Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / mm / memory.c
blob75c2dfd04f7253e797de3b59730eb9b992324624
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/kmsan.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/memory-tiers.h>
70 #include <linux/debugfs.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/dax.h>
73 #include <linux/oom.h>
74 #include <linux/numa.h>
75 #include <linux/perf_event.h>
76 #include <linux/ptrace.h>
77 #include <linux/vmalloc.h>
78 #include <linux/sched/sysctl.h>
80 #include <trace/events/kmem.h>
82 #include <asm/io.h>
83 #include <asm/mmu_context.h>
84 #include <asm/pgalloc.h>
85 #include <linux/uaccess.h>
86 #include <asm/tlb.h>
87 #include <asm/tlbflush.h>
89 #include "pgalloc-track.h"
90 #include "internal.h"
91 #include "swap.h"
93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
95 #endif
97 #ifndef CONFIG_NUMA
98 unsigned long max_mapnr;
99 EXPORT_SYMBOL(max_mapnr);
101 struct page *mem_map;
102 EXPORT_SYMBOL(mem_map);
103 #endif
105 static vm_fault_t do_fault(struct vm_fault *vmf);
106 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
107 static bool vmf_pte_changed(struct vm_fault *vmf);
110 * Return true if the original pte was a uffd-wp pte marker (so the pte was
111 * wr-protected).
113 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
115 if (!userfaultfd_wp(vmf->vma))
116 return false;
117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 return false;
120 return pte_marker_uffd_wp(vmf->orig_pte);
124 * A number of key systems in x86 including ioremap() rely on the assumption
125 * that high_memory defines the upper bound on direct map memory, then end
126 * of ZONE_NORMAL.
128 void *high_memory;
129 EXPORT_SYMBOL(high_memory);
132 * Randomize the address space (stacks, mmaps, brk, etc.).
134 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
135 * as ancient (libc5 based) binaries can segfault. )
137 int randomize_va_space __read_mostly =
138 #ifdef CONFIG_COMPAT_BRK
140 #else
142 #endif
144 #ifndef arch_wants_old_prefaulted_pte
145 static inline bool arch_wants_old_prefaulted_pte(void)
148 * Transitioning a PTE from 'old' to 'young' can be expensive on
149 * some architectures, even if it's performed in hardware. By
150 * default, "false" means prefaulted entries will be 'young'.
152 return false;
154 #endif
156 static int __init disable_randmaps(char *s)
158 randomize_va_space = 0;
159 return 1;
161 __setup("norandmaps", disable_randmaps);
163 unsigned long zero_pfn __read_mostly;
164 EXPORT_SYMBOL(zero_pfn);
166 unsigned long highest_memmap_pfn __read_mostly;
169 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171 static int __init init_zero_pfn(void)
173 zero_pfn = page_to_pfn(ZERO_PAGE(0));
174 return 0;
176 early_initcall(init_zero_pfn);
178 void mm_trace_rss_stat(struct mm_struct *mm, int member)
180 trace_rss_stat(mm, member);
184 * Note: this doesn't free the actual pages themselves. That
185 * has been handled earlier when unmapping all the memory regions.
187 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
188 unsigned long addr)
190 pgtable_t token = pmd_pgtable(*pmd);
191 pmd_clear(pmd);
192 pte_free_tlb(tlb, token, addr);
193 mm_dec_nr_ptes(tlb->mm);
196 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
197 unsigned long addr, unsigned long end,
198 unsigned long floor, unsigned long ceiling)
200 pmd_t *pmd;
201 unsigned long next;
202 unsigned long start;
204 start = addr;
205 pmd = pmd_offset(pud, addr);
206 do {
207 next = pmd_addr_end(addr, end);
208 if (pmd_none_or_clear_bad(pmd))
209 continue;
210 free_pte_range(tlb, pmd, addr);
211 } while (pmd++, addr = next, addr != end);
213 start &= PUD_MASK;
214 if (start < floor)
215 return;
216 if (ceiling) {
217 ceiling &= PUD_MASK;
218 if (!ceiling)
219 return;
221 if (end - 1 > ceiling - 1)
222 return;
224 pmd = pmd_offset(pud, start);
225 pud_clear(pud);
226 pmd_free_tlb(tlb, pmd, start);
227 mm_dec_nr_pmds(tlb->mm);
230 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
231 unsigned long addr, unsigned long end,
232 unsigned long floor, unsigned long ceiling)
234 pud_t *pud;
235 unsigned long next;
236 unsigned long start;
238 start = addr;
239 pud = pud_offset(p4d, addr);
240 do {
241 next = pud_addr_end(addr, end);
242 if (pud_none_or_clear_bad(pud))
243 continue;
244 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
245 } while (pud++, addr = next, addr != end);
247 start &= P4D_MASK;
248 if (start < floor)
249 return;
250 if (ceiling) {
251 ceiling &= P4D_MASK;
252 if (!ceiling)
253 return;
255 if (end - 1 > ceiling - 1)
256 return;
258 pud = pud_offset(p4d, start);
259 p4d_clear(p4d);
260 pud_free_tlb(tlb, pud, start);
261 mm_dec_nr_puds(tlb->mm);
264 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
265 unsigned long addr, unsigned long end,
266 unsigned long floor, unsigned long ceiling)
268 p4d_t *p4d;
269 unsigned long next;
270 unsigned long start;
272 start = addr;
273 p4d = p4d_offset(pgd, addr);
274 do {
275 next = p4d_addr_end(addr, end);
276 if (p4d_none_or_clear_bad(p4d))
277 continue;
278 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
279 } while (p4d++, addr = next, addr != end);
281 start &= PGDIR_MASK;
282 if (start < floor)
283 return;
284 if (ceiling) {
285 ceiling &= PGDIR_MASK;
286 if (!ceiling)
287 return;
289 if (end - 1 > ceiling - 1)
290 return;
292 p4d = p4d_offset(pgd, start);
293 pgd_clear(pgd);
294 p4d_free_tlb(tlb, p4d, start);
298 * This function frees user-level page tables of a process.
300 void free_pgd_range(struct mmu_gather *tlb,
301 unsigned long addr, unsigned long end,
302 unsigned long floor, unsigned long ceiling)
304 pgd_t *pgd;
305 unsigned long next;
308 * The next few lines have given us lots of grief...
310 * Why are we testing PMD* at this top level? Because often
311 * there will be no work to do at all, and we'd prefer not to
312 * go all the way down to the bottom just to discover that.
314 * Why all these "- 1"s? Because 0 represents both the bottom
315 * of the address space and the top of it (using -1 for the
316 * top wouldn't help much: the masks would do the wrong thing).
317 * The rule is that addr 0 and floor 0 refer to the bottom of
318 * the address space, but end 0 and ceiling 0 refer to the top
319 * Comparisons need to use "end - 1" and "ceiling - 1" (though
320 * that end 0 case should be mythical).
322 * Wherever addr is brought up or ceiling brought down, we must
323 * be careful to reject "the opposite 0" before it confuses the
324 * subsequent tests. But what about where end is brought down
325 * by PMD_SIZE below? no, end can't go down to 0 there.
327 * Whereas we round start (addr) and ceiling down, by different
328 * masks at different levels, in order to test whether a table
329 * now has no other vmas using it, so can be freed, we don't
330 * bother to round floor or end up - the tests don't need that.
333 addr &= PMD_MASK;
334 if (addr < floor) {
335 addr += PMD_SIZE;
336 if (!addr)
337 return;
339 if (ceiling) {
340 ceiling &= PMD_MASK;
341 if (!ceiling)
342 return;
344 if (end - 1 > ceiling - 1)
345 end -= PMD_SIZE;
346 if (addr > end - 1)
347 return;
349 * We add page table cache pages with PAGE_SIZE,
350 * (see pte_free_tlb()), flush the tlb if we need
352 tlb_change_page_size(tlb, PAGE_SIZE);
353 pgd = pgd_offset(tlb->mm, addr);
354 do {
355 next = pgd_addr_end(addr, end);
356 if (pgd_none_or_clear_bad(pgd))
357 continue;
358 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
359 } while (pgd++, addr = next, addr != end);
362 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
363 struct vm_area_struct *vma, unsigned long floor,
364 unsigned long ceiling, bool mm_wr_locked)
366 struct unlink_vma_file_batch vb;
368 do {
369 unsigned long addr = vma->vm_start;
370 struct vm_area_struct *next;
373 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
374 * be 0. This will underflow and is okay.
376 next = mas_find(mas, ceiling - 1);
377 if (unlikely(xa_is_zero(next)))
378 next = NULL;
381 * Hide vma from rmap and truncate_pagecache before freeing
382 * pgtables
384 if (mm_wr_locked)
385 vma_start_write(vma);
386 unlink_anon_vmas(vma);
388 if (is_vm_hugetlb_page(vma)) {
389 unlink_file_vma(vma);
390 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
391 floor, next ? next->vm_start : ceiling);
392 } else {
393 unlink_file_vma_batch_init(&vb);
394 unlink_file_vma_batch_add(&vb, vma);
397 * Optimization: gather nearby vmas into one call down
399 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
400 && !is_vm_hugetlb_page(next)) {
401 vma = next;
402 next = mas_find(mas, ceiling - 1);
403 if (unlikely(xa_is_zero(next)))
404 next = NULL;
405 if (mm_wr_locked)
406 vma_start_write(vma);
407 unlink_anon_vmas(vma);
408 unlink_file_vma_batch_add(&vb, vma);
410 unlink_file_vma_batch_final(&vb);
411 free_pgd_range(tlb, addr, vma->vm_end,
412 floor, next ? next->vm_start : ceiling);
414 vma = next;
415 } while (vma);
418 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
420 spinlock_t *ptl = pmd_lock(mm, pmd);
422 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
423 mm_inc_nr_ptes(mm);
425 * Ensure all pte setup (eg. pte page lock and page clearing) are
426 * visible before the pte is made visible to other CPUs by being
427 * put into page tables.
429 * The other side of the story is the pointer chasing in the page
430 * table walking code (when walking the page table without locking;
431 * ie. most of the time). Fortunately, these data accesses consist
432 * of a chain of data-dependent loads, meaning most CPUs (alpha
433 * being the notable exception) will already guarantee loads are
434 * seen in-order. See the alpha page table accessors for the
435 * smp_rmb() barriers in page table walking code.
437 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
438 pmd_populate(mm, pmd, *pte);
439 *pte = NULL;
441 spin_unlock(ptl);
444 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
446 pgtable_t new = pte_alloc_one(mm);
447 if (!new)
448 return -ENOMEM;
450 pmd_install(mm, pmd, &new);
451 if (new)
452 pte_free(mm, new);
453 return 0;
456 int __pte_alloc_kernel(pmd_t *pmd)
458 pte_t *new = pte_alloc_one_kernel(&init_mm);
459 if (!new)
460 return -ENOMEM;
462 spin_lock(&init_mm.page_table_lock);
463 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
464 smp_wmb(); /* See comment in pmd_install() */
465 pmd_populate_kernel(&init_mm, pmd, new);
466 new = NULL;
468 spin_unlock(&init_mm.page_table_lock);
469 if (new)
470 pte_free_kernel(&init_mm, new);
471 return 0;
474 static inline void init_rss_vec(int *rss)
476 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
481 int i;
483 for (i = 0; i < NR_MM_COUNTERS; i++)
484 if (rss[i])
485 add_mm_counter(mm, i, rss[i]);
489 * This function is called to print an error when a bad pte
490 * is found. For example, we might have a PFN-mapped pte in
491 * a region that doesn't allow it.
493 * The calling function must still handle the error.
495 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
496 pte_t pte, struct page *page)
498 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
499 p4d_t *p4d = p4d_offset(pgd, addr);
500 pud_t *pud = pud_offset(p4d, addr);
501 pmd_t *pmd = pmd_offset(pud, addr);
502 struct address_space *mapping;
503 pgoff_t index;
504 static unsigned long resume;
505 static unsigned long nr_shown;
506 static unsigned long nr_unshown;
509 * Allow a burst of 60 reports, then keep quiet for that minute;
510 * or allow a steady drip of one report per second.
512 if (nr_shown == 60) {
513 if (time_before(jiffies, resume)) {
514 nr_unshown++;
515 return;
517 if (nr_unshown) {
518 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
519 nr_unshown);
520 nr_unshown = 0;
522 nr_shown = 0;
524 if (nr_shown++ == 0)
525 resume = jiffies + 60 * HZ;
527 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
528 index = linear_page_index(vma, addr);
530 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
531 current->comm,
532 (long long)pte_val(pte), (long long)pmd_val(*pmd));
533 if (page)
534 dump_page(page, "bad pte");
535 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
536 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
537 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
538 vma->vm_file,
539 vma->vm_ops ? vma->vm_ops->fault : NULL,
540 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
541 mapping ? mapping->a_ops->read_folio : NULL);
542 dump_stack();
543 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
547 * vm_normal_page -- This function gets the "struct page" associated with a pte.
549 * "Special" mappings do not wish to be associated with a "struct page" (either
550 * it doesn't exist, or it exists but they don't want to touch it). In this
551 * case, NULL is returned here. "Normal" mappings do have a struct page.
553 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
554 * pte bit, in which case this function is trivial. Secondly, an architecture
555 * may not have a spare pte bit, which requires a more complicated scheme,
556 * described below.
558 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
559 * special mapping (even if there are underlying and valid "struct pages").
560 * COWed pages of a VM_PFNMAP are always normal.
562 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
563 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
564 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
565 * mapping will always honor the rule
567 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
569 * And for normal mappings this is false.
571 * This restricts such mappings to be a linear translation from virtual address
572 * to pfn. To get around this restriction, we allow arbitrary mappings so long
573 * as the vma is not a COW mapping; in that case, we know that all ptes are
574 * special (because none can have been COWed).
577 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
579 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
580 * page" backing, however the difference is that _all_ pages with a struct
581 * page (that is, those where pfn_valid is true) are refcounted and considered
582 * normal pages by the VM. The only exception are zeropages, which are
583 * *never* refcounted.
585 * The disadvantage is that pages are refcounted (which can be slower and
586 * simply not an option for some PFNMAP users). The advantage is that we
587 * don't have to follow the strict linearity rule of PFNMAP mappings in
588 * order to support COWable mappings.
591 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
592 pte_t pte)
594 unsigned long pfn = pte_pfn(pte);
596 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
597 if (likely(!pte_special(pte)))
598 goto check_pfn;
599 if (vma->vm_ops && vma->vm_ops->find_special_page)
600 return vma->vm_ops->find_special_page(vma, addr);
601 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
602 return NULL;
603 if (is_zero_pfn(pfn))
604 return NULL;
605 if (pte_devmap(pte))
607 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
608 * and will have refcounts incremented on their struct pages
609 * when they are inserted into PTEs, thus they are safe to
610 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
611 * do not have refcounts. Example of legacy ZONE_DEVICE is
612 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
614 return NULL;
616 print_bad_pte(vma, addr, pte, NULL);
617 return NULL;
620 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
622 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
623 if (vma->vm_flags & VM_MIXEDMAP) {
624 if (!pfn_valid(pfn))
625 return NULL;
626 if (is_zero_pfn(pfn))
627 return NULL;
628 goto out;
629 } else {
630 unsigned long off;
631 off = (addr - vma->vm_start) >> PAGE_SHIFT;
632 if (pfn == vma->vm_pgoff + off)
633 return NULL;
634 if (!is_cow_mapping(vma->vm_flags))
635 return NULL;
639 if (is_zero_pfn(pfn))
640 return NULL;
642 check_pfn:
643 if (unlikely(pfn > highest_memmap_pfn)) {
644 print_bad_pte(vma, addr, pte, NULL);
645 return NULL;
649 * NOTE! We still have PageReserved() pages in the page tables.
650 * eg. VDSO mappings can cause them to exist.
652 out:
653 VM_WARN_ON_ONCE(is_zero_pfn(pfn));
654 return pfn_to_page(pfn);
657 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
658 pte_t pte)
660 struct page *page = vm_normal_page(vma, addr, pte);
662 if (page)
663 return page_folio(page);
664 return NULL;
667 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
668 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
669 pmd_t pmd)
671 unsigned long pfn = pmd_pfn(pmd);
673 /* Currently it's only used for huge pfnmaps */
674 if (unlikely(pmd_special(pmd)))
675 return NULL;
677 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
678 if (vma->vm_flags & VM_MIXEDMAP) {
679 if (!pfn_valid(pfn))
680 return NULL;
681 goto out;
682 } else {
683 unsigned long off;
684 off = (addr - vma->vm_start) >> PAGE_SHIFT;
685 if (pfn == vma->vm_pgoff + off)
686 return NULL;
687 if (!is_cow_mapping(vma->vm_flags))
688 return NULL;
692 if (pmd_devmap(pmd))
693 return NULL;
694 if (is_huge_zero_pmd(pmd))
695 return NULL;
696 if (unlikely(pfn > highest_memmap_pfn))
697 return NULL;
700 * NOTE! We still have PageReserved() pages in the page tables.
701 * eg. VDSO mappings can cause them to exist.
703 out:
704 return pfn_to_page(pfn);
707 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
708 unsigned long addr, pmd_t pmd)
710 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
712 if (page)
713 return page_folio(page);
714 return NULL;
716 #endif
718 static void restore_exclusive_pte(struct vm_area_struct *vma,
719 struct page *page, unsigned long address,
720 pte_t *ptep)
722 struct folio *folio = page_folio(page);
723 pte_t orig_pte;
724 pte_t pte;
725 swp_entry_t entry;
727 orig_pte = ptep_get(ptep);
728 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
729 if (pte_swp_soft_dirty(orig_pte))
730 pte = pte_mksoft_dirty(pte);
732 entry = pte_to_swp_entry(orig_pte);
733 if (pte_swp_uffd_wp(orig_pte))
734 pte = pte_mkuffd_wp(pte);
735 else if (is_writable_device_exclusive_entry(entry))
736 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
738 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
739 PageAnonExclusive(page)), folio);
742 * No need to take a page reference as one was already
743 * created when the swap entry was made.
745 if (folio_test_anon(folio))
746 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
747 else
749 * Currently device exclusive access only supports anonymous
750 * memory so the entry shouldn't point to a filebacked page.
752 WARN_ON_ONCE(1);
754 set_pte_at(vma->vm_mm, address, ptep, pte);
757 * No need to invalidate - it was non-present before. However
758 * secondary CPUs may have mappings that need invalidating.
760 update_mmu_cache(vma, address, ptep);
764 * Tries to restore an exclusive pte if the page lock can be acquired without
765 * sleeping.
767 static int
768 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
769 unsigned long addr)
771 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
772 struct page *page = pfn_swap_entry_to_page(entry);
774 if (trylock_page(page)) {
775 restore_exclusive_pte(vma, page, addr, src_pte);
776 unlock_page(page);
777 return 0;
780 return -EBUSY;
784 * copy one vm_area from one task to the other. Assumes the page tables
785 * already present in the new task to be cleared in the whole range
786 * covered by this vma.
789 static unsigned long
790 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
791 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
792 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
794 unsigned long vm_flags = dst_vma->vm_flags;
795 pte_t orig_pte = ptep_get(src_pte);
796 pte_t pte = orig_pte;
797 struct folio *folio;
798 struct page *page;
799 swp_entry_t entry = pte_to_swp_entry(orig_pte);
801 if (likely(!non_swap_entry(entry))) {
802 if (swap_duplicate(entry) < 0)
803 return -EIO;
805 /* make sure dst_mm is on swapoff's mmlist. */
806 if (unlikely(list_empty(&dst_mm->mmlist))) {
807 spin_lock(&mmlist_lock);
808 if (list_empty(&dst_mm->mmlist))
809 list_add(&dst_mm->mmlist,
810 &src_mm->mmlist);
811 spin_unlock(&mmlist_lock);
813 /* Mark the swap entry as shared. */
814 if (pte_swp_exclusive(orig_pte)) {
815 pte = pte_swp_clear_exclusive(orig_pte);
816 set_pte_at(src_mm, addr, src_pte, pte);
818 rss[MM_SWAPENTS]++;
819 } else if (is_migration_entry(entry)) {
820 folio = pfn_swap_entry_folio(entry);
822 rss[mm_counter(folio)]++;
824 if (!is_readable_migration_entry(entry) &&
825 is_cow_mapping(vm_flags)) {
827 * COW mappings require pages in both parent and child
828 * to be set to read. A previously exclusive entry is
829 * now shared.
831 entry = make_readable_migration_entry(
832 swp_offset(entry));
833 pte = swp_entry_to_pte(entry);
834 if (pte_swp_soft_dirty(orig_pte))
835 pte = pte_swp_mksoft_dirty(pte);
836 if (pte_swp_uffd_wp(orig_pte))
837 pte = pte_swp_mkuffd_wp(pte);
838 set_pte_at(src_mm, addr, src_pte, pte);
840 } else if (is_device_private_entry(entry)) {
841 page = pfn_swap_entry_to_page(entry);
842 folio = page_folio(page);
845 * Update rss count even for unaddressable pages, as
846 * they should treated just like normal pages in this
847 * respect.
849 * We will likely want to have some new rss counters
850 * for unaddressable pages, at some point. But for now
851 * keep things as they are.
853 folio_get(folio);
854 rss[mm_counter(folio)]++;
855 /* Cannot fail as these pages cannot get pinned. */
856 folio_try_dup_anon_rmap_pte(folio, page, src_vma);
859 * We do not preserve soft-dirty information, because so
860 * far, checkpoint/restore is the only feature that
861 * requires that. And checkpoint/restore does not work
862 * when a device driver is involved (you cannot easily
863 * save and restore device driver state).
865 if (is_writable_device_private_entry(entry) &&
866 is_cow_mapping(vm_flags)) {
867 entry = make_readable_device_private_entry(
868 swp_offset(entry));
869 pte = swp_entry_to_pte(entry);
870 if (pte_swp_uffd_wp(orig_pte))
871 pte = pte_swp_mkuffd_wp(pte);
872 set_pte_at(src_mm, addr, src_pte, pte);
874 } else if (is_device_exclusive_entry(entry)) {
876 * Make device exclusive entries present by restoring the
877 * original entry then copying as for a present pte. Device
878 * exclusive entries currently only support private writable
879 * (ie. COW) mappings.
881 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
882 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
883 return -EBUSY;
884 return -ENOENT;
885 } else if (is_pte_marker_entry(entry)) {
886 pte_marker marker = copy_pte_marker(entry, dst_vma);
888 if (marker)
889 set_pte_at(dst_mm, addr, dst_pte,
890 make_pte_marker(marker));
891 return 0;
893 if (!userfaultfd_wp(dst_vma))
894 pte = pte_swp_clear_uffd_wp(pte);
895 set_pte_at(dst_mm, addr, dst_pte, pte);
896 return 0;
900 * Copy a present and normal page.
902 * NOTE! The usual case is that this isn't required;
903 * instead, the caller can just increase the page refcount
904 * and re-use the pte the traditional way.
906 * And if we need a pre-allocated page but don't yet have
907 * one, return a negative error to let the preallocation
908 * code know so that it can do so outside the page table
909 * lock.
911 static inline int
912 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
913 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
914 struct folio **prealloc, struct page *page)
916 struct folio *new_folio;
917 pte_t pte;
919 new_folio = *prealloc;
920 if (!new_folio)
921 return -EAGAIN;
924 * We have a prealloc page, all good! Take it
925 * over and copy the page & arm it.
