swap forms, meanwhile the caller does not want to
5551 * drop the uffd-wp bit in this zap, then replace the
5552 * pte with a marker.
5554 if (pte_swp_uffd_wp_any(pte
) &&
5555 !(zap_flags
& ZAP_FLAG_DROP_MARKER
))
5556 set_huge_pte_at(mm
, address
, ptep
,
5557 make_pte_marker(PTE_MARKER_UFFD_WP
),
5560 huge_pte_clear(mm
, address
, ptep
, sz
);
5565 page
= pte_page(pte
);
5567 * If a reference page is supplied, it is because a specific
5568 * page is being unmapped, not a range. Ensure the page we
5569 * are about to unmap is the actual page of interest.
5572 if (page
!= ref_page
) {
5577 * Mark the VMA as having unmapped its page so that
5578 * future faults in this VMA will fail rather than
5579 * looking like data was lost
5581 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
5584 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
5585 tlb_remove_huge_tlb_entry(h
, tlb
, ptep
, address
);
5586 if (huge_pte_dirty(pte
))
5587 set_page_dirty(page
);
5588 /* Leave a uffd-wp pte marker if needed */
5589 if (huge_pte_uffd_wp(pte
) &&
5590 !(zap_flags
& ZAP_FLAG_DROP_MARKER
))
5591 set_huge_pte_at(mm
, address
, ptep
,
5592 make_pte_marker(PTE_MARKER_UFFD_WP
),
5594 hugetlb_count_sub(pages_per_huge_page(h
), mm
);
5595 hugetlb_remove_rmap(page_folio(page
));
5598 * Restore the reservation for anonymous page, otherwise the
5599 * backing page could be stolen by someone.
5600 * If there we are freeing a surplus, do not set the restore
5603 if (!h
->surplus_huge_pages
&& __vma_private_lock(vma
) &&
5604 folio_test_anon(page_folio(page
))) {
5605 folio_set_hugetlb_restore_reserve(page_folio(page
));
5606 /* Reservation to be adjusted after the spin lock */
5607 adjust_reservation
= true;
5613 * Adjust the reservation for the region that will have the
5614 * reserve restored. Keep in mind that vma_needs_reservation() changes
5615 * resv->adds_in_progress if it succeeds. If this is not done,
5616 * do_exit() will not see it, and will keep the reservation
5619 if (adjust_reservation
) {
5620 int rc
= vma_needs_reservation(h
, vma
, address
);
5623 /* Pressumably allocate_file_region_entries failed
5624 * to allocate a file_region struct. Clear
5625 * hugetlb_restore_reserve so that global reserve
5626 * count will not be incremented by free_huge_folio.
5627 * Act as if we consumed the reservation.
5629 folio_clear_hugetlb_restore_reserve(page_folio(page
));
5631 vma_add_reservation(h
, vma
, address
);
5634 tlb_remove_page_size(tlb
, page
, huge_page_size(h
));
5636 * Bail out after unmapping reference page if supplied
5641 tlb_end_vma(tlb
, vma
);
5644 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5645 * could defer the flush until now, since by holding i_mmap_rwsem we
5646 * guaranteed that the last refernece would not be dropped. But we must
5647 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5648 * dropped and the last reference to the shared PMDs page might be
5651 * In theory we could defer the freeing of the PMD pages as well, but
5652 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5653 * detect sharing, so we cannot defer the release of the page either.
5654 * Instead, do flush now.
5657 tlb_flush_mmu_tlbonly(tlb
);
5660 void __hugetlb_zap_begin(struct vm_area_struct
*vma
,
5661 unsigned long *start
, unsigned long *end
)
5663 if (!vma
->vm_file
) /* hugetlbfs_file_mmap error */
5666 adjust_range_if_pmd_sharing_possible(vma
, start
, end
);
5667 hugetlb_vma_lock_write(vma
);
5669 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
5672 void __hugetlb_zap_end(struct vm_area_struct
*vma
,
5673 struct zap_details
*details
)
5675 zap_flags_t zap_flags
= details
? details
->zap_flags
: 0;
5677 if (!vma
->vm_file
) /* hugetlbfs_file_mmap error */
5680 if (zap_flags
& ZAP_FLAG_UNMAP
) { /* final unmap */
5682 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5683 * When the vma_lock is freed, this makes the vma ineligible
5684 * for pmd sharing. And, i_mmap_rwsem is required to set up
5685 * pmd sharing. This is important as page tables for this
5686 * unmapped range will be asynchrously deleted. If the page
5687 * tables are shared, there will be issues when accessed by
5690 __hugetlb_vma_unlock_write_free(vma
);
5692 hugetlb_vma_unlock_write(vma
);
5696 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
5699 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
5700 unsigned long end
, struct page
*ref_page
,
5701 zap_flags_t zap_flags
)
5703 struct mmu_notifier_range range
;
5704 struct mmu_gather tlb
;
5706 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
->vm_mm
,
5708 adjust_range_if_pmd_sharing_possible(vma
, &range
.start
, &range
.end
);
5709 mmu_notifier_invalidate_range_start(&range
);
5710 tlb_gather_mmu(&tlb
, vma
->vm_mm
);
5712 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
, zap_flags
);
5714 mmu_notifier_invalidate_range_end(&range
);
5715 tlb_finish_mmu(&tlb
);
5719 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5720 * mapping it owns the reserve page for. The intention is to unmap the page
5721 * from other VMAs and let the children be SIGKILLed if they are faulting the
5724 static void unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
5725 struct page
*page
, unsigned long address
)
5727 struct hstate
*h
= hstate_vma(vma
);
5728 struct vm_area_struct
*iter_vma
;
5729 struct address_space
*mapping
;
5733 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5734 * from page cache lookup which is in HPAGE_SIZE units.
5736 address
= address
& huge_page_mask(h
);
5737 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
5739 mapping
= vma
->vm_file
->f_mapping
;
5742 * Take the mapping lock for the duration of the table walk. As
5743 * this mapping should be shared between all the VMAs,
5744 * __unmap_hugepage_range() is called as the lock is already held
5746 i_mmap_lock_write(mapping
);
5747 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
5748 /* Do not unmap the current VMA */
5749 if (iter_vma
== vma
)
5753 * Shared VMAs have their own reserves and do not affect
5754 * MAP_PRIVATE accounting but it is possible that a shared
5755 * VMA is using the same page so check and skip such VMAs.
5757 if (iter_vma
->vm_flags
& VM_MAYSHARE
)
5761 * Unmap the page from other VMAs without their own reserves.
5762 * They get marked to be SIGKILLed if they fault in these
5763 * areas. This is because a future no-page fault on this VMA
5764 * could insert a zeroed page instead of the data existing
5765 * from the time of fork. This would look like data corruption
5767 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
5768 unmap_hugepage_range(iter_vma
, address
,
5769 address
+ huge_page_size(h
), page
, 0);
5771 i_mmap_unlock_write(mapping
);
5775 * hugetlb_wp() should be called with page lock of the original hugepage held.
5776 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5777 * cannot race with other handlers or page migration.
5778 * Keep the pte_same checks anyway to make transition from the mutex easier.
5780 static vm_fault_t
hugetlb_wp(struct folio
*pagecache_folio
,
5781 struct vm_fault
*vmf
)
5783 struct vm_area_struct
*vma
= vmf
->vma
;
5784 struct mm_struct
*mm
= vma
->vm_mm
;
5785 const bool unshare
= vmf
->flags
& FAULT_FLAG_UNSHARE
;
5786 pte_t pte
= huge_ptep_get(mm
, vmf
->address
, vmf
->pte
);
5787 struct hstate
*h
= hstate_vma(vma
);
5788 struct folio
*old_folio
;
5789 struct folio
*new_folio
;
5790 int outside_reserve
= 0;
5792 struct mmu_notifier_range range
;
5795 * Never handle CoW for uffd-wp protected pages. It should be only
5796 * handled when the uffd-wp protection is removed.
5798 * Note that only the CoW optimization path (in hugetlb_no_page())
5799 * can trigger this, because hugetlb_fault() will always resolve
5800 * uffd-wp bit first.
5802 if (!unshare
&& huge_pte_uffd_wp(pte
))
5806 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5807 * PTE mapped R/O such as maybe_mkwrite() would do.
