1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
14 * The following locks and mutexes are used by kmemleak:
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17 * del_state modifications and accesses to the object trees
18 * (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The
19 * object_list is the main list holding the metadata (struct
20 * kmemleak_object) for the allocated memory blocks. The object trees are
21 * red black trees used to look-up metadata based on a pointer to the
22 * corresponding memory block. The kmemleak_object structures are added to
23 * the object_list and the object tree root in the create_object() function
24 * called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in
25 * delete_object() called from the kmemleak_free{,_phys,_percpu}() callback
26 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
27 * Accesses to the metadata (e.g. count) are protected by this lock. Note
28 * that some members of this structure may be protected by other means
29 * (atomic or kmemleak_lock). This lock is also held when scanning the
30 * corresponding memory block to avoid the kernel freeing it via the
31 * kmemleak_free() callback. This is less heavyweight than holding a global
32 * lock like kmemleak_lock during scanning.
33 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
34 * unreferenced objects at a time. The gray_list contains the objects which
35 * are already referenced or marked as false positives and need to be
36 * scanned. This list is only modified during a scanning episode when the
37 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
38 * Note that the kmemleak_object.use_count is incremented when an object is
39 * added to the gray_list and therefore cannot be freed. This mutex also
40 * prevents multiple users of the "kmemleak" debugfs file together with
41 * modifications to the memory scanning parameters including the scan_thread
44 * Locks and mutexes are acquired/nested in the following order:
46 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
48 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
51 * The kmemleak_object structures have a use_count incremented or decremented
52 * using the get_object()/put_object() functions. When the use_count becomes
53 * 0, this count can no longer be incremented and put_object() schedules the
54 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
55 * function must be protected by rcu_read_lock() to avoid accessing a freed
59 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/list.h>
64 #include <linux/sched/signal.h>
65 #include <linux/sched/task.h>
66 #include <linux/sched/task_stack.h>
67 #include <linux/jiffies.h>
68 #include <linux/delay.h>
69 #include <linux/export.h>
70 #include <linux/kthread.h>
71 #include <linux/rbtree.h>
73 #include <linux/debugfs.h>
74 #include <linux/seq_file.h>
75 #include <linux/cpumask.h>
76 #include <linux/spinlock.h>
77 #include <linux/module.h>
78 #include <linux/mutex.h>
79 #include <linux/rcupdate.h>
80 #include <linux/stacktrace.h>
81 #include <linux/stackdepot.h>
82 #include <linux/cache.h>
83 #include <linux/percpu.h>
84 #include <linux/memblock.h>
85 #include <linux/pfn.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
101 #include <linux/kasan.h>
102 #include <linux/kfence.h>
103 #include <linux/kmemleak.h>
104 #include <linux/memory_hotplug.h>
107 * Kmemleak configuration and common defines.
109 #define MAX_TRACE 16 /* stack trace length */
110 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
111 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
112 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
113 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
115 #define BYTES_PER_POINTER sizeof(void *)
117 /* scanning area inside a memory block */
118 struct kmemleak_scan_area
{
119 struct hlist_node node
;
124 #define KMEMLEAK_GREY 0
125 #define KMEMLEAK_BLACK -1
128 * Structure holding the metadata for each allocated memory block.
129 * Modifications to such objects should be made while holding the
130 * object->lock. Insertions or deletions from object_list, gray_list or
131 * rb_node are already protected by the corresponding locks or mutex (see
132 * the notes on locking above). These objects are reference-counted
133 * (use_count) and freed using the RCU mechanism.
135 struct kmemleak_object
{
137 unsigned int flags
; /* object status flags */
138 struct list_head object_list
;
139 struct list_head gray_list
;
140 struct rb_node rb_node
;
141 struct rcu_head rcu
; /* object_list lockless traversal */
142 /* object usage count; object freed when use_count == 0 */
144 unsigned int del_state
; /* deletion state */
145 unsigned long pointer
;
147 /* pass surplus references to this pointer */
148 unsigned long excess_ref
;
149 /* minimum number of a pointers found before it is considered leak */
151 /* the total number of pointers found pointing to this object */
153 /* checksum for detecting modified objects */
155 depot_stack_handle_t trace_handle
;
156 /* memory ranges to be scanned inside an object (empty for all) */
157 struct hlist_head area_list
;
158 unsigned long jiffies
; /* creation timestamp */
159 pid_t pid
; /* pid of the current task */
160 char comm
[TASK_COMM_LEN
]; /* executable name */
163 /* flag representing the memory block allocation status */
164 #define OBJECT_ALLOCATED (1 << 0)
165 /* flag set after the first reporting of an unreference object */
166 #define OBJECT_REPORTED (1 << 1)
167 /* flag set to not scan the object */
168 #define OBJECT_NO_SCAN (1 << 2)
169 /* flag set to fully scan the object when scan_area allocation failed */
170 #define OBJECT_FULL_SCAN (1 << 3)
171 /* flag set for object allocated with physical address */
172 #define OBJECT_PHYS (1 << 4)
173 /* flag set for per-CPU pointers */
174 #define OBJECT_PERCPU (1 << 5)
176 /* set when __remove_object() called */
177 #define DELSTATE_REMOVED (1 << 0)
178 /* set to temporarily prevent deletion from object_list */
179 #define DELSTATE_NO_DELETE (1 << 1)
181 #define HEX_PREFIX " "
182 /* number of bytes to print per line; must be 16 or 32 */
183 #define HEX_ROW_SIZE 16
184 /* number of bytes to print at a time (1, 2, 4, 8) */
185 #define HEX_GROUP_SIZE 1
186 /* include ASCII after the hex output */
188 /* max number of lines to be printed */
189 #define HEX_MAX_LINES 2
191 /* the list of all allocated objects */
192 static LIST_HEAD(object_list
);
193 /* the list of gray-colored objects (see color_gray comment below) */
194 static LIST_HEAD(gray_list
);
195 /* memory pool allocation */
196 static struct kmemleak_object mem_pool
[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE
];
197 static int mem_pool_free_count
= ARRAY_SIZE(mem_pool
);
198 static LIST_HEAD(mem_pool_free_list
);
199 /* search tree for object boundaries */
200 static struct rb_root object_tree_root
= RB_ROOT
;
201 /* search tree for object (with OBJECT_PHYS flag) boundaries */
202 static struct rb_root object_phys_tree_root
= RB_ROOT
;
203 /* search tree for object (with OBJECT_PERCPU flag) boundaries */
204 static struct rb_root object_percpu_tree_root
= RB_ROOT
;
205 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
206 static DEFINE_RAW_SPINLOCK(kmemleak_lock
);
208 /* allocation caches for kmemleak internal data */
209 static struct kmem_cache
*object_cache
;
210 static struct kmem_cache
*scan_area_cache
;
212 /* set if tracing memory operations is enabled */
213 static int kmemleak_enabled
= 1;
214 /* same as above but only for the kmemleak_free() callback */
215 static int kmemleak_free_enabled
= 1;
216 /* set in the late_initcall if there were no errors */
217 static int kmemleak_late_initialized
;
218 /* set if a kmemleak warning was issued */
219 static int kmemleak_warning
;
220 /* set if a fatal kmemleak error has occurred */
221 static int kmemleak_error
;
223 /* minimum and maximum address that may be valid pointers */
224 static unsigned long min_addr
= ULONG_MAX
;
225 static unsigned long max_addr
;
227 /* minimum and maximum address that may be valid per-CPU pointers */
228 static unsigned long min_percpu_addr
= ULONG_MAX
;
229 static unsigned long max_percpu_addr
;
231 static struct task_struct
*scan_thread
;
232 /* used to avoid reporting of recently allocated objects */
233 static unsigned long jiffies_min_age
;
234 static unsigned long jiffies_last_scan
;
235 /* delay between automatic memory scannings */
236 static unsigned long jiffies_scan_wait
;
237 /* enables or disables the task stacks scanning */
238 static int kmemleak_stack_scan
= 1;
239 /* protects the memory scanning, parameters and debug/kmemleak file access */
240 static DEFINE_MUTEX(scan_mutex
);
241 /* setting kmemleak=on, will set this var, skipping the disable */
242 static int kmemleak_skip_disable
;
243 /* If there are leaks that can be reported */
244 static bool kmemleak_found_leaks
;
246 static bool kmemleak_verbose
;
247 module_param_named(verbose
, kmemleak_verbose
, bool, 0600);
249 static void kmemleak_disable(void);
252 * Print a warning and dump the stack trace.