928 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
929 return -EHWPOISON;
931 *prealloc = NULL;
932 __folio_mark_uptodate(new_folio);
933 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
934 folio_add_lru_vma(new_folio, dst_vma);
935 rss[MM_ANONPAGES]++;
937 /* All done, just insert the new page copy in the child */
938 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
939 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
940 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
941 /* Uffd-wp needs to be delivered to dest pte as well */
942 pte = pte_mkuffd_wp(pte);
943 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
944 return 0;
947 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
948 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
949 pte_t pte, unsigned long addr, int nr)
951 struct mm_struct *src_mm = src_vma->vm_mm;
953 /* If it's a COW mapping, write protect it both processes. */
954 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
955 wrprotect_ptes(src_mm, addr, src_pte, nr);
956 pte = pte_wrprotect(pte);
959 /* If it's a shared mapping, mark it clean in the child. */
960 if (src_vma->vm_flags & VM_SHARED)
961 pte = pte_mkclean(pte);
962 pte = pte_mkold(pte);
964 if (!userfaultfd_wp(dst_vma))
965 pte = pte_clear_uffd_wp(pte);
967 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
971 * Copy one present PTE, trying to batch-process subsequent PTEs that map
972 * consecutive pages of the same folio by copying them as well.
974 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
975 * Otherwise, returns the number of copied PTEs (at least 1).
977 static inline int
978 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
979 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
980 int max_nr, int *rss, struct folio **prealloc)
982 struct page *page;
983 struct folio *folio;
984 bool any_writable;
985 fpb_t flags = 0;
986 int err, nr;
988 page = vm_normal_page(src_vma, addr, pte);
989 if (unlikely(!page))
990 goto copy_pte;
992 folio = page_folio(page);
995 * If we likely have to copy, just don't bother with batching. Make
996 * sure that the common "small folio" case is as fast as possible
997 * by keeping the batching logic separate.
999 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1000 if (src_vma->vm_flags & VM_SHARED)
1001 flags |= FPB_IGNORE_DIRTY;
1002 if (!vma_soft_dirty_enabled(src_vma))
1003 flags |= FPB_IGNORE_SOFT_DIRTY;
1005 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
1006 &any_writable, NULL, NULL);
1007 folio_ref_add(folio, nr);
1008 if (folio_test_anon(folio)) {
1009 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1010 nr, src_vma))) {
1011 folio_ref_sub(folio, nr);
1012 return -EAGAIN;
1014 rss[MM_ANONPAGES] += nr;
1015 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1016 } else {
1017 folio_dup_file_rmap_ptes(folio, page, nr);
1018 rss[mm_counter_file(folio)] += nr;
1020 if (any_writable)
1021 pte = pte_mkwrite(pte, src_vma);
1022 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1023 addr, nr);
1024 return nr;
1027 folio_get(folio);
1028 if (folio_test_anon(folio)) {
1030 * If this page may have been pinned by the parent process,
1031 * copy the page immediately for the child so that we'll always
1032 * guarantee the pinned page won't be randomly replaced in the
1033 * future.
1035 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1036 /* Page may be pinned, we have to copy. */
1037 folio_put(folio);
1038 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1039 addr, rss, prealloc, page);
1040 return err ? err : 1;
1042 rss[MM_ANONPAGES]++;
1043 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1044 } else {
1045 folio_dup_file_rmap_pte(folio, page);
1046 rss[mm_counter_file(folio)]++;
1049 copy_pte:
1050 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1051 return 1;
1054 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1055 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1057 struct folio *new_folio;
1059 if (need_zero)
1060 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1061 else
1062 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
1064 if (!new_folio)
1065 return NULL;
1067 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1068 folio_put(new_folio);
1069 return NULL;
1071 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1073 return new_folio;
1076 static int
1077 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1078 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1079 unsigned long end)
1081 struct mm_struct *dst_mm = dst_vma->vm_mm;
1082 struct mm_struct *src_mm = src_vma->vm_mm;
1083 pte_t *orig_src_pte, *orig_dst_pte;
1084 pte_t *src_pte, *dst_pte;
1085 pmd_t dummy_pmdval;
1086 pte_t ptent;
1087 spinlock_t *src_ptl, *dst_ptl;
1088 int progress, max_nr, ret = 0;
1089 int rss[NR_MM_COUNTERS];
1090 swp_entry_t entry = (swp_entry_t){0};
1091 struct folio *prealloc = NULL;
1092 int nr;
1094 again:
1095 progress = 0;
1096 init_rss_vec(rss);
1099 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1100 * error handling here, assume that exclusive mmap_lock on dst and src
1101 * protects anon from unexpected THP transitions; with shmem and file
1102 * protected by mmap_lock-less collapse skipping areas with anon_vma
1103 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1104 * can remove such assumptions later, but this is good enough for now.
1106 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1107 if (!dst_pte) {
1108 ret = -ENOMEM;
1109 goto out;
1113 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1114 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1115 * the PTE page is stable, and there is no need to get pmdval and do
1116 * pmd_same() check.
1118 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
1119 &src_ptl);
1120 if (!src_pte) {
1121 pte_unmap_unlock(dst_pte, dst_ptl);
1122 /* ret == 0 */
1123 goto out;
1125 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1126 orig_src_pte = src_pte;
1127 orig_dst_pte = dst_pte;
1128 arch_enter_lazy_mmu_mode();
1130 do {
1131 nr = 1;
1134 * We are holding two locks at this point - either of them
1135 * could generate latencies in another task on another CPU.
1137 if (progress >= 32) {
1138 progress = 0;
1139 if (need_resched() ||
1140 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1141 break;
1143 ptent = ptep_get(src_pte);
1144 if (pte_none(ptent)) {
1145 progress++;
1146 continue;
1148 if (unlikely(!pte_present(ptent))) {
1149 ret = copy_nonpresent_pte(dst_mm, src_mm,
1150 dst_pte, src_pte,
1151 dst_vma, src_vma,
1152 addr, rss);
1153 if (ret == -EIO) {
1154 entry = pte_to_swp_entry(ptep_get(src_pte));
1155 break;
1156 } else if (ret == -EBUSY) {
1157 break;
1158 } else if (!ret) {
1159 progress += 8;
1160 continue;
1162 ptent = ptep_get(src_pte);
1163 VM_WARN_ON_ONCE(!pte_present(ptent));
1166 * Device exclusive entry restored, continue by copying
1167 * the now present pte.
1169 WARN_ON_ONCE(ret != -ENOENT);
1171 /* copy_present_ptes() will clear `*prealloc' if consumed */
1172 max_nr = (end - addr) / PAGE_SIZE;
1173 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1174 ptent, addr, max_nr, rss, &prealloc);
1176 * If we need a pre-allocated page for this pte, drop the
1177 * locks, allocate, and try again.
1178 * If copy failed due to hwpoison in source page, break out.
1180 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1181 break;
1182 if (unlikely(prealloc)) {
1184 * pre-alloc page cannot be reused by next time so as
1185 * to strictly follow mempolicy (e.g., alloc_page_vma()
1186 * will allocate page according to address). This
1187 * could only happen if one pinned pte changed.
1189 folio_put(prealloc);
1190 prealloc = NULL;
1192 nr = ret;
1193 progress += 8 * nr;
1194 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1195 addr != end);
1197 arch_leave_lazy_mmu_mode();
1198 pte_unmap_unlock(orig_src_pte, src_ptl);
1199 add_mm_rss_vec(dst_mm, rss);
1200 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1201 cond_resched();
1203 if (ret == -EIO) {
1204 VM_WARN_ON_ONCE(!entry.val);
1205 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1206 ret = -ENOMEM;
1207 goto out;
1209 entry.val = 0;
1210 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1211 goto out;
1212 } else if (ret == -EAGAIN) {
1213 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1214 if (!prealloc)
1215 return -ENOMEM;
1216 } else if (ret < 0) {
1217 VM_WARN_ON_ONCE(1);
1220 /* We've captured and resolved the error. Reset, try again. */
1221 ret = 0;
1223 if (addr != end)
1224 goto again;
1225 out:
1226 if (unlikely(prealloc))
1227 folio_put(prealloc);
1228 return ret;
1231 static inline int
1232 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1233 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1234 unsigned long end)
1236 struct mm_struct *dst_mm = dst_vma->vm_mm;
1237 struct mm_struct *src_mm = src_vma->vm_mm;
1238 pmd_t *src_pmd, *dst_pmd;
1239 unsigned long next;
1241 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1242 if (!dst_pmd)
1243 return -ENOMEM;
1244 src_pmd = pmd_offset(src_pud, addr);
1245 do {
1246 next = pmd_addr_end(addr, end);
1247 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1248 || pmd_devmap(*src_pmd)) {
1249 int err;
1250 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1251 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1252 addr, dst_vma, src_vma);
1253 if (err == -ENOMEM)
1254 return -ENOMEM;
1255 if (!err)
1256 continue;
1257 /* fall through */
1259 if (pmd_none_or_clear_bad(src_pmd))
1260 continue;
1261 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1262 addr, next))
1263 return -ENOMEM;
1264 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1265 return 0;
1268 static inline int
1269 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1270 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1271 unsigned long end)
1273 struct mm_struct *dst_mm = dst_vma->vm_mm;
1274 struct mm_struct *src_mm = src_vma->vm_mm;
1275 pud_t *src_pud, *dst_pud;
1276 unsigned long next;
1278 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1279 if (!dst_pud)
1280 return -ENOMEM;
1281 src_pud = pud_offset(src_p4d, addr);
1282 do {
1283 next = pud_addr_end(addr, end);
1284 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1285 int err;
1287 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1288 err = copy_huge_pud(dst_mm, src_mm,
1289 dst_pud, src_pud, addr, src_vma);
1290 if (err == -ENOMEM)
1291 return -ENOMEM;
1292 if (!err)
1293 continue;
1294 /* fall through */
1296 if (pud_none_or_clear_bad(src_pud))
1297 continue;
1298 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1299 addr, next))
1300 return -ENOMEM;
1301 } while (dst_pud++, src_pud++, addr = next, addr != end);
1302 return 0;
1305 static inline int
1306 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1307 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1308 unsigned long end)
1310 struct mm_struct *dst_mm = dst_vma->vm_mm;
1311 p4d_t *src_p4d, *dst_p4d;
1312 unsigned long next;
1314 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1315 if (!dst_p4d)
1316 return -ENOMEM;
1317 src_p4d = p4d_offset(src_pgd, addr);
1318 do {
1319 next = p4d_addr_end(addr, end);
1320 if (p4d_none_or_clear_bad(src_p4d))
1321 continue;
1322 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1323 addr, next))
1324 return -ENOMEM;
1325 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1326 return 0;
1330 * Return true if the vma needs to copy the pgtable during this fork(). Return
1331 * false when we can speed up fork() by allowing lazy page faults later until
1332 * when the child accesses the memory range.
1334 static bool
1335 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1338 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1339 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1340 * contains uffd-wp protection information, that's something we can't
1341 * retrieve from page cache, and skip copying will lose those info.
1343 if (userfaultfd_wp(dst_vma))
1344 return true;
1346 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1347 return true;
1349 if (src_vma->anon_vma)
1350 return true;
1353 * Don't copy ptes where a page fault will fill them correctly. Fork
1354 * becomes much lighter when there are big shared or private readonly
1355 * mappings. The tradeoff is that copy_page_range is more efficient
1356 * than faulting.
1358 return false;
1362 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1364 pgd_t *src_pgd, *dst_pgd;
1365 unsigned long next;
1366 unsigned long addr = src_vma->vm_start;
1367 unsigned long end = src_vma->vm_end;
1368 struct mm_struct *dst_mm = dst_vma->vm_mm;
1369 struct mm_struct *src_mm = src_vma->vm_mm;
1370 struct mmu_notifier_range range;
1371 bool is_cow;
1372 int ret;
1374 if (!vma_needs_copy(dst_vma, src_vma))
1375 return 0;
1377 if (is_vm_hugetlb_page(src_vma))
1378 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1380 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1382 * We do not free on error cases below as remove_vma
1383 * gets called on error from higher level routine
1385 ret = track_pfn_copy(src_vma);
1386 if (ret)
1387 return ret;
1391 * We need to invalidate the secondary MMU mappings only when
1392 * there could be a permission downgrade on the ptes of the
1393 * parent mm. And a permission downgrade will only happen if
1394 * is_cow_mapping() returns true.
1396 is_cow = is_cow_mapping(src_vma->vm_flags);
1398 if (is_cow) {
1399 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1400 0, src_mm, addr, end);
1401 mmu_notifier_invalidate_range_start(&range);
1403 * Disabling preemption is not needed for the write side, as
1404 * the read side doesn't spin, but goes to the mmap_lock.
1406 * Use the raw variant of the seqcount_t write API to avoid
1407 * lockdep complaining about preemptibility.
1409 vma_assert_write_locked(src_vma);
1410 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1413 ret = 0;
1414 dst_pgd = pgd_offset(dst_mm, addr);
1415 src_pgd = pgd_offset(src_mm, addr);
1416 do {
1417 next = pgd_addr_end(addr, end);
1418 if (pgd_none_or_clear_bad(src_pgd))
1419 continue;
1420 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1421 addr, next))) {
1422 untrack_pfn_clear(dst_vma);
1423 ret = -ENOMEM;
1424 break;
1426 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1428 if (is_cow) {
1429 raw_write_seqcount_end(&src_mm->write_protect_seq);
1430 mmu_notifier_invalidate_range_end(&range);
1432 return ret;
1435 /* Whether we should zap all COWed (private) pages too */
1436 static inline bool should_zap_cows(struct zap_details *details)
1438 /* By default, zap all pages */
1439 if (!details)
1440 return true;
1442 /* Or, we zap COWed pages only if the caller wants to */
1443 return details->even_cows;
1446 /* Decides whether we should zap this folio with the folio pointer specified */
1447 static inline bool should_zap_folio(struct zap_details *details,
1448 struct folio *folio)
1450 /* If we can make a decision without *folio.. */
1451 if (should_zap_cows(details))
1452 return true;
1454 /* Otherwise we should only zap non-anon folios */
1455 return !folio_test_anon(folio);
1458 static inline bool zap_drop_markers(struct zap_details *details)
1460 if (!details)
1461 return false;
1463 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1467 * This function makes sure that we'll replace the none pte with an uffd-wp
1468 * swap special pte marker when necessary. Must be with the pgtable lock held.
1470 static inline void
1471 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1472 unsigned long addr, pte_t *pte, int nr,
1473 struct zap_details *details, pte_t pteval)
1475 /* Zap on anonymous always means dropping everything */
1476 if (vma_is_anonymous(vma))
1477 return;
1479 if (zap_drop_markers(details))
1480 return;
1482 for (;;) {
1483 /* the PFN in the PTE is irrelevant. */
1484 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1485 if (--nr == 0)
1486 break;
1487 pte++;
1488 addr += PAGE_SIZE;
1492 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1493 struct vm_area_struct *vma, struct folio *folio,
1494 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1495 unsigned long addr, struct zap_details *details, int *rss,
1496 bool *force_flush, bool *force_break)
1498 struct mm_struct *mm = tlb->mm;
1499 bool delay_rmap = false;
1501 if (!folio_test_anon(folio)) {
1502 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1503 if (pte_dirty(ptent)) {
1504 folio_mark_dirty(folio);
1505 if (tlb_delay_rmap(tlb)) {
1506 delay_rmap = true;
1507 *force_flush = true;
1510 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1511 folio_mark_accessed(folio);
1512 rss[mm_counter(folio)] -= nr;
1513 } else {
1514 /* We don't need up-to-date accessed/dirty bits. */
1515 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1516 rss[MM_ANONPAGES] -= nr;
1518 /* Checking a single PTE in a batch is sufficient. */
1519 arch_check_zapped_pte(vma, ptent);
1520 tlb_remove_tlb_entries(tlb, pte, nr, addr);
1521 if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1522 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1523 ptent);
1525 if (!delay_rmap) {
1526 folio_remove_rmap_ptes(folio, page, nr, vma);
1528 if (unlikely(folio_mapcount(folio) < 0))
1529 print_bad_pte(vma, addr, ptent, page);
1531 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1532 *force_flush = true;
1533 *force_break = true;
1538 * Zap or skip at least one present PTE, trying to batch-process subsequent
1539 * PTEs that map consecutive pages of the same folio.
1541 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1543 static inline int zap_present_ptes(struct mmu_gather *tlb,
1544 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1545 unsigned int max_nr, unsigned long addr,
1546 struct zap_details *details, int *rss, bool *force_flush,
1547 bool *force_break)
1549 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1550 struct mm_struct *mm = tlb->mm;
1551 struct folio *folio;
1552 struct page *page;
1553 int nr;
1555 page = vm_normal_page(vma, addr, ptent);
1556 if (!page) {
1557 /* We don't need up-to-date accessed/dirty bits. */
1558 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1559 arch_check_zapped_pte(vma, ptent);
1560 tlb_remove_tlb_entry(tlb, pte, addr);
1561 if (userfaultfd_pte_wp(vma, ptent))
1562 zap_install_uffd_wp_if_needed(vma, addr, pte, 1,
1563 details, ptent);
1564 ksm_might_unmap_zero_page(mm, ptent);
1565 return 1;
1568 folio = page_folio(page);
1569 if (unlikely(!should_zap_folio(details, folio)))
1570 return 1;
1573 * Make sure that the common "small folio" case is as fast as possible
1574 * by keeping the batching logic separate.
1576 if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1577 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1578 NULL, NULL, NULL);
1580 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1581 addr, details, rss, force_flush,
1582 force_break);
1583 return nr;
1585 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1586 details, rss, force_flush, force_break);
1587 return 1;
1590 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1591 struct vm_area_struct *vma, pmd_t *pmd,
1592 unsigned long addr, unsigned long end,
1593 struct zap_details *details)
1595 bool force_flush = false, force_break = false;
1596 struct mm_struct *mm = tlb->mm;
1597 int rss[NR_MM_COUNTERS];
1598 spinlock_t *ptl;
1599 pte_t *start_pte;
1600 pte_t *pte;
1601 swp_entry_t entry;
1602 int nr;
1604 tlb_change_page_size(tlb, PAGE_SIZE);
1605 init_rss_vec(rss);
1606 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1607 if (!pte)
1608 return addr;
1610 flush_tlb_batched_pending(mm);
1611 arch_enter_lazy_mmu_mode();
1612 do {
1613 pte_t ptent = ptep_get(pte);
1614 struct folio *folio;
1615 struct page *page;
1616 int max_nr;
1618 nr = 1;
1619 if (pte_none(ptent))
1620 continue;
1622 if (need_resched())
1623 break;
1625 if (pte_present(ptent)) {
1626 max_nr = (end - addr) / PAGE_SIZE;
1627 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1628 addr, details, rss, &force_flush,
1629 &force_break);
1630 if (unlikely(force_break)) {
1631 addr += nr * PAGE_SIZE;
1632 break;
1634 continue;
1637 entry = pte_to_swp_entry(ptent);
1638 if (is_device_private_entry(entry) ||
1639 is_device_exclusive_entry(entry)) {
1640 page = pfn_swap_entry_to_page(entry);
1641 folio = page_folio(page);
1642 if (unlikely(!should_zap_folio(details, folio)))
1643 continue;
1645 * Both device private/exclusive mappings should only
1646 * work with anonymous page so far, so we don't need to
1647 * consider uffd-wp bit when zap. For more information,
1648 * see zap_install_uffd_wp_if_needed().
1650 WARN_ON_ONCE(!vma_is_anonymous(vma));
1651 rss[mm_counter(folio)]--;
1652 if (is_device_private_entry(entry))
1653 folio_remove_rmap_pte(folio, page, vma);
1654 folio_put(folio);
1655 } else if (!non_swap_entry(entry)) {
1656 max_nr = (end - addr) / PAGE_SIZE;
1657 nr = swap_pte_batch(pte, max_nr, ptent);
1658 /* Genuine swap entries, hence a private anon pages */
1659 if (!should_zap_cows(details))
1660 continue;
1661 rss[MM_SWAPENTS] -= nr;
1662 free_swap_and_cache_nr(entry, nr);
1663 } else if (is_migration_entry(entry)) {
1664 folio = pfn_swap_entry_folio(entry);
1665 if (!should_zap_folio(details, folio))
1666 continue;
1667 rss[mm_counter(folio)]--;
1668 } else if (pte_marker_entry_uffd_wp(entry)) {
1670 * For anon: always drop the marker; for file: only
1671 * drop the marker if explicitly requested.
1673 if (!vma_is_anonymous(vma) &&
1674 !zap_drop_markers(details))
1675 continue;
1676 } else if (is_guard_swp_entry(entry)) {
1678 * Ordinary zapping should not remove guard PTE
1679 * markers. Only do so if we should remove PTE markers
1680 * in general.
1682 if (!zap_drop_markers(details))
1683 continue;
1684 } else if (is_hwpoison_entry(entry) ||
1685 is_poisoned_swp_entry(entry)) {
1686 if (!should_zap_cows(details))
1687 continue;
1688 } else {
1689 /* We should have covered all the swap entry types */
1690 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1691 WARN_ON_ONCE(1);
1693 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1694 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1695 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1697 add_mm_rss_vec(mm, rss);
1698 arch_leave_lazy_mmu_mode();
1700 /* Do the actual TLB flush before dropping ptl */
1701 if (force_flush) {
1702 tlb_flush_mmu_tlbonly(tlb);
1703 tlb_flush_rmaps(tlb, vma);
1705 pte_unmap_unlock(start_pte, ptl);
1708 * If we forced a TLB flush (either due to running out of
1709 * batch buffers or because we needed to flush dirty TLB
1710 * entries before releasing the ptl), free the batched
1711 * memory too. Come back again if we didn't do everything.
1713 if (force_flush)
1714 tlb_flush_mmu(tlb);
1716 return addr;
1719 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1720 struct vm_area_struct *vma, pud_t *pud,
1721 unsigned long addr, unsigned long end,
1722 struct zap_details *details)
1724 pmd_t *pmd;
1725 unsigned long next;
1727 pmd = pmd_offset(pud, addr);
1728 do {
1729 next = pmd_addr_end(addr, end);
1730 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1731 if (next - addr != HPAGE_PMD_SIZE)
1732 __split_huge_pmd(vma, pmd, addr, false, NULL);
1733 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1734 addr = next;
1735 continue;
1737 /* fall through */
1738 } else if (details && details->single_folio &&
1739 folio_test_pmd_mappable(details->single_folio) &&
1740 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1741 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1743 * Take and drop THP pmd lock so that we cannot return
1744 * prematurely, while zap_huge_pmd() has cleared *pmd,
1745 * but not yet decremented compound_mapcount().
1747 spin_unlock(ptl);
1749 if (pmd_none(*pmd)) {
1750 addr = next;
1751 continue;
1753 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1754 if (addr != next)
1755 pmd--;
1756 } while (pmd++, cond_resched(), addr != end);
1758 return addr;
1761 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1762 struct vm_area_struct *vma, p4d_t *p4d,
1763 unsigned long addr, unsigned long end,
1764 struct zap_details *details)
1766 pud_t *pud;
1767 unsigned long next;
1769 pud = pud_offset(p4d, addr);
1770 do {
1771 next = pud_addr_end(addr, end);
1772 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1773 if (next - addr != HPAGE_PUD_SIZE) {
1774 mmap_assert_locked(tlb->mm);
1775 split_huge_pud(vma, pud, addr);
1776 } else if (zap_huge_pud(tlb, vma, pud, addr))
1777 goto next;
1778 /* fall through */
1780 if (pud_none_or_clear_bad(pud))
1781 continue;
1782 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1783 next:
1784 cond_resched();
1785 } while (pud++, addr = next, addr != end);
1787 return addr;
1790 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1791 struct vm_area_struct *vma, pgd_t *pgd,
1792 unsigned long addr, unsigned long end,
1793 struct zap_details *details)
1795 p4d_t *p4d;
1796 unsigned long next;
1798 p4d = p4d_offset(pgd, addr);
1799 do {
1800 next = p4d_addr_end(addr, end);
1801 if (p4d_none_or_clear_bad(p4d))
1802 continue;
1803 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1804 } while (p4d++, addr = next, addr != end);
1806 return addr;
1809 void unmap_page_range(struct mmu_gather *tlb,
1810 struct vm_area_struct *vma,
1811 unsigned long addr, unsigned long end,
1812 struct zap_details *details)
1814 pgd_t *pgd;
1815 unsigned long next;
1817 BUG_ON(addr >= end);
1818 tlb_start_vma(tlb, vma);
1819 pgd = pgd_offset(vma->vm_mm, addr);
1820 do {
1821 next = pgd_addr_end(addr, end);
1822 if (pgd_none_or_clear_bad(pgd))
1823 continue;
1824 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1825 } while (pgd++, addr = next, addr != end);
1826 tlb_end_vma(tlb, vma);
1830 static void unmap_single_vma(struct mmu_gather *tlb,
1831 struct vm_area_struct *vma, unsigned long start_addr,
1832 unsigned long end_addr,
1833 struct zap_details *details, bool mm_wr_locked)
1835 unsigned long start = max(vma->vm_start, start_addr);
1836 unsigned long end;
1838 if (start >= vma->vm_end)
1839 return;
1840 end = min(vma->vm_end, end_addr);
1841 if (end <= vma->vm_start)
1842 return;
1844 if (vma->vm_file)
1845 uprobe_munmap(vma, start, end);
1847 if (unlikely(vma->vm_flags & VM_PFNMAP))
1848 untrack_pfn(vma, 0, 0, mm_wr_locked);
1850 if (start != end) {
1851 if (unlikely(is_vm_hugetlb_page(vma))) {
1853 * It is undesirable to test vma->vm_file as it
1854 * should be non-null for valid hugetlb area.