5809 if (WARN_ON_ONCE(!unshare
&& !(vma
->vm_flags
& VM_WRITE
)))
5810 return VM_FAULT_SIGSEGV
;
5812 /* Let's take out MAP_SHARED mappings first. */
5813 if (vma
->vm_flags
& VM_MAYSHARE
) {
5814 set_huge_ptep_writable(vma
, vmf
->address
, vmf
->pte
);
5818 old_folio
= page_folio(pte_page(pte
));
5820 delayacct_wpcopy_start();
5824 * If no-one else is actually using this page, we're the exclusive
5825 * owner and can reuse this page.
5827 * Note that we don't rely on the (safer) folio refcount here, because
5828 * copying the hugetlb folio when there are unexpected (temporary)
5829 * folio references could harm simple fork()+exit() users when
5830 * we run out of free hugetlb folios: we would have to kill processes
5831 * in scenarios that used to work. As a side effect, there can still
5832 * be leaks between processes, for example, with FOLL_GET users.
5834 if (folio_mapcount(old_folio
) == 1 && folio_test_anon(old_folio
)) {
5835 if (!PageAnonExclusive(&old_folio
->page
)) {
5836 folio_move_anon_rmap(old_folio
, vma
);
5837 SetPageAnonExclusive(&old_folio
->page
);
5839 if (likely(!unshare
))
5840 set_huge_ptep_writable(vma
, vmf
->address
, vmf
->pte
);
5842 delayacct_wpcopy_end();
5845 VM_BUG_ON_PAGE(folio_test_anon(old_folio
) &&
5846 PageAnonExclusive(&old_folio
->page
), &old_folio
->page
);
5849 * If the process that created a MAP_PRIVATE mapping is about to
5850 * perform a COW due to a shared page count, attempt to satisfy
5851 * the allocation without using the existing reserves. The pagecache
5852 * page is used to determine if the reserve at this address was
5853 * consumed or not. If reserves were used, a partial faulted mapping
5854 * at the time of fork() could consume its reserves on COW instead
5855 * of the full address range.
5857 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
5858 old_folio
!= pagecache_folio
)
5859 outside_reserve
= 1;
5861 folio_get(old_folio
);
5864 * Drop page table lock as buddy allocator may be called. It will
5865 * be acquired again before returning to the caller, as expected.
5867 spin_unlock(vmf
->ptl
);
5868 new_folio
= alloc_hugetlb_folio(vma
, vmf
->address
, outside_reserve
);
5870 if (IS_ERR(new_folio
)) {
5872 * If a process owning a MAP_PRIVATE mapping fails to COW,
5873 * it is due to references held by a child and an insufficient
5874 * huge page pool. To guarantee the original mappers
5875 * reliability, unmap the page from child processes. The child
5876 * may get SIGKILLed if it later faults.
5878 if (outside_reserve
) {
5879 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
5883 folio_put(old_folio
);
5885 * Drop hugetlb_fault_mutex and vma_lock before
5886 * unmapping. unmapping needs to hold vma_lock
5887 * in write mode. Dropping vma_lock in read mode
5888 * here is OK as COW mappings do not interact with
5891 * Reacquire both after unmap operation.
5893 idx
= vma_hugecache_offset(h
, vma
, vmf
->address
);
5894 hash
= hugetlb_fault_mutex_hash(mapping
, idx
);
5895 hugetlb_vma_unlock_read(vma
);
5896 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
5898 unmap_ref_private(mm
, vma
, &old_folio
->page
,
5901 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
5902 hugetlb_vma_lock_read(vma
);
5903 spin_lock(vmf
->ptl
);
5904 vmf
->pte
= hugetlb_walk(vma
, vmf
->address
,
5906 if (likely(vmf
->pte
&&
5907 pte_same(huge_ptep_get(mm
, vmf
->address
, vmf
->pte
), pte
)))
5908 goto retry_avoidcopy
;
5910 * race occurs while re-acquiring page table
5911 * lock, and our job is done.
5913 delayacct_wpcopy_end();
5917 ret
= vmf_error(PTR_ERR(new_folio
));
5918 goto out_release_old
;
5922 * When the original hugepage is shared one, it does not have
5923 * anon_vma prepared.
5925 ret
= __vmf_anon_prepare(vmf
);
5927 goto out_release_all
;
5929 if (copy_user_large_folio(new_folio
, old_folio
, vmf
->real_address
, vma
)) {
5930 ret
= VM_FAULT_HWPOISON_LARGE
| VM_FAULT_SET_HINDEX(hstate_index(h
));
5931 goto out_release_all
;
5933 __folio_mark_uptodate(new_folio
);
5935 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, mm
, vmf
->address
,
5936 vmf
->address
+ huge_page_size(h
));
5937 mmu_notifier_invalidate_range_start(&range
);
5940 * Retake the page table lock to check for racing updates
5941 * before the page tables are altered
5943 spin_lock(vmf
->ptl
);
5944 vmf
->pte
= hugetlb_walk(vma
, vmf
->address
, huge_page_size(h
));
5945 if (likely(vmf
->pte
&& pte_same(huge_ptep_get(mm
, vmf
->address
, vmf
->pte
), pte
))) {
5946 pte_t newpte
= make_huge_pte(vma
, &new_folio
->page
, !unshare
);
5948 /* Break COW or unshare */
5949 huge_ptep_clear_flush(vma
, vmf
->address
, vmf
->pte
);
5950 hugetlb_remove_rmap(old_folio
);
5951 hugetlb_add_new_anon_rmap(new_folio
, vma
, vmf
->address
);
5952 if (huge_pte_uffd_wp(pte
))
5953 newpte
= huge_pte_mkuffd_wp(newpte
);
5954 set_huge_pte_at(mm
, vmf
->address
, vmf
->pte
, newpte
,
5956 folio_set_hugetlb_migratable(new_folio
);
5957 /* Make the old page be freed below */
5958 new_folio
= old_folio
;
5960 spin_unlock(vmf
->ptl
);
5961 mmu_notifier_invalidate_range_end(&range
);
5964 * No restore in case of successful pagetable update (Break COW or
5967 if (new_folio
!= old_folio
)
5968 restore_reserve_on_error(h
, vma
, vmf
->address
, new_folio
);
5969 folio_put(new_folio
);
5971 folio_put(old_folio
);
5973 spin_lock(vmf
->ptl
); /* Caller expects lock to be held */
5975 delayacct_wpcopy_end();
5980 * Return whether there is a pagecache page to back given address within VMA.
5982 bool hugetlbfs_pagecache_present(struct hstate
*h
,
5983 struct vm_area_struct
*vma
, unsigned long address
)
5985 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
5986 pgoff_t idx
= linear_page_index(vma
, address
);
5987 struct folio
*folio
;
5989 folio
= filemap_get_folio(mapping
, idx
);
5996 int hugetlb_add_to_page_cache(struct folio
*folio
, struct address_space
*mapping
,
5999 struct inode
*inode
= mapping
->host
;
6000 struct hstate
*h
= hstate_inode(inode
);
6003 idx
<<= huge_page_order(h
);
6004 __folio_set_locked(folio
);
6005 err
= __filemap_add_folio(mapping
, folio
, idx
, GFP_KERNEL
, NULL
);
6007 if (unlikely(err
)) {
6008 __folio_clear_locked(folio
);
6011 folio_clear_hugetlb_restore_reserve(folio
);
6014 * mark folio dirty so that it will not be removed from cache/file
6015 * by non-hugetlbfs specific code paths.
6017 folio_mark_dirty(folio
);
6019 spin_lock(&inode
->i_lock
);
6020 inode
->i_blocks
+= blocks_per_huge_page(h
);
6021 spin_unlock(&inode
->i_lock
);
6025 static inline vm_fault_t
hugetlb_handle_userfault(struct vm_fault
*vmf
,
6026 struct address_space
*mapping
,
6027 unsigned long reason
)
6032 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6033 * userfault. Also mmap_lock could be dropped due to handling
6034 * userfault, any vma operation should be careful from here.
6036 hugetlb_vma_unlock_read(vmf
->vma
);
6037 hash
= hugetlb_fault_mutex_hash(mapping
, vmf
->pgoff
);
6038 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
6039 return handle_userfault(vmf
, reason
);
6043 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
6044 * false if pte changed or is changing.
