1 // SPDX-License-Identifier: GPL-2.0
3 * HugeTLB Vmemmap Optimization (HVO)
5 * Copyright (c) 2020, ByteDance. All rights reserved.
7 * Author: Muchun Song <songmuchun@bytedance.com>
9 * See Documentation/mm/vmemmap_dedup.rst
11 #define pr_fmt(fmt) "HugeTLB: " fmt
13 #include <linux/pgtable.h>
14 #include <linux/moduleparam.h>
15 #include <linux/bootmem_info.h>
16 #include <linux/mmdebug.h>
17 #include <linux/pagewalk.h>
18 #include <asm/pgalloc.h>
19 #include <asm/tlbflush.h>
20 #include "hugetlb_vmemmap.h"
23 * struct vmemmap_remap_walk - walk vmemmap page table
25 * @remap_pte: called for each lowest-level entry (PTE).
26 * @nr_walked: the number of walked pte.
27 * @reuse_page: the page which is reused for the tail vmemmap pages.
28 * @reuse_addr: the virtual address of the @reuse_page page.
29 * @vmemmap_pages: the list head of the vmemmap pages that can be freed
31 * @flags: used to modify behavior in vmemmap page table walking
34 struct vmemmap_remap_walk
{
35 void (*remap_pte
)(pte_t
*pte
, unsigned long addr
,
36 struct vmemmap_remap_walk
*walk
);
37 unsigned long nr_walked
;
38 struct page
*reuse_page
;
39 unsigned long reuse_addr
;
40 struct list_head
*vmemmap_pages
;
42 /* Skip the TLB flush when we split the PMD */
43 #define VMEMMAP_SPLIT_NO_TLB_FLUSH BIT(0)
44 /* Skip the TLB flush when we remap the PTE */
45 #define VMEMMAP_REMAP_NO_TLB_FLUSH BIT(1)
46 /* synchronize_rcu() to avoid writes from page_ref_add_unless() */
47 #define VMEMMAP_SYNCHRONIZE_RCU BIT(2)
51 static int vmemmap_split_pmd(pmd_t
*pmd
, struct page
*head
, unsigned long start
,
52 struct vmemmap_remap_walk
*walk
)
56 unsigned long addr
= start
;
59 pgtable
= pte_alloc_one_kernel(&init_mm
);
63 pmd_populate_kernel(&init_mm
, &__pmd
, pgtable
);
65 for (i
= 0; i
< PTRS_PER_PTE
; i
++, addr
+= PAGE_SIZE
) {
67 pgprot_t pgprot
= PAGE_KERNEL
;
69 entry
= mk_pte(head
+ i
, pgprot
);
70 pte
= pte_offset_kernel(&__pmd
, addr
);
71 set_pte_at(&init_mm
, addr
, pte
, entry
);
74 spin_lock(&init_mm
.page_table_lock
);
75 if (likely(pmd_leaf(*pmd
))) {
77 * Higher order allocations from buddy allocator must be able to
78 * be treated as indepdenent small pages (as they can be freed
81 if (!PageReserved(head
))
82 split_page(head
, get_order(PMD_SIZE
));
84 /* Make pte visible before pmd. See comment in pmd_install(). */
86 pmd_populate_kernel(&init_mm
, pmd
, pgtable
);
87 if (!(walk
->flags
& VMEMMAP_SPLIT_NO_TLB_FLUSH
))
88 flush_tlb_kernel_range(start
, start
+ PMD_SIZE
);
90 pte_free_kernel(&init_mm
, pgtable
);
92 spin_unlock(&init_mm
.page_table_lock
);
97 static int vmemmap_pmd_entry(pmd_t
*pmd
, unsigned long addr
,
98 unsigned long next
, struct mm_walk
*walk
)
102 struct vmemmap_remap_walk
*vmemmap_walk
= walk
->private;
104 /* Only splitting, not remapping the vmemmap pages. */
105 if (!vmemmap_walk
->remap_pte
)
106 walk
->action
= ACTION_CONTINUE
;
108 spin_lock(&init_mm
.page_table_lock
);
109 head
= pmd_leaf(*pmd
) ? pmd_page(*pmd
) : NULL
;
111 * Due to HugeTLB alignment requirements and the vmemmap
112 * pages being at the start of the hotplugged memory
113 * region in memory_hotplug.memmap_on_memory case. Checking
114 * the vmemmap page associated with the first vmemmap page
115 * if it is self-hosted is sufficient.