1855 * However, vm_file will be NULL in the error
1856 * cleanup path of mmap_region. When
1857 * hugetlbfs ->mmap method fails,
1858 * mmap_region() nullifies vma->vm_file
1859 * before calling this function to clean up.
1860 * Since no pte has actually been setup, it is
1861 * safe to do nothing in this case.
1863 if (vma->vm_file) {
1864 zap_flags_t zap_flags = details ?
1865 details->zap_flags : 0;
1866 __unmap_hugepage_range(tlb, vma, start, end,
1867 NULL, zap_flags);
1869 } else
1870 unmap_page_range(tlb, vma, start, end, details);
1875 * unmap_vmas - unmap a range of memory covered by a list of vma's
1876 * @tlb: address of the caller's struct mmu_gather
1877 * @mas: the maple state
1878 * @vma: the starting vma
1879 * @start_addr: virtual address at which to start unmapping
1880 * @end_addr: virtual address at which to end unmapping
1881 * @tree_end: The maximum index to check
1882 * @mm_wr_locked: lock flag
1884 * Unmap all pages in the vma list.
1886 * Only addresses between `start' and `end' will be unmapped.
1888 * The VMA list must be sorted in ascending virtual address order.
1890 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1891 * range after unmap_vmas() returns. So the only responsibility here is to
1892 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1893 * drops the lock and schedules.
1895 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1896 struct vm_area_struct *vma, unsigned long start_addr,
1897 unsigned long end_addr, unsigned long tree_end,
1898 bool mm_wr_locked)
1900 struct mmu_notifier_range range;
1901 struct zap_details details = {
1902 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1903 /* Careful - we need to zap private pages too! */
1904 .even_cows = true,
1907 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1908 start_addr, end_addr);
1909 mmu_notifier_invalidate_range_start(&range);
1910 do {
1911 unsigned long start = start_addr;
1912 unsigned long end = end_addr;
1913 hugetlb_zap_begin(vma, &start, &end);
1914 unmap_single_vma(tlb, vma, start, end, &details,
1915 mm_wr_locked);
1916 hugetlb_zap_end(vma, &details);
1917 vma = mas_find(mas, tree_end - 1);
1918 } while (vma && likely(!xa_is_zero(vma)));
1919 mmu_notifier_invalidate_range_end(&range);
1923 * zap_page_range_single - remove user pages in a given range
1924 * @vma: vm_area_struct holding the applicable pages
1925 * @address: starting address of pages to zap
1926 * @size: number of bytes to zap
1927 * @details: details of shared cache invalidation
1929 * The range must fit into one VMA.
1931 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1932 unsigned long size, struct zap_details *details)
1934 const unsigned long end = address + size;
1935 struct mmu_notifier_range range;
1936 struct mmu_gather tlb;
1938 lru_add_drain();
1939 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1940 address, end);
1941 hugetlb_zap_begin(vma, &range.start, &range.end);
1942 tlb_gather_mmu(&tlb, vma->vm_mm);
1943 update_hiwater_rss(vma->vm_mm);
1944 mmu_notifier_invalidate_range_start(&range);
1946 * unmap 'address-end' not 'range.start-range.end' as range
1947 * could have been expanded for hugetlb pmd sharing.
1949 unmap_single_vma(&tlb, vma, address, end, details, false);
1950 mmu_notifier_invalidate_range_end(&range);
1951 tlb_finish_mmu(&tlb);
1952 hugetlb_zap_end(vma, details);
1956 * zap_vma_ptes - remove ptes mapping the vma
1957 * @vma: vm_area_struct holding ptes to be zapped
1958 * @address: starting address of pages to zap
1959 * @size: number of bytes to zap
1961 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1963 * The entire address range must be fully contained within the vma.
1966 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1967 unsigned long size)
1969 if (!range_in_vma(vma, address, address + size) ||
1970 !(vma->vm_flags & VM_PFNMAP))
1971 return;
1973 zap_page_range_single(vma, address, size, NULL);
1975 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1977 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1979 pgd_t *pgd;
1980 p4d_t *p4d;
1981 pud_t *pud;
1982 pmd_t *pmd;
1984 pgd = pgd_offset(mm, addr);
1985 p4d = p4d_alloc(mm, pgd, addr);
1986 if (!p4d)
1987 return NULL;
1988 pud = pud_alloc(mm, p4d, addr);
1989 if (!pud)
1990 return NULL;
1991 pmd = pmd_alloc(mm, pud, addr);
1992 if (!pmd)
1993 return NULL;
1995 VM_BUG_ON(pmd_trans_huge(*pmd));
1996 return pmd;
1999 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2000 spinlock_t **ptl)
2002 pmd_t *pmd = walk_to_pmd(mm, addr);
2004 if (!pmd)
2005 return NULL;
2006 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2009 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
2011 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
2013 * Whoever wants to forbid the zeropage after some zeropages
2014 * might already have been mapped has to scan the page tables and
2015 * bail out on any zeropages. Zeropages in COW mappings can
2016 * be unshared using FAULT_FLAG_UNSHARE faults.
2018 if (mm_forbids_zeropage(vma->vm_mm))
2019 return false;
2020 /* zeropages in COW mappings are common and unproblematic. */
2021 if (is_cow_mapping(vma->vm_flags))
2022 return true;
2023 /* Mappings that do not allow for writable PTEs are unproblematic. */
2024 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2025 return true;
2027 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2028 * find the shared zeropage and longterm-pin it, which would
2029 * be problematic as soon as the zeropage gets replaced by a different
2030 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2031 * now differ to what GUP looked up. FSDAX is incompatible to
2032 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2033 * check_vma_flags).
2035 return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2036 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2039 static int validate_page_before_insert(struct vm_area_struct *vma,
2040 struct page *page)
2042 struct folio *folio = page_folio(page);
2044 if (!folio_ref_count(folio))
2045 return -EINVAL;
2046 if (unlikely(is_zero_folio(folio))) {
2047 if (!vm_mixed_zeropage_allowed(vma))
2048 return -EINVAL;
2049 return 0;
2051 if (folio_test_anon(folio) || folio_test_slab(folio) ||
2052 page_has_type(page))
2053 return -EINVAL;
2054 flush_dcache_folio(folio);
2055 return 0;
2058 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2059 unsigned long addr, struct page *page, pgprot_t prot)
2061 struct folio *folio = page_folio(page);
2062 pte_t pteval;
2064 if (!pte_none(ptep_get(pte)))
2065 return -EBUSY;
2066 /* Ok, finally just insert the thing.. */
2067 pteval = mk_pte(page, prot);
2068 if (unlikely(is_zero_folio(folio))) {
2069 pteval = pte_mkspecial(pteval);
2070 } else {
2071 folio_get(folio);
2072 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2073 folio_add_file_rmap_pte(folio, page, vma);
2075 set_pte_at(vma->vm_mm, addr, pte, pteval);
2076 return 0;
2079 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2080 struct page *page, pgprot_t prot)
2082 int retval;
2083 pte_t *pte;
2084 spinlock_t *ptl;
2086 retval = validate_page_before_insert(vma, page);
2087 if (retval)
2088 goto out;
2089 retval = -ENOMEM;
2090 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2091 if (!pte)
2092 goto out;
2093 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2094 pte_unmap_unlock(pte, ptl);
2095 out:
2096 return retval;
2099 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2100 unsigned long addr, struct page *page, pgprot_t prot)
2102 int err;
2104 err = validate_page_before_insert(vma, page);
2105 if (err)
2106 return err;
2107 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2110 /* insert_pages() amortizes the cost of spinlock operations
2111 * when inserting pages in a loop.
2113 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2114 struct page **pages, unsigned long *num, pgprot_t prot)
2116 pmd_t *pmd = NULL;
2117 pte_t *start_pte, *pte;
2118 spinlock_t *pte_lock;
2119 struct mm_struct *const mm = vma->vm_mm;
2120 unsigned long curr_page_idx = 0;
2121 unsigned long remaining_pages_total = *num;
2122 unsigned long pages_to_write_in_pmd;
2123 int ret;
2124 more:
2125 ret = -EFAULT;
2126 pmd = walk_to_pmd(mm, addr);
2127 if (!pmd)
2128 goto out;
2130 pages_to_write_in_pmd = min_t(unsigned long,
2131 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2133 /* Allocate the PTE if necessary; takes PMD lock once only. */
2134 ret = -ENOMEM;
2135 if (pte_alloc(mm, pmd))
2136 goto out;
2138 while (pages_to_write_in_pmd) {
2139 int pte_idx = 0;
2140 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2142 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2143 if (!start_pte) {
2144 ret = -EFAULT;
2145 goto out;
2147 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2148 int err = insert_page_in_batch_locked(vma, pte,
2149 addr, pages[curr_page_idx], prot);
2150 if (unlikely(err)) {
2151 pte_unmap_unlock(start_pte, pte_lock);
2152 ret = err;
2153 remaining_pages_total -= pte_idx;
2154 goto out;
2156 addr += PAGE_SIZE;
2157 ++curr_page_idx;
2159 pte_unmap_unlock(start_pte, pte_lock);
2160 pages_to_write_in_pmd -= batch_size;
2161 remaining_pages_total -= batch_size;
2163 if (remaining_pages_total)
2164 goto more;
2165 ret = 0;
2166 out:
2167 *num = remaining_pages_total;
2168 return ret;
2172 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2173 * @vma: user vma to map to
2174 * @addr: target start user address of these pages
2175 * @pages: source kernel pages
2176 * @num: in: number of pages to map. out: number of pages that were *not*
2177 * mapped. (0 means all pages were successfully mapped).
2179 * Preferred over vm_insert_page() when inserting multiple pages.
2181 * In case of error, we may have mapped a subset of the provided
2182 * pages. It is the caller's responsibility to account for this case.
2184 * The same restrictions apply as in vm_insert_page().
2186 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2187 struct page **pages, unsigned long *num)
2189 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2191 if (addr < vma->vm_start || end_addr >= vma->vm_end)
2192 return -EFAULT;
2193 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2194 BUG_ON(mmap_read_trylock(vma->vm_mm));
2195 BUG_ON(vma->vm_flags & VM_PFNMAP);
2196 vm_flags_set(vma, VM_MIXEDMAP);
2198 /* Defer page refcount checking till we're about to map that page. */
2199 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2201 EXPORT_SYMBOL(vm_insert_pages);
2204 * vm_insert_page - insert single page into user vma
2205 * @vma: user vma to map to
2206 * @addr: target user address of this page
2207 * @page: source kernel page
2209 * This allows drivers to insert individual pages they've allocated
2210 * into a user vma. The zeropage is supported in some VMAs,
2211 * see vm_mixed_zeropage_allowed().
2213 * The page has to be a nice clean _individual_ kernel allocation.
2214 * If you allocate a compound page, you need to have marked it as
2215 * such (__GFP_COMP), or manually just split the page up yourself
2216 * (see split_page()).
2218 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2219 * took an arbitrary page protection parameter. This doesn't allow
2220 * that. Your vma protection will have to be set up correctly, which
2221 * means that if you want a shared writable mapping, you'd better
2222 * ask for a shared writable mapping!
2224 * The page does not need to be reserved.
2226 * Usually this function is called from f_op->mmap() handler
2227 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2228 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2229 * function from other places, for example from page-fault handler.
2231 * Return: %0 on success, negative error code otherwise.
2233 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2234 struct page *page)
2236 if (addr < vma->vm_start || addr >= vma->vm_end)
2237 return -EFAULT;
2238 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2239 BUG_ON(mmap_read_trylock(vma->vm_mm));
2240 BUG_ON(vma->vm_flags & VM_PFNMAP);
2241 vm_flags_set(vma, VM_MIXEDMAP);
2243 return insert_page(vma, addr, page, vma->vm_page_prot);
2245 EXPORT_SYMBOL(vm_insert_page);
2248 * __vm_map_pages - maps range of kernel pages into user vma
2249 * @vma: user vma to map to
2250 * @pages: pointer to array of source kernel pages
2251 * @num: number of pages in page array
2252 * @offset: user's requested vm_pgoff
2254 * This allows drivers to map range of kernel pages into a user vma.
2255 * The zeropage is supported in some VMAs, see
2256 * vm_mixed_zeropage_allowed().
2258 * Return: 0 on success and error code otherwise.
2260 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2261 unsigned long num, unsigned long offset)
2263 unsigned long count = vma_pages(vma);
2264 unsigned long uaddr = vma->vm_start;
2265 int ret, i;
2267 /* Fail if the user requested offset is beyond the end of the object */
2268 if (offset >= num)
2269 return -ENXIO;
2271 /* Fail if the user requested size exceeds available object size */
2272 if (count > num - offset)
2273 return -ENXIO;
2275 for (i = 0; i < count; i++) {
2276 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2277 if (ret < 0)
2278 return ret;
2279 uaddr += PAGE_SIZE;
2282 return 0;
2286 * vm_map_pages - maps range of kernel pages starts with non zero offset
2287 * @vma: user vma to map to
2288 * @pages: pointer to array of source kernel pages
2289 * @num: number of pages in page array
2291 * Maps an object consisting of @num pages, catering for the user's
2292 * requested vm_pgoff
2294 * If we fail to insert any page into the vma, the function will return
2295 * immediately leaving any previously inserted pages present. Callers
2296 * from the mmap handler may immediately return the error as their caller
2297 * will destroy the vma, removing any successfully inserted pages. Other
2298 * callers should make their own arrangements for calling unmap_region().
2300 * Context: Process context. Called by mmap handlers.
2301 * Return: 0 on success and error code otherwise.
2303 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2304 unsigned long num)
2306 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2308 EXPORT_SYMBOL(vm_map_pages);
2311 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2312 * @vma: user vma to map to
2313 * @pages: pointer to array of source kernel pages
2314 * @num: number of pages in page array
2316 * Similar to vm_map_pages(), except that it explicitly sets the offset
2317 * to 0. This function is intended for the drivers that did not consider
2318 * vm_pgoff.
2320 * Context: Process context. Called by mmap handlers.
2321 * Return: 0 on success and error code otherwise.
2323 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2324 unsigned long num)
2326 return __vm_map_pages(vma, pages, num, 0);
2328 EXPORT_SYMBOL(vm_map_pages_zero);
2330 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2331 pfn_t pfn, pgprot_t prot, bool mkwrite)
2333 struct mm_struct *mm = vma->vm_mm;
2334 pte_t *pte, entry;
2335 spinlock_t *ptl;
2337 pte = get_locked_pte(mm, addr, &ptl);
2338 if (!pte)
2339 return VM_FAULT_OOM;
2340 entry = ptep_get(pte);
2341 if (!pte_none(entry)) {
2342 if (mkwrite) {
2344 * For read faults on private mappings the PFN passed
2345 * in may not match the PFN we have mapped if the
2346 * mapped PFN is a writeable COW page. In the mkwrite
2347 * case we are creating a writable PTE for a shared
2348 * mapping and we expect the PFNs to match. If they
2349 * don't match, we are likely racing with block
2350 * allocation and mapping invalidation so just skip the
2351 * update.
2353 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2354 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2355 goto out_unlock;
2357 entry = pte_mkyoung(entry);
2358 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2359 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2360 update_mmu_cache(vma, addr, pte);
2362 goto out_unlock;
2365 /* Ok, finally just insert the thing.. */
2366 if (pfn_t_devmap(pfn))
2367 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2368 else
2369 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2371 if (mkwrite) {
2372 entry = pte_mkyoung(entry);
2373 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2376 set_pte_at(mm, addr, pte, entry);
2377 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2379 out_unlock:
2380 pte_unmap_unlock(pte, ptl);
2381 return VM_FAULT_NOPAGE;
2385 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2386 * @vma: user vma to map to
2387 * @addr: target user address of this page
2388 * @pfn: source kernel pfn
2389 * @pgprot: pgprot flags for the inserted page
2391 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2392 * to override pgprot on a per-page basis.
2394 * This only makes sense for IO mappings, and it makes no sense for
2395 * COW mappings. In general, using multiple vmas is preferable;
2396 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2397 * impractical.
2399 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2400 * caching- and encryption bits different than those of @vma->vm_page_prot,
2401 * because the caching- or encryption mode may not be known at mmap() time.
2403 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2404 * to set caching and encryption bits for those vmas (except for COW pages).
2405 * This is ensured by core vm only modifying these page table entries using
2406 * functions that don't touch caching- or encryption bits, using pte_modify()
2407 * if needed. (See for example mprotect()).
2409 * Also when new page-table entries are created, this is only done using the
2410 * fault() callback, and never using the value of vma->vm_page_prot,
2411 * except for page-table entries that point to anonymous pages as the result
2412 * of COW.
2414 * Context: Process context. May allocate using %GFP_KERNEL.
2415 * Return: vm_fault_t value.
2417 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2418 unsigned long pfn, pgprot_t pgprot)
2421 * Technically, architectures with pte_special can avoid all these
2422 * restrictions (same for remap_pfn_range). However we would like
2423 * consistency in testing and feature parity among all, so we should
2424 * try to keep these invariants in place for everybody.
2426 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2427 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2428 (VM_PFNMAP|VM_MIXEDMAP));
2429 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2430 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2432 if (addr < vma->vm_start || addr >= vma->vm_end)
2433 return VM_FAULT_SIGBUS;
2435 if (!pfn_modify_allowed(pfn, pgprot))
2436 return VM_FAULT_SIGBUS;
2438 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2440 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2441 false);
2443 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2446 * vmf_insert_pfn - insert single pfn into user vma
2447 * @vma: user vma to map to
2448 * @addr: target user address of this page
2449 * @pfn: source kernel pfn
2451 * Similar to vm_insert_page, this allows drivers to insert individual pages
2452 * they've allocated into a user vma. Same comments apply.
2454 * This function should only be called from a vm_ops->fault handler, and
2455 * in that case the handler should return the result of this function.
2457 * vma cannot be a COW mapping.
2459 * As this is called only for pages that do not currently exist, we
2460 * do not need to flush old virtual caches or the TLB.
2462 * Context: Process context. May allocate using %GFP_KERNEL.
2463 * Return: vm_fault_t value.
2465 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2466 unsigned long pfn)
2468 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2470 EXPORT_SYMBOL(vmf_insert_pfn);
2472 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2474 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2475 (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2476 return false;
2477 /* these checks mirror the abort conditions in vm_normal_page */
2478 if (vma->vm_flags & VM_MIXEDMAP)
2479 return true;
2480 if (pfn_t_devmap(pfn))
2481 return true;
2482 if (pfn_t_special(pfn))
2483 return true;
2484 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2485 return true;
2486 return false;
2489 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2490 unsigned long addr, pfn_t pfn, bool mkwrite)
2492 pgprot_t pgprot = vma->vm_page_prot;
2493 int err;
2495 if (!vm_mixed_ok(vma, pfn, mkwrite))
2496 return VM_FAULT_SIGBUS;
2498 if (addr < vma->vm_start || addr >= vma->vm_end)
2499 return VM_FAULT_SIGBUS;
2501 track_pfn_insert(vma, &pgprot, pfn);
2503 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2504 return VM_FAULT_SIGBUS;
2507 * If we don't have pte special, then we have to use the pfn_valid()
2508 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2509 * refcount the page if pfn_valid is true (hence insert_page rather
2510 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2511 * without pte special, it would there be refcounted as a normal page.
2513 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2514 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2515 struct page *page;
2518 * At this point we are committed to insert_page()
2519 * regardless of whether the caller specified flags that
2520 * result in pfn_t_has_page() == false.
2522 page = pfn_to_page(pfn_t_to_pfn(pfn));
2523 err = insert_page(vma, addr, page, pgprot);
2524 } else {
2525 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2528 if (err == -ENOMEM)
2529 return VM_FAULT_OOM;
2530 if (err < 0 && err != -EBUSY)
2531 return VM_FAULT_SIGBUS;
2533 return VM_FAULT_NOPAGE;
2536 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2537 pfn_t pfn)
2539 return __vm_insert_mixed(vma, addr, pfn, false);
2541 EXPORT_SYMBOL(vmf_insert_mixed);
2544 * If the insertion of PTE failed because someone else already added a
2545 * different entry in the mean time, we treat that as success as we assume
2546 * the same entry was actually inserted.
2548 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2549 unsigned long addr, pfn_t pfn)
2551 return __vm_insert_mixed(vma, addr, pfn, true);
2555 * maps a range of physical memory into the requested pages. the old
2556 * mappings are removed. any references to nonexistent pages results
2557 * in null mappings (currently treated as "copy-on-access")
2559 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2560 unsigned long addr, unsigned long end,
2561 unsigned long pfn, pgprot_t prot)
2563 pte_t *pte, *mapped_pte;
2564 spinlock_t *ptl;
2565 int err = 0;
2567 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2568 if (!pte)
2569 return -ENOMEM;
2570 arch_enter_lazy_mmu_mode();
2571 do {
2572 BUG_ON(!pte_none(ptep_get(pte)));
2573 if (!pfn_modify_allowed(pfn, prot)) {
2574 err = -EACCES;
2575 break;
2577 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2578 pfn++;
2579 } while (pte++, addr += PAGE_SIZE, addr != end);
2580 arch_leave_lazy_mmu_mode();
2581 pte_unmap_unlock(mapped_pte, ptl);
2582 return err;
2585 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2586 unsigned long addr, unsigned long end,
2587 unsigned long pfn, pgprot_t prot)
2589 pmd_t *pmd;
2590 unsigned long next;
2591 int err;
2593 pfn -= addr >> PAGE_SHIFT;
2594 pmd = pmd_alloc(mm, pud, addr);
2595 if (!pmd)
2596 return -ENOMEM;
2597 VM_BUG_ON(pmd_trans_huge(*pmd));
2598 do {
2599 next = pmd_addr_end(addr, end);
2600 err = remap_pte_range(mm, pmd, addr, next,
2601 pfn + (addr >> PAGE_SHIFT), prot);
2602 if (err)
2603 return err;
2604 } while (pmd++, addr = next, addr != end);
2605 return 0;
2608 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2609 unsigned long addr, unsigned long end,
2610 unsigned long pfn, pgprot_t prot)
2612 pud_t *pud;
2613 unsigned long next;
2614 int err;
2616 pfn -= addr >> PAGE_SHIFT;
2617 pud = pud_alloc(mm, p4d, addr);
2618 if (!pud)
2619 return -ENOMEM;
2620 do {
2621 next = pud_addr_end(addr, end);
2622 err = remap_pmd_range(mm, pud, addr, next,
2623 pfn + (addr >> PAGE_SHIFT), prot);
2624 if (err)
2625 return err;
2626 } while (pud++, addr = next, addr != end);
2627 return 0;
2630 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2631 unsigned long addr, unsigned long end,
2632 unsigned long pfn, pgprot_t prot)
2634 p4d_t *p4d;
2635 unsigned long next;
2636 int err;
2638 pfn -= addr >> PAGE_SHIFT;
2639 p4d = p4d_alloc(mm, pgd, addr);
2640 if (!p4d)
2641 return -ENOMEM;
2642 do {
2643 next = p4d_addr_end(addr, end);
2644 err = remap_pud_range(mm, p4d, addr, next,
2645 pfn + (addr >> PAGE_SHIFT), prot);
2646 if (err)
2647 return err;
2648 } while (p4d++, addr = next, addr != end);
2649 return 0;
2652 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2653 unsigned long pfn, unsigned long size, pgprot_t prot)
2655 pgd_t *pgd;
2656 unsigned long next;
2657 unsigned long end = addr + PAGE_ALIGN(size);
2658 struct mm_struct *mm = vma->vm_mm;
2659 int err;
2661 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2662 return -EINVAL;
2665 * Physically remapped pages are special. Tell the
2666 * rest of the world about it:
2667 * VM_IO tells people not to look at these pages
2668 * (accesses can have side effects).