6046 static bool hugetlb_pte_stable(struct hstate
*h
, struct mm_struct
*mm
, unsigned long addr
,
6047 pte_t
*ptep
, pte_t old_pte
)
6052 ptl
= huge_pte_lock(h
, mm
, ptep
);
6053 same
= pte_same(huge_ptep_get(mm
, addr
, ptep
), old_pte
);
6059 static vm_fault_t
hugetlb_no_page(struct address_space
*mapping
,
6060 struct vm_fault
*vmf
)
6062 struct vm_area_struct
*vma
= vmf
->vma
;
6063 struct mm_struct
*mm
= vma
->vm_mm
;
6064 struct hstate
*h
= hstate_vma(vma
);
6065 vm_fault_t ret
= VM_FAULT_SIGBUS
;
6068 struct folio
*folio
;
6070 bool new_folio
, new_pagecache_folio
= false;
6071 u32 hash
= hugetlb_fault_mutex_hash(mapping
, vmf
->pgoff
);
6074 * Currently, we are forced to kill the process in the event the
6075 * original mapper has unmapped pages from the child due to a failed
6076 * COW/unsharing. Warn that such a situation has occurred as it may not
6079 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
6080 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6086 * Use page lock to guard against racing truncation
6087 * before we get page_table_lock.
6090 folio
= filemap_lock_hugetlb_folio(h
, mapping
, vmf
->pgoff
);
6091 if (IS_ERR(folio
)) {
6092 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
6093 if (vmf
->pgoff
>= size
)
6095 /* Check for page in userfault range */
6096 if (userfaultfd_missing(vma
)) {
6098 * Since hugetlb_no_page() was examining pte
6099 * without pgtable lock, we need to re-test under
6100 * lock because the pte may not be stable and could
6101 * have changed from under us. Try to detect
6102 * either changed or during-changing ptes and retry
6103 * properly when needed.
6105 * Note that userfaultfd is actually fine with
6106 * false positives (e.g. caused by pte changed),
6107 * but not wrong logical events (e.g. caused by
6108 * reading a pte during changing). The latter can
6109 * confuse the userspace, so the strictness is very
6110 * much preferred. E.g., MISSING event should
6111 * never happen on the page after UFFDIO_COPY has
6112 * correctly installed the page and returned.
6114 if (!hugetlb_pte_stable(h
, mm
, vmf
->address
, vmf
->pte
, vmf
->orig_pte
)) {
6119 return hugetlb_handle_userfault(vmf
, mapping
,
6123 if (!(vma
->vm_flags
& VM_MAYSHARE
)) {
6124 ret
= __vmf_anon_prepare(vmf
);
6129 folio
= alloc_hugetlb_folio(vma
, vmf
->address
, 0);
6130 if (IS_ERR(folio
)) {
6132 * Returning error will result in faulting task being
6133 * sent SIGBUS. The hugetlb fault mutex prevents two
6134 * tasks from racing to fault in the same page which
6135 * could result in false unable to allocate errors.
6136 * Page migration does not take the fault mutex, but
6137 * does a clear then write of pte's under page table
6138 * lock. Page fault code could race with migration,
6139 * notice the clear pte and try to allocate a page
6140 * here. Before returning error, get ptl and make
6141 * sure there really is no pte entry.
6143 if (hugetlb_pte_stable(h
, mm
, vmf
->address
, vmf
->pte
, vmf
->orig_pte
))
6144 ret
= vmf_error(PTR_ERR(folio
));
6149 folio_zero_user(folio
, vmf
->real_address
);
6150 __folio_mark_uptodate(folio
);
6153 if (vma
->vm_flags
& VM_MAYSHARE
) {
6154 int err
= hugetlb_add_to_page_cache(folio
, mapping
,
6158 * err can't be -EEXIST which implies someone
6159 * else consumed the reservation since hugetlb
6160 * fault mutex is held when add a hugetlb page
6161 * to the page cache. So it's safe to call
6162 * restore_reserve_on_error() here.
6164 restore_reserve_on_error(h
, vma
, vmf
->address
,
6167 ret
= VM_FAULT_SIGBUS
;
6170 new_pagecache_folio
= true;
6177 * If memory error occurs between mmap() and fault, some process
6178 * don't have hwpoisoned swap entry for errored virtual address.
6179 * So we need to block hugepage fault by PG_hwpoison bit check.
6181 if (unlikely(folio_test_hwpoison(folio
))) {
6182 ret
= VM_FAULT_HWPOISON_LARGE
|
6183 VM_FAULT_SET_HINDEX(hstate_index(h
));
6184 goto backout_unlocked
;
6187 /* Check for page in userfault range. */
6188 if (userfaultfd_minor(vma
)) {
6189 folio_unlock(folio
);
6191 /* See comment in userfaultfd_missing() block above */
6192 if (!hugetlb_pte_stable(h
, mm
, vmf
->address
, vmf
->pte
, vmf
->orig_pte
)) {
6196 return hugetlb_handle_userfault(vmf
, mapping
,
6202 * If we are going to COW a private mapping later, we examine the
6203 * pending reservations for this page now. This will ensure that
6204 * any allocations necessary to record that reservation occur outside
6207 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
6208 if (vma_needs_reservation(h
, vma
, vmf
->address
) < 0) {
6210 goto backout_unlocked
;
6212 /* Just decrements count, does not deallocate */
6213 vma_end_reservation(h
, vma
, vmf
->address
);
6216 vmf
->ptl
= huge_pte_lock(h
, mm
, vmf
->pte
);
6218 /* If pte changed from under us, retry */
6219 if (!pte_same(huge_ptep_get(mm
, vmf
->address
, vmf
->pte
), vmf
->orig_pte
))
6223 hugetlb_add_new_anon_rmap(folio
, vma
, vmf
->address
);
6225 hugetlb_add_file_rmap(folio
);
6226 new_pte
= make_huge_pte(vma
, &folio
->page
, ((vma
->vm_flags
& VM_WRITE
)
6227 && (vma
->vm_flags
& VM_SHARED
)));
6229 * If this pte was previously wr-protected, keep it wr-protected even
6232 if (unlikely(pte_marker_uffd_wp(vmf
->orig_pte
)))
6233 new_pte
= huge_pte_mkuffd_wp(new_pte
);
6234 set_huge_pte_at(mm
, vmf
->address
, vmf
->pte
, new_pte
, huge_page_size(h
));
6236 hugetlb_count_add(pages_per_huge_page(h
), mm
);
6237 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
6238 /* Optimization, do the COW without a second fault */
6239 ret
= hugetlb_wp(folio
, vmf
);
6242 spin_unlock(vmf
->ptl
);
6245 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6246 * found in the pagecache may not have hugetlb_migratable if they have
6247 * been isolated for migration.
6250 folio_set_hugetlb_migratable(folio
);
6252 folio_unlock(folio
);
6254 hugetlb_vma_unlock_read(vma
);
6257 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6258 * the only way ret can be set to VM_FAULT_RETRY.
6260 if (unlikely(ret
& VM_FAULT_RETRY
))
6263 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
6267 spin_unlock(vmf
->ptl
);
6269 if (new_folio
&& !new_pagecache_folio
)
6270 restore_reserve_on_error(h
, vma
, vmf
->address
, folio
);
6272 folio_unlock(folio
);
6278 u32
hugetlb_fault_mutex_hash(struct address_space
*mapping
, pgoff_t idx
)
6280 unsigned long key
[2];
6283 key
[0] = (unsigned long) mapping
;
6286 hash
= jhash2((u32
*)&key
, sizeof(key
)/(sizeof(u32
)), 0);
6288 return hash
& (num_fault_mutexes
- 1);
6292 * For uniprocessor systems we always use a single mutex, so just
6293 * return 0 and avoid the hashing overhead.
6295 u32
hugetlb_fault_mutex_hash(struct address_space
*mapping
, pgoff_t idx
)
6301 vm_fault_t
hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
6302 unsigned long address
, unsigned int flags
)
6306 struct folio
*folio
= NULL
;
6307 struct folio
*pagecache_folio
= NULL
;
6308 struct hstate
*h
= hstate_vma(vma
);
6309 struct address_space
*mapping
;
6310 int need_wait_lock
= 0;
6311 struct vm_fault vmf
= {
6313 .address
= address
& huge_page_mask(h
),
6314 .real_address
= address
,
6316 .pgoff
= vma_hugecache_offset(h
, vma
,
6317 address
& huge_page_mask(h
)),
6318 /* TODO: Track hugetlb faults using vm_fault */
6321 * Some fields may not be initialized, be careful as it may
6322 * be hard to debug if called functions make assumptions
6327 * Serialize hugepage allocation and instantiation, so that we don't
6328 * get spurious allocation failures if two CPUs race to instantiate
6329 * the same page in the page cache.