254 #define kmemleak_warn(x...) do { \
257 kmemleak_warning = 1; \
261 * Macro invoked when a serious kmemleak condition occurred and cannot be
262 * recovered from. Kmemleak will be disabled and further allocation/freeing
263 * tracing no longer available.
265 #define kmemleak_stop(x...) do { \
267 kmemleak_disable(); \
270 #define warn_or_seq_printf(seq, fmt, ...) do { \
272 seq_printf(seq, fmt, ##__VA_ARGS__); \
274 pr_warn(fmt, ##__VA_ARGS__); \
277 static void warn_or_seq_hex_dump(struct seq_file
*seq
, int prefix_type
,
278 int rowsize
, int groupsize
, const void *buf
,
279 size_t len
, bool ascii
)
282 seq_hex_dump(seq
, HEX_PREFIX
, prefix_type
, rowsize
, groupsize
,
285 print_hex_dump(KERN_WARNING
, pr_fmt(HEX_PREFIX
), prefix_type
,
286 rowsize
, groupsize
, buf
, len
, ascii
);
290 * Printing of the objects hex dump to the seq file. The number of lines to be
291 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
292 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
293 * with the object->lock held.
295 static void hex_dump_object(struct seq_file
*seq
,
296 struct kmemleak_object
*object
)
298 const u8
*ptr
= (const u8
*)object
->pointer
;
301 if (WARN_ON_ONCE(object
->flags
& OBJECT_PHYS
))
304 if (object
->flags
& OBJECT_PERCPU
)
305 ptr
= (const u8
*)this_cpu_ptr((void __percpu
*)object
->pointer
);
307 /* limit the number of lines to HEX_MAX_LINES */
308 len
= min_t(size_t, object
->size
, HEX_MAX_LINES
* HEX_ROW_SIZE
);
310 if (object
->flags
& OBJECT_PERCPU
)
311 warn_or_seq_printf(seq
, " hex dump (first %zu bytes on cpu %d):\n",
312 len
, raw_smp_processor_id());
314 warn_or_seq_printf(seq
, " hex dump (first %zu bytes):\n", len
);
315 kasan_disable_current();
316 warn_or_seq_hex_dump(seq
, DUMP_PREFIX_NONE
, HEX_ROW_SIZE
,
317 HEX_GROUP_SIZE
, kasan_reset_tag((void *)ptr
), len
, HEX_ASCII
);
318 kasan_enable_current();
322 * Object colors, encoded with count and min_count:
323 * - white - orphan object, not enough references to it (count < min_count)
324 * - gray - not orphan, not marked as false positive (min_count == 0) or
325 * sufficient references to it (count >= min_count)
326 * - black - ignore, it doesn't contain references (e.g. text section)
327 * (min_count == -1). No function defined for this color.
328 * Newly created objects don't have any color assigned (object->count == -1)
329 * before the next memory scan when they become white.
331 static bool color_white(const struct kmemleak_object
*object
)
333 return object
->count
!= KMEMLEAK_BLACK
&&
334 object
->count
< object
->min_count
;
337 static bool color_gray(const struct kmemleak_object
*object
)
339 return object
->min_count
!= KMEMLEAK_BLACK
&&
340 object
->count
>= object
->min_count
;
344 * Objects are considered unreferenced only if their color is white, they have
345 * not be deleted and have a minimum age to avoid false positives caused by
346 * pointers temporarily stored in CPU registers.
348 static bool unreferenced_object(struct kmemleak_object
*object
)
350 return (color_white(object
) && object
->flags
& OBJECT_ALLOCATED
) &&
351 time_before_eq(object
->jiffies
+ jiffies_min_age
,
356 * Printing of the unreferenced objects information to the seq file. The
357 * print_unreferenced function must be called with the object->lock held.
359 static void print_unreferenced(struct seq_file
*seq
,
360 struct kmemleak_object
*object
)
363 unsigned long *entries
;
364 unsigned int nr_entries
;
366 nr_entries
= stack_depot_fetch(object
->trace_handle
, &entries
);
367 warn_or_seq_printf(seq
, "unreferenced object 0x%08lx (size %zu):\n",
368 object
->pointer
, object
->size
);
369 warn_or_seq_printf(seq
, " comm \"%s\", pid %d, jiffies %lu\n",
370 object
->comm
, object
->pid
, object
->jiffies
);
371 hex_dump_object(seq
, object
);
372 warn_or_seq_printf(seq
, " backtrace (crc %x):\n", object
->checksum
);
374 for (i
= 0; i
< nr_entries
; i
++) {
375 void *ptr
= (void *)entries
[i
];
376 warn_or_seq_printf(seq
, " [<%pK>] %pS\n", ptr
, ptr
);
381 * Print the kmemleak_object information. This function is used mainly for
382 * debugging special cases when kmemleak operations. It must be called with
383 * the object->lock held.
385 static void dump_object_info(struct kmemleak_object
*object
)
387 pr_notice("Object 0x%08lx (size %zu):\n",
388 object
->pointer
, object
->size
);
389 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
390 object
->comm
, object
->pid
, object
->jiffies
);
391 pr_notice(" min_count = %d\n", object
->min_count
);
392 pr_notice(" count = %d\n", object
->count
);
393 pr_notice(" flags = 0x%x\n", object
->flags
);
394 pr_notice(" checksum = %u\n", object
->checksum
);
395 pr_notice(" backtrace:\n");
396 if (object
->trace_handle
)
397 stack_depot_print(object
->trace_handle
);
400 static struct rb_root
*object_tree(unsigned long objflags
)
402 if (objflags
& OBJECT_PHYS
)
403 return &object_phys_tree_root
;
404 if (objflags
& OBJECT_PERCPU
)
405 return &object_percpu_tree_root
;
406 return &object_tree_root
;
410 * Look-up a memory block metadata (kmemleak_object) in the object search
411 * tree based on a pointer value. If alias is 0, only values pointing to the
412 * beginning of the memory block are allowed. The kmemleak_lock must be held
413 * when calling this function.
415 static struct kmemleak_object
*__lookup_object(unsigned long ptr
, int alias
,
416 unsigned int objflags
)
418 struct rb_node
*rb
= object_tree(objflags
)->rb_node
;
419 unsigned long untagged_ptr
= (unsigned long)kasan_reset_tag((void *)ptr
);
422 struct kmemleak_object
*object
;
423 unsigned long untagged_objp
;
425 object
= rb_entry(rb
, struct kmemleak_object
, rb_node
);
426 untagged_objp
= (unsigned long)kasan_reset_tag((void *)object
->pointer
);
428 if (untagged_ptr
< untagged_objp
)
429 rb
= object
->rb_node
.rb_left
;
430 else if (untagged_objp
+ object
->size
<= untagged_ptr
)
431 rb
= object
->rb_node
.rb_right
;
432 else if (untagged_objp
== untagged_ptr
|| alias
)
435 kmemleak_warn("Found object by alias at 0x%08lx\n",
437 dump_object_info(object
);
444 /* Look-up a kmemleak object which allocated with virtual address. */
445 static struct kmemleak_object
*lookup_object(unsigned long ptr
, int alias
)
447 return __lookup_object(ptr
, alias
, 0);
451 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
452 * that once an object's use_count reached 0, the RCU freeing was already
453 * registered and the object should no longer be used. This function must be
454 * called under the protection of rcu_read_lock().
456 static int get_object(struct kmemleak_object
*object
)
458 return atomic_inc_not_zero(&object
->use_count
);
462 * Memory pool allocation and freeing. kmemleak_lock must not be held.
464 static struct kmemleak_object
*mem_pool_alloc(gfp_t gfp
)
467 struct kmemleak_object
*object
;
469 /* try the slab allocator first */
471 object
= kmem_cache_alloc_noprof(object_cache
,
472 gfp_nested_mask(gfp
));
477 /* slab allocation failed, try the memory pool */
478 raw_spin_lock_irqsave(&kmemleak_lock
, flags
);
479 object
= list_first_entry_or_null(&mem_pool_free_list
,
480 typeof(*object
), object_list
);
482 list_del(&object
->object_list
);
483 else if (mem_pool_free_count
)
484 object
= &mem_pool
[--mem_pool_free_count
];
486 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
487 raw_spin_unlock_irqrestore(&kmemleak_lock
, flags
);
493 * Return the object to either the slab allocator or the memory pool.