2669 * VM_PFNMAP tells the core MM that the base pages are just
2670 * raw PFN mappings, and do not have a "struct page" associated
2671 * with them.
2672 * VM_DONTEXPAND
2673 * Disable vma merging and expanding with mremap().
2674 * VM_DONTDUMP
2675 * Omit vma from core dump, even when VM_IO turned off.
2677 * There's a horrible special case to handle copy-on-write
2678 * behaviour that some programs depend on. We mark the "original"
2679 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2680 * See vm_normal_page() for details.
2682 if (is_cow_mapping(vma->vm_flags)) {
2683 if (addr != vma->vm_start || end != vma->vm_end)
2684 return -EINVAL;
2685 vma->vm_pgoff = pfn;
2688 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2690 BUG_ON(addr >= end);
2691 pfn -= addr >> PAGE_SHIFT;
2692 pgd = pgd_offset(mm, addr);
2693 flush_cache_range(vma, addr, end);
2694 do {
2695 next = pgd_addr_end(addr, end);
2696 err = remap_p4d_range(mm, pgd, addr, next,
2697 pfn + (addr >> PAGE_SHIFT), prot);
2698 if (err)
2699 return err;
2700 } while (pgd++, addr = next, addr != end);
2702 return 0;
2706 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2707 * must have pre-validated the caching bits of the pgprot_t.
2709 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2710 unsigned long pfn, unsigned long size, pgprot_t prot)
2712 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2714 if (!error)
2715 return 0;
2718 * A partial pfn range mapping is dangerous: it does not
2719 * maintain page reference counts, and callers may free
2720 * pages due to the error. So zap it early.
2722 zap_page_range_single(vma, addr, size, NULL);
2723 return error;
2727 * remap_pfn_range - remap kernel memory to userspace
2728 * @vma: user vma to map to
2729 * @addr: target page aligned user address to start at
2730 * @pfn: page frame number of kernel physical memory address
2731 * @size: size of mapping area
2732 * @prot: page protection flags for this mapping
2734 * Note: this is only safe if the mm semaphore is held when called.
2736 * Return: %0 on success, negative error code otherwise.
2738 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2739 unsigned long pfn, unsigned long size, pgprot_t prot)
2741 int err;
2743 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2744 if (err)
2745 return -EINVAL;
2747 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2748 if (err)
2749 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2750 return err;
2752 EXPORT_SYMBOL(remap_pfn_range);
2755 * vm_iomap_memory - remap memory to userspace
2756 * @vma: user vma to map to
2757 * @start: start of the physical memory to be mapped
2758 * @len: size of area
2760 * This is a simplified io_remap_pfn_range() for common driver use. The
2761 * driver just needs to give us the physical memory range to be mapped,
2762 * we'll figure out the rest from the vma information.
2764 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2765 * whatever write-combining details or similar.
2767 * Return: %0 on success, negative error code otherwise.
2769 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2771 unsigned long vm_len, pfn, pages;
2773 /* Check that the physical memory area passed in looks valid */
2774 if (start + len < start)
2775 return -EINVAL;
2777 * You *really* shouldn't map things that aren't page-aligned,
2778 * but we've historically allowed it because IO memory might
2779 * just have smaller alignment.
2781 len += start & ~PAGE_MASK;
2782 pfn = start >> PAGE_SHIFT;
2783 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2784 if (pfn + pages < pfn)
2785 return -EINVAL;
2787 /* We start the mapping 'vm_pgoff' pages into the area */
2788 if (vma->vm_pgoff > pages)
2789 return -EINVAL;
2790 pfn += vma->vm_pgoff;
2791 pages -= vma->vm_pgoff;
2793 /* Can we fit all of the mapping? */
2794 vm_len = vma->vm_end - vma->vm_start;
2795 if (vm_len >> PAGE_SHIFT > pages)
2796 return -EINVAL;
2798 /* Ok, let it rip */
2799 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2801 EXPORT_SYMBOL(vm_iomap_memory);
2803 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2804 unsigned long addr, unsigned long end,
2805 pte_fn_t fn, void *data, bool create,
2806 pgtbl_mod_mask *mask)
2808 pte_t *pte, *mapped_pte;
2809 int err = 0;
2810 spinlock_t *ptl;
2812 if (create) {
2813 mapped_pte = pte = (mm == &init_mm) ?
2814 pte_alloc_kernel_track(pmd, addr, mask) :
2815 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2816 if (!pte)
2817 return -ENOMEM;
2818 } else {
2819 mapped_pte = pte = (mm == &init_mm) ?
2820 pte_offset_kernel(pmd, addr) :
2821 pte_offset_map_lock(mm, pmd, addr, &ptl);
2822 if (!pte)
2823 return -EINVAL;
2826 arch_enter_lazy_mmu_mode();
2828 if (fn) {
2829 do {
2830 if (create || !pte_none(ptep_get(pte))) {
2831 err = fn(pte++, addr, data);
2832 if (err)
2833 break;
2835 } while (addr += PAGE_SIZE, addr != end);
2837 *mask |= PGTBL_PTE_MODIFIED;
2839 arch_leave_lazy_mmu_mode();
2841 if (mm != &init_mm)
2842 pte_unmap_unlock(mapped_pte, ptl);
2843 return err;
2846 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2847 unsigned long addr, unsigned long end,
2848 pte_fn_t fn, void *data, bool create,
2849 pgtbl_mod_mask *mask)
2851 pmd_t *pmd;
2852 unsigned long next;
2853 int err = 0;
2855 BUG_ON(pud_leaf(*pud));
2857 if (create) {
2858 pmd = pmd_alloc_track(mm, pud, addr, mask);
2859 if (!pmd)
2860 return -ENOMEM;
2861 } else {
2862 pmd = pmd_offset(pud, addr);
2864 do {
2865 next = pmd_addr_end(addr, end);
2866 if (pmd_none(*pmd) && !create)
2867 continue;
2868 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2869 return -EINVAL;
2870 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2871 if (!create)
2872 continue;
2873 pmd_clear_bad(pmd);
2875 err = apply_to_pte_range(mm, pmd, addr, next,
2876 fn, data, create, mask);
2877 if (err)
2878 break;
2879 } while (pmd++, addr = next, addr != end);
2881 return err;
2884 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2885 unsigned long addr, unsigned long end,
2886 pte_fn_t fn, void *data, bool create,
2887 pgtbl_mod_mask *mask)
2889 pud_t *pud;
2890 unsigned long next;
2891 int err = 0;
2893 if (create) {
2894 pud = pud_alloc_track(mm, p4d, addr, mask);
2895 if (!pud)
2896 return -ENOMEM;
2897 } else {
2898 pud = pud_offset(p4d, addr);
2900 do {
2901 next = pud_addr_end(addr, end);
2902 if (pud_none(*pud) && !create)
2903 continue;
2904 if (WARN_ON_ONCE(pud_leaf(*pud)))
2905 return -EINVAL;
2906 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2907 if (!create)
2908 continue;
2909 pud_clear_bad(pud);
2911 err = apply_to_pmd_range(mm, pud, addr, next,
2912 fn, data, create, mask);
2913 if (err)
2914 break;
2915 } while (pud++, addr = next, addr != end);
2917 return err;
2920 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2921 unsigned long addr, unsigned long end,
2922 pte_fn_t fn, void *data, bool create,
2923 pgtbl_mod_mask *mask)
2925 p4d_t *p4d;
2926 unsigned long next;
2927 int err = 0;
2929 if (create) {
2930 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2931 if (!p4d)
2932 return -ENOMEM;
2933 } else {
2934 p4d = p4d_offset(pgd, addr);
2936 do {
2937 next = p4d_addr_end(addr, end);
2938 if (p4d_none(*p4d) && !create)
2939 continue;
2940 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2941 return -EINVAL;
2942 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2943 if (!create)
2944 continue;
2945 p4d_clear_bad(p4d);
2947 err = apply_to_pud_range(mm, p4d, addr, next,
2948 fn, data, create, mask);
2949 if (err)
2950 break;
2951 } while (p4d++, addr = next, addr != end);
2953 return err;
2956 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2957 unsigned long size, pte_fn_t fn,
2958 void *data, bool create)
2960 pgd_t *pgd;
2961 unsigned long start = addr, next;
2962 unsigned long end = addr + size;
2963 pgtbl_mod_mask mask = 0;
2964 int err = 0;
2966 if (WARN_ON(addr >= end))
2967 return -EINVAL;
2969 pgd = pgd_offset(mm, addr);
2970 do {
2971 next = pgd_addr_end(addr, end);
2972 if (pgd_none(*pgd) && !create)
2973 continue;
2974 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2975 return -EINVAL;
2976 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2977 if (!create)
2978 continue;
2979 pgd_clear_bad(pgd);
2981 err = apply_to_p4d_range(mm, pgd, addr, next,
2982 fn, data, create, &mask);
2983 if (err)
2984 break;
2985 } while (pgd++, addr = next, addr != end);
2987 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2988 arch_sync_kernel_mappings(start, start + size);
2990 return err;
2994 * Scan a region of virtual memory, filling in page tables as necessary
2995 * and calling a provided function on each leaf page table.
2997 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2998 unsigned long size, pte_fn_t fn, void *data)
3000 return __apply_to_page_range(mm, addr, size, fn, data, true);
3002 EXPORT_SYMBOL_GPL(apply_to_page_range);
3005 * Scan a region of virtual memory, calling a provided function on
3006 * each leaf page table where it exists.
3008 * Unlike apply_to_page_range, this does _not_ fill in page tables
3009 * where they are absent.
3011 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
3012 unsigned long size, pte_fn_t fn, void *data)
3014 return __apply_to_page_range(mm, addr, size, fn, data, false);
3016 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
3019 * handle_pte_fault chooses page fault handler according to an entry which was
3020 * read non-atomically. Before making any commitment, on those architectures
3021 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3022 * parts, do_swap_page must check under lock before unmapping the pte and
3023 * proceeding (but do_wp_page is only called after already making such a check;
3024 * and do_anonymous_page can safely check later on).
3026 static inline int pte_unmap_same(struct vm_fault *vmf)
3028 int same = 1;
3029 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3030 if (sizeof(pte_t) > sizeof(unsigned long)) {
3031 spin_lock(vmf->ptl);
3032 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3033 spin_unlock(vmf->ptl);
3035 #endif
3036 pte_unmap(vmf->pte);
3037 vmf->pte = NULL;
3038 return same;
3042 * Return:
3043 * 0: copied succeeded
3044 * -EHWPOISON: copy failed due to hwpoison in source page
3045 * -EAGAIN: copied failed (some other reason)
3047 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3048 struct vm_fault *vmf)
3050 int ret;
3051 void *kaddr;
3052 void __user *uaddr;
3053 struct vm_area_struct *vma = vmf->vma;
3054 struct mm_struct *mm = vma->vm_mm;
3055 unsigned long addr = vmf->address;
3057 if (likely(src)) {
3058 if (copy_mc_user_highpage(dst, src, addr, vma))
3059 return -EHWPOISON;
3060 return 0;
3064 * If the source page was a PFN mapping, we don't have
3065 * a "struct page" for it. We do a best-effort copy by
3066 * just copying from the original user address. If that
3067 * fails, we just zero-fill it. Live with it.
3069 kaddr = kmap_local_page(dst);
3070 pagefault_disable();
3071 uaddr = (void __user *)(addr & PAGE_MASK);
3074 * On architectures with software "accessed" bits, we would
3075 * take a double page fault, so mark it accessed here.
3077 vmf->pte = NULL;
3078 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3079 pte_t entry;
3081 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3082 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3084 * Other thread has already handled the fault
3085 * and update local tlb only
3087 if (vmf->pte)
3088 update_mmu_tlb(vma, addr, vmf->pte);
3089 ret = -EAGAIN;
3090 goto pte_unlock;
3093 entry = pte_mkyoung(vmf->orig_pte);
3094 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3095 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3099 * This really shouldn't fail, because the page is there
3100 * in the page tables. But it might just be unreadable,
3101 * in which case we just give up and fill the result with
3102 * zeroes.
3104 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3105 if (vmf->pte)
3106 goto warn;
3108 /* Re-validate under PTL if the page is still mapped */
3109 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3110 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3111 /* The PTE changed under us, update local tlb */
3112 if (vmf->pte)
3113 update_mmu_tlb(vma, addr, vmf->pte);
3114 ret = -EAGAIN;
3115 goto pte_unlock;
3119 * The same page can be mapped back since last copy attempt.
3120 * Try to copy again under PTL.
3122 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3124 * Give a warn in case there can be some obscure
3125 * use-case
3127 warn:
3128 WARN_ON_ONCE(1);
3129 clear_page(kaddr);
3133 ret = 0;
3135 pte_unlock:
3136 if (vmf->pte)
3137 pte_unmap_unlock(vmf->pte, vmf->ptl);
3138 pagefault_enable();
3139 kunmap_local(kaddr);
3140 flush_dcache_page(dst);
3142 return ret;
3145 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3147 struct file *vm_file = vma->vm_file;
3149 if (vm_file)
3150 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3153 * Special mappings (e.g. VDSO) do not have any file so fake
3154 * a default GFP_KERNEL for them.
3156 return GFP_KERNEL;
3160 * Notify the address space that the page is about to become writable so that
3161 * it can prohibit this or wait for the page to get into an appropriate state.
3163 * We do this without the lock held, so that it can sleep if it needs to.
3165 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3167 vm_fault_t ret;
3168 unsigned int old_flags = vmf->flags;
3170 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3172 if (vmf->vma->vm_file &&
3173 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3174 return VM_FAULT_SIGBUS;
3176 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3177 /* Restore original flags so that caller is not surprised */
3178 vmf->flags = old_flags;
3179 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3180 return ret;
3181 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3182 folio_lock(folio);
3183 if (!folio->mapping) {
3184 folio_unlock(folio);
3185 return 0; /* retry */
3187 ret |= VM_FAULT_LOCKED;
3188 } else
3189 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3190 return ret;
3194 * Handle dirtying of a page in shared file mapping on a write fault.
3196 * The function expects the page to be locked and unlocks it.
3198 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3200 struct vm_area_struct *vma = vmf->vma;
3201 struct address_space *mapping;
3202 struct folio *folio = page_folio(vmf->page);
3203 bool dirtied;
3204 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3206 dirtied = folio_mark_dirty(folio);
3207 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3209 * Take a local copy of the address_space - folio.mapping may be zeroed
3210 * by truncate after folio_unlock(). The address_space itself remains
3211 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
3212 * release semantics to prevent the compiler from undoing this copying.
3214 mapping = folio_raw_mapping(folio);
3215 folio_unlock(folio);
3217 if (!page_mkwrite)
3218 file_update_time(vma->vm_file);
3221 * Throttle page dirtying rate down to writeback speed.
3223 * mapping may be NULL here because some device drivers do not
3224 * set page.mapping but still dirty their pages
3226 * Drop the mmap_lock before waiting on IO, if we can. The file
3227 * is pinning the mapping, as per above.
3229 if ((dirtied || page_mkwrite) && mapping) {
3230 struct file *fpin;
3232 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3233 balance_dirty_pages_ratelimited(mapping);
3234 if (fpin) {
3235 fput(fpin);
3236 return VM_FAULT_COMPLETED;
3240 return 0;
3244 * Handle write page faults for pages that can be reused in the current vma
3246 * This can happen either due to the mapping being with the VM_SHARED flag,
3247 * or due to us being the last reference standing to the page. In either
3248 * case, all we need to do here is to mark the page as writable and update
3249 * any related book-keeping.
3251 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3252 __releases(vmf->ptl)
3254 struct vm_area_struct *vma = vmf->vma;
3255 pte_t entry;
3257 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3258 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3260 if (folio) {
3261 VM_BUG_ON(folio_test_anon(folio) &&
3262 !PageAnonExclusive(vmf->page));
3264 * Clear the folio's cpupid information as the existing
3265 * information potentially belongs to a now completely
3266 * unrelated process.
3268 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3271 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3272 entry = pte_mkyoung(vmf->orig_pte);
3273 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3274 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3275 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3276 pte_unmap_unlock(vmf->pte, vmf->ptl);
3277 count_vm_event(PGREUSE);
3281 * We could add a bitflag somewhere, but for now, we know that all
3282 * vm_ops that have a ->map_pages have been audited and don't need
3283 * the mmap_lock to be held.
3285 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3287 struct vm_area_struct *vma = vmf->vma;
3289 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3290 return 0;
3291 vma_end_read(vma);
3292 return VM_FAULT_RETRY;
3296 * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3297 * @vmf: The vm_fault descriptor passed from the fault handler.
3299 * When preparing to insert an anonymous page into a VMA from a
3300 * fault handler, call this function rather than anon_vma_prepare().
3301 * If this vma does not already have an associated anon_vma and we are
3302 * only protected by the per-VMA lock, the caller must retry with the
3303 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
3304 * determine if this VMA can share its anon_vma, and that's not safe to
3305 * do with only the per-VMA lock held for this VMA.
3307 * Return: 0 if fault handling can proceed. Any other value should be
3308 * returned to the caller.
3310 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3312 struct vm_area_struct *vma = vmf->vma;
3313 vm_fault_t ret = 0;
3315 if (likely(vma->anon_vma))
3316 return 0;
3317 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3318 if (!mmap_read_trylock(vma->vm_mm))
3319 return VM_FAULT_RETRY;
3321 if (__anon_vma_prepare(vma))
3322 ret = VM_FAULT_OOM;
3323 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3324 mmap_read_unlock(vma->vm_mm);
3325 return ret;
3329 * Handle the case of a page which we actually need to copy to a new page,
3330 * either due to COW or unsharing.
3332 * Called with mmap_lock locked and the old page referenced, but
3333 * without the ptl held.
3335 * High level logic flow:
3337 * - Allocate a page, copy the content of the old page to the new one.
3338 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3339 * - Take the PTL. If the pte changed, bail out and release the allocated page
3340 * - If the pte is still the way we remember it, update the page table and all
3341 * relevant references. This includes dropping the reference the page-table
3342 * held to the old page, as well as updating the rmap.
3343 * - In any case, unlock the PTL and drop the reference we took to the old page.
3345 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3347 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3348 struct vm_area_struct *vma = vmf->vma;
3349 struct mm_struct *mm = vma->vm_mm;
3350 struct folio *old_folio = NULL;
3351 struct folio *new_folio = NULL;
3352 pte_t entry;
3353 int page_copied = 0;
3354 struct mmu_notifier_range range;
3355 vm_fault_t ret;
3356 bool pfn_is_zero;
3358 delayacct_wpcopy_start();
3360 if (vmf->page)
3361 old_folio = page_folio(vmf->page);
3362 ret = vmf_anon_prepare(vmf);
3363 if (unlikely(ret))
3364 goto out;
3366 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3367 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3368 if (!new_folio)
3369 goto oom;
3371 if (!pfn_is_zero) {
3372 int err;
3374 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3375 if (err) {
3377 * COW failed, if the fault was solved by other,
3378 * it's fine. If not, userspace would re-fault on
3379 * the same address and we will handle the fault
3380 * from the second attempt.
3381 * The -EHWPOISON case will not be retried.
3383 folio_put(new_folio);
3384 if (old_folio)
3385 folio_put(old_folio);
3387 delayacct_wpcopy_end();
3388 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3390 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3393 __folio_mark_uptodate(new_folio);
3395 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3396 vmf->address & PAGE_MASK,
3397 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3398 mmu_notifier_invalidate_range_start(&range);
3401 * Re-check the pte - we dropped the lock
3403 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3404 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3405 if (old_folio) {
3406 if (!folio_test_anon(old_folio)) {
3407 dec_mm_counter(mm, mm_counter_file(old_folio));
3408 inc_mm_counter(mm, MM_ANONPAGES);
3410 } else {
3411 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3412 inc_mm_counter(mm, MM_ANONPAGES);
3414 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3415 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3416 entry = pte_sw_mkyoung(entry);
3417 if (unlikely(unshare)) {
3418 if (pte_soft_dirty(vmf->orig_pte))
3419 entry = pte_mksoft_dirty(entry);
3420 if (pte_uffd_wp(vmf->orig_pte))
3421 entry = pte_mkuffd_wp(entry);
3422 } else {
3423 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3427 * Clear the pte entry and flush it first, before updating the
3428 * pte with the new entry, to keep TLBs on different CPUs in
3429 * sync. This code used to set the new PTE then flush TLBs, but
3430 * that left a window where the new PTE could be loaded into
3431 * some TLBs while the old PTE remains in others.
3433 ptep_clear_flush(vma, vmf->address, vmf->pte);
3434 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3435 folio_add_lru_vma(new_folio, vma);
3436 BUG_ON(unshare && pte_write(entry));
3437 set_pte_at(mm, vmf->address, vmf->pte, entry);
3438 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3439 if (old_folio) {
3441 * Only after switching the pte to the new page may
3442 * we remove the mapcount here. Otherwise another
3443 * process may come and find the rmap count decremented
3444 * before the pte is switched to the new page, and
3445 * "reuse" the old page writing into it while our pte
3446 * here still points into it and can be read by other
3447 * threads.
3449 * The critical issue is to order this
3450 * folio_remove_rmap_pte() with the ptp_clear_flush
3451 * above. Those stores are ordered by (if nothing else,)
3452 * the barrier present in the atomic_add_negative
3453 * in folio_remove_rmap_pte();
3455 * Then the TLB flush in ptep_clear_flush ensures that
3456 * no process can access the old page before the
3457 * decremented mapcount is visible. And the old page
3458 * cannot be reused until after the decremented
3459 * mapcount is visible. So transitively, TLBs to
3460 * old page will be flushed before it can be reused.
3462 folio_remove_rmap_pte(old_folio, vmf->page, vma);
3465 /* Free the old page.. */
3466 new_folio = old_folio;
3467 page_copied = 1;
3468 pte_unmap_unlock(vmf->pte, vmf->ptl);
3469 } else if (vmf->pte) {
3470 update_mmu_tlb(vma, vmf->address, vmf->pte);
3471 pte_unmap_unlock(vmf->pte, vmf->ptl);
3474 mmu_notifier_invalidate_range_end(&range);
3476 if (new_folio)
3477 folio_put(new_folio);
3478 if (old_folio) {
3479 if (page_copied)
3480 free_swap_cache(old_folio);
3481 folio_put(old_folio);
3484 delayacct_wpcopy_end();
3485 return 0;
3486 oom:
3487 ret = VM_FAULT_OOM;
3488 out:
3489 if (old_folio)
3490 folio_put(old_folio);
3492 delayacct_wpcopy_end();
3493 return ret;
3497 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3498 * writeable once the page is prepared
3500 * @vmf: structure describing the fault
3501 * @folio: the folio of vmf->page
3503 * This function handles all that is needed to finish a write page fault in a
3504 * shared mapping due to PTE being read-only once the mapped page is prepared.