6331 mapping
= vma
->vm_file
->f_mapping
;
6332 hash
= hugetlb_fault_mutex_hash(mapping
, vmf
.pgoff
);
6333 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
6336 * Acquire vma lock before calling huge_pte_alloc and hold
6337 * until finished with vmf.pte. This prevents huge_pmd_unshare from
6338 * being called elsewhere and making the vmf.pte no longer valid.
6340 hugetlb_vma_lock_read(vma
);
6341 vmf
.pte
= huge_pte_alloc(mm
, vma
, vmf
.address
, huge_page_size(h
));
6343 hugetlb_vma_unlock_read(vma
);
6344 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
6345 return VM_FAULT_OOM
;
6348 vmf
.orig_pte
= huge_ptep_get(mm
, vmf
.address
, vmf
.pte
);
6349 if (huge_pte_none_mostly(vmf
.orig_pte
)) {
6350 if (is_pte_marker(vmf
.orig_pte
)) {
6352 pte_marker_get(pte_to_swp_entry(vmf
.orig_pte
));
6354 if (marker
& PTE_MARKER_POISONED
) {
6355 ret
= VM_FAULT_HWPOISON_LARGE
|
6356 VM_FAULT_SET_HINDEX(hstate_index(h
));
6358 } else if (WARN_ON_ONCE(marker
& PTE_MARKER_GUARD
)) {
6359 /* This isn't supported in hugetlb. */
6360 ret
= VM_FAULT_SIGSEGV
;
6366 * Other PTE markers should be handled the same way as none PTE.
6368 * hugetlb_no_page will drop vma lock and hugetlb fault
6369 * mutex internally, which make us return immediately.
6371 return hugetlb_no_page(mapping
, &vmf
);
6377 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6378 * point, so this check prevents the kernel from going below assuming
6379 * that we have an active hugepage in pagecache. This goto expects
6380 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6381 * check will properly handle it.
6383 if (!pte_present(vmf
.orig_pte
)) {
6384 if (unlikely(is_hugetlb_entry_migration(vmf
.orig_pte
))) {
6386 * Release the hugetlb fault lock now, but retain
6387 * the vma lock, because it is needed to guard the
6388 * huge_pte_lockptr() later in
6389 * migration_entry_wait_huge(). The vma lock will
6390 * be released there.
6392 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
6393 migration_entry_wait_huge(vma
, vmf
.address
, vmf
.pte
);
6395 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf
.orig_pte
)))
6396 ret
= VM_FAULT_HWPOISON_LARGE
|
6397 VM_FAULT_SET_HINDEX(hstate_index(h
));
6402 * If we are going to COW/unshare the mapping later, we examine the
6403 * pending reservations for this page now. This will ensure that any
6404 * allocations necessary to record that reservation occur outside the
6405 * spinlock. Also lookup the pagecache page now as it is used to
6406 * determine if a reservation has been consumed.
6408 if ((flags
& (FAULT_FLAG_WRITE
|FAULT_FLAG_UNSHARE
)) &&
6409 !(vma
->vm_flags
& VM_MAYSHARE
) && !huge_pte_write(vmf
.orig_pte
)) {
6410 if (vma_needs_reservation(h
, vma
, vmf
.address
) < 0) {
6414 /* Just decrements count, does not deallocate */
6415 vma_end_reservation(h
, vma
, vmf
.address
);
6417 pagecache_folio
= filemap_lock_hugetlb_folio(h
, mapping
,
6419 if (IS_ERR(pagecache_folio
))
6420 pagecache_folio
= NULL
;
6423 vmf
.ptl
= huge_pte_lock(h
, mm
, vmf
.pte
);
6425 /* Check for a racing update before calling hugetlb_wp() */
6426 if (unlikely(!pte_same(vmf
.orig_pte
, huge_ptep_get(mm
, vmf
.address
, vmf
.pte
))))
6429 /* Handle userfault-wp first, before trying to lock more pages */
6430 if (userfaultfd_wp(vma
) && huge_pte_uffd_wp(huge_ptep_get(mm
, vmf
.address
, vmf
.pte
)) &&
6431 (flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(vmf
.orig_pte
)) {
6432 if (!userfaultfd_wp_async(vma
)) {
6433 spin_unlock(vmf
.ptl
);
6434 if (pagecache_folio
) {
6435 folio_unlock(pagecache_folio
);
6436 folio_put(pagecache_folio
);
6438 hugetlb_vma_unlock_read(vma
);
6439 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
6440 return handle_userfault(&vmf
, VM_UFFD_WP
);
6443 vmf
.orig_pte
= huge_pte_clear_uffd_wp(vmf
.orig_pte
);
6444 set_huge_pte_at(mm
, vmf
.address
, vmf
.pte
, vmf
.orig_pte
,
6445 huge_page_size(hstate_vma(vma
)));
6446 /* Fallthrough to CoW */
6450 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6451 * pagecache_folio, so here we need take the former one
6452 * when folio != pagecache_folio or !pagecache_folio.
6454 folio
= page_folio(pte_page(vmf
.orig_pte
));
6455 if (folio
!= pagecache_folio
)
6456 if (!folio_trylock(folio
)) {
6463 if (flags
& (FAULT_FLAG_WRITE
|FAULT_FLAG_UNSHARE
)) {
6464 if (!huge_pte_write(vmf
.orig_pte
)) {
6465 ret
= hugetlb_wp(pagecache_folio
, &vmf
);
6467 } else if (likely(flags
& FAULT_FLAG_WRITE
)) {
6468 vmf
.orig_pte
= huge_pte_mkdirty(vmf
.orig_pte
);
6471 vmf
.orig_pte
= pte_mkyoung(vmf
.orig_pte
);
6472 if (huge_ptep_set_access_flags(vma
, vmf
.address
, vmf
.pte
, vmf
.orig_pte
,
6473 flags
& FAULT_FLAG_WRITE
))
6474 update_mmu_cache(vma
, vmf
.address
, vmf
.pte
);
6476 if (folio
!= pagecache_folio
)
6477 folio_unlock(folio
);
6480 spin_unlock(vmf
.ptl
);
6482 if (pagecache_folio
) {
6483 folio_unlock(pagecache_folio
);
6484 folio_put(pagecache_folio
);
6487 hugetlb_vma_unlock_read(vma
);
6490 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6491 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6493 if (unlikely(ret
& VM_FAULT_RETRY
))
6496 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
6498 * Generally it's safe to hold refcount during waiting page lock. But
6499 * here we just wait to defer the next page fault to avoid busy loop and
6500 * the page is not used after unlocked before returning from the current
6501 * page fault. So we are safe from accessing freed page, even if we wait
6502 * here without taking refcount.
6505 folio_wait_locked(folio
);
6509 #ifdef CONFIG_USERFAULTFD
6511 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6513 static struct folio
*alloc_hugetlb_folio_vma(struct hstate
*h
,
6514 struct vm_area_struct
*vma
, unsigned long address
)
6516 struct mempolicy
*mpol
;
6517 nodemask_t
*nodemask
;
6518 struct folio
*folio
;
6522 gfp_mask
= htlb_alloc_mask(h
);
6523 node
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
6525 * This is used to allocate a temporary hugetlb to hold the copied
6526 * content, which will then be copied again to the final hugetlb
6527 * consuming a reservation. Set the alloc_fallback to false to indicate
6528 * that breaking the per-node hugetlb pool is not allowed in this case.
6530 folio
= alloc_hugetlb_folio_nodemask(h
, node
, nodemask
, gfp_mask
, false);
6531 mpol_cond_put(mpol
);
6537 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6538 * with modifications for hugetlb pages.