495 static void mem_pool_free(struct kmemleak_object
*object
)
499 if (object
< mem_pool
|| object
>= mem_pool
+ ARRAY_SIZE(mem_pool
)) {
500 kmem_cache_free(object_cache
, object
);
504 /* add the object to the memory pool free list */
505 raw_spin_lock_irqsave(&kmemleak_lock
, flags
);
506 list_add(&object
->object_list
, &mem_pool_free_list
);
507 raw_spin_unlock_irqrestore(&kmemleak_lock
, flags
);
511 * RCU callback to free a kmemleak_object.
513 static void free_object_rcu(struct rcu_head
*rcu
)
515 struct hlist_node
*tmp
;
516 struct kmemleak_scan_area
*area
;
517 struct kmemleak_object
*object
=
518 container_of(rcu
, struct kmemleak_object
, rcu
);
521 * Once use_count is 0 (guaranteed by put_object), there is no other
522 * code accessing this object, hence no need for locking.
524 hlist_for_each_entry_safe(area
, tmp
, &object
->area_list
, node
) {
525 hlist_del(&area
->node
);
526 kmem_cache_free(scan_area_cache
, area
);
528 mem_pool_free(object
);
532 * Decrement the object use_count. Once the count is 0, free the object using
533 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
534 * delete_object() path, the delayed RCU freeing ensures that there is no
535 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
538 static void put_object(struct kmemleak_object
*object
)
540 if (!atomic_dec_and_test(&object
->use_count
))
543 /* should only get here after delete_object was called */
544 WARN_ON(object
->flags
& OBJECT_ALLOCATED
);
547 * It may be too early for the RCU callbacks, however, there is no
548 * concurrent object_list traversal when !object_cache and all objects
549 * came from the memory pool. Free the object directly.
552 call_rcu(&object
->rcu
, free_object_rcu
);
554 free_object_rcu(&object
->rcu
);
558 * Look up an object in the object search tree and increase its use_count.
560 static struct kmemleak_object
*__find_and_get_object(unsigned long ptr
, int alias
,
561 unsigned int objflags
)
564 struct kmemleak_object
*object
;
567 raw_spin_lock_irqsave(&kmemleak_lock
, flags
);
568 object
= __lookup_object(ptr
, alias
, objflags
);
569 raw_spin_unlock_irqrestore(&kmemleak_lock
, flags
);
571 /* check whether the object is still available */
572 if (object
&& !get_object(object
))
579 /* Look up and get an object which allocated with virtual address. */
580 static struct kmemleak_object
*find_and_get_object(unsigned long ptr
, int alias
)
582 return __find_and_get_object(ptr
, alias
, 0);
586 * Remove an object from its object tree and object_list. Must be called with
587 * the kmemleak_lock held _if_ kmemleak is still enabled.
589 static void __remove_object(struct kmemleak_object
*object
)
591 rb_erase(&object
->rb_node
, object_tree(object
->flags
));
592 if (!(object
->del_state
& DELSTATE_NO_DELETE
))
593 list_del_rcu(&object
->object_list
);
594 object
->del_state
|= DELSTATE_REMOVED
;
597 static struct kmemleak_object
*__find_and_remove_object(unsigned long ptr
,
599 unsigned int objflags
)
601 struct kmemleak_object
*object
;
603 object
= __lookup_object(ptr
, alias
, objflags
);
605 __remove_object(object
);
611 * Look up an object in the object search tree and remove it from both object
612 * tree root and object_list. The returned object's use_count should be at
613 * least 1, as initially set by create_object().
615 static struct kmemleak_object
*find_and_remove_object(unsigned long ptr
, int alias
,
616 unsigned int objflags
)
619 struct kmemleak_object
*object
;
621 raw_spin_lock_irqsave(&kmemleak_lock
, flags
);
622 object
= __find_and_remove_object(ptr
, alias
, objflags
);
623 raw_spin_unlock_irqrestore(&kmemleak_lock
, flags
);
628 static noinline depot_stack_handle_t
set_track_prepare(void)
630 depot_stack_handle_t trace_handle
;
631 unsigned long entries
[MAX_TRACE
];
632 unsigned int nr_entries
;
635 * Use object_cache to determine whether kmemleak_init() has
636 * been invoked. stack_depot_early_init() is called before
637 * kmemleak_init() in mm_core_init().
641 nr_entries
= stack_trace_save(entries
, ARRAY_SIZE(entries
), 3);
642 trace_handle
= stack_depot_save(entries
, nr_entries
, GFP_NOWAIT
);
647 static struct kmemleak_object
*__alloc_object(gfp_t gfp
)
649 struct kmemleak_object
*object
;
651 object
= mem_pool_alloc(gfp
);
653 pr_warn("Cannot allocate a kmemleak_object structure\n");
658 INIT_LIST_HEAD(&object
->object_list
);
659 INIT_LIST_HEAD(&object
->gray_list
);
660 INIT_HLIST_HEAD(&object
->area_list
);
661 raw_spin_lock_init(&object
->lock
);
662 atomic_set(&object
->use_count
, 1);
663 object
->excess_ref
= 0;
664 object
->count
= 0; /* white color initially */
665 object
->checksum
= 0;
666 object
->del_state
= 0;
668 /* task information */
671 strscpy(object
->comm
, "hardirq");
672 } else if (in_serving_softirq()) {
674 strscpy(object
->comm
, "softirq");
676 object
->pid
= current
->pid
;
678 * There is a small chance of a race with set_task_comm(),
679 * however using get_task_comm() here may cause locking
680 * dependency issues with current->alloc_lock. In the worst
681 * case, the command line is not correct.
683 strscpy(object
->comm
, current
->comm
);
686 /* kernel backtrace */
687 object
->trace_handle
= set_track_prepare();
692 static int __link_object(struct kmemleak_object
*object
, unsigned long ptr
,
693 size_t size
, int min_count
, unsigned int objflags
)
696 struct kmemleak_object
*parent
;
697 struct rb_node
**link
, *rb_parent
;
698 unsigned long untagged_ptr
;
699 unsigned long untagged_objp
;
701 object
->flags
= OBJECT_ALLOCATED
| objflags
;
702 object
->pointer
= ptr
;
703 object
->size
= kfence_ksize((void *)ptr
) ?: size
;
704 object
->min_count
= min_count
;
705 object
->jiffies
= jiffies
;
707 untagged_ptr
= (unsigned long)kasan_reset_tag((void *)ptr
);
709 * Only update min_addr and max_addr with object storing virtual
710 * address. And update min_percpu_addr max_percpu_addr for per-CPU
713 if (objflags
& OBJECT_PERCPU
) {
714 min_percpu_addr
= min(min_percpu_addr
, untagged_ptr
);
715 max_percpu_addr
= max(max_percpu_addr
, untagged_ptr
+ size
);
716 } else if (!(objflags
& OBJECT_PHYS
)) {
717 min_addr
= min(min_addr
, untagged_ptr
);
718 max_addr
= max(max_addr
, untagged_ptr
+ size
);
720 link
= &object_tree(objflags
)->rb_node
;
724 parent
= rb_entry(rb_parent
, struct kmemleak_object
, rb_node
);
725 untagged_objp
= (unsigned long)kasan_reset_tag((void *)parent
->pointer
);
726 if (untagged_ptr
+ size
<= untagged_objp
)
727 link
= &parent
->rb_node
.rb_left
;
728 else if (untagged_objp
+ parent
->size
<= untagged_ptr
)
729 link
= &parent
->rb_node
.rb_right
;
731 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
734 * No need for parent->lock here since "parent" cannot
735 * be freed while the kmemleak_lock is held.
737 dump_object_info(parent
);
741 rb_link_node(&object
->rb_node
, rb_parent
, link
);
742 rb_insert_color(&object
->rb_node
, object_tree(objflags
));
743 list_add_tail_rcu(&object
->object_list
, &object_list
);
749 * Create the metadata (struct kmemleak_object) corresponding to an allocated
750 * memory block and add it to the object_list and object tree.