117 * [ hotplugged memory ]
118 * [ section ][...][ section ]
119 * [ vmemmap ][ usable memory ]
122 * +------------------------+
124 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG
) && unlikely(!vmemmap_walk
->nr_walked
)) {
125 struct page
*page
= head
? head
+ pte_index(addr
) :
126 pte_page(ptep_get(pte_offset_kernel(pmd
, addr
)));
128 if (PageVmemmapSelfHosted(page
))
131 spin_unlock(&init_mm
.page_table_lock
);
135 return vmemmap_split_pmd(pmd
, head
, addr
& PMD_MASK
, vmemmap_walk
);
138 static int vmemmap_pte_entry(pte_t
*pte
, unsigned long addr
,
139 unsigned long next
, struct mm_walk
*walk
)
141 struct vmemmap_remap_walk
*vmemmap_walk
= walk
->private;
144 * The reuse_page is found 'first' in page table walking before
145 * starting remapping.
147 if (!vmemmap_walk
->reuse_page
)
148 vmemmap_walk
->reuse_page
= pte_page(ptep_get(pte
));
150 vmemmap_walk
->remap_pte(pte
, addr
, vmemmap_walk
);
151 vmemmap_walk
->nr_walked
++;
156 static const struct mm_walk_ops vmemmap_remap_ops
= {
157 .pmd_entry
= vmemmap_pmd_entry
,
158 .pte_entry
= vmemmap_pte_entry
,
161 static int vmemmap_remap_range(unsigned long start
, unsigned long end
,
162 struct vmemmap_remap_walk
*walk
)
166 VM_BUG_ON(!PAGE_ALIGNED(start
| end
));
168 mmap_read_lock(&init_mm
);
169 ret
= walk_page_range_novma(&init_mm
, start
, end
, &vmemmap_remap_ops
,
171 mmap_read_unlock(&init_mm
);
175 if (walk
->remap_pte
&& !(walk
->flags
& VMEMMAP_REMAP_NO_TLB_FLUSH
))
176 flush_tlb_kernel_range(start
, end
);
182 * Free a vmemmap page. A vmemmap page can be allocated from the memblock
183 * allocator or buddy allocator. If the PG_reserved flag is set, it means
184 * that it allocated from the memblock allocator, just free it via the
185 * free_bootmem_page(). Otherwise, use __free_page().
187 static inline void free_vmemmap_page(struct page
*page
)
189 if (PageReserved(page
)) {
190 memmap_boot_pages_add(-1);
191 free_bootmem_page(page
);
193 memmap_pages_add(-1);
198 /* Free a list of the vmemmap pages */
199 static void free_vmemmap_page_list(struct list_head
*list
)
201 struct page
*page
, *next
;
203 list_for_each_entry_safe(page
, next
, list
, lru
)
204 free_vmemmap_page(page
);
207 static void vmemmap_remap_pte(pte_t
*pte
, unsigned long addr
,
208 struct vmemmap_remap_walk
*walk
)
211 * Remap the tail pages as read-only to catch illegal write operation
214 pgprot_t pgprot
= PAGE_KERNEL_RO
;
215 struct page
*page
= pte_page(ptep_get(pte
));
218 /* Remapping the head page requires r/w */
219 if (unlikely(addr
== walk
->reuse_addr
)) {
220 pgprot
= PAGE_KERNEL
;
221 list_del(&walk
->reuse_page
->lru
);
224 * Makes sure that preceding stores to the page contents from
225 * vmemmap_remap_free() become visible before the set_pte_at()
231 entry
= mk_pte(walk
->reuse_page
, pgprot
);
232 list_add(&page
->lru
, walk
->vmemmap_pages
);
233 set_pte_at(&init_mm
, addr
, pte
, entry
);
237 * How many struct page structs need to be reset. When we reuse the head
238 * struct page, the special metadata (e.g. page->flags or page->mapping)
239 * cannot copy to the tail struct page structs. The invalid value will be
240 * checked in the free_tail_page_prepare(). In order to avoid the message
241 * of "corrupted mapping in tail page". We need to reset at least 3 (one
242 * head struct page struct and two tail struct page structs) struct page
245 #define NR_RESET_STRUCT_PAGE 3
247 static inline void reset_struct_pages(struct page