6540 int hugetlb_mfill_atomic_pte(pte_t
*dst_pte
,
6541 struct vm_area_struct
*dst_vma
,
6542 unsigned long dst_addr
,
6543 unsigned long src_addr
,
6545 struct folio
**foliop
)
6547 struct mm_struct
*dst_mm
= dst_vma
->vm_mm
;
6548 bool is_continue
= uffd_flags_mode_is(flags
, MFILL_ATOMIC_CONTINUE
);
6549 bool wp_enabled
= (flags
& MFILL_ATOMIC_WP
);
6550 struct hstate
*h
= hstate_vma(dst_vma
);
6551 struct address_space
*mapping
= dst_vma
->vm_file
->f_mapping
;
6552 pgoff_t idx
= vma_hugecache_offset(h
, dst_vma
, dst_addr
);
6553 unsigned long size
= huge_page_size(h
);
6554 int vm_shared
= dst_vma
->vm_flags
& VM_SHARED
;
6558 struct folio
*folio
;
6560 bool folio_in_pagecache
= false;
6562 if (uffd_flags_mode_is(flags
, MFILL_ATOMIC_POISON
)) {
6563 ptl
= huge_pte_lock(h
, dst_mm
, dst_pte
);
6565 /* Don't overwrite any existing PTEs (even markers) */
6566 if (!huge_pte_none(huge_ptep_get(dst_mm
, dst_addr
, dst_pte
))) {
6571 _dst_pte
= make_pte_marker(PTE_MARKER_POISONED
);
6572 set_huge_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
, size
);
6574 /* No need to invalidate - it was non-present before */
6575 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
6583 folio
= filemap_lock_hugetlb_folio(h
, mapping
, idx
);
6586 folio_in_pagecache
= true;
6587 } else if (!*foliop
) {
6588 /* If a folio already exists, then it's UFFDIO_COPY for
6589 * a non-missing case. Return -EEXIST.
6592 hugetlbfs_pagecache_present(h
, dst_vma
, dst_addr
)) {
6597 folio
= alloc_hugetlb_folio(dst_vma
, dst_addr
, 0);
6598 if (IS_ERR(folio
)) {
6603 ret
= copy_folio_from_user(folio
, (const void __user
*) src_addr
,
6606 /* fallback to copy_from_user outside mmap_lock */
6607 if (unlikely(ret
)) {
6609 /* Free the allocated folio which may have
6610 * consumed a reservation.
6612 restore_reserve_on_error(h
, dst_vma
, dst_addr
, folio
);
6615 /* Allocate a temporary folio to hold the copied
6618 folio
= alloc_hugetlb_folio_vma(h
, dst_vma
, dst_addr
);
6624 /* Set the outparam foliop and return to the caller to
6625 * copy the contents outside the lock. Don't free the
6632 hugetlbfs_pagecache_present(h
, dst_vma
, dst_addr
)) {
6639 folio
= alloc_hugetlb_folio(dst_vma
, dst_addr
, 0);
6640 if (IS_ERR(folio
)) {
6646 ret
= copy_user_large_folio(folio
, *foliop
,
6647 ALIGN_DOWN(dst_addr
, size
), dst_vma
);
6657 * If we just allocated a new page, we need a memory barrier to ensure
6658 * that preceding stores to the page become visible before the
6659 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6662 * In the case where we have not allocated a new page (is_continue),
6663 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6664 * an earlier smp_wmb() to ensure that prior stores will be visible
6665 * before the set_pte_at() write.
6668 __folio_mark_uptodate(folio
);
6670 WARN_ON_ONCE(!folio_test_uptodate(folio
));
6672 /* Add shared, newly allocated pages to the page cache. */
6673 if (vm_shared
&& !is_continue
) {
6675 if (idx
>= (i_size_read(mapping
->host
) >> huge_page_shift(h
)))
6676 goto out_release_nounlock
;
6679 * Serialization between remove_inode_hugepages() and
6680 * hugetlb_add_to_page_cache() below happens through the
6681 * hugetlb_fault_mutex_table that here must be hold by
6684 ret
= hugetlb_add_to_page_cache(folio
, mapping
, idx
);
6686 goto out_release_nounlock
;
6687 folio_in_pagecache
= true;
6690 ptl
= huge_pte_lock(h
, dst_mm
, dst_pte
);
6693 if (folio_test_hwpoison(folio
))
6694 goto out_release_unlock
;
6697 * We allow to overwrite a pte marker: consider when both MISSING|WP
6698 * registered, we firstly wr-protect a none pte which has no page cache
6699 * page backing it, then access the page.
6702 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm
, dst_addr
, dst_pte
)))
6703 goto out_release_unlock
;
6705 if (folio_in_pagecache
)
6706 hugetlb_add_file_rmap(folio
);
6708 hugetlb_add_new_anon_rmap(folio
, dst_vma
, dst_addr
);
6711 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6712 * with wp flag set, don't set pte write bit.
6714 if (wp_enabled
|| (is_continue
&& !vm_shared
))
6717 writable
= dst_vma
->vm_flags
& VM_WRITE
;
6719 _dst_pte
= make_huge_pte(dst_vma
, &folio
->page
, writable
);
6721 * Always mark UFFDIO_COPY page dirty; note that this may not be
6722 * extremely important for hugetlbfs for now since swapping is not
6723 * supported, but we should still be clear in that this page cannot be
6724 * thrown away at will, even if write bit not set.
6726 _dst_pte
= huge_pte_mkdirty(_dst_pte
);
6727 _dst_pte
= pte_mkyoung(_dst_pte
);
6730 _dst_pte
= huge_pte_mkuffd_wp(_dst_pte
);
6732 set_huge_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
, size
);
6734 hugetlb_count_add(pages_per_huge_page(h
), dst_mm
);
6736 /* No need to invalidate - it was non-present before */
6737 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
6741 folio_set_hugetlb_migratable(folio
);
6742 if (vm_shared
|| is_continue
)
6743 folio_unlock(folio
);
6749 if (vm_shared
|| is_continue
)
6750 folio_unlock(folio
);
6751 out_release_nounlock
:
6752 if (!folio_in_pagecache
)
6753 restore_reserve_on_error(h
, dst_vma
, dst_addr
, folio
);
6757 #endif /* CONFIG_USERFAULTFD */
6759 long hugetlb_change_protection(struct vm_area_struct
*vma
,
6760 unsigned long address
, unsigned long end
,
6761 pgprot_t newprot
, unsigned long cp_flags
)
6763 struct mm_struct
*mm
= vma
->vm_mm
;
6764 unsigned long start
= address
;
6767 struct hstate
*h
= hstate_vma(vma
);
6768 long pages
= 0, psize
= huge_page_size(h
);
6769 bool shared_pmd
= false;
6770 struct mmu_notifier_range range
;
6771 unsigned long last_addr_mask
;
6772 bool uffd_wp
= cp_flags
& MM_CP_UFFD_WP
;
6773 bool uffd_wp_resolve
= cp_flags
& MM_CP_UFFD_WP_RESOLVE
;
6776 * In the case of shared PMDs, the area to flush could be beyond
6777 * start/end. Set range.start/range.end to cover the maximum possible
6778 * range if PMD sharing is possible.
6780 mmu_notifier_range_init(&range
, MMU_NOTIFY_PROTECTION_VMA
,
6782 adjust_range_if_pmd_sharing_possible(vma
, &range
.start
, &range
.end
);
6784 BUG_ON(address
>= end
);
6785 flush_cache_range(vma
, range
.start
, range
.end
);
6787 mmu_notifier_invalidate_range_start(&range
);
6788 hugetlb_vma_lock_write(vma
);
6789 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
6790 last_addr_mask
= hugetlb_mask_last_page(h
);
6791 for (; address
< end
; address
+= psize
) {
6793 ptep
= hugetlb_walk(vma
, address
, psize
);
6796 address
|= last_addr_mask
;
6800 * Userfaultfd wr-protect requires pgtable
6801 * pre-allocations to install pte markers.
6803 ptep
= huge_pte_alloc(mm
, vma
, address
, psize
);
6809 ptl
= huge_pte_lock(h
, mm
, ptep
);
6810 if (huge_pmd_unshare(mm
, vma
, address
, ptep
)) {
6812 * When uffd-wp is enabled on the vma, unshare
6813 * shouldn't happen at all. Warn about it if it
6814 * happened due to some reason.