752 static void __create_object(unsigned long ptr
, size_t size
,
753 int min_count
, gfp_t gfp
, unsigned int objflags
)
755 struct kmemleak_object
*object
;
759 object
= __alloc_object(gfp
);
763 raw_spin_lock_irqsave(&kmemleak_lock
, flags
);
764 ret
= __link_object(object
, ptr
, size
, min_count
, objflags
);
765 raw_spin_unlock_irqrestore(&kmemleak_lock
, flags
);
767 mem_pool_free(object
);
770 /* Create kmemleak object which allocated with virtual address. */
771 static void create_object(unsigned long ptr
, size_t size
,
772 int min_count
, gfp_t gfp
)
774 __create_object(ptr
, size
, min_count
, gfp
, 0);
777 /* Create kmemleak object which allocated with physical address. */
778 static void create_object_phys(unsigned long ptr
, size_t size
,
779 int min_count
, gfp_t gfp
)
781 __create_object(ptr
, size
, min_count
, gfp
, OBJECT_PHYS
);
784 /* Create kmemleak object corresponding to a per-CPU allocation. */
785 static void create_object_percpu(unsigned long ptr
, size_t size
,
786 int min_count
, gfp_t gfp
)
788 __create_object(ptr
, size
, min_count
, gfp
, OBJECT_PERCPU
);
792 * Mark the object as not allocated and schedule RCU freeing via put_object().
794 static void __delete_object(struct kmemleak_object
*object
)
798 WARN_ON(!(object
->flags
& OBJECT_ALLOCATED
));
799 WARN_ON(atomic_read(&object
->use_count
) < 1);
802 * Locking here also ensures that the corresponding memory block
803 * cannot be freed when it is being scanned.
805 raw_spin_lock_irqsave(&object
->lock
, flags
);
806 object
->flags
&= ~OBJECT_ALLOCATED
;
807 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
812 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
815 static void delete_object_full(unsigned long ptr
, unsigned int objflags
)
817 struct kmemleak_object
*object
;
819 object
= find_and_remove_object(ptr
, 0, objflags
);
822 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
827 __delete_object(object
);
831 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
832 * delete it. If the memory block is partially freed, the function may create
833 * additional metadata for the remaining parts of the block.
835 static void delete_object_part(unsigned long ptr
, size_t size
,
836 unsigned int objflags
)
838 struct kmemleak_object
*object
, *object_l
, *object_r
;
839 unsigned long start
, end
, flags
;
841 object_l
= __alloc_object(GFP_KERNEL
);
845 object_r
= __alloc_object(GFP_KERNEL
);
849 raw_spin_lock_irqsave(&kmemleak_lock
, flags
);
850 object
= __find_and_remove_object(ptr
, 1, objflags
);
853 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
860 * Create one or two objects that may result from the memory block
861 * split. Note that partial freeing is only done by free_bootmem() and
862 * this happens before kmemleak_init() is called.
864 start
= object
->pointer
;
865 end
= object
->pointer
+ object
->size
;
867 !__link_object(object_l
, start
, ptr
- start
,
868 object
->min_count
, objflags
))
870 if ((ptr
+ size
< end
) &&
871 !__link_object(object_r
, ptr
+ size
, end
- ptr
- size
,
872 object
->min_count
, objflags
))
876 raw_spin_unlock_irqrestore(&kmemleak_lock
, flags
);
878 __delete_object(object
);
882 mem_pool_free(object_l
);
884 mem_pool_free(object_r
);
887 static void __paint_it(struct kmemleak_object
*object
, int color
)
889 object
->min_count
= color
;
890 if (color
== KMEMLEAK_BLACK
)
891 object
->flags
|= OBJECT_NO_SCAN
;
894 static void paint_it(struct kmemleak_object
*object
, int color
)
898 raw_spin_lock_irqsave(&object
->lock
, flags
);
899 __paint_it(object
, color
);
900 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
903 static void paint_ptr(unsigned long ptr
, int color
, unsigned int objflags
)
905 struct kmemleak_object
*object
;
907 object
= __find_and_get_object(ptr
, 0, objflags
);
909 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
911 (color
== KMEMLEAK_GREY
) ? "Grey" :
912 (color
== KMEMLEAK_BLACK
) ? "Black" : "Unknown");
915 paint_it(object
, color
);
920 * Mark an object permanently as gray-colored so that it can no longer be
921 * reported as a leak. This is used in general to mark a false positive.
923 static void make_gray_object(unsigned long ptr
)
925 paint_ptr(ptr
, KMEMLEAK_GREY
, 0);
929 * Mark the object as black-colored so that it is ignored from scans and
932 static void make_black_object(unsigned long ptr
, unsigned int objflags
)
934 paint_ptr(ptr
, KMEMLEAK_BLACK
, objflags
);
938 * Reset the checksum of an object. The immediate effect is that it will not
939 * be reported as a leak during the next scan until its checksum is updated.
941 static void reset_checksum(unsigned long ptr
)
944 struct kmemleak_object
*object
;
946 object
= find_and_get_object(ptr
, 0);
948 kmemleak_warn("Not resetting the checksum of an unknown object at 0x%08lx\n",
953 raw_spin_lock_irqsave(&object
->lock
, flags
);
954 object
->checksum
= 0;
955 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
960 * Add a scanning area to the object. If at least one such area is added,
961 * kmemleak will only scan these ranges rather than the whole memory block.
963 static void add_scan_area(unsigned long ptr
, size_t size
, gfp_t gfp
)
966 struct kmemleak_object
*object
;
967 struct kmemleak_scan_area
*area
= NULL
;
968 unsigned long untagged_ptr
;
969 unsigned long untagged_objp
;
971 object
= find_and_get_object(ptr
, 1);
973 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
978 untagged_ptr
= (unsigned long)kasan_reset_tag((void *)ptr
);
979 untagged_objp
= (unsigned long)kasan_reset_tag((void *)object
->pointer
);
982 area
= kmem_cache_alloc_noprof(scan_area_cache
,
983 gfp_nested_mask(gfp
));
985 raw_spin_lock_irqsave(&object
->lock
, flags
);
987 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
988 /* mark the object for full scan to avoid false positives */
989 object
->flags
|= OBJECT_FULL_SCAN
;
992 if (size
== SIZE_MAX
) {
993 size
= untagged_objp
+ object
->size
- untagged_ptr
;
994 } else if (untagged_ptr
+ size
> untagged_objp
+ object
->size
) {
995 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr
);
996 dump_object_info(object
);
997 kmem_cache_free(scan_area_cache
, area
);
1001 INIT_HLIST_NODE(&area
->node
);
1005 hlist_add_head(&area
->node
, &object
->area_list
);
1007 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
1012 * Any surplus references (object already gray) to 'ptr' are passed to
1013 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
1014 * vm_struct may be used as an alternative reference to the vmalloc'ed object
1015 * (see free_thread_stack()).
1017 static void object_set_excess_ref(unsigned long ptr
, unsigned long excess_ref
)
1019 unsigned long flags
;
1020 struct kmemleak_object
*object
;
1022 object
= find_and_get_object(ptr
, 0);
1024 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
1029 raw_spin_lock_irqsave(&object
->lock
, flags
);
1030 object
->excess_ref
= excess_ref
;
1031 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
1036 * Set the OBJECT_NO_SCAN flag for the object corresponding to the given
1037 * pointer. Such object will not be scanned by kmemleak but references to it
1040 static void object_no_scan(unsigned long ptr
)
1042 unsigned long flags
;
1043 struct kmemleak_object
*object
;
1045 object
= find_and_get_object(ptr
, 0);
1047 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr
);
1051 raw_spin_lock_irqsave(&object
->lock
, flags
);
1052 object
->flags
|= OBJECT_NO_SCAN
;
1053 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
1058 * kmemleak_alloc - register a newly allocated object
1059 * @ptr: pointer to beginning of the object
1060 * @size: size of the object
1061 * @min_count: minimum number of references to this object. If during memory
1062 * scanning a number of references less than @min_count is found,
1063 * the object is reported as a memory leak. If @min_count is 0,
1064 * the object is never reported as a leak. If @min_count is -1,
1065 * the object is ignored (not scanned and not reported as a leak)
1066 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1068 * This function is called from the kernel allocators when a new object
1069 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1071 void __ref
kmemleak_alloc(const void *ptr
, size_t size
, int min_count
,
1074 pr_debug("%s(0x%px, %zu, %d)\n", __func__
, ptr
, size
, min_count
);
1076 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1077 create_object((unsigned long)ptr
, size
, min_count
, gfp
);
1079 EXPORT_SYMBOL_GPL(kmemleak_alloc
);
1082 * kmemleak_alloc_percpu - register a newly allocated __percpu object
1083 * @ptr: __percpu pointer to beginning of the object
1084 * @size: size of the object
1085 * @gfp: flags used for kmemleak internal memory allocations
1087 * This function is called from the kernel percpu allocator when a new object
1088 * (memory block) is allocated (alloc_percpu).