3505 * It handles locking of PTE and modifying it.
3507 * The function expects the page to be locked or other protection against
3508 * concurrent faults / writeback (such as DAX radix tree locks).
3510 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3511 * we acquired PTE lock.
3513 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3515 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3516 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3517 &vmf->ptl);
3518 if (!vmf->pte)
3519 return VM_FAULT_NOPAGE;
3521 * We might have raced with another page fault while we released the
3522 * pte_offset_map_lock.
3524 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3525 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3526 pte_unmap_unlock(vmf->pte, vmf->ptl);
3527 return VM_FAULT_NOPAGE;
3529 wp_page_reuse(vmf, folio);
3530 return 0;
3534 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3535 * mapping
3537 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3539 struct vm_area_struct *vma = vmf->vma;
3541 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3542 vm_fault_t ret;
3544 pte_unmap_unlock(vmf->pte, vmf->ptl);
3545 ret = vmf_can_call_fault(vmf);
3546 if (ret)
3547 return ret;
3549 vmf->flags |= FAULT_FLAG_MKWRITE;
3550 ret = vma->vm_ops->pfn_mkwrite(vmf);
3551 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3552 return ret;
3553 return finish_mkwrite_fault(vmf, NULL);
3555 wp_page_reuse(vmf, NULL);
3556 return 0;
3559 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3560 __releases(vmf->ptl)
3562 struct vm_area_struct *vma = vmf->vma;
3563 vm_fault_t ret = 0;
3565 folio_get(folio);
3567 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3568 vm_fault_t tmp;
3570 pte_unmap_unlock(vmf->pte, vmf->ptl);
3571 tmp = vmf_can_call_fault(vmf);
3572 if (tmp) {
3573 folio_put(folio);
3574 return tmp;
3577 tmp = do_page_mkwrite(vmf, folio);
3578 if (unlikely(!tmp || (tmp &
3579 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3580 folio_put(folio);
3581 return tmp;
3583 tmp = finish_mkwrite_fault(vmf, folio);
3584 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3585 folio_unlock(folio);
3586 folio_put(folio);
3587 return tmp;
3589 } else {
3590 wp_page_reuse(vmf, folio);
3591 folio_lock(folio);
3593 ret |= fault_dirty_shared_page(vmf);
3594 folio_put(folio);
3596 return ret;
3599 static bool wp_can_reuse_anon_folio(struct folio *folio,
3600 struct vm_area_struct *vma)
3603 * We could currently only reuse a subpage of a large folio if no
3604 * other subpages of the large folios are still mapped. However,
3605 * let's just consistently not reuse subpages even if we could
3606 * reuse in that scenario, and give back a large folio a bit
3607 * sooner.
3609 if (folio_test_large(folio))
3610 return false;
3613 * We have to verify under folio lock: these early checks are
3614 * just an optimization to avoid locking the folio and freeing
3615 * the swapcache if there is little hope that we can reuse.
3617 * KSM doesn't necessarily raise the folio refcount.
3619 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3620 return false;
3621 if (!folio_test_lru(folio))
3623 * We cannot easily detect+handle references from
3624 * remote LRU caches or references to LRU folios.
3626 lru_add_drain();
3627 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3628 return false;
3629 if (!folio_trylock(folio))
3630 return false;
3631 if (folio_test_swapcache(folio))
3632 folio_free_swap(folio);
3633 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3634 folio_unlock(folio);
3635 return false;
3638 * Ok, we've got the only folio reference from our mapping
3639 * and the folio is locked, it's dark out, and we're wearing
3640 * sunglasses. Hit it.
3642 folio_move_anon_rmap(folio, vma);
3643 folio_unlock(folio);
3644 return true;
3648 * This routine handles present pages, when
3649 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3650 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3651 * (FAULT_FLAG_UNSHARE)
3653 * It is done by copying the page to a new address and decrementing the
3654 * shared-page counter for the old page.
3656 * Note that this routine assumes that the protection checks have been
3657 * done by the caller (the low-level page fault routine in most cases).
3658 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3659 * done any necessary COW.
3661 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3662 * though the page will change only once the write actually happens. This
3663 * avoids a few races, and potentially makes it more efficient.
3665 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3666 * but allow concurrent faults), with pte both mapped and locked.
3667 * We return with mmap_lock still held, but pte unmapped and unlocked.
3669 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3670 __releases(vmf->ptl)
3672 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3673 struct vm_area_struct *vma = vmf->vma;
3674 struct folio *folio = NULL;
3675 pte_t pte;
3677 if (likely(!unshare)) {
3678 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3679 if (!userfaultfd_wp_async(vma)) {
3680 pte_unmap_unlock(vmf->pte, vmf->ptl);
3681 return handle_userfault(vmf, VM_UFFD_WP);
3685 * Nothing needed (cache flush, TLB invalidations,
3686 * etc.) because we're only removing the uffd-wp bit,
3687 * which is completely invisible to the user.
3689 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3691 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3693 * Update this to be prepared for following up CoW
3694 * handling
3696 vmf->orig_pte = pte;
3700 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3701 * is flushed in this case before copying.
3703 if (unlikely(userfaultfd_wp(vmf->vma) &&
3704 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3705 flush_tlb_page(vmf->vma, vmf->address);
3708 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3710 if (vmf->page)
3711 folio = page_folio(vmf->page);
3714 * Shared mapping: we are guaranteed to have VM_WRITE and
3715 * FAULT_FLAG_WRITE set at this point.
3717 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3719 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3720 * VM_PFNMAP VMA.
3722 * We should not cow pages in a shared writeable mapping.
3723 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3725 if (!vmf->page)
3726 return wp_pfn_shared(vmf);
3727 return wp_page_shared(vmf, folio);
3731 * Private mapping: create an exclusive anonymous page copy if reuse
3732 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3734 * If we encounter a page that is marked exclusive, we must reuse
3735 * the page without further checks.
3737 if (folio && folio_test_anon(folio) &&
3738 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3739 if (!PageAnonExclusive(vmf->page))
3740 SetPageAnonExclusive(vmf->page);
3741 if (unlikely(unshare)) {
3742 pte_unmap_unlock(vmf->pte, vmf->ptl);
3743 return 0;
3745 wp_page_reuse(vmf, folio);
3746 return 0;
3749 * Ok, we need to copy. Oh, well..
3751 if (folio)
3752 folio_get(folio);
3754 pte_unmap_unlock(vmf->pte, vmf->ptl);
3755 #ifdef CONFIG_KSM
3756 if (folio && folio_test_ksm(folio))
3757 count_vm_event(COW_KSM);
3758 #endif
3759 return wp_page_copy(vmf);
3762 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3763 unsigned long start_addr, unsigned long end_addr,
3764 struct zap_details *details)
3766 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3769 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3770 pgoff_t first_index,
3771 pgoff_t last_index,
3772 struct zap_details *details)
3774 struct vm_area_struct *vma;
3775 pgoff_t vba, vea, zba, zea;
3777 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3778 vba = vma->vm_pgoff;
3779 vea = vba + vma_pages(vma) - 1;
3780 zba = max(first_index, vba);
3781 zea = min(last_index, vea);
3783 unmap_mapping_range_vma(vma,
3784 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3785 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3786 details);
3791 * unmap_mapping_folio() - Unmap single folio from processes.
3792 * @folio: The locked folio to be unmapped.
3794 * Unmap this folio from any userspace process which still has it mmaped.
3795 * Typically, for efficiency, the range of nearby pages has already been
3796 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3797 * truncation or invalidation holds the lock on a folio, it may find that
3798 * the page has been remapped again: and then uses unmap_mapping_folio()
3799 * to unmap it finally.
3801 void unmap_mapping_folio(struct folio *folio)
3803 struct address_space *mapping = folio->mapping;
3804 struct zap_details details = { };
3805 pgoff_t first_index;
3806 pgoff_t last_index;
3808 VM_BUG_ON(!folio_test_locked(folio));
3810 first_index = folio->index;
3811 last_index = folio_next_index(folio) - 1;
3813 details.even_cows = false;
3814 details.single_folio = folio;
3815 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3817 i_mmap_lock_read(mapping);
3818 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3819 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3820 last_index, &details);
3821 i_mmap_unlock_read(mapping);
3825 * unmap_mapping_pages() - Unmap pages from processes.
3826 * @mapping: The address space containing pages to be unmapped.
3827 * @start: Index of first page to be unmapped.
3828 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3829 * @even_cows: Whether to unmap even private COWed pages.
3831 * Unmap the pages in this address space from any userspace process which
3832 * has them mmaped. Generally, you want to remove COWed pages as well when
3833 * a file is being truncated, but not when invalidating pages from the page
3834 * cache.
3836 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3837 pgoff_t nr, bool even_cows)
3839 struct zap_details details = { };
3840 pgoff_t first_index = start;
3841 pgoff_t last_index = start + nr - 1;
3843 details.even_cows = even_cows;
3844 if (last_index < first_index)
3845 last_index = ULONG_MAX;
3847 i_mmap_lock_read(mapping);
3848 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3849 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3850 last_index, &details);
3851 i_mmap_unlock_read(mapping);
3853 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3856 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3857 * address_space corresponding to the specified byte range in the underlying
3858 * file.
3860 * @mapping: the address space containing mmaps to be unmapped.
3861 * @holebegin: byte in first page to unmap, relative to the start of
3862 * the underlying file. This will be rounded down to a PAGE_SIZE
3863 * boundary. Note that this is different from truncate_pagecache(), which
3864 * must keep the partial page. In contrast, we must get rid of
3865 * partial pages.
3866 * @holelen: size of prospective hole in bytes. This will be rounded
3867 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3868 * end of the file.
3869 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3870 * but 0 when invalidating pagecache, don't throw away private data.
3872 void unmap_mapping_range(struct address_space *mapping,
3873 loff_t const holebegin, loff_t const holelen, int even_cows)
3875 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3876 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3878 /* Check for overflow. */
3879 if (sizeof(holelen) > sizeof(hlen)) {
3880 long long holeend =
3881 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3882 if (holeend & ~(long long)ULONG_MAX)
3883 hlen = ULONG_MAX - hba + 1;
3886 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3888 EXPORT_SYMBOL(unmap_mapping_range);
3891 * Restore a potential device exclusive pte to a working pte entry
3893 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3895 struct folio *folio = page_folio(vmf->page);
3896 struct vm_area_struct *vma = vmf->vma;
3897 struct mmu_notifier_range range;
3898 vm_fault_t ret;
3901 * We need a reference to lock the folio because we don't hold
3902 * the PTL so a racing thread can remove the device-exclusive
3903 * entry and unmap it. If the folio is free the entry must
3904 * have been removed already. If it happens to have already
3905 * been re-allocated after being freed all we do is lock and
3906 * unlock it.
3908 if (!folio_try_get(folio))
3909 return 0;
3911 ret = folio_lock_or_retry(folio, vmf);
3912 if (ret) {
3913 folio_put(folio);
3914 return ret;
3916 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3917 vma->vm_mm, vmf->address & PAGE_MASK,
3918 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3919 mmu_notifier_invalidate_range_start(&range);
3921 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3922 &vmf->ptl);
3923 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3924 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3926 if (vmf->pte)
3927 pte_unmap_unlock(vmf->pte, vmf->ptl);
3928 folio_unlock(folio);
3929 folio_put(folio);
3931 mmu_notifier_invalidate_range_end(&range);
3932 return 0;
3935 static inline bool should_try_to_free_swap(struct folio *folio,
3936 struct vm_area_struct *vma,
3937 unsigned int fault_flags)
3939 if (!folio_test_swapcache(folio))
3940 return false;
3941 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3942 folio_test_mlocked(folio))
3943 return true;
3945 * If we want to map a page that's in the swapcache writable, we
3946 * have to detect via the refcount if we're really the exclusive
3947 * user. Try freeing the swapcache to get rid of the swapcache
3948 * reference only in case it's likely that we'll be the exlusive user.
3950 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3951 folio_ref_count(folio) == (1 + folio_nr_pages(folio));
3954 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3956 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3957 vmf->address, &vmf->ptl);
3958 if (!vmf->pte)
3959 return 0;
3961 * Be careful so that we will only recover a special uffd-wp pte into a
3962 * none pte. Otherwise it means the pte could have changed, so retry.
3964 * This should also cover the case where e.g. the pte changed
3965 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3966 * So is_pte_marker() check is not enough to safely drop the pte.
3968 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3969 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3970 pte_unmap_unlock(vmf->pte, vmf->ptl);
3971 return 0;
3974 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3976 if (vma_is_anonymous(vmf->vma))
3977 return do_anonymous_page(vmf);
3978 else
3979 return do_fault(vmf);
3983 * This is actually a page-missing access, but with uffd-wp special pte
3984 * installed. It means this pte was wr-protected before being unmapped.
3986 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3989 * Just in case there're leftover special ptes even after the region
3990 * got unregistered - we can simply clear them.
3992 if (unlikely(!userfaultfd_wp(vmf->vma)))
3993 return pte_marker_clear(vmf);
3995 return do_pte_missing(vmf);
3998 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
4000 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
4001 unsigned long marker = pte_marker_get(entry);
4004 * PTE markers should never be empty. If anything weird happened,
4005 * the best thing to do is to kill the process along with its mm.
4007 if (WARN_ON_ONCE(!marker))
4008 return VM_FAULT_SIGBUS;
4010 /* Higher priority than uffd-wp when data corrupted */
4011 if (marker & PTE_MARKER_POISONED)
4012 return VM_FAULT_HWPOISON;
4014 /* Hitting a guard page is always a fatal condition. */
4015 if (marker & PTE_MARKER_GUARD)
4016 return VM_FAULT_SIGSEGV;
4018 if (pte_marker_entry_uffd_wp(entry))
4019 return pte_marker_handle_uffd_wp(vmf);
4021 /* This is an unknown pte marker */
4022 return VM_FAULT_SIGBUS;
4025 static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4027 struct vm_area_struct *vma = vmf->vma;
4028 struct folio *folio;
4029 swp_entry_t entry;
4031 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
4032 if (!folio)
4033 return NULL;
4035 entry = pte_to_swp_entry(vmf->orig_pte);
4036 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4037 GFP_KERNEL, entry)) {
4038 folio_put(folio);
4039 return NULL;
4042 return folio;
4045 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4046 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr)
4048 struct swap_info_struct *si = swp_swap_info(entry);
4049 pgoff_t offset = swp_offset(entry);
4050 int i;
4053 * While allocating a large folio and doing swap_read_folio, which is
4054 * the case the being faulted pte doesn't have swapcache. We need to
4055 * ensure all PTEs have no cache as well, otherwise, we might go to
4056 * swap devices while the content is in swapcache.
4058 for (i = 0; i < max_nr; i++) {
4059 if ((si->swap_map[offset + i] & SWAP_HAS_CACHE))
4060 return i;
4063 return i;
4067 * Check if the PTEs within a range are contiguous swap entries
4068 * and have consistent swapcache, zeromap.
4070 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4072 unsigned long addr;
4073 swp_entry_t entry;
4074 int idx;
4075 pte_t pte;
4077 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4078 idx = (vmf->address - addr) / PAGE_SIZE;
4079 pte = ptep_get(ptep);
4081 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4082 return false;
4083 entry = pte_to_swp_entry(pte);
4084 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4085 return false;
4088 * swap_read_folio() can't handle the case a large folio is hybridly
4089 * from different backends. And they are likely corner cases. Similar
4090 * things might be added once zswap support large folios.
4092 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4093 return false;
4094 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4095 return false;
4097 return true;
4100 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4101 unsigned long addr,
4102 unsigned long orders)
4104 int order, nr;
4106 order = highest_order(orders);
4109 * To swap in a THP with nr pages, we require that its first swap_offset
4110 * is aligned with that number, as it was when the THP was swapped out.
4111 * This helps filter out most invalid entries.
4113 while (orders) {
4114 nr = 1 << order;
4115 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4116 break;
4117 order = next_order(&orders, order);
4120 return orders;
4123 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4125 struct vm_area_struct *vma = vmf->vma;
4126 unsigned long orders;
4127 struct folio *folio;
4128 unsigned long addr;
4129 swp_entry_t entry;
4130 spinlock_t *ptl;
4131 pte_t *pte;
4132 gfp_t gfp;
4133 int order;
4136 * If uffd is active for the vma we need per-page fault fidelity to
4137 * maintain the uffd semantics.
4139 if (unlikely(userfaultfd_armed(vma)))
4140 goto fallback;
4143 * A large swapped out folio could be partially or fully in zswap. We
4144 * lack handling for such cases, so fallback to swapping in order-0
4145 * folio.
4147 if (!zswap_never_enabled())
4148 goto fallback;
4150 entry = pte_to_swp_entry(vmf->orig_pte);
4152 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4153 * and suitable for swapping THP.
4155 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4156 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4157 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4158 orders = thp_swap_suitable_orders(swp_offset(entry),
4159 vmf->address, orders);
4161 if (!orders)
4162 goto fallback;
4164 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4165 vmf->address & PMD_MASK, &ptl);
4166 if (unlikely(!pte))
4167 goto fallback;
4170 * For do_swap_page, find the highest order where the aligned range is
4171 * completely swap entries with contiguous swap offsets.
4173 order = highest_order(orders);
4174 while (orders) {
4175 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4176 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4177 break;
4178 order = next_order(&orders, order);
4181 pte_unmap_unlock(pte, ptl);
4183 /* Try allocating the highest of the remaining orders. */
4184 gfp = vma_thp_gfp_mask(vma);
4185 while (orders) {
4186 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4187 folio = vma_alloc_folio(gfp, order, vma, addr);
4188 if (folio) {
4189 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4190 gfp, entry))
4191 return folio;
4192 folio_put(folio);
4194 order = next_order(&orders, order);
4197 fallback:
4198 return __alloc_swap_folio(vmf);
4200 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
4201 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4203 return __alloc_swap_folio(vmf);
4205 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4207 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
4210 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4211 * but allow concurrent faults), and pte mapped but not yet locked.
4212 * We return with pte unmapped and unlocked.
4214 * We return with the mmap_lock locked or unlocked in the same cases
4215 * as does filemap_fault().
4217 vm_fault_t do_swap_page(struct vm_fault *vmf)
4219 struct vm_area_struct *vma = vmf->vma;
4220 struct folio *swapcache, *folio = NULL;
4221 DECLARE_WAITQUEUE(wait, current);
4222 struct page *page;
4223 struct swap_info_struct *si = NULL;
4224 rmap_t rmap_flags = RMAP_NONE;
4225 bool need_clear_cache = false;
4226 bool exclusive = false;
4227 swp_entry_t entry;
4228 pte_t pte;
4229 vm_fault_t ret = 0;
4230 void *shadow = NULL;
4231 int nr_pages;
4232 unsigned long page_idx;
4233 unsigned long address;
4234 pte_t *ptep;
4236 if (!pte_unmap_same(vmf))
4237 goto out;
4239 entry = pte_to_swp_entry(vmf->orig_pte);
4240 if (unlikely(non_swap_entry(entry))) {
4241 if (is_migration_entry(entry)) {
4242 migration_entry_wait(vma->vm_mm, vmf->pmd,
4243 vmf->address);
4244 } else if (is_device_exclusive_entry(entry)) {
4245 vmf->page = pfn_swap_entry_to_page(entry);
4246 ret = remove_device_exclusive_entry(vmf);
4247 } else if (is_device_private_entry(entry)) {
4248 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4250 * migrate_to_ram is not yet ready to operate
4251 * under VMA lock.
4253 vma_end_read(vma);
4254 ret = VM_FAULT_RETRY;
4255 goto out;
4258 vmf->page = pfn_swap_entry_to_page(entry);
4259 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4260 vmf->address, &vmf->ptl);
4261 if (unlikely(!vmf->pte ||
4262 !pte_same(ptep_get(vmf->pte),
4263 vmf->orig_pte)))
4264 goto unlock;
4267 * Get a page reference while we know the page can't be
4268 * freed.
4270 get_page(vmf->page);
4271 pte_unmap_unlock(vmf->pte, vmf->ptl);
4272 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
4273 put_page(vmf->page);
4274 } else if (is_hwpoison_entry(entry)) {
4275 ret = VM_FAULT_HWPOISON;
4276 } else if (is_pte_marker_entry(entry)) {
4277 ret = handle_pte_marker(vmf);
4278 } else {
4279 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4280 ret = VM_FAULT_SIGBUS;
4282 goto out;
4285 /* Prevent swapoff from happening to us. */
4286 si = get_swap_device(entry);
4287 if (unlikely(!si))
4288 goto out;
4290 folio = swap_cache_get_folio(entry, vma, vmf->address);
4291 if (folio)
4292 page = folio_file_page(folio, swp_offset(entry));
4293 swapcache = folio;
4295 if (!folio) {
4296 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4297 __swap_count(entry) == 1) {
4298 /* skip swapcache */
4299 folio = alloc_swap_folio(vmf);
4300 if (folio) {
4301 __folio_set_locked(folio);
4302 __folio_set_swapbacked(folio);
4304 nr_pages = folio_nr_pages(folio);
4305 if (folio_test_large(folio))
4306 entry.val = ALIGN_DOWN(entry.val, nr_pages);
4308 * Prevent parallel swapin from proceeding with
4309 * the cache flag. Otherwise, another thread
4310 * may finish swapin first, free the entry, and
4311 * swapout reusing the same entry. It's
4312 * undetectable as pte_same() returns true due
4313 * to entry reuse.
4315 if (swapcache_prepare(entry, nr_pages)) {
4317 * Relax a bit to prevent rapid
4318 * repeated page faults.
4320 add_wait_queue(&swapcache_wq, &wait);
4321 schedule_timeout_uninterruptible(1);
4322 remove_wait_queue(&swapcache_wq, &wait);
4323 goto out_page;
4325 need_clear_cache = true;
4327 mem_cgroup_swapin_uncharge_swap(entry, nr_pages);
4329 shadow = get_shadow_from_swap_cache(entry);
4330 if (shadow)
4331 workingset_refault(folio, shadow);
4333 folio_add_lru(folio);
4335 /* To provide entry to swap_read_folio() */
4336 folio->swap = entry;
4337 swap_read_folio(folio, NULL);
4338 folio->private = NULL;
4340 } else {
4341 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4342 vmf);
4343 swapcache = folio;
4346 if (!folio) {
4348 * Back out if somebody else faulted in this pte
4349 * while we released the pte lock.
4351 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4352 vmf->address, &vmf->ptl);
4353 if (likely(vmf->pte &&
4354 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4355 ret = VM_FAULT_OOM;
4356 goto unlock;
4359 /* Had to read the page from swap area: Major fault */
4360 ret = VM_FAULT_MAJOR;
4361 count_vm_event(PGMAJFAULT);
4362 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4363 page = folio_file_page(folio, swp_offset(entry));
4364 } else if (PageHWPoison(page)) {
4366 * hwpoisoned dirty swapcache pages are kept for killing
4367 * owner processes (which may be unknown at hwpoison time)
4369 ret = VM_FAULT_HWPOISON;
4370 goto out_release;
4373 ret |= folio_lock_or_retry(folio, vmf);
4374 if (ret & VM_FAULT_RETRY)
4375 goto out_release;
4377 if (swapcache) {
4379 * Make sure folio_free_swap() or swapoff did not release the
4380 * swapcache from under us. The page pin, and pte_same test
4381 * below, are not enough to exclude that. Even if it is still
4382 * swapcache, we need to check that the page's swap has not
4383 * changed.
4385 if (unlikely(!folio_test_swapcache(folio) ||
4386 page_swap_entry(page).val != entry.val))
4387 goto out_page;
4390 * KSM sometimes has to copy on read faults, for example, if
4391 * page->index of !PageKSM() pages would be nonlinear inside the
4392 * anon VMA -- PageKSM() is lost on actual swapout.