6816 WARN_ON_ONCE(uffd_wp
|| uffd_wp_resolve
);
6820 address
|= last_addr_mask
;
6823 pte
= huge_ptep_get(mm
, address
, ptep
);
6824 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
6825 /* Nothing to do. */
6826 } else if (unlikely(is_hugetlb_entry_migration(pte
))) {
6827 swp_entry_t entry
= pte_to_swp_entry(pte
);
6828 struct page
*page
= pfn_swap_entry_to_page(entry
);
6831 if (is_writable_migration_entry(entry
)) {
6833 entry
= make_readable_exclusive_migration_entry(
6836 entry
= make_readable_migration_entry(
6838 newpte
= swp_entry_to_pte(entry
);
6843 newpte
= pte_swp_mkuffd_wp(newpte
);
6844 else if (uffd_wp_resolve
)
6845 newpte
= pte_swp_clear_uffd_wp(newpte
);
6846 if (!pte_same(pte
, newpte
))
6847 set_huge_pte_at(mm
, address
, ptep
, newpte
, psize
);
6848 } else if (unlikely(is_pte_marker(pte
))) {
6850 * Do nothing on a poison marker; page is
6851 * corrupted, permissons do not apply. Here
6852 * pte_marker_uffd_wp()==true implies !poison
6853 * because they're mutual exclusive.
6855 if (pte_marker_uffd_wp(pte
) && uffd_wp_resolve
)
6856 /* Safe to modify directly (non-present->none). */
6857 huge_pte_clear(mm
, address
, ptep
, psize
);
6858 } else if (!huge_pte_none(pte
)) {
6860 unsigned int shift
= huge_page_shift(hstate_vma(vma
));
6862 old_pte
= huge_ptep_modify_prot_start(vma
, address
, ptep
);
6863 pte
= huge_pte_modify(old_pte
, newprot
);
6864 pte
= arch_make_huge_pte(pte
, shift
, vma
->vm_flags
);
6866 pte
= huge_pte_mkuffd_wp(pte
);
6867 else if (uffd_wp_resolve
)
6868 pte
= huge_pte_clear_uffd_wp(pte
);
6869 huge_ptep_modify_prot_commit(vma
, address
, ptep
, old_pte
, pte
);
6873 if (unlikely(uffd_wp
))
6874 /* Safe to modify directly (none->non-present). */
6875 set_huge_pte_at(mm
, address
, ptep
,
6876 make_pte_marker(PTE_MARKER_UFFD_WP
),
6882 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6883 * may have cleared our pud entry and done put_page on the page table:
6884 * once we release i_mmap_rwsem, another task can do the final put_page
6885 * and that page table be reused and filled with junk. If we actually
6886 * did unshare a page of pmds, flush the range corresponding to the pud.
6889 flush_hugetlb_tlb_range(vma
, range
.start
, range
.end
);
6891 flush_hugetlb_tlb_range(vma
, start
, end
);
6893 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6894 * downgrading page table protection not changing it to point to a new
6897 * See Documentation/mm/mmu_notifier.rst
6899 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
6900 hugetlb_vma_unlock_write(vma
);
6901 mmu_notifier_invalidate_range_end(&range
);
6903 return pages
> 0 ? (pages
<< h
->order
) : pages
;
6906 /* Return true if reservation was successful, false otherwise. */
6907 bool hugetlb_reserve_pages(struct inode
*inode
,
6909 struct vm_area_struct
*vma
,
6910 vm_flags_t vm_flags
)
6912 long chg
= -1, add
= -1;
6913 struct hstate
*h
= hstate_inode(inode
);
6914 struct hugepage_subpool
*spool
= subpool_inode(inode
);
6915 struct resv_map
*resv_map
;
6916 struct hugetlb_cgroup
*h_cg
= NULL
;
6917 long gbl_reserve
, regions_needed
= 0;
6919 /* This should never happen */
6921 VM_WARN(1, "%s called with a negative range\n", __func__
);
6926 * vma specific semaphore used for pmd sharing and fault/truncation
6929 hugetlb_vma_lock_alloc(vma
);
6932 * Only apply hugepage reservation if asked. At fault time, an
6933 * attempt will be made for VM_NORESERVE to allocate a page
6934 * without using reserves
6936 if (vm_flags
& VM_NORESERVE
)
6940 * Shared mappings base their reservation on the number of pages that
6941 * are already allocated on behalf of the file. Private mappings need
6942 * to reserve the full area even if read-only as mprotect() may be
6943 * called to make the mapping read-write. Assume !vma is a shm mapping
6945 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
6947 * resv_map can not be NULL as hugetlb_reserve_pages is only
6948 * called for inodes for which resv_maps were created (see
6949 * hugetlbfs_get_inode).
6951 resv_map
= inode_resv_map(inode
);
6953 chg
= region_chg(resv_map
, from
, to
, ®ions_needed
);
6955 /* Private mapping. */
6956 resv_map
= resv_map_alloc();
6962 set_vma_resv_map(vma
, resv_map
);
6963 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
6969 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h
),
6970 chg
* pages_per_huge_page(h
), &h_cg
) < 0)
6973 if (vma
&& !(vma
->vm_flags
& VM_MAYSHARE
) && h_cg
) {
6974 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6977 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map
, h_cg
, h
);
6981 * There must be enough pages in the subpool for the mapping. If
6982 * the subpool has a minimum size, there may be some global
6983 * reservations already in place (gbl_reserve).
6985 gbl_reserve
= hugepage_subpool_get_pages(spool
, chg
);
6986 if (gbl_reserve
< 0)
6987 goto out_uncharge_cgroup
;
6990 * Check enough hugepages are available for the reservation.
6991 * Hand the pages back to the subpool if there are not
6993 if (hugetlb_acct_memory(h
, gbl_reserve
) < 0)
6997 * Account for the reservations made. Shared mappings record regions
6998 * that have reservations as they are shared by multiple VMAs.
6999 * When the last VMA disappears, the region map says how much
7000 * the reservation was and the page cache tells how much of
7001 * the reservation was consumed. Private mappings are per-VMA and
7002 * only the consumed reservations are tracked. When the VMA
7003 * disappears, the original reservation is the VMA size and the
7004 * consumed reservations are stored in the map. Hence, nothing
7005 * else has to be done for private mappings here
7007 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
7008 add
= region_add(resv_map
, from
, to
, regions_needed
, h
, h_cg
);
7010 if (unlikely(add
< 0)) {
7011 hugetlb_acct_memory(h
, -gbl_reserve
);
7013 } else if (unlikely(chg
> add
)) {
7015 * pages in this range were added to the reserve
7016 * map between region_chg and region_add. This
7017 * indicates a race with alloc_hugetlb_folio. Adjust
7018 * the subpool and reserve counts modified above
7019 * based on the difference.
7024 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7025 * reference to h_cg->css. See comment below for detail.
7027 hugetlb_cgroup_uncharge_cgroup_rsvd(
7029 (chg
- add
) * pages_per_huge_page(h
), h_cg
);
7031 rsv_adjust
= hugepage_subpool_put_pages(spool
,
7033 hugetlb_acct_memory(h
, -rsv_adjust
);
7036 * The file_regions will hold their own reference to
7037 * h_cg->css. So we should release the reference held
7038 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7041 hugetlb_cgroup_put_rsvd_cgroup(h_cg
);
7047 /* put back original number of pages, chg */
7048 (void)hugepage_subpool_put_pages(spool
, chg
);
7049 out_uncharge_cgroup
:
7050 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h
),
7051 chg
* pages_per_huge_page(h
), h_cg
);
7053 hugetlb_vma_lock_free(vma
);
7054 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
7055 /* Only call region_abort if the region_chg succeeded but the
7056 * region_add failed or didn't run.
7058 if (chg
>= 0 && add
< 0)
7059 region_abort(resv_map
, from
, to
, regions_needed
);
7060 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
7061 kref_put(&resv_map
->refs
, resv_map_release
);
7062 set_vma_resv_map(vma
, NULL
);
7067 long hugetlb_unreserve_pages(struct inode
*inode
, long start
, long end
,
7070 struct hstate
*h
= hstate_inode(inode
);
7071 struct resv_map
*resv_map
= inode_resv_map(inode
);
7073 struct hugepage_subpool
*spool
= subpool_inode(inode
);
7077 * Since this routine can be called in the evict inode path for all
7078 * hugetlbfs inodes, resv_map could be NULL.
7081 chg
= region_del(resv_map
, start
, end
);
7083 * region_del() can fail in the rare case where a region
7084 * must be split and another region descriptor can not be
7085 * allocated. If end == LONG_MAX, it will not fail.
7091 spin_lock(&inode
->i_lock
);
7092 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
7093 spin_unlock(&inode
->i_lock
);
7096 * If the subpool has a minimum size, the number of global
7097 * reservations to be released may be adjusted.