1090 void __ref
kmemleak_alloc_percpu(const void __percpu
*ptr
, size_t size
,
1093 pr_debug("%s(0x%px, %zu)\n", __func__
, ptr
, size
);
1095 if (kmemleak_enabled
&& ptr
&& !IS_ERR_PCPU(ptr
))
1096 create_object_percpu((__force
unsigned long)ptr
, size
, 0, gfp
);
1098 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu
);
1101 * kmemleak_vmalloc - register a newly vmalloc'ed object
1102 * @area: pointer to vm_struct
1103 * @size: size of the object
1104 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1106 * This function is called from the vmalloc() kernel allocator when a new
1107 * object (memory block) is allocated.
1109 void __ref
kmemleak_vmalloc(const struct vm_struct
*area
, size_t size
, gfp_t gfp
)
1111 pr_debug("%s(0x%px, %zu)\n", __func__
, area
, size
);
1114 * A min_count = 2 is needed because vm_struct contains a reference to
1115 * the virtual address of the vmalloc'ed block.
1117 if (kmemleak_enabled
) {
1118 create_object((unsigned long)area
->addr
, size
, 2, gfp
);
1119 object_set_excess_ref((unsigned long)area
,
1120 (unsigned long)area
->addr
);
1123 EXPORT_SYMBOL_GPL(kmemleak_vmalloc
);
1126 * kmemleak_free - unregister a previously registered object
1127 * @ptr: pointer to beginning of the object
1129 * This function is called from the kernel allocators when an object (memory
1130 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1132 void __ref
kmemleak_free(const void *ptr
)
1134 pr_debug("%s(0x%px)\n", __func__
, ptr
);
1136 if (kmemleak_free_enabled
&& ptr
&& !IS_ERR(ptr
))
1137 delete_object_full((unsigned long)ptr
, 0);
1139 EXPORT_SYMBOL_GPL(kmemleak_free
);
1142 * kmemleak_free_part - partially unregister a previously registered object
1143 * @ptr: pointer to the beginning or inside the object. This also
1144 * represents the start of the range to be freed
1145 * @size: size to be unregistered
1147 * This function is called when only a part of a memory block is freed
1148 * (usually from the bootmem allocator).
1150 void __ref
kmemleak_free_part(const void *ptr
, size_t size
)
1152 pr_debug("%s(0x%px)\n", __func__
, ptr
);
1154 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1155 delete_object_part((unsigned long)ptr
, size
, 0);
1157 EXPORT_SYMBOL_GPL(kmemleak_free_part
);
1160 * kmemleak_free_percpu - unregister a previously registered __percpu object
1161 * @ptr: __percpu pointer to beginning of the object
1163 * This function is called from the kernel percpu allocator when an object
1164 * (memory block) is freed (free_percpu).
1166 void __ref
kmemleak_free_percpu(const void __percpu
*ptr
)
1168 pr_debug("%s(0x%px)\n", __func__
, ptr
);
1170 if (kmemleak_free_enabled
&& ptr
&& !IS_ERR_PCPU(ptr
))
1171 delete_object_full((__force
unsigned long)ptr
, OBJECT_PERCPU
);
1173 EXPORT_SYMBOL_GPL(kmemleak_free_percpu
);
1176 * kmemleak_update_trace - update object allocation stack trace
1177 * @ptr: pointer to beginning of the object
1179 * Override the object allocation stack trace for cases where the actual
1180 * allocation place is not always useful.
1182 void __ref
kmemleak_update_trace(const void *ptr
)
1184 struct kmemleak_object
*object
;
1185 depot_stack_handle_t trace_handle
;
1186 unsigned long flags
;
1188 pr_debug("%s(0x%px)\n", __func__
, ptr
);
1190 if (!kmemleak_enabled
|| IS_ERR_OR_NULL(ptr
))
1193 object
= find_and_get_object((unsigned long)ptr
, 1);
1196 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1202 trace_handle
= set_track_prepare();
1203 raw_spin_lock_irqsave(&object
->lock
, flags
);
1204 object
->trace_handle
= trace_handle
;
1205 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
1209 EXPORT_SYMBOL(kmemleak_update_trace
);
1212 * kmemleak_not_leak - mark an allocated object as false positive
1213 * @ptr: pointer to beginning of the object
1215 * Calling this function on an object will cause the memory block to no longer
1216 * be reported as leak and always be scanned.
1218 void __ref
kmemleak_not_leak(const void *ptr
)
1220 pr_debug("%s(0x%px)\n", __func__
, ptr
);
1222 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1223 make_gray_object((unsigned long)ptr
);
1225 EXPORT_SYMBOL(kmemleak_not_leak
);
1228 * kmemleak_transient_leak - mark an allocated object as transient false positive
1229 * @ptr: pointer to beginning of the object
1231 * Calling this function on an object will cause the memory block to not be
1232 * reported as a leak temporarily. This may happen, for example, if the object
1233 * is part of a singly linked list and the ->next reference to it is changed.
1235 void __ref
kmemleak_transient_leak(const void *ptr
)
1237 pr_debug("%s(0x%px)\n", __func__
, ptr
);
1239 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1240 reset_checksum((unsigned long)ptr
);
1242 EXPORT_SYMBOL(kmemleak_transient_leak
);
1245 * kmemleak_ignore - ignore an allocated object
1246 * @ptr: pointer to beginning of the object
1248 * Calling this function on an object will cause the memory block to be
1249 * ignored (not scanned and not reported as a leak). This is usually done when
1250 * it is known that the corresponding block is not a leak and does not contain
1251 * any references to other allocated memory blocks.
1253 void __ref
kmemleak_ignore(const void *ptr
)
1255 pr_debug("%s(0x%px)\n", __func__
, ptr
);
1257 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1258 make_black_object((unsigned long)ptr
, 0);
1260 EXPORT_SYMBOL(kmemleak_ignore
);
1263 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1264 * @ptr: pointer to beginning or inside the object. This also
1265 * represents the start of the scan area
1266 * @size: size of the scan area
1267 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1269 * This function is used when it is known that only certain parts of an object
1270 * contain references to other objects. Kmemleak will only scan these areas
1271 * reducing the number false negatives.
1273 void __ref
kmemleak_scan_area(const void *ptr
, size_t size
, gfp_t gfp
)
1275 pr_debug("%s(0x%px)\n", __func__
, ptr
);
1277 if (kmemleak_enabled
&& ptr
&& size
&& !IS_ERR(ptr
))
1278 add_scan_area((unsigned long)ptr
, size
, gfp
);
1280 EXPORT_SYMBOL(kmemleak_scan_area
);
1283 * kmemleak_no_scan - do not scan an allocated object
1284 * @ptr: pointer to beginning of the object
1286 * This function notifies kmemleak not to scan the given memory block. Useful
1287 * in situations where it is known that the given object does not contain any
1288 * references to other objects. Kmemleak will not scan such objects reducing
1289 * the number of false negatives.
1291 void __ref
kmemleak_no_scan(const void *ptr
)
1293 pr_debug("%s(0x%px)\n", __func__
, ptr
);
1295 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1296 object_no_scan((unsigned long)ptr
);
1298 EXPORT_SYMBOL(kmemleak_no_scan
);
1301 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1303 * @phys: physical address of the object
1304 * @size: size of the object
1305 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1307 void __ref
kmemleak_alloc_phys(phys_addr_t phys
, size_t size
, gfp_t gfp
)
1309 pr_debug("%s(0x%px, %zu)\n", __func__
, &phys
, size
);
1311 if (kmemleak_enabled
)
1313 * Create object with OBJECT_PHYS flag and
1314 * assume min_count 0.
1316 create_object_phys((unsigned long)phys
, size
, 0, gfp
);
1318 EXPORT_SYMBOL(kmemleak_alloc_phys
);
1321 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1322 * physical address argument
1323 * @phys: physical address if the beginning or inside an object. This
1324 * also represents the start of the range to be freed
1325 * @size: size to be unregistered
1327 void __ref
kmemleak_free_part_phys(phys_addr_t phys
, size_t size
)
1329 pr_debug("%s(0x%px)\n", __func__
, &phys
);
1331 if (kmemleak_enabled
)
1332 delete_object_part((unsigned long)phys
, size
, OBJECT_PHYS
);
1334 EXPORT_SYMBOL(kmemleak_free_part_phys
);
1337 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1339 * @phys: physical address of the object
1341 void __ref
kmemleak_ignore_phys(phys_addr_t phys
)
1343 pr_debug("%s(0x%px)\n", __func__
, &phys
);
1345 if (kmemleak_enabled
)
1346 make_black_object((unsigned long)phys
, OBJECT_PHYS
);
1348 EXPORT_SYMBOL(kmemleak_ignore_phys
);
1351 * Update an object's checksum and return true if it was modified.