4394 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4395 if (unlikely(!folio)) {
4396 ret = VM_FAULT_OOM;
4397 folio = swapcache;
4398 goto out_page;
4399 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4400 ret = VM_FAULT_HWPOISON;
4401 folio = swapcache;
4402 goto out_page;
4404 if (folio != swapcache)
4405 page = folio_page(folio, 0);
4408 * If we want to map a page that's in the swapcache writable, we
4409 * have to detect via the refcount if we're really the exclusive
4410 * owner. Try removing the extra reference from the local LRU
4411 * caches if required.
4413 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4414 !folio_test_ksm(folio) && !folio_test_lru(folio))
4415 lru_add_drain();
4418 folio_throttle_swaprate(folio, GFP_KERNEL);
4421 * Back out if somebody else already faulted in this pte.
4423 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4424 &vmf->ptl);
4425 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4426 goto out_nomap;
4428 if (unlikely(!folio_test_uptodate(folio))) {
4429 ret = VM_FAULT_SIGBUS;
4430 goto out_nomap;
4433 /* allocated large folios for SWP_SYNCHRONOUS_IO */
4434 if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4435 unsigned long nr = folio_nr_pages(folio);
4436 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4437 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4438 pte_t *folio_ptep = vmf->pte - idx;
4439 pte_t folio_pte = ptep_get(folio_ptep);
4441 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4442 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4443 goto out_nomap;
4445 page_idx = idx;
4446 address = folio_start;
4447 ptep = folio_ptep;
4448 goto check_folio;
4451 nr_pages = 1;
4452 page_idx = 0;
4453 address = vmf->address;
4454 ptep = vmf->pte;
4455 if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4456 int nr = folio_nr_pages(folio);
4457 unsigned long idx = folio_page_idx(folio, page);
4458 unsigned long folio_start = address - idx * PAGE_SIZE;
4459 unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4460 pte_t *folio_ptep;
4461 pte_t folio_pte;
4463 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4464 goto check_folio;
4465 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4466 goto check_folio;
4468 folio_ptep = vmf->pte - idx;
4469 folio_pte = ptep_get(folio_ptep);
4470 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4471 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4472 goto check_folio;
4474 page_idx = idx;
4475 address = folio_start;
4476 ptep = folio_ptep;
4477 nr_pages = nr;
4478 entry = folio->swap;
4479 page = &folio->page;
4482 check_folio:
4484 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4485 * must never point at an anonymous page in the swapcache that is
4486 * PG_anon_exclusive. Sanity check that this holds and especially, that
4487 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4488 * check after taking the PT lock and making sure that nobody
4489 * concurrently faulted in this page and set PG_anon_exclusive.
4491 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4492 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4495 * Check under PT lock (to protect against concurrent fork() sharing
4496 * the swap entry concurrently) for certainly exclusive pages.
4498 if (!folio_test_ksm(folio)) {
4499 exclusive = pte_swp_exclusive(vmf->orig_pte);
4500 if (folio != swapcache) {
4502 * We have a fresh page that is not exposed to the
4503 * swapcache -> certainly exclusive.
4505 exclusive = true;
4506 } else if (exclusive && folio_test_writeback(folio) &&
4507 data_race(si->flags & SWP_STABLE_WRITES)) {
4509 * This is tricky: not all swap backends support
4510 * concurrent page modifications while under writeback.
4512 * So if we stumble over such a page in the swapcache
4513 * we must not set the page exclusive, otherwise we can
4514 * map it writable without further checks and modify it
4515 * while still under writeback.
4517 * For these problematic swap backends, simply drop the
4518 * exclusive marker: this is perfectly fine as we start
4519 * writeback only if we fully unmapped the page and
4520 * there are no unexpected references on the page after
4521 * unmapping succeeded. After fully unmapped, no
4522 * further GUP references (FOLL_GET and FOLL_PIN) can
4523 * appear, so dropping the exclusive marker and mapping
4524 * it only R/O is fine.
4526 exclusive = false;
4531 * Some architectures may have to restore extra metadata to the page
4532 * when reading from swap. This metadata may be indexed by swap entry
4533 * so this must be called before swap_free().
4535 arch_swap_restore(folio_swap(entry, folio), folio);
4538 * Remove the swap entry and conditionally try to free up the swapcache.
4539 * We're already holding a reference on the page but haven't mapped it
4540 * yet.
4542 swap_free_nr(entry, nr_pages);
4543 if (should_try_to_free_swap(folio, vma, vmf->flags))
4544 folio_free_swap(folio);
4546 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4547 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4548 pte = mk_pte(page, vma->vm_page_prot);
4549 if (pte_swp_soft_dirty(vmf->orig_pte))
4550 pte = pte_mksoft_dirty(pte);
4551 if (pte_swp_uffd_wp(vmf->orig_pte))
4552 pte = pte_mkuffd_wp(pte);
4555 * Same logic as in do_wp_page(); however, optimize for pages that are
4556 * certainly not shared either because we just allocated them without
4557 * exposing them to the swapcache or because the swap entry indicates
4558 * exclusivity.
4560 if (!folio_test_ksm(folio) &&
4561 (exclusive || folio_ref_count(folio) == 1)) {
4562 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4563 !pte_needs_soft_dirty_wp(vma, pte)) {
4564 pte = pte_mkwrite(pte, vma);
4565 if (vmf->flags & FAULT_FLAG_WRITE) {
4566 pte = pte_mkdirty(pte);
4567 vmf->flags &= ~FAULT_FLAG_WRITE;
4570 rmap_flags |= RMAP_EXCLUSIVE;
4572 folio_ref_add(folio, nr_pages - 1);
4573 flush_icache_pages(vma, page, nr_pages);
4574 vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4576 /* ksm created a completely new copy */
4577 if (unlikely(folio != swapcache && swapcache)) {
4578 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4579 folio_add_lru_vma(folio, vma);
4580 } else if (!folio_test_anon(folio)) {
4582 * We currently only expect small !anon folios which are either
4583 * fully exclusive or fully shared, or new allocated large
4584 * folios which are fully exclusive. If we ever get large
4585 * folios within swapcache here, we have to be careful.
4587 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
4588 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4589 folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4590 } else {
4591 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4592 rmap_flags);
4595 VM_BUG_ON(!folio_test_anon(folio) ||
4596 (pte_write(pte) && !PageAnonExclusive(page)));
4597 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4598 arch_do_swap_page_nr(vma->vm_mm, vma, address,
4599 pte, pte, nr_pages);
4601 folio_unlock(folio);
4602 if (folio != swapcache && swapcache) {
4604 * Hold the lock to avoid the swap entry to be reused
4605 * until we take the PT lock for the pte_same() check
4606 * (to avoid false positives from pte_same). For
4607 * further safety release the lock after the swap_free
4608 * so that the swap count won't change under a
4609 * parallel locked swapcache.
4611 folio_unlock(swapcache);
4612 folio_put(swapcache);
4615 if (vmf->flags & FAULT_FLAG_WRITE) {
4616 ret |= do_wp_page(vmf);
4617 if (ret & VM_FAULT_ERROR)
4618 ret &= VM_FAULT_ERROR;
4619 goto out;
4622 /* No need to invalidate - it was non-present before */
4623 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4624 unlock:
4625 if (vmf->pte)
4626 pte_unmap_unlock(vmf->pte, vmf->ptl);
4627 out:
4628 /* Clear the swap cache pin for direct swapin after PTL unlock */
4629 if (need_clear_cache) {
4630 swapcache_clear(si, entry, nr_pages);
4631 if (waitqueue_active(&swapcache_wq))
4632 wake_up(&swapcache_wq);
4634 if (si)
4635 put_swap_device(si);
4636 return ret;
4637 out_nomap:
4638 if (vmf->pte)
4639 pte_unmap_unlock(vmf->pte, vmf->ptl);
4640 out_page:
4641 folio_unlock(folio);
4642 out_release:
4643 folio_put(folio);
4644 if (folio != swapcache && swapcache) {
4645 folio_unlock(swapcache);
4646 folio_put(swapcache);
4648 if (need_clear_cache) {
4649 swapcache_clear(si, entry, nr_pages);
4650 if (waitqueue_active(&swapcache_wq))
4651 wake_up(&swapcache_wq);
4653 if (si)
4654 put_swap_device(si);
4655 return ret;
4658 static bool pte_range_none(pte_t *pte, int nr_pages)
4660 int i;
4662 for (i = 0; i < nr_pages; i++) {
4663 if (!pte_none(ptep_get_lockless(pte + i)))
4664 return false;
4667 return true;
4670 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4672 struct vm_area_struct *vma = vmf->vma;
4673 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4674 unsigned long orders;
4675 struct folio *folio;
4676 unsigned long addr;
4677 pte_t *pte;
4678 gfp_t gfp;
4679 int order;
4682 * If uffd is active for the vma we need per-page fault fidelity to
4683 * maintain the uffd semantics.
4685 if (unlikely(userfaultfd_armed(vma)))
4686 goto fallback;
4689 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4690 * for this vma. Then filter out the orders that can't be allocated over
4691 * the faulting address and still be fully contained in the vma.
4693 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4694 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4695 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4697 if (!orders)
4698 goto fallback;
4700 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4701 if (!pte)
4702 return ERR_PTR(-EAGAIN);
4705 * Find the highest order where the aligned range is completely
4706 * pte_none(). Note that all remaining orders will be completely
4707 * pte_none().
4709 order = highest_order(orders);
4710 while (orders) {
4711 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4712 if (pte_range_none(pte + pte_index(addr), 1 << order))
4713 break;
4714 order = next_order(&orders, order);
4717 pte_unmap(pte);
4719 if (!orders)
4720 goto fallback;
4722 /* Try allocating the highest of the remaining orders. */
4723 gfp = vma_thp_gfp_mask(vma);
4724 while (orders) {
4725 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4726 folio = vma_alloc_folio(gfp, order, vma, addr);
4727 if (folio) {
4728 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4729 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4730 folio_put(folio);
4731 goto next;
4733 folio_throttle_swaprate(folio, gfp);
4735 * When a folio is not zeroed during allocation
4736 * (__GFP_ZERO not used), folio_zero_user() is used
4737 * to make sure that the page corresponding to the
4738 * faulting address will be hot in the cache after
4739 * zeroing.
4741 if (!alloc_zeroed())
4742 folio_zero_user(folio, vmf->address);
4743 return folio;
4745 next:
4746 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4747 order = next_order(&orders, order);
4750 fallback:
4751 #endif
4752 return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4756 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4757 * but allow concurrent faults), and pte mapped but not yet locked.
4758 * We return with mmap_lock still held, but pte unmapped and unlocked.
4760 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4762 struct vm_area_struct *vma = vmf->vma;
4763 unsigned long addr = vmf->address;
4764 struct folio *folio;
4765 vm_fault_t ret = 0;
4766 int nr_pages = 1;
4767 pte_t entry;
4769 /* File mapping without ->vm_ops ? */
4770 if (vma->vm_flags & VM_SHARED)
4771 return VM_FAULT_SIGBUS;
4774 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4775 * be distinguished from a transient failure of pte_offset_map().
4777 if (pte_alloc(vma->vm_mm, vmf->pmd))
4778 return VM_FAULT_OOM;
4780 /* Use the zero-page for reads */
4781 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4782 !mm_forbids_zeropage(vma->vm_mm)) {
4783 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4784 vma->vm_page_prot));
4785 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4786 vmf->address, &vmf->ptl);
4787 if (!vmf->pte)
4788 goto unlock;
4789 if (vmf_pte_changed(vmf)) {
4790 update_mmu_tlb(vma, vmf->address, vmf->pte);
4791 goto unlock;
4793 ret = check_stable_address_space(vma->vm_mm);
4794 if (ret)
4795 goto unlock;
4796 /* Deliver the page fault to userland, check inside PT lock */
4797 if (userfaultfd_missing(vma)) {
4798 pte_unmap_unlock(vmf->pte, vmf->ptl);
4799 return handle_userfault(vmf, VM_UFFD_MISSING);
4801 goto setpte;
4804 /* Allocate our own private page. */
4805 ret = vmf_anon_prepare(vmf);
4806 if (ret)
4807 return ret;
4808 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4809 folio = alloc_anon_folio(vmf);
4810 if (IS_ERR(folio))
4811 return 0;
4812 if (!folio)
4813 goto oom;
4815 nr_pages = folio_nr_pages(folio);
4816 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4819 * The memory barrier inside __folio_mark_uptodate makes sure that
4820 * preceding stores to the page contents become visible before
4821 * the set_pte_at() write.
4823 __folio_mark_uptodate(folio);
4825 entry = mk_pte(&folio->page, vma->vm_page_prot);
4826 entry = pte_sw_mkyoung(entry);
4827 if (vma->vm_flags & VM_WRITE)
4828 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4830 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4831 if (!vmf->pte)
4832 goto release;
4833 if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4834 update_mmu_tlb(vma, addr, vmf->pte);
4835 goto release;
4836 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4837 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4838 goto release;
4841 ret = check_stable_address_space(vma->vm_mm);
4842 if (ret)
4843 goto release;
4845 /* Deliver the page fault to userland, check inside PT lock */
4846 if (userfaultfd_missing(vma)) {
4847 pte_unmap_unlock(vmf->pte, vmf->ptl);
4848 folio_put(folio);
4849 return handle_userfault(vmf, VM_UFFD_MISSING);
4852 folio_ref_add(folio, nr_pages - 1);
4853 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4854 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4855 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4856 folio_add_lru_vma(folio, vma);
4857 setpte:
4858 if (vmf_orig_pte_uffd_wp(vmf))
4859 entry = pte_mkuffd_wp(entry);
4860 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4862 /* No need to invalidate - it was non-present before */
4863 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4864 unlock:
4865 if (vmf->pte)
4866 pte_unmap_unlock(vmf->pte, vmf->ptl);
4867 return ret;
4868 release:
4869 folio_put(folio);
4870 goto unlock;
4871 oom:
4872 return VM_FAULT_OOM;
4876 * The mmap_lock must have been held on entry, and may have been
4877 * released depending on flags and vma->vm_ops->fault() return value.
4878 * See filemap_fault() and __lock_page_retry().
4880 static vm_fault_t __do_fault(struct vm_fault *vmf)
4882 struct vm_area_struct *vma = vmf->vma;
4883 struct folio *folio;
4884 vm_fault_t ret;
4887 * Preallocate pte before we take page_lock because this might lead to
4888 * deadlocks for memcg reclaim which waits for pages under writeback:
4889 * lock_page(A)
4890 * SetPageWriteback(A)
4891 * unlock_page(A)
4892 * lock_page(B)
4893 * lock_page(B)
4894 * pte_alloc_one
4895 * shrink_folio_list
4896 * wait_on_page_writeback(A)
4897 * SetPageWriteback(B)
4898 * unlock_page(B)
4899 * # flush A, B to clear the writeback
4901 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4902 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4903 if (!vmf->prealloc_pte)
4904 return VM_FAULT_OOM;
4907 ret = vma->vm_ops->fault(vmf);
4908 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4909 VM_FAULT_DONE_COW)))
4910 return ret;
4912 folio = page_folio(vmf->page);
4913 if (unlikely(PageHWPoison(vmf->page))) {
4914 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4915 if (ret & VM_FAULT_LOCKED) {
4916 if (page_mapped(vmf->page))
4917 unmap_mapping_folio(folio);
4918 /* Retry if a clean folio was removed from the cache. */
4919 if (mapping_evict_folio(folio->mapping, folio))
4920 poisonret = VM_FAULT_NOPAGE;
4921 folio_unlock(folio);
4923 folio_put(folio);
4924 vmf->page = NULL;
4925 return poisonret;
4928 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4929 folio_lock(folio);
4930 else
4931 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4933 return ret;
4936 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4937 static void deposit_prealloc_pte(struct vm_fault *vmf)
4939 struct vm_area_struct *vma = vmf->vma;
4941 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4943 * We are going to consume the prealloc table,
4944 * count that as nr_ptes.
4946 mm_inc_nr_ptes(vma->vm_mm);
4947 vmf->prealloc_pte = NULL;
4950 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4952 struct folio *folio = page_folio(page);
4953 struct vm_area_struct *vma = vmf->vma;
4954 bool write = vmf->flags & FAULT_FLAG_WRITE;
4955 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4956 pmd_t entry;
4957 vm_fault_t ret = VM_FAULT_FALLBACK;
4960 * It is too late to allocate a small folio, we already have a large
4961 * folio in the pagecache: especially s390 KVM cannot tolerate any
4962 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
4963 * PMD mappings if THPs are disabled.
4965 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
4966 return ret;
4968 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4969 return ret;
4971 if (folio_order(folio) != HPAGE_PMD_ORDER)
4972 return ret;
4973 page = &folio->page;
4976 * Just backoff if any subpage of a THP is corrupted otherwise
4977 * the corrupted page may mapped by PMD silently to escape the
4978 * check. This kind of THP just can be PTE mapped. Access to
4979 * the corrupted subpage should trigger SIGBUS as expected.
4981 if (unlikely(folio_test_has_hwpoisoned(folio)))
4982 return ret;
4985 * Archs like ppc64 need additional space to store information
4986 * related to pte entry. Use the preallocated table for that.
4988 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4989 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4990 if (!vmf->prealloc_pte)
4991 return VM_FAULT_OOM;
4994 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4995 if (unlikely(!pmd_none(*vmf->pmd)))
4996 goto out;
4998 flush_icache_pages(vma, page, HPAGE_PMD_NR);
5000 entry = mk_huge_pmd(page, vma->vm_page_prot);
5001 if (write)
5002 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
5004 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
5005 folio_add_file_rmap_pmd(folio, page, vma);
5008 * deposit and withdraw with pmd lock held
5010 if (arch_needs_pgtable_deposit())
5011 deposit_prealloc_pte(vmf);
5013 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
5015 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
5017 /* fault is handled */
5018 ret = 0;
5019 count_vm_event(THP_FILE_MAPPED);
5020 out:
5021 spin_unlock(vmf->ptl);
5022 return ret;
5024 #else
5025 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
5027 return VM_FAULT_FALLBACK;
5029 #endif
5032 * set_pte_range - Set a range of PTEs to point to pages in a folio.
5033 * @vmf: Fault decription.
5034 * @folio: The folio that contains @page.
5035 * @page: The first page to create a PTE for.
5036 * @nr: The number of PTEs to create.
5037 * @addr: The first address to create a PTE for.
5039 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5040 struct page *page, unsigned int nr, unsigned long addr)
5042 struct vm_area_struct *vma = vmf->vma;
5043 bool write = vmf->flags & FAULT_FLAG_WRITE;
5044 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5045 pte_t entry;
5047 flush_icache_pages(vma, page, nr);
5048 entry = mk_pte(page, vma->vm_page_prot);
5050 if (prefault && arch_wants_old_prefaulted_pte())
5051 entry = pte_mkold(entry);
5052 else
5053 entry = pte_sw_mkyoung(entry);
5055 if (write)
5056 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5057 if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5058 entry = pte_mkuffd_wp(entry);
5059 /* copy-on-write page */
5060 if (write && !(vma->vm_flags & VM_SHARED)) {
5061 VM_BUG_ON_FOLIO(nr != 1, folio);
5062 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5063 folio_add_lru_vma(folio, vma);
5064 } else {
5065 folio_add_file_rmap_ptes(folio, page, nr, vma);
5067 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5069 /* no need to invalidate: a not-present page won't be cached */
5070 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5073 static bool vmf_pte_changed(struct vm_fault *vmf)
5075 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5076 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5078 return !pte_none(ptep_get(vmf->pte));
5082 * finish_fault - finish page fault once we have prepared the page to fault
5084 * @vmf: structure describing the fault
5086 * This function handles all that is needed to finish a page fault once the
5087 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5088 * given page, adds reverse page mapping, handles memcg charges and LRU
5089 * addition.
5091 * The function expects the page to be locked and on success it consumes a
5092 * reference of a page being mapped (for the PTE which maps it).
5094 * Return: %0 on success, %VM_FAULT_ code in case of error.
5096 vm_fault_t finish_fault(struct vm_fault *vmf)
5098 struct vm_area_struct *vma = vmf->vma;
5099 struct page *page;
5100 struct folio *folio;
5101 vm_fault_t ret;
5102 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5103 !(vma->vm_flags & VM_SHARED);
5104 int type, nr_pages;
5105 unsigned long addr = vmf->address;
5107 /* Did we COW the page? */
5108 if (is_cow)
5109 page = vmf->cow_page;
5110 else
5111 page = vmf->page;
5114 * check even for read faults because we might have lost our CoWed
5115 * page
5117 if (!(vma->vm_flags & VM_SHARED)) {
5118 ret = check_stable_address_space(vma->vm_mm);
5119 if (ret)
5120 return ret;
5123 if (pmd_none(*vmf->pmd)) {
5124 if (PageTransCompound(page)) {
5125 ret = do_set_pmd(vmf, page);
5126 if (ret != VM_FAULT_FALLBACK)
5127 return ret;
5130 if (vmf->prealloc_pte)
5131 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5132 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5133 return VM_FAULT_OOM;
5136 folio = page_folio(page);
5137 nr_pages = folio_nr_pages(folio);
5140 * Using per-page fault to maintain the uffd semantics, and same
5141 * approach also applies to non-anonymous-shmem faults to avoid
5142 * inflating the RSS of the process.
5144 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma))) {
5145 nr_pages = 1;
5146 } else if (nr_pages > 1) {
5147 pgoff_t idx = folio_page_idx(folio, page);
5148 /* The page offset of vmf->address within the VMA. */
5149 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5150 /* The index of the entry in the pagetable for fault page. */
5151 pgoff_t pte_off = pte_index(vmf->address);
5154 * Fallback to per-page fault in case the folio size in page
5155 * cache beyond the VMA limits and PMD pagetable limits.
5157 if (unlikely(vma_off < idx ||
5158 vma_off + (nr_pages - idx) > vma_pages(vma) ||
5159 pte_off < idx ||
5160 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) {
5161 nr_pages = 1;
5162 } else {
5163 /* Now we can set mappings for the whole large folio. */
5164 addr = vmf->address - idx * PAGE_SIZE;
5165 page = &folio->page;
5169 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5170 addr, &vmf->ptl);
5171 if (!vmf->pte)
5172 return VM_FAULT_NOPAGE;
5174 /* Re-check under ptl */
5175 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5176 update_mmu_tlb(vma, addr, vmf->pte);
5177 ret = VM_FAULT_NOPAGE;
5178 goto unlock;
5179 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5180 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
5181 ret = VM_FAULT_NOPAGE;
5182 goto unlock;
5185 folio_ref_add(folio, nr_pages - 1);
5186 set_pte_range(vmf, folio, page, nr_pages, addr);
5187 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5188 add_mm_counter(vma->vm_mm, type, nr_pages);
5189 ret = 0;
5191 unlock:
5192 pte_unmap_unlock(vmf->pte, vmf->ptl);
5193 return ret;
5196 static unsigned long fault_around_pages __read_mostly =
5197 65536 >> PAGE_SHIFT;
5199 #ifdef CONFIG_DEBUG_FS
5200 static int fault_around_bytes_get(void *data, u64 *val)
5202 *val = fault_around_pages << PAGE_SHIFT;
5203 return 0;
5207 * fault_around_bytes must be rounded down to the nearest page order as it's
5208 * what do_fault_around() expects to see.
5210 static int fault_around_bytes_set(void *data, u64 val)
5212 if (val / PAGE_SIZE > PTRS_PER_PTE)
5213 return -EINVAL;
5216 * The minimum value is 1 page, however this results in no fault-around
5217 * at all. See should_fault_around().
5219 val = max(val, PAGE_SIZE);
5220 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5222 return 0;
5224 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5225 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5227 static int __init fault_around_debugfs(void)
5229 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5230 &fault_around_bytes_fops);
5231 return 0;
5233 late_initcall(fault_around_debugfs);
5234 #endif
5237 * do_fault_around() tries to map few pages around the fault address. The hope
5238 * is that the pages will be needed soon and this will lower the number of
5239 * faults to handle.