7099 * Note that !resv_map implies freed == 0. So (chg - freed)
7100 * won't go negative.
7102 gbl_reserve
= hugepage_subpool_put_pages(spool
, (chg
- freed
));
7103 hugetlb_acct_memory(h
, -gbl_reserve
);
7108 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7109 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
7110 struct vm_area_struct
*vma
,
7111 unsigned long addr
, pgoff_t idx
)
7113 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
7115 unsigned long sbase
= saddr
& PUD_MASK
;
7116 unsigned long s_end
= sbase
+ PUD_SIZE
;
7118 /* Allow segments to share if only one is marked locked */
7119 unsigned long vm_flags
= vma
->vm_flags
& ~VM_LOCKED_MASK
;
7120 unsigned long svm_flags
= svma
->vm_flags
& ~VM_LOCKED_MASK
;
7123 * match the virtual addresses, permission and the alignment of the
7126 * Also, vma_lock (vm_private_data) is required for sharing.
7128 if (pmd_index(addr
) != pmd_index(saddr
) ||
7129 vm_flags
!= svm_flags
||
7130 !range_in_vma(svma
, sbase
, s_end
) ||
7131 !svma
->vm_private_data
)
7137 bool want_pmd_share(struct vm_area_struct
*vma
, unsigned long addr
)
7139 unsigned long start
= addr
& PUD_MASK
;
7140 unsigned long end
= start
+ PUD_SIZE
;
7142 #ifdef CONFIG_USERFAULTFD
7143 if (uffd_disable_huge_pmd_share(vma
))
7147 * check on proper vm_flags and page table alignment
7149 if (!(vma
->vm_flags
& VM_MAYSHARE
))
7151 if (!vma
->vm_private_data
) /* vma lock required for sharing */
7153 if (!range_in_vma(vma
, start
, end
))
7159 * Determine if start,end range within vma could be mapped by shared pmd.
7160 * If yes, adjust start and end to cover range associated with possible
7161 * shared pmd mappings.
7163 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
7164 unsigned long *start
, unsigned long *end
)
7166 unsigned long v_start
= ALIGN(vma
->vm_start
, PUD_SIZE
),
7167 v_end
= ALIGN_DOWN(vma
->vm_end
, PUD_SIZE
);
7170 * vma needs to span at least one aligned PUD size, and the range
7171 * must be at least partially within in.
7173 if (!(vma
->vm_flags
& VM_MAYSHARE
) || !(v_end
> v_start
) ||
7174 (*end
<= v_start
) || (*start
>= v_end
))
7177 /* Extend the range to be PUD aligned for a worst case scenario */
7178 if (*start
> v_start
)
7179 *start
= ALIGN_DOWN(*start
, PUD_SIZE
);
7182 *end
= ALIGN(*end
, PUD_SIZE
);
7186 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7187 * and returns the corresponding pte. While this is not necessary for the
7188 * !shared pmd case because we can allocate the pmd later as well, it makes the
7189 * code much cleaner. pmd allocation is essential for the shared case because
7190 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7191 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7192 * bad pmd for sharing.
7194 pte_t
*huge_pmd_share(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
7195 unsigned long addr
, pud_t
*pud
)
7197 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
7198 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
7200 struct vm_area_struct
*svma
;
7201 unsigned long saddr
;
7205 i_mmap_lock_read(mapping
);
7206 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
7210 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
7212 spte
= hugetlb_walk(svma
, saddr
,
7213 vma_mmu_pagesize(svma
));
7215 get_page(virt_to_page(spte
));
7224 spin_lock(&mm
->page_table_lock
);
7225 if (pud_none(*pud
)) {
7226 pud_populate(mm
, pud
,
7227 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
7230 put_page(virt_to_page(spte
));
7232 spin_unlock(&mm
->page_table_lock
);
7234 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
7235 i_mmap_unlock_read(mapping
);
7240 * unmap huge page backed by shared pte.
7242 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7243 * indicated by page_count > 1, unmap is achieved by clearing pud and
7244 * decrementing the ref count. If count == 1, the pte page is not shared.
7246 * Called with page table lock held.
7248 * returns: 1 successfully unmapped a shared pte page
7249 * 0 the underlying pte page is not shared, or it is the last user
7251 int huge_pmd_unshare(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
7252 unsigned long addr
, pte_t
*ptep
)
7254 pgd_t
*pgd
= pgd_offset(mm
, addr
);
7255 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
7256 pud_t
*pud
= pud_offset(p4d
, addr
);
7258 i_mmap_assert_write_locked(vma
->vm_file
->f_mapping
);
7259 hugetlb_vma_assert_locked(vma
);
7260 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
7261 if (page_count(virt_to_page(ptep
)) == 1)
7265 put_page(virt_to_page(ptep
));
7270 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7272 pte_t
*huge_pmd_share(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
7273 unsigned long addr
, pud_t
*pud
)
7278 int huge_pmd_unshare(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
7279 unsigned long addr
, pte_t
*ptep
)
7284 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
7285 unsigned long *start
, unsigned long *end
)
7289 bool want_pmd_share(struct vm_area_struct
*vma
, unsigned long addr
)
7293 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7295 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7296 pte_t
*huge_pte_alloc(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
7297 unsigned long addr
, unsigned long sz
)
7304 pgd
= pgd_offset(mm
, addr
);
7305 p4d
= p4d_alloc(mm
, pgd
, addr
);
7308 pud
= pud_alloc(mm
, p4d
, addr
);
7310 if (sz
== PUD_SIZE
) {
7313 BUG_ON(sz
!= PMD_SIZE
);
7314 if (want_pmd_share(vma
, addr
) && pud_none(*pud
))
7315 pte
= huge_pmd_share(mm
, vma
, addr
, pud
);
7317 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
7322 pte_t pteval
= ptep_get_lockless(pte
);
7324 BUG_ON(pte_present(pteval
) && !pte_huge(pteval
));
7331 * huge_pte_offset() - Walk the page table to resolve the hugepage
7332 * entry at address @addr
7334 * Return: Pointer to page table entry (PUD or PMD) for
7335 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7336 * size @sz doesn't match the hugepage size at this level of the page
7339 pte_t
*huge_pte_offset(struct mm_struct
*mm
,
7340 unsigned long addr
, unsigned long sz
)
7347 pgd
= pgd_offset(mm
, addr
);
7348 if (!pgd_present(*pgd
))
7350 p4d
= p4d_offset(pgd
, addr
);
7351 if (!p4d_present(*p4d
))
7354 pud
= pud_offset(p4d
, addr
);
7356 /* must be pud huge, non-present or none */
7357 return (pte_t
*)pud
;
7358 if (!pud_present(*pud
))
7360 /* must have a valid entry and size to go further */
7362 pmd
= pmd_offset(pud
, addr
);
7363 /* must be pmd huge, non-present or none */
7364 return (pte_t
*)pmd
;
7368 * Return a mask that can be used to update an address to the last huge
7369 * page in a page table page mapping size. Used to skip non-present
7370 * page table entries when linearly scanning address ranges. Architectures
7371 * with unique huge page to page table relationships can define their own
7372 * version of this routine.