*start
)
249 struct page
*from
= start
+ NR_RESET_STRUCT_PAGE
;
251 BUILD_BUG_ON(NR_RESET_STRUCT_PAGE
* 2 > PAGE_SIZE
/ sizeof(struct page
));
252 memcpy(start
, from
, sizeof(*from
) * NR_RESET_STRUCT_PAGE
);
255 static void vmemmap_restore_pte(pte_t
*pte
, unsigned long addr
,
256 struct vmemmap_remap_walk
*walk
)
258 pgprot_t pgprot
= PAGE_KERNEL
;
262 BUG_ON(pte_page(ptep_get(pte
)) != walk
->reuse_page
);
264 page
= list_first_entry(walk
->vmemmap_pages
, struct page
, lru
);
265 list_del(&page
->lru
);
266 to
= page_to_virt(page
);
267 copy_page(to
, (void *)walk
->reuse_addr
);
268 reset_struct_pages(to
);
271 * Makes sure that preceding stores to the page contents become visible
272 * before the set_pte_at() write.
275 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, pgprot
));
279 * vmemmap_remap_split - split the vmemmap virtual address range [@start, @end)
280 * backing PMDs of the directmap into PTEs
281 * @start: start address of the vmemmap virtual address range that we want
283 * @end: end address of the vmemmap virtual address range that we want to
285 * @reuse: reuse address.
287 * Return: %0 on success, negative error code otherwise.
289 static int vmemmap_remap_split(unsigned long start
, unsigned long end
,
292 struct vmemmap_remap_walk walk
= {
294 .flags
= VMEMMAP_SPLIT_NO_TLB_FLUSH
,
297 /* See the comment in the vmemmap_remap_free(). */
298 BUG_ON(start
- reuse
!= PAGE_SIZE
);
300 return vmemmap_remap_range(reuse
, end
, &walk
);
304 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
305 * to the page which @reuse is mapped to, then free vmemmap
306 * which the range are mapped to.
307 * @start: start address of the vmemmap virtual address range that we want
309 * @end: end address of the vmemmap virtual address range that we want to
311 * @reuse: reuse address.
312 * @vmemmap_pages: list to deposit vmemmap pages to be freed. It is callers
313 * responsibility to free pages.
314 * @flags: modifications to vmemmap_remap_walk flags
316 * Return: %0 on success, negative error code otherwise.
318 static int vmemmap_remap_free(unsigned long start
, unsigned long end
,
320 struct list_head
*vmemmap_pages
,
324 struct vmemmap_remap_walk walk
= {
325 .remap_pte
= vmemmap_remap_pte
,
327 .vmemmap_pages
= vmemmap_pages
,
330 int nid
= page_to_nid((struct page
*)reuse
);
331 gfp_t gfp_mask
= GFP_KERNEL
| __GFP_NORETRY
| __GFP_NOWARN
;
334 * Allocate a new head vmemmap page to avoid breaking a contiguous
335 * block of struct page memory when freeing it back to page allocator
336 * in free_vmemmap_page_list(). This will allow the likely contiguous
337 * struct page backing memory to be kept contiguous and allowing for
338 * more allocations of hugepages. Fallback to the currently
339 * mapped head page in case should it fail to allocate.
341 walk
.reuse_page
= alloc_pages_node(nid
, gfp_mask
, 0);
342 if (walk
.reuse_page
) {
343 copy_page(page_to_virt(walk
.reuse_page
),
344 (void *)walk
.reuse_addr
);
345 list_add(&walk
.reuse_page
->lru
, vmemmap_pages
);
350 * In order to make remapping routine most efficient for the huge pages,
351 * the routine of vmemmap page table walking has the following rules
352 * (see more details from the vmemmap_pte_range()):
354 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
355 * should be continuous.
356 * - The @reuse address is part of the range [@reuse, @end) that we are
357 * walking which is passed to vmemmap_remap_range().