5241 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5242 * not ready to be mapped: not up-to-date, locked, etc.
5244 * This function doesn't cross VMA or page table boundaries, in order to call
5245 * map_pages() and acquire a PTE lock only once.
5247 * fault_around_pages defines how many pages we'll try to map.
5248 * do_fault_around() expects it to be set to a power of two less than or equal
5249 * to PTRS_PER_PTE.
5251 * The virtual address of the area that we map is naturally aligned to
5252 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5253 * (and therefore to page order). This way it's easier to guarantee
5254 * that we don't cross page table boundaries.
5256 static vm_fault_t do_fault_around(struct vm_fault *vmf)
5258 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5259 pgoff_t pte_off = pte_index(vmf->address);
5260 /* The page offset of vmf->address within the VMA. */
5261 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5262 pgoff_t from_pte, to_pte;
5263 vm_fault_t ret;
5265 /* The PTE offset of the start address, clamped to the VMA. */
5266 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5267 pte_off - min(pte_off, vma_off));
5269 /* The PTE offset of the end address, clamped to the VMA and PTE. */
5270 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5271 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5273 if (pmd_none(*vmf->pmd)) {
5274 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5275 if (!vmf->prealloc_pte)
5276 return VM_FAULT_OOM;
5279 rcu_read_lock();
5280 ret = vmf->vma->vm_ops->map_pages(vmf,
5281 vmf->pgoff + from_pte - pte_off,
5282 vmf->pgoff + to_pte - pte_off);
5283 rcu_read_unlock();
5285 return ret;
5288 /* Return true if we should do read fault-around, false otherwise */
5289 static inline bool should_fault_around(struct vm_fault *vmf)
5291 /* No ->map_pages? No way to fault around... */
5292 if (!vmf->vma->vm_ops->map_pages)
5293 return false;
5295 if (uffd_disable_fault_around(vmf->vma))
5296 return false;
5298 /* A single page implies no faulting 'around' at all. */
5299 return fault_around_pages > 1;
5302 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5304 vm_fault_t ret = 0;
5305 struct folio *folio;
5308 * Let's call ->map_pages() first and use ->fault() as fallback
5309 * if page by the offset is not ready to be mapped (cold cache or
5310 * something).
5312 if (should_fault_around(vmf)) {
5313 ret = do_fault_around(vmf);
5314 if (ret)
5315 return ret;
5318 ret = vmf_can_call_fault(vmf);
5319 if (ret)
5320 return ret;
5322 ret = __do_fault(vmf);
5323 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5324 return ret;
5326 ret |= finish_fault(vmf);
5327 folio = page_folio(vmf->page);
5328 folio_unlock(folio);
5329 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5330 folio_put(folio);
5331 return ret;
5334 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5336 struct vm_area_struct *vma = vmf->vma;
5337 struct folio *folio;
5338 vm_fault_t ret;
5340 ret = vmf_can_call_fault(vmf);
5341 if (!ret)
5342 ret = vmf_anon_prepare(vmf);
5343 if (ret)
5344 return ret;
5346 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5347 if (!folio)
5348 return VM_FAULT_OOM;
5350 vmf->cow_page = &folio->page;
5352 ret = __do_fault(vmf);
5353 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5354 goto uncharge_out;
5355 if (ret & VM_FAULT_DONE_COW)
5356 return ret;
5358 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5359 ret = VM_FAULT_HWPOISON;
5360 goto unlock;
5362 __folio_mark_uptodate(folio);
5364 ret |= finish_fault(vmf);
5365 unlock:
5366 unlock_page(vmf->page);
5367 put_page(vmf->page);
5368 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5369 goto uncharge_out;
5370 return ret;
5371 uncharge_out:
5372 folio_put(folio);
5373 return ret;
5376 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5378 struct vm_area_struct *vma = vmf->vma;
5379 vm_fault_t ret, tmp;
5380 struct folio *folio;
5382 ret = vmf_can_call_fault(vmf);
5383 if (ret)
5384 return ret;
5386 ret = __do_fault(vmf);
5387 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5388 return ret;
5390 folio = page_folio(vmf->page);
5393 * Check if the backing address space wants to know that the page is
5394 * about to become writable
5396 if (vma->vm_ops->page_mkwrite) {
5397 folio_unlock(folio);
5398 tmp = do_page_mkwrite(vmf, folio);
5399 if (unlikely(!tmp ||
5400 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5401 folio_put(folio);
5402 return tmp;
5406 ret |= finish_fault(vmf);
5407 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5408 VM_FAULT_RETRY))) {
5409 folio_unlock(folio);
5410 folio_put(folio);
5411 return ret;
5414 ret |= fault_dirty_shared_page(vmf);
5415 return ret;
5419 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5420 * but allow concurrent faults).
5421 * The mmap_lock may have been released depending on flags and our
5422 * return value. See filemap_fault() and __folio_lock_or_retry().
5423 * If mmap_lock is released, vma may become invalid (for example
5424 * by other thread calling munmap()).
5426 static vm_fault_t do_fault(struct vm_fault *vmf)
5428 struct vm_area_struct *vma = vmf->vma;
5429 struct mm_struct *vm_mm = vma->vm_mm;
5430 vm_fault_t ret;
5433 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5435 if (!vma->vm_ops->fault) {
5436 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5437 vmf->address, &vmf->ptl);
5438 if (unlikely(!vmf->pte))
5439 ret = VM_FAULT_SIGBUS;
5440 else {
5442 * Make sure this is not a temporary clearing of pte
5443 * by holding ptl and checking again. A R/M/W update
5444 * of pte involves: take ptl, clearing the pte so that
5445 * we don't have concurrent modification by hardware
5446 * followed by an update.
5448 if (unlikely(pte_none(ptep_get(vmf->pte))))
5449 ret = VM_FAULT_SIGBUS;
5450 else
5451 ret = VM_FAULT_NOPAGE;
5453 pte_unmap_unlock(vmf->pte, vmf->ptl);
5455 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
5456 ret = do_read_fault(vmf);
5457 else if (!(vma->vm_flags & VM_SHARED))
5458 ret = do_cow_fault(vmf);
5459 else
5460 ret = do_shared_fault(vmf);
5462 /* preallocated pagetable is unused: free it */
5463 if (vmf->prealloc_pte) {
5464 pte_free(vm_mm, vmf->prealloc_pte);
5465 vmf->prealloc_pte = NULL;
5467 return ret;
5470 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5471 unsigned long addr, int *flags,
5472 bool writable, int *last_cpupid)
5474 struct vm_area_struct *vma = vmf->vma;
5477 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5478 * much anyway since they can be in shared cache state. This misses
5479 * the case where a mapping is writable but the process never writes
5480 * to it but pte_write gets cleared during protection updates and
5481 * pte_dirty has unpredictable behaviour between PTE scan updates,
5482 * background writeback, dirty balancing and application behaviour.
5484 if (!writable)
5485 *flags |= TNF_NO_GROUP;
5488 * Flag if the folio is shared between multiple address spaces. This
5489 * is later used when determining whether to group tasks together
5491 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5492 *flags |= TNF_SHARED;
5494 * For memory tiering mode, cpupid of slow memory page is used
5495 * to record page access time. So use default value.
5497 if (folio_use_access_time(folio))
5498 *last_cpupid = (-1 & LAST_CPUPID_MASK);
5499 else
5500 *last_cpupid = folio_last_cpupid(folio);
5502 /* Record the current PID acceesing VMA */
5503 vma_set_access_pid_bit(vma);
5505 count_vm_numa_event(NUMA_HINT_FAULTS);
5506 #ifdef CONFIG_NUMA_BALANCING
5507 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5508 #endif
5509 if (folio_nid(folio) == numa_node_id()) {
5510 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5511 *flags |= TNF_FAULT_LOCAL;
5514 return mpol_misplaced(folio, vmf, addr);
5517 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5518 unsigned long fault_addr, pte_t *fault_pte,
5519 bool writable)
5521 pte_t pte, old_pte;
5523 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5524 pte = pte_modify(old_pte, vma->vm_page_prot);
5525 pte = pte_mkyoung(pte);
5526 if (writable)
5527 pte = pte_mkwrite(pte, vma);
5528 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5529 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5532 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5533 struct folio *folio, pte_t fault_pte,
5534 bool ignore_writable, bool pte_write_upgrade)
5536 int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5537 unsigned long start, end, addr = vmf->address;
5538 unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5539 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5540 pte_t *start_ptep;
5542 /* Stay within the VMA and within the page table. */
5543 start = max3(addr_start, pt_start, vma->vm_start);
5544 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5545 vma->vm_end);
5546 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5548 /* Restore all PTEs' mapping of the large folio */
5549 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5550 pte_t ptent = ptep_get(start_ptep);
5551 bool writable = false;
5553 if (!pte_present(ptent) || !pte_protnone(ptent))
5554 continue;
5556 if (pfn_folio(pte_pfn(ptent)) != folio)
5557 continue;
5559 if (!ignore_writable) {
5560 ptent = pte_modify(ptent, vma->vm_page_prot);
5561 writable = pte_write(ptent);
5562 if (!writable && pte_write_upgrade &&
5563 can_change_pte_writable(vma, addr, ptent))
5564 writable = true;
5567 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5571 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5573 struct vm_area_struct *vma = vmf->vma;
5574 struct folio *folio = NULL;
5575 int nid = NUMA_NO_NODE;
5576 bool writable = false, ignore_writable = false;
5577 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5578 int last_cpupid;
5579 int target_nid;
5580 pte_t pte, old_pte;
5581 int flags = 0, nr_pages;
5584 * The pte cannot be used safely until we verify, while holding the page
5585 * table lock, that its contents have not changed during fault handling.
5587 spin_lock(vmf->ptl);
5588 /* Read the live PTE from the page tables: */
5589 old_pte = ptep_get(vmf->pte);
5591 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5592 pte_unmap_unlock(vmf->pte, vmf->ptl);
5593 return 0;
5596 pte = pte_modify(old_pte, vma->vm_page_prot);
5599 * Detect now whether the PTE could be writable; this information
5600 * is only valid while holding the PT lock.
5602 writable = pte_write(pte);
5603 if (!writable && pte_write_upgrade &&
5604 can_change_pte_writable(vma, vmf->address, pte))
5605 writable = true;
5607 folio = vm_normal_folio(vma, vmf->address, pte);
5608 if (!folio || folio_is_zone_device(folio))
5609 goto out_map;
5611 nid = folio_nid(folio);
5612 nr_pages = folio_nr_pages(folio);
5614 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
5615 writable, &last_cpupid);
5616 if (target_nid == NUMA_NO_NODE)
5617 goto out_map;
5618 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5619 flags |= TNF_MIGRATE_FAIL;
5620 goto out_map;
5622 /* The folio is isolated and isolation code holds a folio reference. */
5623 pte_unmap_unlock(vmf->pte, vmf->ptl);
5624 writable = false;
5625 ignore_writable = true;
5627 /* Migrate to the requested node */
5628 if (!migrate_misplaced_folio(folio, vma, target_nid)) {
5629 nid = target_nid;
5630 flags |= TNF_MIGRATED;
5631 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5632 return 0;
5635 flags |= TNF_MIGRATE_FAIL;
5636 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5637 vmf->address, &vmf->ptl);
5638 if (unlikely(!vmf->pte))
5639 return 0;
5640 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5641 pte_unmap_unlock(vmf->pte, vmf->ptl);
5642 return 0;
5644 out_map:
5646 * Make it present again, depending on how arch implements
5647 * non-accessible ptes, some can allow access by kernel mode.
5649 if (folio && folio_test_large(folio))
5650 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5651 pte_write_upgrade);
5652 else
5653 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5654 writable);
5655 pte_unmap_unlock(vmf->pte, vmf->ptl);
5657 if (nid != NUMA_NO_NODE)
5658 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5659 return 0;
5662 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5664 struct vm_area_struct *vma = vmf->vma;
5665 if (vma_is_anonymous(vma))
5666 return do_huge_pmd_anonymous_page(vmf);
5667 if (vma->vm_ops->huge_fault)
5668 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5669 return VM_FAULT_FALLBACK;
5672 /* `inline' is required to avoid gcc 4.1.2 build error */
5673 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5675 struct vm_area_struct *vma = vmf->vma;
5676 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5677 vm_fault_t ret;
5679 if (vma_is_anonymous(vma)) {
5680 if (likely(!unshare) &&
5681 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5682 if (userfaultfd_wp_async(vmf->vma))
5683 goto split;
5684 return handle_userfault(vmf, VM_UFFD_WP);
5686 return do_huge_pmd_wp_page(vmf);
5689 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5690 if (vma->vm_ops->huge_fault) {
5691 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5692 if (!(ret & VM_FAULT_FALLBACK))
5693 return ret;
5697 split:
5698 /* COW or write-notify handled on pte level: split pmd. */
5699 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5701 return VM_FAULT_FALLBACK;
5704 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5706 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5707 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5708 struct vm_area_struct *vma = vmf->vma;
5709 /* No support for anonymous transparent PUD pages yet */
5710 if (vma_is_anonymous(vma))
5711 return VM_FAULT_FALLBACK;
5712 if (vma->vm_ops->huge_fault)
5713 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5714 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5715 return VM_FAULT_FALLBACK;
5718 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5720 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5721 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5722 struct vm_area_struct *vma = vmf->vma;
5723 vm_fault_t ret;
5725 /* No support for anonymous transparent PUD pages yet */
5726 if (vma_is_anonymous(vma))
5727 goto split;
5728 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5729 if (vma->vm_ops->huge_fault) {
5730 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5731 if (!(ret & VM_FAULT_FALLBACK))
5732 return ret;
5735 split:
5736 /* COW or write-notify not handled on PUD level: split pud.*/
5737 __split_huge_pud(vma, vmf->pud, vmf->address);
5738 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5739 return VM_FAULT_FALLBACK;
5743 * These routines also need to handle stuff like marking pages dirty
5744 * and/or accessed for architectures that don't do it in hardware (most
5745 * RISC architectures). The early dirtying is also good on the i386.
5747 * There is also a hook called "update_mmu_cache()" that architectures
5748 * with external mmu caches can use to update those (ie the Sparc or
5749 * PowerPC hashed page tables that act as extended TLBs).
5751 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5752 * concurrent faults).
5754 * The mmap_lock may have been released depending on flags and our return value.
5755 * See filemap_fault() and __folio_lock_or_retry().
5757 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5759 pte_t entry;
5761 if (unlikely(pmd_none(*vmf->pmd))) {
5763 * Leave __pte_alloc() until later: because vm_ops->fault may
5764 * want to allocate huge page, and if we expose page table
5765 * for an instant, it will be difficult to retract from
5766 * concurrent faults and from rmap lookups.
5768 vmf->pte = NULL;
5769 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5770 } else {
5771 pmd_t dummy_pmdval;
5774 * A regular pmd is established and it can't morph into a huge
5775 * pmd by anon khugepaged, since that takes mmap_lock in write
5776 * mode; but shmem or file collapse to THP could still morph
5777 * it into a huge pmd: just retry later if so.
5779 * Use the maywrite version to indicate that vmf->pte may be
5780 * modified, but since we will use pte_same() to detect the
5781 * change of the !pte_none() entry, there is no need to recheck
5782 * the pmdval. Here we chooes to pass a dummy variable instead
5783 * of NULL, which helps new user think about why this place is
5784 * special.
5786 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
5787 vmf->address, &dummy_pmdval,
5788 &vmf->ptl);
5789 if (unlikely(!vmf->pte))
5790 return 0;
5791 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5792 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5794 if (pte_none(vmf->orig_pte)) {
5795 pte_unmap(vmf->pte);
5796 vmf->pte = NULL;
5800 if (!vmf->pte)
5801 return do_pte_missing(vmf);
5803 if (!pte_present(vmf->orig_pte))
5804 return do_swap_page(vmf);
5806 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5807 return do_numa_page(vmf);
5809 spin_lock(vmf->ptl);
5810 entry = vmf->orig_pte;
5811 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5812 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5813 goto unlock;
5815 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5816 if (!pte_write(entry))
5817 return do_wp_page(vmf);
5818 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5819 entry = pte_mkdirty(entry);
5821 entry = pte_mkyoung(entry);
5822 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5823 vmf->flags & FAULT_FLAG_WRITE)) {
5824 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5825 vmf->pte, 1);
5826 } else {
5827 /* Skip spurious TLB flush for retried page fault */
5828 if (vmf->flags & FAULT_FLAG_TRIED)
5829 goto unlock;
5831 * This is needed only for protection faults but the arch code
5832 * is not yet telling us if this is a protection fault or not.
5833 * This still avoids useless tlb flushes for .text page faults
5834 * with threads.
5836 if (vmf->flags & FAULT_FLAG_WRITE)
5837 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5838 vmf->pte);
5840 unlock:
5841 pte_unmap_unlock(vmf->pte, vmf->ptl);
5842 return 0;
5846 * On entry, we hold either the VMA lock or the mmap_lock
5847 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5848 * the result, the mmap_lock is not held on exit. See filemap_fault()
5849 * and __folio_lock_or_retry().
5851 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5852 unsigned long address, unsigned int flags)
5854 struct vm_fault vmf = {
5855 .vma = vma,
5856 .address = address & PAGE_MASK,
5857 .real_address = address,
5858 .flags = flags,
5859 .pgoff = linear_page_index(vma, address),
5860 .gfp_mask = __get_fault_gfp_mask(vma),
5862 struct mm_struct *mm = vma->vm_mm;
5863 unsigned long vm_flags = vma->vm_flags;
5864 pgd_t *pgd;
5865 p4d_t *p4d;
5866 vm_fault_t ret;
5868 pgd = pgd_offset(mm, address);
5869 p4d = p4d_alloc(mm, pgd, address);
5870 if (!p4d)
5871 return VM_FAULT_OOM;
5873 vmf.pud = pud_alloc(mm, p4d, address);
5874 if (!vmf.pud)
5875 return VM_FAULT_OOM;
5876 retry_pud:
5877 if (pud_none(*vmf.pud) &&
5878 thp_vma_allowable_order(vma, vm_flags,
5879 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5880 ret = create_huge_pud(&vmf);
5881 if (!(ret & VM_FAULT_FALLBACK))
5882 return ret;
5883 } else {
5884 pud_t orig_pud = *vmf.pud;
5886 barrier();
5887 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5890 * TODO once we support anonymous PUDs: NUMA case and
5891 * FAULT_FLAG_UNSHARE handling.
5893 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5894 ret = wp_huge_pud(&vmf, orig_pud);
5895 if (!(ret & VM_FAULT_FALLBACK))
5896 return ret;
5897 } else {
5898 huge_pud_set_accessed(&vmf, orig_pud);
5899 return 0;
5904 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5905 if (!vmf.pmd)
5906 return VM_FAULT_OOM;
5908 /* Huge pud page fault raced with pmd_alloc? */
5909 if (pud_trans_unstable(vmf.pud))
5910 goto retry_pud;
5912 if (pmd_none(*vmf.pmd) &&
5913 thp_vma_allowable_order(vma, vm_flags,
5914 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
5915 ret = create_huge_pmd(&vmf);
5916 if (!(ret & VM_FAULT_FALLBACK))
5917 return ret;
5918 } else {
5919 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5921 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5922 VM_BUG_ON(thp_migration_supported() &&
5923 !is_pmd_migration_entry(vmf.orig_pmd));
5924 if (is_pmd_migration_entry(vmf.orig_pmd))
5925 pmd_migration_entry_wait(mm, vmf.pmd);
5926 return 0;
5928 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5929 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5930 return do_huge_pmd_numa_page(&vmf);
5932 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5933 !pmd_write(vmf.orig_pmd)) {
5934 ret = wp_huge_pmd(&vmf);
5935 if (!(ret & VM_FAULT_FALLBACK))
5936 return ret;
5937 } else {
5938 huge_pmd_set_accessed(&vmf);
5939 return 0;
5944 return handle_pte_fault(&vmf);
5948 * mm_account_fault - Do page fault accounting
5949 * @mm: mm from which memcg should be extracted. It can be NULL.
5950 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5951 * of perf event counters, but we'll still do the per-task accounting to
5952 * the task who triggered this page fault.
5953 * @address: the faulted address.
5954 * @flags: the fault flags.
5955 * @ret: the fault retcode.
5957 * This will take care of most of the page fault accounting. Meanwhile, it
5958 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5959 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5960 * still be in per-arch page fault handlers at the entry of page fault.
5962 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5963 unsigned long address, unsigned int flags,
5964 vm_fault_t ret)
5966 bool major;
5968 /* Incomplete faults will be accounted upon completion. */
5969 if (ret & VM_FAULT_RETRY)
5970 return;
5973 * To preserve the behavior of older kernels, PGFAULT counters record
5974 * both successful and failed faults, as opposed to perf counters,
5975 * which ignore failed cases.
5977 count_vm_event(PGFAULT);
5978 count_memcg_event_mm(mm, PGFAULT);
5981 * Do not account for unsuccessful faults (e.g. when the address wasn't
5982 * valid). That includes arch_vma_access_permitted() failing before
5983 * reaching here. So this is not a "this many hardware page faults"
5984 * counter. We should use the hw profiling for that.
5986 if (ret & VM_FAULT_ERROR)
5987 return;
5990 * We define the fault as a major fault when the final successful fault
5991 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5992 * handle it immediately previously).
5994 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5996 if (major)
5997 current->maj_flt++;
5998 else
5999 current->min_flt++;
6002 * If the fault is done for GUP, regs will be NULL. We only do the
6003 * accounting for the per thread fault counters who triggered the
6004 * fault, and we skip the perf event updates.
6006 if (!regs)
6007 return;
6009 if (major)
6010 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
6011 else
6012 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
6015 #ifdef CONFIG_LRU_GEN
6016 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6018 /* the LRU algorithm only applies to accesses with recency */
6019 current->in_lru_fault = vma_has_recency(vma);
6022 static void lru_gen_exit_fault(void)
6024 current->in_lru_fault = false;
6026 #else
6027 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6031 static void lru_gen_exit_fault(void)
6034 #endif /* CONFIG_LRU_GEN */
6036 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6037 unsigned int *flags)
6039 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6040 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6041 return VM_FAULT_SIGSEGV;
6043 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6044 * just treat it like an ordinary read-fault otherwise.
6046 if (!is_cow_mapping(vma->vm_flags))
6047 *flags &= ~FAULT_FLAG_UNSHARE;
6048 } else if (*flags & FAULT_FLAG_WRITE) {
6049 /* Write faults on read-only mappings are impossible ... */
6050 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6051 return VM_FAULT_SIGSEGV;
6052 /* ... and FOLL_FORCE only applies to COW mappings. */
6053 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6054 !is_cow_mapping(vma->vm_flags)))
6055 return VM_FAULT_SIGSEGV;
6057 #ifdef CONFIG_PER_VMA_LOCK
6059 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6060 * the assumption that lock is dropped on VM_FAULT_RETRY.
6062 if (WARN_ON_ONCE((*flags &
6063 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6064 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6065 return VM_FAULT_SIGSEGV;
6066 #endif
6068 return 0;
6072 * By the time we get here, we already hold the mm semaphore
6074 * The mmap_lock may have been released depending on flags and our
6075 * return value. See filemap_fault() and __folio_lock_or_retry().
6077 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6078 unsigned int flags, struct pt_regs *regs)
6080 /* If the fault handler drops the mmap_lock, vma may be freed */
6081 struct mm_struct *mm = vma->vm_mm;
6082 vm_fault_t ret;
6083 bool is_droppable;
6085 __set_current_state(TASK_RUNNING);
6087 ret = sanitize_fault_flags(vma, &flags);
6088 if (ret)
6089 goto out;
6091 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6092 flags & FAULT_FLAG_INSTRUCTION,
6093 flags & FAULT_FLAG_REMOTE)) {
6094 ret = VM_FAULT_SIGSEGV;
6095 goto out;
6098 is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6101 * Enable the memcg OOM handling for faults triggered in user
6102 * space. Kernel faults are handled more gracefully.