1353 static bool update_checksum(struct kmemleak_object
*object
)
1355 u32 old_csum
= object
->checksum
;
1357 if (WARN_ON_ONCE(object
->flags
& OBJECT_PHYS
))
1360 kasan_disable_current();
1361 kcsan_disable_current();
1362 if (object
->flags
& OBJECT_PERCPU
) {
1365 object
->checksum
= 0;
1366 for_each_possible_cpu(cpu
) {
1367 void *ptr
= per_cpu_ptr((void __percpu
*)object
->pointer
, cpu
);
1369 object
->checksum
^= crc32(0, kasan_reset_tag((void *)ptr
), object
->size
);
1372 object
->checksum
= crc32(0, kasan_reset_tag((void *)object
->pointer
), object
->size
);
1374 kasan_enable_current();
1375 kcsan_enable_current();
1377 return object
->checksum
!= old_csum
;
1381 * Update an object's references. object->lock must be held by the caller.
1383 static void update_refs(struct kmemleak_object
*object
)
1385 if (!color_white(object
)) {
1386 /* non-orphan, ignored or new */
1391 * Increase the object's reference count (number of pointers to the
1392 * memory block). If this count reaches the required minimum, the
1393 * object's color will become gray and it will be added to the
1397 if (color_gray(object
)) {
1398 /* put_object() called when removing from gray_list */
1399 WARN_ON(!get_object(object
));
1400 list_add_tail(&object
->gray_list
, &gray_list
);
1404 static void pointer_update_refs(struct kmemleak_object
*scanned
,
1405 unsigned long pointer
, unsigned int objflags
)
1407 struct kmemleak_object
*object
;
1408 unsigned long untagged_ptr
;
1409 unsigned long excess_ref
;
1411 untagged_ptr
= (unsigned long)kasan_reset_tag((void *)pointer
);
1412 if (objflags
& OBJECT_PERCPU
) {
1413 if (untagged_ptr
< min_percpu_addr
|| untagged_ptr
>= max_percpu_addr
)
1416 if (untagged_ptr
< min_addr
|| untagged_ptr
>= max_addr
)
1421 * No need for get_object() here since we hold kmemleak_lock.
1422 * object->use_count cannot be dropped to 0 while the object
1423 * is still present in object_tree_root and object_list
1424 * (with updates protected by kmemleak_lock).
1426 object
= __lookup_object(pointer
, 1, objflags
);
1429 if (object
== scanned
)
1430 /* self referenced, ignore */
1434 * Avoid the lockdep recursive warning on object->lock being
1435 * previously acquired in scan_object(). These locks are
1436 * enclosed by scan_mutex.
1438 raw_spin_lock_nested(&object
->lock
, SINGLE_DEPTH_NESTING
);
1439 /* only pass surplus references (object already gray) */
1440 if (color_gray(object
)) {
1441 excess_ref
= object
->excess_ref
;
1442 /* no need for update_refs() if object already gray */
1445 update_refs(object
);
1447 raw_spin_unlock(&object
->lock
);
1450 object
= lookup_object(excess_ref
, 0);
1453 if (object
== scanned
)
1454 /* circular reference, ignore */
1456 raw_spin_lock_nested(&object
->lock
, SINGLE_DEPTH_NESTING
);
1457 update_refs(object
);
1458 raw_spin_unlock(&object
->lock
);
1463 * Memory scanning is a long process and it needs to be interruptible. This
1464 * function checks whether such interrupt condition occurred.
1466 static int scan_should_stop(void)
1468 if (!kmemleak_enabled
)
1472 * This function may be called from either process or kthread context,
1473 * hence the need to check for both stop conditions.
1476 return signal_pending(current
);
1478 return kthread_should_stop();
1484 * Scan a memory block (exclusive range) for valid pointers and add those
1485 * found to the gray list.
1487 static void scan_block(void *_start
, void *_end
,
1488 struct kmemleak_object
*scanned
)
1491 unsigned long *start
= PTR_ALIGN(_start
, BYTES_PER_POINTER
);
1492 unsigned long *end
= _end
- (BYTES_PER_POINTER
- 1);
1493 unsigned long flags
;
1495 raw_spin_lock_irqsave(&kmemleak_lock
, flags
);
1496 for (ptr
= start
; ptr
< end
; ptr
++) {
1497 unsigned long pointer
;
1499 if (scan_should_stop())
1502 kasan_disable_current();
1503 pointer
= *(unsigned long *)kasan_reset_tag((void *)ptr
);
1504 kasan_enable_current();
1506 pointer_update_refs(scanned
, pointer
, 0);
1507 pointer_update_refs(scanned
, pointer
, OBJECT_PERCPU
);
1509 raw_spin_unlock_irqrestore(&kmemleak_lock
, flags
);
1513 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1516 static void scan_large_block(void *start
, void *end
)
1520 while (start
< end
) {
1521 next
= min(start
+ MAX_SCAN_SIZE
, end
);
1522 scan_block(start
, next
, NULL
);
1530 * Scan a memory block corresponding to a kmemleak_object. A condition is
1531 * that object->use_count >= 1.
1533 static void scan_object(struct kmemleak_object
*object
)
1535 struct kmemleak_scan_area
*area
;
1536 unsigned long flags
;
1539 * Once the object->lock is acquired, the corresponding memory block
1540 * cannot be freed (the same lock is acquired in delete_object).
1542 raw_spin_lock_irqsave(&object
->lock
, flags
);
1543 if (object
->flags
& OBJECT_NO_SCAN
)
1545 if (!(object
->flags
& OBJECT_ALLOCATED
))
1546 /* already freed object */
1549 if (object
->flags
& OBJECT_PERCPU
) {
1552 for_each_possible_cpu(cpu
) {
1553 void *start
= per_cpu_ptr((void __percpu
*)object
->pointer
, cpu
);
1554 void *end
= start
+ object
->size
;
1556 scan_block(start
, end
, object
);
1558 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
1560 raw_spin_lock_irqsave(&object
->lock
, flags
);
1561 if (!(object
->flags
& OBJECT_ALLOCATED
))
1564 } else if (hlist_empty(&object
->area_list
) ||
1565 object
->flags
& OBJECT_FULL_SCAN
) {
1566 void *start
= object
->flags
& OBJECT_PHYS
?
1567 __va((phys_addr_t
)object
->pointer
) :
1568 (void *)object
->pointer
;
1569 void *end
= start
+ object
->size
;
1573 next
= min(start
+ MAX_SCAN_SIZE
, end
);
1574 scan_block(start
, next
, object
);
1580 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
1582 raw_spin_lock_irqsave(&object
->lock
, flags
);
1583 } while (object
->flags
& OBJECT_ALLOCATED
);
1585 hlist_for_each_entry(area
, &object
->area_list
, node
)
1586 scan_block((void *)area
->start
,
1587 (void *)(area
->start
+ area
->size
),
1591 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
1595 * Scan the objects already referenced (gray objects). More objects will be
1596 * referenced and, if there are no memory leaks, all the objects are scanned.
1598 static void scan_gray_list(void)
1600 struct kmemleak_object
*object
, *tmp
;
1603 * The list traversal is safe for both tail additions and removals
1604 * from inside the loop. The kmemleak objects cannot be freed from
1605 * outside the loop because their use_count was incremented.
1607 object
= list_entry(gray_list
.next
, typeof(*object
), gray_list
);
1608 while (&object
->gray_list
!= &gray_list
) {
1611 /* may add new objects to the list */
1612 if (!scan_should_stop())
1613 scan_object(object
);
1615 tmp
= list_entry(object
->gray_list
.next
, typeof(*object
),
1618 /* remove the object from the list and release it */
1619 list_del(&object
->gray_list
);
1624 WARN_ON(!list_empty(&gray_list
));
1628 * Conditionally call resched() in an object iteration loop while making sure
1629 * that the given object won't go away without RCU read lock by performing a
1630 * get_object() if necessaary.