358 * - The @reuse address is the first in the complete range.
360 * So we need to make sure that @start and @reuse meet the above rules.
362 BUG_ON(start
- reuse
!= PAGE_SIZE
);
364 ret
= vmemmap_remap_range(reuse
, end
, &walk
);
365 if (ret
&& walk
.nr_walked
) {
366 end
= reuse
+ walk
.nr_walked
* PAGE_SIZE
;
368 * vmemmap_pages contains pages from the previous
369 * vmemmap_remap_range call which failed. These
370 * are pages which were removed from the vmemmap.
371 * They will be restored in the following call.
373 walk
= (struct vmemmap_remap_walk
) {
374 .remap_pte
= vmemmap_restore_pte
,
376 .vmemmap_pages
= vmemmap_pages
,
380 vmemmap_remap_range(reuse
, end
, &walk
);
386 static int alloc_vmemmap_page_list(unsigned long start
, unsigned long end
,
387 struct list_head
*list
)
389 gfp_t gfp_mask
= GFP_KERNEL
| __GFP_RETRY_MAYFAIL
;
390 unsigned long nr_pages
= (end
- start
) >> PAGE_SHIFT
;
391 int nid
= page_to_nid((struct page
*)start
);
392 struct page
*page
, *next
;
395 for (i
= 0; i
< nr_pages
; i
++) {
396 page
= alloc_pages_node(nid
, gfp_mask
, 0);
399 list_add(&page
->lru
, list
);
401 memmap_pages_add(nr_pages
);
405 list_for_each_entry_safe(page
, next
, list
, lru
)
411 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
412 * to the page which is from the @vmemmap_pages
414 * @start: start address of the vmemmap virtual address range that we want
416 * @end: end address of the vmemmap virtual address range that we want to
418 * @reuse: reuse address.
419 * @flags: modifications to vmemmap_remap_walk flags
421 * Return: %0 on success, negative error code otherwise.
423 static int vmemmap_remap_alloc(unsigned long start
, unsigned long end
,
424 unsigned long reuse
, unsigned long flags
)
426 LIST_HEAD(vmemmap_pages
);
427 struct vmemmap_remap_walk walk
= {
428 .remap_pte
= vmemmap_restore_pte
,
430 .vmemmap_pages
= &vmemmap_pages
,
434 /* See the comment in the vmemmap_remap_free(). */
435 BUG_ON(start
- reuse
!= PAGE_SIZE
);
437 if (alloc_vmemmap_page_list(start
, end
, &vmemmap_pages
))
440 return vmemmap_remap_range(reuse
, end
, &walk
);
443 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key
);
444 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key
);
446 static bool vmemmap_optimize_enabled
= IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON
);
447 core_param(hugetlb_free_vmemmap
, vmemmap_optimize_enabled
, bool, 0);
449 static int __hugetlb_vmemmap_restore_folio(const struct hstate
*h
,
450 struct folio
*folio
, unsigned long flags
)
453 unsigned long vmemmap_start
= (unsigned long)&folio
->page
, vmemmap_end
;
454 unsigned long vmemmap_reuse
;
456 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio
), folio
);
457 VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio
), folio
);
459 if (!folio_test_hugetlb_vmemmap_optimized(folio
))
462 if (flags
& VMEMMAP_SYNCHRONIZE_RCU
)
465 vmemmap_end
= vmemmap_start
+ hugetlb_vmemmap_size(h
);
466 vmemmap_reuse
= vmemmap_start
;
467 vmemmap_start
+= HUGETLB_VMEMMAP_RESERVE_SIZE
;
470 * The pages which the vmemmap virtual address range [@vmemmap_start,
471 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
472 * the range is mapped to the page which @vmemmap_reuse is mapped to.
473 * When a HugeTLB page is freed to the buddy allocator, previously
474 * discarded vmemmap pages must be allocated and remapping.
476 ret
= vmemmap_remap_alloc(vmemmap_start
, vmemmap_end
, vmemmap_reuse
, flags
);
478 folio_clear_hugetlb_vmemmap_optimized(folio
);
479 static_branch_dec(&hugetlb_optimize_vmemmap_key
);
486 * hugetlb_vmemmap_restore_folio - restore previously optimized (by
487 * hugetlb_vmemmap_optimize_folio()) vmemmap pages which
488 * will be reallocated and remapped.