6104 if (flags & FAULT_FLAG_USER)
6105 mem_cgroup_enter_user_fault();
6107 lru_gen_enter_fault(vma);
6109 if (unlikely(is_vm_hugetlb_page(vma)))
6110 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6111 else
6112 ret = __handle_mm_fault(vma, address, flags);
6115 * Warning: It is no longer safe to dereference vma-> after this point,
6116 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6117 * vma might be destroyed from underneath us.
6120 lru_gen_exit_fault();
6122 /* If the mapping is droppable, then errors due to OOM aren't fatal. */
6123 if (is_droppable)
6124 ret &= ~VM_FAULT_OOM;
6126 if (flags & FAULT_FLAG_USER) {
6127 mem_cgroup_exit_user_fault();
6129 * The task may have entered a memcg OOM situation but
6130 * if the allocation error was handled gracefully (no
6131 * VM_FAULT_OOM), there is no need to kill anything.
6132 * Just clean up the OOM state peacefully.
6134 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6135 mem_cgroup_oom_synchronize(false);
6137 out:
6138 mm_account_fault(mm, regs, address, flags, ret);
6140 return ret;
6142 EXPORT_SYMBOL_GPL(handle_mm_fault);
6144 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
6145 #include <linux/extable.h>
6147 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6149 if (likely(mmap_read_trylock(mm)))
6150 return true;
6152 if (regs && !user_mode(regs)) {
6153 unsigned long ip = exception_ip(regs);
6154 if (!search_exception_tables(ip))
6155 return false;
6158 return !mmap_read_lock_killable(mm);
6161 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
6164 * We don't have this operation yet.
6166 * It should be easy enough to do: it's basically a
6167 * atomic_long_try_cmpxchg_acquire()
6168 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
6169 * it also needs the proper lockdep magic etc.
6171 return false;
6174 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6176 mmap_read_unlock(mm);
6177 if (regs && !user_mode(regs)) {
6178 unsigned long ip = exception_ip(regs);
6179 if (!search_exception_tables(ip))
6180 return false;
6182 return !mmap_write_lock_killable(mm);
6186 * Helper for page fault handling.
6188 * This is kind of equivalend to "mmap_read_lock()" followed
6189 * by "find_extend_vma()", except it's a lot more careful about
6190 * the locking (and will drop the lock on failure).
6192 * For example, if we have a kernel bug that causes a page
6193 * fault, we don't want to just use mmap_read_lock() to get
6194 * the mm lock, because that would deadlock if the bug were
6195 * to happen while we're holding the mm lock for writing.
6197 * So this checks the exception tables on kernel faults in
6198 * order to only do this all for instructions that are actually
6199 * expected to fault.
6201 * We can also actually take the mm lock for writing if we
6202 * need to extend the vma, which helps the VM layer a lot.
6204 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
6205 unsigned long addr, struct pt_regs *regs)
6207 struct vm_area_struct *vma;
6209 if (!get_mmap_lock_carefully(mm, regs))
6210 return NULL;
6212 vma = find_vma(mm, addr);
6213 if (likely(vma && (vma->vm_start <= addr)))
6214 return vma;
6217 * Well, dang. We might still be successful, but only
6218 * if we can extend a vma to do so.
6220 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
6221 mmap_read_unlock(mm);
6222 return NULL;
6226 * We can try to upgrade the mmap lock atomically,
6227 * in which case we can continue to use the vma
6228 * we already looked up.
6230 * Otherwise we'll have to drop the mmap lock and
6231 * re-take it, and also look up the vma again,
6232 * re-checking it.
6234 if (!mmap_upgrade_trylock(mm)) {
6235 if (!upgrade_mmap_lock_carefully(mm, regs))
6236 return NULL;
6238 vma = find_vma(mm, addr);
6239 if (!vma)
6240 goto fail;
6241 if (vma->vm_start <= addr)
6242 goto success;
6243 if (!(vma->vm_flags & VM_GROWSDOWN))
6244 goto fail;
6247 if (expand_stack_locked(vma, addr))
6248 goto fail;
6250 success:
6251 mmap_write_downgrade(mm);
6252 return vma;
6254 fail:
6255 mmap_write_unlock(mm);
6256 return NULL;
6258 #endif
6260 #ifdef CONFIG_PER_VMA_LOCK
6262 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
6263 * stable and not isolated. If the VMA is not found or is being modified the
6264 * function returns NULL.
6266 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
6267 unsigned long address)
6269 MA_STATE(mas, &mm->mm_mt, address, address);
6270 struct vm_area_struct *vma;
6272 rcu_read_lock();
6273 retry:
6274 vma = mas_walk(&mas);
6275 if (!vma)
6276 goto inval;
6278 if (!vma_start_read(vma))
6279 goto inval;
6281 /* Check if the VMA got isolated after we found it */
6282 if (vma->detached) {
6283 vma_end_read(vma);
6284 count_vm_vma_lock_event(VMA_LOCK_MISS);
6285 /* The area was replaced with another one */
6286 goto retry;
6289 * At this point, we have a stable reference to a VMA: The VMA is
6290 * locked and we know it hasn't already been isolated.
6291 * From here on, we can access the VMA without worrying about which
6292 * fields are accessible for RCU readers.
6295 /* Check since vm_start/vm_end might change before we lock the VMA */
6296 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6297 goto inval_end_read;
6299 rcu_read_unlock();
6300 return vma;
6302 inval_end_read:
6303 vma_end_read(vma);
6304 inval:
6305 rcu_read_unlock();
6306 count_vm_vma_lock_event(VMA_LOCK_ABORT);
6307 return NULL;
6309 #endif /* CONFIG_PER_VMA_LOCK */
6311 #ifndef __PAGETABLE_P4D_FOLDED
6313 * Allocate p4d page table.
6314 * We've already handled the fast-path in-line.
6316 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6318 p4d_t *new = p4d_alloc_one(mm, address);
6319 if (!new)
6320 return -ENOMEM;
6322 spin_lock(&mm->page_table_lock);
6323 if (pgd_present(*pgd)) { /* Another has populated it */
6324 p4d_free(mm, new);
6325 } else {
6326 smp_wmb(); /* See comment in pmd_install() */
6327 pgd_populate(mm, pgd, new);
6329 spin_unlock(&mm->page_table_lock);
6330 return 0;
6332 #endif /* __PAGETABLE_P4D_FOLDED */
6334 #ifndef __PAGETABLE_PUD_FOLDED
6336 * Allocate page upper directory.
6337 * We've already handled the fast-path in-line.
6339 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6341 pud_t *new = pud_alloc_one(mm, address);
6342 if (!new)
6343 return -ENOMEM;
6345 spin_lock(&mm->page_table_lock);
6346 if (!p4d_present(*p4d)) {
6347 mm_inc_nr_puds(mm);
6348 smp_wmb(); /* See comment in pmd_install() */
6349 p4d_populate(mm, p4d, new);
6350 } else /* Another has populated it */
6351 pud_free(mm, new);
6352 spin_unlock(&mm->page_table_lock);
6353 return 0;
6355 #endif /* __PAGETABLE_PUD_FOLDED */
6357 #ifndef __PAGETABLE_PMD_FOLDED
6359 * Allocate page middle directory.
6360 * We've already handled the fast-path in-line.
6362 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6364 spinlock_t *ptl;
6365 pmd_t *new = pmd_alloc_one(mm, address);
6366 if (!new)
6367 return -ENOMEM;
6369 ptl = pud_lock(mm, pud);
6370 if (!pud_present(*pud)) {
6371 mm_inc_nr_pmds(mm);
6372 smp_wmb(); /* See comment in pmd_install() */
6373 pud_populate(mm, pud, new);
6374 } else { /* Another has populated it */
6375 pmd_free(mm, new);
6377 spin_unlock(ptl);
6378 return 0;
6380 #endif /* __PAGETABLE_PMD_FOLDED */
6382 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6383 spinlock_t *lock, pte_t *ptep,
6384 pgprot_t pgprot, unsigned long pfn_base,
6385 unsigned long addr_mask, bool writable,
6386 bool special)
6388 args->lock = lock;
6389 args->ptep = ptep;
6390 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6391 args->pgprot = pgprot;
6392 args->writable = writable;
6393 args->special = special;
6396 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6398 #ifdef CONFIG_LOCKDEP
6399 struct file *file = vma->vm_file;
6400 struct address_space *mapping = file ? file->f_mapping : NULL;
6402 if (mapping)
6403 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
6404 lockdep_is_held(&vma->vm_mm->mmap_lock));
6405 else
6406 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6407 #endif
6411 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6412 * @args: Pointer to struct @follow_pfnmap_args
6414 * The caller needs to setup args->vma and args->address to point to the
6415 * virtual address as the target of such lookup. On a successful return,
6416 * the results will be put into other output fields.
6418 * After the caller finished using the fields, the caller must invoke
6419 * another follow_pfnmap_end() to proper releases the locks and resources
6420 * of such look up request.
6422 * During the start() and end() calls, the results in @args will be valid
6423 * as proper locks will be held. After the end() is called, all the fields
6424 * in @follow_pfnmap_args will be invalid to be further accessed. Further
6425 * use of such information after end() may require proper synchronizations
6426 * by the caller with page table updates, otherwise it can create a
6427 * security bug.
6429 * If the PTE maps a refcounted page, callers are responsible to protect
6430 * against invalidation with MMU notifiers; otherwise access to the PFN at
6431 * a later point in time can trigger use-after-free.
6433 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
6434 * should be taken for read, and the mmap semaphore cannot be released
6435 * before the end() is invoked.
6437 * This function must not be used to modify PTE content.
6439 * Return: zero on success, negative otherwise.
6441 int follow_pfnmap_start(struct follow_pfnmap_args *args)
6443 struct vm_area_struct *vma = args->vma;
6444 unsigned long address = args->address;
6445 struct mm_struct *mm = vma->vm_mm;
6446 spinlock_t *lock;
6447 pgd_t *pgdp;
6448 p4d_t *p4dp, p4d;
6449 pud_t *pudp, pud;
6450 pmd_t *pmdp, pmd;
6451 pte_t *ptep, pte;
6453 pfnmap_lockdep_assert(vma);
6455 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6456 goto out;
6458 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6459 goto out;
6460 retry:
6461 pgdp = pgd_offset(mm, address);
6462 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6463 goto out;
6465 p4dp = p4d_offset(pgdp, address);
6466 p4d = READ_ONCE(*p4dp);
6467 if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6468 goto out;
6470 pudp = pud_offset(p4dp, address);
6471 pud = READ_ONCE(*pudp);
6472 if (pud_none(pud))
6473 goto out;
6474 if (pud_leaf(pud)) {
6475 lock = pud_lock(mm, pudp);
6476 if (!unlikely(pud_leaf(pud))) {
6477 spin_unlock(lock);
6478 goto retry;
6480 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6481 pud_pfn(pud), PUD_MASK, pud_write(pud),
6482 pud_special(pud));
6483 return 0;
6486 pmdp = pmd_offset(pudp, address);
6487 pmd = pmdp_get_lockless(pmdp);
6488 if (pmd_leaf(pmd)) {
6489 lock = pmd_lock(mm, pmdp);
6490 if (!unlikely(pmd_leaf(pmd))) {
6491 spin_unlock(lock);
6492 goto retry;
6494 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6495 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6496 pmd_special(pmd));
6497 return 0;
6500 ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6501 if (!ptep)
6502 goto out;
6503 pte = ptep_get(ptep);
6504 if (!pte_present(pte))
6505 goto unlock;
6506 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6507 pte_pfn(pte), PAGE_MASK, pte_write(pte),
6508 pte_special(pte));
6509 return 0;
6510 unlock:
6511 pte_unmap_unlock(ptep, lock);
6512 out:
6513 return -EINVAL;
6515 EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6518 * follow_pfnmap_end(): End a follow_pfnmap_start() process
6519 * @args: Pointer to struct @follow_pfnmap_args
6521 * Must be used in pair of follow_pfnmap_start(). See the start() function
6522 * above for more information.
6524 void follow_pfnmap_end(struct follow_pfnmap_args *args)
6526 if (args->lock)
6527 spin_unlock(args->lock);
6528 if (args->ptep)
6529 pte_unmap(args->ptep);
6531 EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6533 #ifdef CONFIG_HAVE_IOREMAP_PROT
6535 * generic_access_phys - generic implementation for iomem mmap access
6536 * @vma: the vma to access
6537 * @addr: userspace address, not relative offset within @vma
6538 * @buf: buffer to read/write
6539 * @len: length of transfer
6540 * @write: set to FOLL_WRITE when writing, otherwise reading
6542 * This is a generic implementation for &vm_operations_struct.access for an
6543 * iomem mapping. This callback is used by access_process_vm() when the @vma is
6544 * not page based.
6546 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6547 void *buf, int len, int write)
6549 resource_size_t phys_addr;
6550 unsigned long prot = 0;
6551 void __iomem *maddr;
6552 int offset = offset_in_page(addr);
6553 int ret = -EINVAL;
6554 bool writable;
6555 struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6557 retry:
6558 if (follow_pfnmap_start(&args))
6559 return -EINVAL;
6560 prot = pgprot_val(args.pgprot);
6561 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6562 writable = args.writable;
6563 follow_pfnmap_end(&args);
6565 if ((write & FOLL_WRITE) && !writable)
6566 return -EINVAL;
6568 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6569 if (!maddr)
6570 return -ENOMEM;
6572 if (follow_pfnmap_start(&args))
6573 goto out_unmap;
6575 if ((prot != pgprot_val(args.pgprot)) ||
6576 (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6577 (writable != args.writable)) {
6578 follow_pfnmap_end(&args);
6579 iounmap(maddr);
6580 goto retry;
6583 if (write)
6584 memcpy_toio(maddr + offset, buf, len);
6585 else
6586 memcpy_fromio(buf, maddr + offset, len);
6587 ret = len;
6588 follow_pfnmap_end(&args);
6589 out_unmap:
6590 iounmap(maddr);
6592 return ret;
6594 EXPORT_SYMBOL_GPL(generic_access_phys);
6595 #endif
6598 * Access another process' address space as given in mm.
6600 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6601 void *buf, int len, unsigned int gup_flags)
6603 void *old_buf = buf;
6604 int write = gup_flags & FOLL_WRITE;
6606 if (mmap_read_lock_killable(mm))
6607 return 0;
6609 /* Untag the address before looking up the VMA */
6610 addr = untagged_addr_remote(mm, addr);
6612 /* Avoid triggering the temporary warning in __get_user_pages */
6613 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6614 return 0;
6616 /* ignore errors, just check how much was successfully transferred */
6617 while (len) {
6618 int bytes, offset;
6619 void *maddr;
6620 struct vm_area_struct *vma = NULL;
6621 struct page *page = get_user_page_vma_remote(mm, addr,
6622 gup_flags, &vma);
6624 if (IS_ERR(page)) {
6625 /* We might need to expand the stack to access it */
6626 vma = vma_lookup(mm, addr);
6627 if (!vma) {
6628 vma = expand_stack(mm, addr);
6630 /* mmap_lock was dropped on failure */
6631 if (!vma)
6632 return buf - old_buf;
6634 /* Try again if stack expansion worked */
6635 continue;
6639 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6640 * we can access using slightly different code.
6642 bytes = 0;
6643 #ifdef CONFIG_HAVE_IOREMAP_PROT
6644 if (vma->vm_ops && vma->vm_ops->access)
6645 bytes = vma->vm_ops->access(vma, addr, buf,
6646 len, write);
6647 #endif
6648 if (bytes <= 0)
6649 break;
6650 } else {
6651 bytes = len;
6652 offset = addr & (PAGE_SIZE-1);
6653 if (bytes > PAGE_SIZE-offset)
6654 bytes = PAGE_SIZE-offset;
6656 maddr = kmap_local_page(page);
6657 if (write) {
6658 copy_to_user_page(vma, page, addr,
6659 maddr + offset, buf, bytes);
6660 set_page_dirty_lock(page);
6661 } else {
6662 copy_from_user_page(vma, page, addr,
6663 buf, maddr + offset, bytes);
6665 unmap_and_put_page(page, maddr);
6667 len -= bytes;
6668 buf += bytes;
6669 addr += bytes;
6671 mmap_read_unlock(mm);
6673 return buf - old_buf;
6677 * access_remote_vm - access another process' address space
6678 * @mm: the mm_struct of the target address space
6679 * @addr: start address to access
6680 * @buf: source or destination buffer
6681 * @len: number of bytes to transfer
6682 * @gup_flags: flags modifying lookup behaviour
6684 * The caller must hold a reference on @mm.
6686 * Return: number of bytes copied from source to destination.
6688 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6689 void *buf, int len, unsigned int gup_flags)
6691 return __access_remote_vm(mm, addr, buf, len, gup_flags);
6695 * Access another process' address space.
6696 * Source/target buffer must be kernel space,
6697 * Do not walk the page table directly, use get_user_pages
6699 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6700 void *buf, int len, unsigned int gup_flags)
6702 struct mm_struct *mm;
6703 int ret;
6705 mm = get_task_mm(tsk);
6706 if (!mm)
6707 return 0;
6709 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6711 mmput(mm);
6713 return ret;
6715 EXPORT_SYMBOL_GPL(access_process_vm);
6718 * Print the name of a VMA.
6720 void print_vma_addr(char *prefix, unsigned long ip)
6722 struct mm_struct *mm = current->mm;
6723 struct vm_area_struct *vma;
6726 * we might be running from an atomic context so we cannot sleep
6728 if (!mmap_read_trylock(mm))
6729 return;
6731 vma = vma_lookup(mm, ip);
6732 if (vma && vma->vm_file) {
6733 struct file *f = vma->vm_file;
6734 ip -= vma->vm_start;
6735 ip += vma->vm_pgoff << PAGE_SHIFT;
6736 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6737 vma->vm_start,
6738 vma->vm_end - vma->vm_start);
6740 mmap_read_unlock(mm);
6743 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6744 void __might_fault(const char *file, int line)
6746 if (pagefault_disabled())
6747 return;
6748 __might_sleep(file, line);
6749 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6750 if (current->mm)
6751 might_lock_read(&current->mm->mmap_lock);
6752 #endif
6754 EXPORT_SYMBOL(__might_fault);
6755 #endif
6757 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6759 * Process all subpages of the specified huge page with the specified
6760 * operation. The target subpage will be processed last to keep its
6761 * cache lines hot.
6763 static inline int process_huge_page(
6764 unsigned long addr_hint, unsigned int nr_pages,
6765 int (*process_subpage)(unsigned long addr, int idx, void *arg),
6766 void *arg)
6768 int i, n, base, l, ret;
6769 unsigned long addr = addr_hint &
6770 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6772 /* Process target subpage last to keep its cache lines hot */
6773 might_sleep();
6774 n = (addr_hint - addr) / PAGE_SIZE;
6775 if (2 * n <= nr_pages) {
6776 /* If target subpage in first half of huge page */
6777 base = 0;
6778 l = n;
6779 /* Process subpages at the end of huge page */
6780 for (i = nr_pages - 1; i >= 2 * n; i--) {
6781 cond_resched();
6782 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6783 if (ret)
6784 return ret;
6786 } else {
6787 /* If target subpage in second half of huge page */
6788 base = nr_pages - 2 * (nr_pages - n);
6789 l = nr_pages - n;
6790 /* Process subpages at the begin of huge page */
6791 for (i = 0; i < base; i++) {
6792 cond_resched();
6793 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6794 if (ret)
6795 return ret;
6799 * Process remaining subpages in left-right-left-right pattern
6800 * towards the target subpage
6802 for (i = 0; i < l; i++) {
6803 int left_idx = base + i;
6804 int right_idx = base + 2 * l - 1 - i;
6806 cond_resched();
6807 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6808 if (ret)
6809 return ret;
6810 cond_resched();
6811 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6812 if (ret)
6813 return ret;
6815 return 0;
6818 static void clear_gigantic_page(struct folio *folio, unsigned long addr,
6819 unsigned int nr_pages)
6821 int i;
6823 might_sleep();
6824 for (i = 0; i < nr_pages; i++) {
6825 cond_resched();
6826 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
6830 static int clear_subpage(unsigned long addr, int idx, void *arg)
6832 struct folio *folio = arg;
6834 clear_user_highpage(folio_page(folio, idx), addr);
6835 return 0;
6839 * folio_zero_user - Zero a folio which will be mapped to userspace.
6840 * @folio: The folio to zero.
6841 * @addr_hint: The address will be accessed or the base address if uncelar.
6843 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
6845 unsigned int nr_pages = folio_nr_pages(folio);
6847 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6848 clear_gigantic_page(folio, addr_hint, nr_pages);
6849 else
6850 process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
6853 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6854 unsigned long addr,
6855 struct vm_area_struct *vma,
6856 unsigned int nr_pages)
6858 int i;
6859 struct page *dst_page;
6860 struct page *src_page;
6862 for (i = 0; i < nr_pages; i++) {
6863 dst_page = folio_page(dst, i);
6864 src_page = folio_page(src, i);
6866 cond_resched();
6867 if (copy_mc_user_highpage(dst_page, src_page,
6868 addr + i*PAGE_SIZE, vma))
6869 return -EHWPOISON;
6871 return 0;
6874 struct copy_subpage_arg {
6875 struct folio *dst;
6876 struct folio *src;
6877 struct vm_area_struct *vma;
6880 static int copy_subpage(unsigned long addr, int idx, void *arg)
6882 struct copy_subpage_arg *copy_arg = arg;
6883 struct page *dst = folio_page(copy_arg->dst, idx);
6884 struct page *src = folio_page(copy_arg->src, idx);
6886 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
6887 return -EHWPOISON;
6888 return 0;
6891 int copy_user_large_folio(struct folio *dst, struct folio *src,
6892 unsigned long addr_hint, struct vm_area_struct *vma)
6894 unsigned int nr_pages = folio_nr_pages(dst);
6895 struct copy_subpage_arg arg = {
6896 .dst = dst,
6897 .src = src,
6898 .vma = vma,
6901 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6902 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
6904 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
6907 long copy_folio_from_user(struct folio *dst_folio,
6908 const void __user *usr_src,
6909 bool allow_pagefault)
6911 void *kaddr;
6912 unsigned long i, rc = 0;
6913 unsigned int nr_pages = folio_nr_pages(dst_folio);
6914 unsigned long ret_val = nr_pages * PAGE_SIZE;
6915 struct page *subpage;
6917 for (i = 0; i < nr_pages; i++) {
6918 subpage = folio_page(dst_folio, i);
6919 kaddr = kmap_local_page(subpage);
6920 if (!allow_pagefault)
6921 pagefault_disable();
6922 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6923 if (!allow_pagefault)
6924 pagefault_enable();
6925 kunmap_local(kaddr);
6927 ret_val -= (PAGE_SIZE - rc);
6928 if (rc)
6929 break;
6931 flush_dcache_page(subpage);
6933 cond_resched();
6935 return ret_val;
6937 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6939 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
6941 static struct kmem_cache *page_ptl_cachep;
6943 void __init ptlock_cache_init(void)
6945 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6946 SLAB_PANIC, NULL);
6949 bool ptlock_alloc(struct ptdesc *ptdesc)
6951 spinlock_t *ptl;
6953 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6954 if (!ptl)
6955 return false;
6956 ptdesc->ptl = ptl;
6957 return true;
6960 void ptlock_free(struct ptdesc *ptdesc)
6962 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6964 #endif
6966 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
6968 if (is_vm_hugetlb_page(vma))
6969 hugetlb_vma_lock_read(vma);
6972 void vma_pgtable_walk_end(struct vm_area_struct *vma)
6974 if (is_vm_hugetlb_page(vma))
6975 hugetlb_vma_unlock_read(vma);