1632 static void kmemleak_cond_resched(struct kmemleak_object
*object
)
1634 if (!get_object(object
))
1635 return; /* Try next object */
1637 raw_spin_lock_irq(&kmemleak_lock
);
1638 if (object
->del_state
& DELSTATE_REMOVED
)
1639 goto unlock_put
; /* Object removed */
1640 object
->del_state
|= DELSTATE_NO_DELETE
;
1641 raw_spin_unlock_irq(&kmemleak_lock
);
1647 raw_spin_lock_irq(&kmemleak_lock
);
1648 if (object
->del_state
& DELSTATE_REMOVED
)
1649 list_del_rcu(&object
->object_list
);
1650 object
->del_state
&= ~DELSTATE_NO_DELETE
;
1652 raw_spin_unlock_irq(&kmemleak_lock
);
1657 * Scan data sections and all the referenced memory blocks allocated via the
1658 * kernel's standard allocators. This function must be called with the
1661 static void kmemleak_scan(void)
1663 struct kmemleak_object
*object
;
1665 int __maybe_unused i
;
1668 jiffies_last_scan
= jiffies
;
1670 /* prepare the kmemleak_object's */
1672 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1673 raw_spin_lock_irq(&object
->lock
);
1676 * With a few exceptions there should be a maximum of
1677 * 1 reference to any object at this point.
1679 if (atomic_read(&object
->use_count
) > 1) {
1680 pr_debug("object->use_count = %d\n",
1681 atomic_read(&object
->use_count
));
1682 dump_object_info(object
);
1686 /* ignore objects outside lowmem (paint them black) */
1687 if ((object
->flags
& OBJECT_PHYS
) &&
1688 !(object
->flags
& OBJECT_NO_SCAN
)) {
1689 unsigned long phys
= object
->pointer
;
1691 if (PHYS_PFN(phys
) < min_low_pfn
||
1692 PHYS_PFN(phys
+ object
->size
) >= max_low_pfn
)
1693 __paint_it(object
, KMEMLEAK_BLACK
);
1696 /* reset the reference count (whiten the object) */
1698 if (color_gray(object
) && get_object(object
))
1699 list_add_tail(&object
->gray_list
, &gray_list
);
1701 raw_spin_unlock_irq(&object
->lock
);
1704 kmemleak_cond_resched(object
);
1709 /* per-cpu sections scanning */
1710 for_each_possible_cpu(i
)
1711 scan_large_block(__per_cpu_start
+ per_cpu_offset(i
),
1712 __per_cpu_end
+ per_cpu_offset(i
));
1716 * Struct page scanning for each node.
1719 for_each_populated_zone(zone
) {
1720 unsigned long start_pfn
= zone
->zone_start_pfn
;
1721 unsigned long end_pfn
= zone_end_pfn(zone
);
1724 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1725 struct page
*page
= pfn_to_online_page(pfn
);
1733 /* only scan pages belonging to this zone */
1734 if (page_zone(page
) != zone
)
1736 /* only scan if page is in use */
1737 if (page_count(page
) == 0)
1739 scan_block(page
, page
+ 1, NULL
);
1745 * Scanning the task stacks (may introduce false negatives).
1747 if (kmemleak_stack_scan
) {
1748 struct task_struct
*p
, *g
;
1751 for_each_process_thread(g
, p
) {
1752 void *stack
= try_get_task_stack(p
);
1754 scan_block(stack
, stack
+ THREAD_SIZE
, NULL
);
1762 * Scan the objects already referenced from the sections scanned
1768 * Check for new or unreferenced objects modified since the previous
1769 * scan and color them gray until the next scan.
1772 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1774 kmemleak_cond_resched(object
);
1777 * This is racy but we can save the overhead of lock/unlock
1778 * calls. The missed objects, if any, should be caught in
1781 if (!color_white(object
))
1783 raw_spin_lock_irq(&object
->lock
);
1784 if (color_white(object
) && (object
->flags
& OBJECT_ALLOCATED
)
1785 && update_checksum(object
) && get_object(object
)) {
1786 /* color it gray temporarily */
1787 object
->count
= object
->min_count
;
1788 list_add_tail(&object
->gray_list
, &gray_list
);
1790 raw_spin_unlock_irq(&object
->lock
);
1795 * Re-scan the gray list for modified unreferenced objects.
1800 * If scanning was stopped do not report any new unreferenced objects.
1802 if (scan_should_stop())
1806 * Scanning result reporting.
1809 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1811 kmemleak_cond_resched(object
);
1814 * This is racy but we can save the overhead of lock/unlock
1815 * calls. The missed objects, if any, should be caught in
1818 if (!color_white(object
))
1820 raw_spin_lock_irq(&object
->lock
);
1821 if (unreferenced_object(object
) &&
1822 !(object
->flags
& OBJECT_REPORTED
)) {
1823 object
->flags
|= OBJECT_REPORTED
;
1825 if (kmemleak_verbose
)
1826 print_unreferenced(NULL
, object
);
1830 raw_spin_unlock_irq(&object
->lock
);
1835 kmemleak_found_leaks
= true;
1837 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1844 * Thread function performing automatic memory scanning. Unreferenced objects
1845 * at the end of a memory scan are reported but only the first time.
1847 static int kmemleak_scan_thread(void *arg
)
1849 static int first_run
= IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN
);
1851 pr_info("Automatic memory scanning thread started\n");
1852 set_user_nice(current
, 10);
1855 * Wait before the first scan to allow the system to fully initialize.
1858 signed long timeout
= msecs_to_jiffies(SECS_FIRST_SCAN
* 1000);
1860 while (timeout
&& !kthread_should_stop())
1861 timeout
= schedule_timeout_interruptible(timeout
);
1864 while (!kthread_should_stop()) {
1865 signed long timeout
= READ_ONCE(jiffies_scan_wait
);
1867 mutex_lock(&scan_mutex
);
1869 mutex_unlock(&scan_mutex
);
1871 /* wait before the next scan */
1872 while (timeout
&& !kthread_should_stop())
1873 timeout
= schedule_timeout_interruptible(timeout
);
1876 pr_info("Automatic memory scanning thread ended\n");
1882 * Start the automatic memory scanning thread. This function must be called
1883 * with the scan_mutex held.
1885 static void start_scan_thread(void)
1889 scan_thread
= kthread_run(kmemleak_scan_thread
, NULL
, "kmemleak");
1890 if (IS_ERR(scan_thread
)) {
1891 pr_warn("Failed to create the scan thread\n");
1897 * Stop the automatic memory scanning thread.
1899 static void stop_scan_thread(void)
1902 kthread_stop(scan_thread
);
1908 * Iterate over the object_list and return the first valid object at or after
1909 * the required position with its use_count incremented. The function triggers
1910 * a memory scanning when the pos argument points to the first position.
1912 static void *kmemleak_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1914 struct kmemleak_object
*object
;
1918 err
= mutex_lock_interruptible(&scan_mutex
);
1920 return ERR_PTR(err
);
1923 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1926 if (get_object(object
))
1935 * Return the next object in the object_list. The function decrements the
1936 * use_count of the previous object and increases that of the next one.
1938 static void *kmemleak_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1940 struct kmemleak_object
*prev_obj
= v
;
1941 struct kmemleak_object
*next_obj
= NULL
;
1942 struct kmemleak_object
*obj
= prev_obj
;
1946 list_for_each_entry_continue_rcu(obj
, &object_list
, object_list
) {
1947 if (get_object(obj
)) {
1953 put_object(prev_obj
);
1958 * Decrement the use_count of the last object required, if any.
1960 static void kmemleak_seq_stop(struct seq_file
*seq
, void *v
)
1964 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1965 * waiting was interrupted, so only release it if !IS_ERR.
1968 mutex_unlock(&scan_mutex
);
1975 * Print the information for an unreferenced object to the seq file.