490 * @folio: the folio whose vmemmap pages will be restored.
492 * Return: %0 if @folio's vmemmap pages have been reallocated and remapped,
493 * negative error code otherwise.
495 int hugetlb_vmemmap_restore_folio(const struct hstate
*h
, struct folio
*folio
)
497 return __hugetlb_vmemmap_restore_folio(h
, folio
, VMEMMAP_SYNCHRONIZE_RCU
);
501 * hugetlb_vmemmap_restore_folios - restore vmemmap for every folio on the list.
503 * @folio_list: list of folios.
504 * @non_hvo_folios: Output list of folios for which vmemmap exists.
506 * Return: number of folios for which vmemmap was restored, or an error code
507 * if an error was encountered restoring vmemmap for a folio.
508 * Folios that have vmemmap are moved to the non_hvo_folios
509 * list. Processing of entries stops when the first error is
510 * encountered. The folio that experienced the error and all
511 * non-processed folios will remain on folio_list.
513 long hugetlb_vmemmap_restore_folios(const struct hstate
*h
,
514 struct list_head
*folio_list
,
515 struct list_head
*non_hvo_folios
)
517 struct folio
*folio
, *t_folio
;
520 unsigned long flags
= VMEMMAP_REMAP_NO_TLB_FLUSH
| VMEMMAP_SYNCHRONIZE_RCU
;
522 list_for_each_entry_safe(folio
, t_folio
, folio_list
, lru
) {
523 if (folio_test_hugetlb_vmemmap_optimized(folio
)) {
524 ret
= __hugetlb_vmemmap_restore_folio(h
, folio
, flags
);
525 /* only need to synchronize_rcu() once for each batch */
526 flags
&= ~VMEMMAP_SYNCHRONIZE_RCU
;
533 /* Add non-optimized folios to output list */
534 list_move(&folio
->lru
, non_hvo_folios
);
544 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
545 static bool vmemmap_should_optimize_folio(const struct hstate
*h
, struct folio
*folio
)
547 if (folio_test_hugetlb_vmemmap_optimized(folio
))
550 if (!READ_ONCE(vmemmap_optimize_enabled
))
553 if (!hugetlb_vmemmap_optimizable(h
))
559 static int __hugetlb_vmemmap_optimize_folio(const struct hstate
*h
,
561 struct list_head
*vmemmap_pages
,
565 unsigned long vmemmap_start
= (unsigned long)&folio
->page
, vmemmap_end
;
566 unsigned long vmemmap_reuse
;
568 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio
), folio
);
569 VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio
), folio
);
571 if (!vmemmap_should_optimize_folio(h
, folio
))
574 static_branch_inc(&hugetlb_optimize_vmemmap_key
);
576 if (flags
& VMEMMAP_SYNCHRONIZE_RCU
)
580 * If VMEMMAP_REMAP_NO_TLB_FLUSH is set, TLB flushing is not performed
581 * immediately after remapping. As a result, subsequent accesses
582 * and modifications to struct pages associated with the hugetlb
583 * page could be to the OLD struct pages. Set the vmemmap optimized
584 * flag here so that it is copied to the new head page. This keeps
585 * the old and new struct pages in sync.
586 * If there is an error during optimization, we will immediately FLUSH
587 * the TLB and clear the flag below.
589 folio_set_hugetlb_vmemmap_optimized(folio
);
591 vmemmap_end
= vmemmap_start
+ hugetlb_vmemmap_size(h
);
592 vmemmap_reuse
= vmemmap_start
;
593 vmemmap_start
+= HUGETLB_VMEMMAP_RESERVE_SIZE
;
596 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
597 * to the page which @vmemmap_reuse is mapped to. Add pages previously
598 * mapping the range to vmemmap_pages list so that they can be freed by
601 ret
= vmemmap_remap_free(vmemmap_start
, vmemmap_end
, vmemmap_reuse
,
602 vmemmap_pages
, flags
);
604 static_branch_dec(&hugetlb_optimize_vmemmap_key
);
605 folio_clear_hugetlb_vmemmap_optimized(folio
);
612 * hugetlb_vmemmap_optimize_folio - optimize @folio's vmemmap pages.