7374 unsigned long hugetlb_mask_last_page(struct hstate
*h
)
7376 unsigned long hp_size
= huge_page_size(h
);
7378 if (hp_size
== PUD_SIZE
)
7379 return P4D_SIZE
- PUD_SIZE
;
7380 else if (hp_size
== PMD_SIZE
)
7381 return PUD_SIZE
- PMD_SIZE
;
7388 /* See description above. Architectures can provide their own version. */
7389 __weak
unsigned long hugetlb_mask_last_page(struct hstate
*h
)
7391 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7392 if (huge_page_size(h
) == PMD_SIZE
)
7393 return PUD_SIZE
- PMD_SIZE
;
7398 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7400 bool isolate_hugetlb(struct folio
*folio
, struct list_head
*list
)
7404 spin_lock_irq(&hugetlb_lock
);
7405 if (!folio_test_hugetlb(folio
) ||
7406 !folio_test_hugetlb_migratable(folio
) ||
7407 !folio_try_get(folio
)) {
7411 folio_clear_hugetlb_migratable(folio
);
7412 list_move_tail(&folio
->lru
, list
);
7414 spin_unlock_irq(&hugetlb_lock
);
7418 int get_hwpoison_hugetlb_folio(struct folio
*folio
, bool *hugetlb
, bool unpoison
)
7423 spin_lock_irq(&hugetlb_lock
);
7424 if (folio_test_hugetlb(folio
)) {
7426 if (folio_test_hugetlb_freed(folio
))
7428 else if (folio_test_hugetlb_migratable(folio
) || unpoison
)
7429 ret
= folio_try_get(folio
);
7433 spin_unlock_irq(&hugetlb_lock
);
7437 int get_huge_page_for_hwpoison(unsigned long pfn
, int flags
,
7438 bool *migratable_cleared
)
7442 spin_lock_irq(&hugetlb_lock
);
7443 ret
= __get_huge_page_for_hwpoison(pfn
, flags
, migratable_cleared
);
7444 spin_unlock_irq(&hugetlb_lock
);
7448 void folio_putback_active_hugetlb(struct folio
*folio
)
7450 spin_lock_irq(&hugetlb_lock
);
7451 folio_set_hugetlb_migratable(folio
);
7452 list_move_tail(&folio
->lru
, &(folio_hstate(folio
))->hugepage_activelist
);
7453 spin_unlock_irq(&hugetlb_lock
);
7457 void move_hugetlb_state(struct folio
*old_folio
, struct folio
*new_folio
, int reason
)
7459 struct hstate
*h
= folio_hstate(old_folio
);
7461 hugetlb_cgroup_migrate(old_folio
, new_folio
);
7462 set_page_owner_migrate_reason(&new_folio
->page
, reason
);
7465 * transfer temporary state of the new hugetlb folio. This is
7466 * reverse to other transitions because the newpage is going to
7467 * be final while the old one will be freed so it takes over
7468 * the temporary status.
7470 * Also note that we have to transfer the per-node surplus state
7471 * here as well otherwise the global surplus count will not match
7474 if (folio_test_hugetlb_temporary(new_folio
)) {
7475 int old_nid
= folio_nid(old_folio
);
7476 int new_nid
= folio_nid(new_folio
);
7478 folio_set_hugetlb_temporary(old_folio
);
7479 folio_clear_hugetlb_temporary(new_folio
);
7483 * There is no need to transfer the per-node surplus state
7484 * when we do not cross the node.
7486 if (new_nid
== old_nid
)
7488 spin_lock_irq(&hugetlb_lock
);
7489 if (h
->surplus_huge_pages_node
[old_nid
]) {
7490 h
->surplus_huge_pages_node
[old_nid
]--;
7491 h
->surplus_huge_pages_node
[new_nid
]++;
7493 spin_unlock_irq(&hugetlb_lock
);
7497 static void hugetlb_unshare_pmds(struct vm_area_struct
*vma
,
7498 unsigned long start
,
7501 struct hstate
*h
= hstate_vma(vma
);
7502 unsigned long sz
= huge_page_size(h
);
7503 struct mm_struct
*mm
= vma
->vm_mm
;
7504 struct mmu_notifier_range range
;
7505 unsigned long address
;
7509 if (!(vma
->vm_flags
& VM_MAYSHARE
))
7515 flush_cache_range(vma
, start
, end
);
7517 * No need to call adjust_range_if_pmd_sharing_possible(), because
7518 * we have already done the PUD_SIZE alignment.
7520 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, mm
,
7522 mmu_notifier_invalidate_range_start(&range
);
7523 hugetlb_vma_lock_write(vma
);
7524 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
7525 for (address
= start
; address
< end
; address
+= PUD_SIZE
) {
7526 ptep
= hugetlb_walk(vma
, address
, sz
);
7529 ptl
= huge_pte_lock(h
, mm
, ptep
);
7530 huge_pmd_unshare(mm
, vma
, address
, ptep
);
7533 flush_hugetlb_tlb_range(vma
, start
, end
);
7534 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
7535 hugetlb_vma_unlock_write(vma
);
7537 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7538 * Documentation/mm/mmu_notifier.rst.
7540 mmu_notifier_invalidate_range_end(&range
);
7544 * This function will unconditionally remove all the shared pmd pgtable entries
7545 * within the specific vma for a hugetlbfs memory range.
7547 void hugetlb_unshare_all_pmds(struct vm_area_struct
*vma
)
7549 hugetlb_unshare_pmds(vma
, ALIGN(vma
->vm_start
, PUD_SIZE
),
7550 ALIGN_DOWN(vma
->vm_end
, PUD_SIZE
));
7554 static bool cma_reserve_called __initdata
;
7556 static int __init
cmdline_parse_hugetlb_cma(char *p
)
7563 if (sscanf(s
, "%lu%n", &tmp
, &count
) != 1)
7566 if (s
[count
] == ':') {
7567 if (tmp
>= MAX_NUMNODES
)
7569 nid
= array_index_nospec(tmp
, MAX_NUMNODES
);
7572 tmp
= memparse(s
, &s
);
7573 hugetlb_cma_size_in_node
[nid
] = tmp
;
7574 hugetlb_cma_size
+= tmp
;
7577 * Skip the separator if have one, otherwise
7578 * break the parsing.
7585 hugetlb_cma_size
= memparse(p
, &p
);
7593 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma
);
7595 void __init
hugetlb_cma_reserve(int order
)
7597 unsigned long size
, reserved
, per_node
;
7598 bool node_specific_cma_alloc
= false;
7602 * HugeTLB CMA reservation is required for gigantic
7603 * huge pages which could not be allocated via the
7604 * page allocator. Just warn if there is any change
7605 * breaking this assumption.
7607 VM_WARN_ON(order
<= MAX_PAGE_ORDER
);
7608 cma_reserve_called
= true;
7610 if (!hugetlb_cma_size
)
7613 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++) {
7614 if (hugetlb_cma_size_in_node
[nid
] == 0)
7617 if (!node_online(nid
)) {
7618 pr_warn("hugetlb_cma: invalid node %d specified\n", nid
);
7619 hugetlb_cma_size
-= hugetlb_cma_size_in_node
[nid
];
7620 hugetlb_cma_size_in_node
[nid
] = 0;
7624 if (hugetlb_cma_size_in_node
[nid
] < (PAGE_SIZE
<< order
)) {
7625 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7626 nid
, (PAGE_SIZE
<< order
) / SZ_1M
);
7627 hugetlb_cma_size
-= hugetlb_cma_size_in_node
[nid
];
7628 hugetlb_cma_size_in_node
[nid
] = 0;
7630 node_specific_cma_alloc
= true;
7634 /* Validate the CMA size again in case some invalid nodes specified. */
7635 if (!hugetlb_cma_size
)
7638 if (hugetlb_cma_size
< (PAGE_SIZE
<< order
)) {
7639 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7640 (PAGE_SIZE
<< order
) / SZ_1M
);
7641 hugetlb_cma_size
= 0;
7645 if (!node_specific_cma_alloc
) {
7647 * If 3 GB area is requested on a machine with 4 numa nodes,
7648 * let's allocate 1 GB on first three nodes and ignore the last one.
7650 per_node
= DIV_ROUND_UP(hugetlb_cma_size
, nr_online_nodes
);
7651 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7652 hugetlb_cma_size
/ SZ_1M
, per_node
/ SZ_1M
);
7656 for_each_online_node(nid
) {
7658 char name
[CMA_MAX_NAME
];
7660 if (node_specific_cma_alloc
) {
7661 if (hugetlb_cma_size_in_node
[nid
] == 0)
7664 size
= hugetlb_cma_size_in_node
[nid
];
7666 size
= min(per_node
, hugetlb_cma_size
- reserved
);
7669 size
= round_up(size
, PAGE_SIZE
<< order
);
7671 snprintf(name
, sizeof(name
), "hugetlb%d", nid
);
7673 * Note that 'order per bit' is based on smallest size that
7674 * may be returned to CMA allocator in the case of
7675 * huge page demotion.
7677 res
= cma_declare_contiguous_nid(0, size
, 0,
7679 HUGETLB_PAGE_ORDER
, false, name
,
7680 &hugetlb_cma
[nid
], nid
);
7682 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7688 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7691 if (reserved
>= hugetlb_cma_size
)
7697 * hugetlb_cma_size is used to determine if allocations from
7698 * cma are possible. Set to zero if no cma regions are set up.
7700 hugetlb_cma_size
= 0;
7703 static void __init
hugetlb_cma_check(void)
7705 if (!hugetlb_cma_size
|| cma_reserve_called
)
7708 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7711 #endif /* CONFIG_CMA */