1977 static int kmemleak_seq_show(struct seq_file
*seq
, void *v
)
1979 struct kmemleak_object
*object
= v
;
1980 unsigned long flags
;
1982 raw_spin_lock_irqsave(&object
->lock
, flags
);
1983 if ((object
->flags
& OBJECT_REPORTED
) && unreferenced_object(object
))
1984 print_unreferenced(seq
, object
);
1985 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
1989 static const struct seq_operations kmemleak_seq_ops
= {
1990 .start
= kmemleak_seq_start
,
1991 .next
= kmemleak_seq_next
,
1992 .stop
= kmemleak_seq_stop
,
1993 .show
= kmemleak_seq_show
,
1996 static int kmemleak_open(struct inode
*inode
, struct file
*file
)
1998 return seq_open(file
, &kmemleak_seq_ops
);
2001 static int dump_str_object_info(const char *str
)
2003 unsigned long flags
;
2004 struct kmemleak_object
*object
;
2007 if (kstrtoul(str
, 0, &addr
))
2009 object
= find_and_get_object(addr
, 0);
2011 pr_info("Unknown object at 0x%08lx\n", addr
);
2015 raw_spin_lock_irqsave(&object
->lock
, flags
);
2016 dump_object_info(object
);
2017 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
2024 * We use grey instead of black to ensure we can do future scans on the same
2025 * objects. If we did not do future scans these black objects could
2026 * potentially contain references to newly allocated objects in the future and
2027 * we'd end up with false positives.
2029 static void kmemleak_clear(void)
2031 struct kmemleak_object
*object
;
2034 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
2035 raw_spin_lock_irq(&object
->lock
);
2036 if ((object
->flags
& OBJECT_REPORTED
) &&
2037 unreferenced_object(object
))
2038 __paint_it(object
, KMEMLEAK_GREY
);
2039 raw_spin_unlock_irq(&object
->lock
);
2043 kmemleak_found_leaks
= false;
2046 static void __kmemleak_do_cleanup(void);
2049 * File write operation to configure kmemleak at run-time. The following
2050 * commands can be written to the /sys/kernel/debug/kmemleak file:
2051 * off - disable kmemleak (irreversible)
2052 * stack=on - enable the task stacks scanning
2053 * stack=off - disable the tasks stacks scanning
2054 * scan=on - start the automatic memory scanning thread
2055 * scan=off - stop the automatic memory scanning thread
2056 * scan=... - set the automatic memory scanning period in seconds (0 to
2058 * scan - trigger a memory scan
2059 * clear - mark all current reported unreferenced kmemleak objects as
2060 * grey to ignore printing them, or free all kmemleak objects
2061 * if kmemleak has been disabled.
2062 * dump=... - dump information about the object found at the given address
2064 static ssize_t
kmemleak_write(struct file
*file
, const char __user
*user_buf
,
2065 size_t size
, loff_t
*ppos
)
2071 buf_size
= min(size
, (sizeof(buf
) - 1));
2072 if (strncpy_from_user(buf
, user_buf
, buf_size
) < 0)
2076 ret
= mutex_lock_interruptible(&scan_mutex
);
2080 if (strncmp(buf
, "clear", 5) == 0) {
2081 if (kmemleak_enabled
)
2084 __kmemleak_do_cleanup();
2088 if (!kmemleak_enabled
) {
2093 if (strncmp(buf
, "off", 3) == 0)
2095 else if (strncmp(buf
, "stack=on", 8) == 0)
2096 kmemleak_stack_scan
= 1;
2097 else if (strncmp(buf
, "stack=off", 9) == 0)
2098 kmemleak_stack_scan
= 0;
2099 else if (strncmp(buf
, "scan=on", 7) == 0)
2100 start_scan_thread();
2101 else if (strncmp(buf
, "scan=off", 8) == 0)
2103 else if (strncmp(buf
, "scan=", 5) == 0) {
2105 unsigned long msecs
;
2107 ret
= kstrtouint(buf
+ 5, 0, &secs
);
2111 msecs
= secs
* MSEC_PER_SEC
;
2112 if (msecs
> UINT_MAX
)
2117 WRITE_ONCE(jiffies_scan_wait
, msecs_to_jiffies(msecs
));
2118 start_scan_thread();
2120 } else if (strncmp(buf
, "scan", 4) == 0)
2122 else if (strncmp(buf
, "dump=", 5) == 0)
2123 ret
= dump_str_object_info(buf
+ 5);
2128 mutex_unlock(&scan_mutex
);
2132 /* ignore the rest of the buffer, only one command at a time */
2137 static const struct file_operations kmemleak_fops
= {
2138 .owner
= THIS_MODULE
,
2139 .open
= kmemleak_open
,
2141 .write
= kmemleak_write
,
2142 .llseek
= seq_lseek
,
2143 .release
= seq_release
,
2146 static void __kmemleak_do_cleanup(void)
2148 struct kmemleak_object
*object
, *tmp
;
2151 * Kmemleak has already been disabled, no need for RCU list traversal
2152 * or kmemleak_lock held.
2154 list_for_each_entry_safe(object
, tmp
, &object_list
, object_list
) {
2155 __remove_object(object
);
2156 __delete_object(object
);
2161 * Stop the memory scanning thread and free the kmemleak internal objects if
2162 * no previous scan thread (otherwise, kmemleak may still have some useful
2163 * information on memory leaks).
2165 static void kmemleak_do_cleanup(struct work_struct
*work
)
2169 mutex_lock(&scan_mutex
);
2171 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2172 * longer track object freeing. Ordering of the scan thread stopping and
2173 * the memory accesses below is guaranteed by the kthread_stop()
2176 kmemleak_free_enabled
= 0;
2177 mutex_unlock(&scan_mutex
);
2179 if (!kmemleak_found_leaks
)
2180 __kmemleak_do_cleanup();
2182 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2185 static DECLARE_WORK(cleanup_work
, kmemleak_do_cleanup
);
2188 * Disable kmemleak. No memory allocation/freeing will be traced once this
2189 * function is called. Disabling kmemleak is an irreversible operation.
2191 static void kmemleak_disable(void)
2193 /* atomically check whether it was already invoked */
2194 if (cmpxchg(&kmemleak_error
, 0, 1))
2197 /* stop any memory operation tracing */
2198 kmemleak_enabled
= 0;
2200 /* check whether it is too early for a kernel thread */
2201 if (kmemleak_late_initialized
)
2202 schedule_work(&cleanup_work
);
2204 kmemleak_free_enabled
= 0;
2206 pr_info("Kernel memory leak detector disabled\n");
2210 * Allow boot-time kmemleak disabling (enabled by default).
2212 static int __init
kmemleak_boot_config(char *str
)
2216 if (strcmp(str
, "off") == 0)
2218 else if (strcmp(str
, "on") == 0) {
2219 kmemleak_skip_disable
= 1;
2220 stack_depot_request_early_init();
2226 early_param("kmemleak", kmemleak_boot_config
);
2229 * Kmemleak initialization.
2231 void __init
kmemleak_init(void)
2233 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2234 if (!kmemleak_skip_disable
) {
2243 jiffies_min_age
= msecs_to_jiffies(MSECS_MIN_AGE
);
2244 jiffies_scan_wait
= msecs_to_jiffies(SECS_SCAN_WAIT
* 1000);
2246 object_cache
= KMEM_CACHE(kmemleak_object
, SLAB_NOLEAKTRACE
);
2247 scan_area_cache
= KMEM_CACHE(kmemleak_scan_area
, SLAB_NOLEAKTRACE
);
2249 /* register the data/bss sections */
2250 create_object((unsigned long)_sdata
, _edata
- _sdata
,
2251 KMEMLEAK_GREY
, GFP_ATOMIC
);
2252 create_object((unsigned long)__bss_start
, __bss_stop
- __bss_start
,
2253 KMEMLEAK_GREY
, GFP_ATOMIC
);
2254 /* only register .data..ro_after_init if not within .data */
2255 if (&__start_ro_after_init
< &_sdata
|| &__end_ro_after_init
> &_edata
)
2256 create_object((unsigned long)__start_ro_after_init
,
2257 __end_ro_after_init
- __start_ro_after_init
,
2258 KMEMLEAK_GREY
, GFP_ATOMIC
);
2262 * Late initialization function.
2264 static int __init
kmemleak_late_init(void)
2266 kmemleak_late_initialized
= 1;
2268 debugfs_create_file("kmemleak", 0644, NULL
, NULL
, &kmemleak_fops
);
2270 if (kmemleak_error
) {
2272 * Some error occurred and kmemleak was disabled. There is a
2273 * small chance that kmemleak_disable() was called immediately
2274 * after setting kmemleak_late_initialized and we may end up with
2275 * two clean-up threads but serialized by scan_mutex.
2277 schedule_work(&cleanup_work
);
2281 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN
)) {
2282 mutex_lock(&scan_mutex
);
2283 start_scan_thread();
2284 mutex_unlock(&scan_mutex
);
2287 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2288 mem_pool_free_count
);
2292 late_initcall(kmemleak_late_init
);