614 * @folio: the folio whose vmemmap pages will be optimized.
616 * This function only tries to optimize @folio's vmemmap pages and does not
617 * guarantee that the optimization will succeed after it returns. The caller
618 * can use folio_test_hugetlb_vmemmap_optimized(@folio) to detect if @folio's
619 * vmemmap pages have been optimized.
621 void hugetlb_vmemmap_optimize_folio(const struct hstate
*h
, struct folio
*folio
)
623 LIST_HEAD(vmemmap_pages
);
625 __hugetlb_vmemmap_optimize_folio(h
, folio
, &vmemmap_pages
, VMEMMAP_SYNCHRONIZE_RCU
);
626 free_vmemmap_page_list(&vmemmap_pages
);
629 static int hugetlb_vmemmap_split_folio(const struct hstate
*h
, struct folio
*folio
)
631 unsigned long vmemmap_start
= (unsigned long)&folio
->page
, vmemmap_end
;
632 unsigned long vmemmap_reuse
;
634 if (!vmemmap_should_optimize_folio(h
, folio
))
637 vmemmap_end
= vmemmap_start
+ hugetlb_vmemmap_size(h
);
638 vmemmap_reuse
= vmemmap_start
;
639 vmemmap_start
+= HUGETLB_VMEMMAP_RESERVE_SIZE
;
642 * Split PMDs on the vmemmap virtual address range [@vmemmap_start,
645 return vmemmap_remap_split(vmemmap_start
, vmemmap_end
, vmemmap_reuse
);
648 void hugetlb_vmemmap_optimize_folios(struct hstate
*h
, struct list_head
*folio_list
)
651 LIST_HEAD(vmemmap_pages
);
652 unsigned long flags
= VMEMMAP_REMAP_NO_TLB_FLUSH
| VMEMMAP_SYNCHRONIZE_RCU
;
654 list_for_each_entry(folio
, folio_list
, lru
) {
655 int ret
= hugetlb_vmemmap_split_folio(h
, folio
);
658 * Spliting the PMD requires allocating a page, thus lets fail
659 * early once we encounter the first OOM. No point in retrying
660 * as it can be dynamically done on remap with the memory
661 * we get back from the vmemmap deduplication.
669 list_for_each_entry(folio
, folio_list
, lru
) {
672 ret
= __hugetlb_vmemmap_optimize_folio(h
, folio
, &vmemmap_pages
, flags
);
673 /* only need to synchronize_rcu() once for each batch */
674 flags
&= ~VMEMMAP_SYNCHRONIZE_RCU
;
677 * Pages to be freed may have been accumulated. If we
678 * encounter an ENOMEM, free what we have and try again.
679 * This can occur in the case that both spliting fails
680 * halfway and head page allocation also failed. In this
681 * case __hugetlb_vmemmap_optimize_folio() would free memory
682 * allowing more vmemmap remaps to occur.
684 if (ret
== -ENOMEM
&& !list_empty(&vmemmap_pages
)) {
686 free_vmemmap_page_list(&vmemmap_pages
);
687 INIT_LIST_HEAD(&vmemmap_pages
);
688 __hugetlb_vmemmap_optimize_folio(h
, folio
, &vmemmap_pages
, flags
);
693 free_vmemmap_page_list(&vmemmap_pages
);
696 static struct ctl_table hugetlb_vmemmap_sysctls
[] = {
698 .procname
= "hugetlb_optimize_vmemmap",
699 .data
= &vmemmap_optimize_enabled
,
700 .maxlen
= sizeof(vmemmap_optimize_enabled
),
702 .proc_handler
= proc_dobool
,
706 static int __init
hugetlb_vmemmap_init(void)
708 const struct hstate
*h
;
710 /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
711 BUILD_BUG_ON(__NR_USED_SUBPAGE
> HUGETLB_VMEMMAP_RESERVE_PAGES
);
714 if (hugetlb_vmemmap_optimizable(h
)) {
715 register_sysctl_init("vm", hugetlb_vmemmap_sysctls
);
721 late_initcall(hugetlb_vmemmap_init
);