1 // SPDX-License-Identifier: GPL-2.0
3 * Device Memory Migration functionality.
5 * Originally written by Jérôme Glisse.
7 #include <linux/export.h>
8 #include <linux/memremap.h>
9 #include <linux/migrate.h>
11 #include <linux/mm_inline.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/oom.h>
14 #include <linux/pagewalk.h>
15 #include <linux/rmap.h>
16 #include <linux/swapops.h>
17 #include <asm/tlbflush.h>
20 static int migrate_vma_collect_skip(unsigned long start
,
24 struct migrate_vma
*migrate
= walk
->private;
27 for (addr
= start
; addr
< end
; addr
+= PAGE_SIZE
) {
28 migrate
->dst
[migrate
->npages
] = 0;
29 migrate
->src
[migrate
->npages
++] = 0;
35 static int migrate_vma_collect_hole(unsigned long start
,
37 __always_unused
int depth
,
40 struct migrate_vma
*migrate
= walk
->private;
43 /* Only allow populating anonymous memory. */
44 if (!vma_is_anonymous(walk
->vma
))
45 return migrate_vma_collect_skip(start
, end
, walk
);
47 for (addr
= start
; addr
< end
; addr
+= PAGE_SIZE
) {
48 migrate
->src
[migrate
->npages
] = MIGRATE_PFN_MIGRATE
;
49 migrate
->dst
[migrate
->npages
] = 0;
57 static int migrate_vma_collect_pmd(pmd_t
*pmdp
,
62 struct migrate_vma
*migrate
= walk
->private;
63 struct vm_area_struct
*vma
= walk
->vma
;
64 struct mm_struct
*mm
= vma
->vm_mm
;
65 unsigned long addr
= start
, unmapped
= 0;
71 return migrate_vma_collect_hole(start
, end
, -1, walk
);
73 if (pmd_trans_huge(*pmdp
)) {
76 ptl
= pmd_lock(mm
, pmdp
);
77 if (unlikely(!pmd_trans_huge(*pmdp
))) {
82 folio
= pmd_folio(*pmdp
);
83 if (is_huge_zero_folio(folio
)) {
85 split_huge_pmd(vma
, pmdp
, addr
);
91 if (unlikely(!folio_trylock(folio
)))
92 return migrate_vma_collect_skip(start
, end
,
94 ret
= split_folio(folio
);
98 return migrate_vma_collect_skip(start
, end
,
103 ptep
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
106 arch_enter_lazy_mmu_mode();
108 for (; addr
< end
; addr
+= PAGE_SIZE
, ptep
++) {
109 unsigned long mpfn
= 0, pfn
;
115 pte
= ptep_get(ptep
);
118 if (vma_is_anonymous(vma
)) {
119 mpfn
= MIGRATE_PFN_MIGRATE
;
125 if (!pte_present(pte
)) {
127 * Only care about unaddressable device page special
128 * page table entry. Other special swap entries are not
129 * migratable, and we ignore regular swapped page.
131 entry
= pte_to_swp_entry(pte
);
132 if (!is_device_private_entry(entry
))
135 page
= pfn_swap_entry_to_page(entry
);
136 if (!(migrate
->flags
&
137 MIGRATE_VMA_SELECT_DEVICE_PRIVATE
) ||
138 page
->pgmap
->owner
!= migrate
->pgmap_owner
)
141 mpfn
= migrate_pfn(page_to_pfn(page
)) |
143 if (is_writable_device_private_entry(entry
))
144 mpfn
|= MIGRATE_PFN_WRITE
;
147 if (is_zero_pfn(pfn
) &&
148 (migrate
->flags
& MIGRATE_VMA_SELECT_SYSTEM
)) {
149 mpfn
= MIGRATE_PFN_MIGRATE
;
153 page
= vm_normal_page(migrate
->vma
, addr
, pte
);
154 if (page
&& !is_zone_device_page(page
) &&
155 !(migrate
->flags
& MIGRATE_VMA_SELECT_SYSTEM
))
157 else if (page
&& is_device_coherent_page(page
) &&
158 (!(migrate
->flags
& MIGRATE_VMA_SELECT_DEVICE_COHERENT
) ||
159 page
->pgmap
->owner
!= migrate
->pgmap_owner
))
161 mpfn
= migrate_pfn(pfn
) | MIGRATE_PFN_MIGRATE
;
162 mpfn
|= pte_write(pte
) ? MIGRATE_PFN_WRITE
: 0;
165 /* FIXME support THP */
166 if (!page
|| !page
->mapping
|| PageTransCompound(page
)) {
172 * By getting a reference on the folio we pin it and that blocks
173 * any kind of migration. Side effect is that it "freezes" the
176 * We drop this reference after isolating the folio from the lru
177 * for non device folio (device folio are not on the lru and thus
178 * can't be dropped from it).
180 folio
= page_folio(page
);
184 * We rely on folio_trylock() to avoid deadlock between
185 * concurrent migrations where each is waiting on the others
186 * folio lock. If we can't immediately lock the folio we fail this
187 * migration as it is only best effort anyway.
189 * If we can lock the folio it's safe to set up a migration entry
190 * now. In the common case where the folio is mapped once in a
191 * single process setting up the migration entry now is an
192 * optimisation to avoid walking the rmap later with
195 if (folio_trylock(folio
)) {
199 flush_cache_page(vma
, addr
, pte_pfn(pte
));
200 anon_exclusive
= folio_test_anon(folio
) &&
201 PageAnonExclusive(page
);
202 if (anon_exclusive
) {
203 pte
= ptep_clear_flush(vma
, addr
, ptep
);
205 if (folio_try_share_anon_rmap_pte(folio
, page
)) {
206 set_pte_at(mm
, addr
, ptep
, pte
);
213 pte
= ptep_get_and_clear(mm
, addr
, ptep
);
218 /* Set the dirty flag on the folio now the pte is gone. */
220 folio_mark_dirty(folio
);
222 /* Setup special migration page table entry */
223 if (mpfn
& MIGRATE_PFN_WRITE
)
224 entry
= make_writable_migration_entry(
226 else if (anon_exclusive
)
227 entry
= make_readable_exclusive_migration_entry(
230 entry
= make_readable_migration_entry(
232 if (pte_present(pte
)) {
234 entry
= make_migration_entry_young(entry
);
236 entry
= make_migration_entry_dirty(entry
);
238 swp_pte
= swp_entry_to_pte(entry
);
239 if (pte_present(pte
)) {
240 if (pte_soft_dirty(pte
))
241 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
242 if (pte_uffd_wp(pte
))
243 swp_pte
= pte_swp_mkuffd_wp(swp_pte
);
245 if (pte_swp_soft_dirty(pte
))
246 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
247 if (pte_swp_uffd_wp(pte
))
248 swp_pte
= pte_swp_mkuffd_wp(swp_pte
);
250 set_pte_at(mm
, addr
, ptep
, swp_pte
);
253 * This is like regular unmap: we remove the rmap and
254 * drop the folio refcount. The folio won't be freed, as
255 * we took a reference just above.
257 folio_remove_rmap_pte(folio
, page
, vma
);
260 if (pte_present(pte
))
268 migrate
->dst
[migrate
->npages
] = 0;
269 migrate
->src
[migrate
->npages
++] = mpfn
;
272 /* Only flush the TLB if we actually modified any entries */
274 flush_tlb_range(walk
->vma
, start
, end
);
276 arch_leave_lazy_mmu_mode();
277 pte_unmap_unlock(ptep
- 1, ptl
);
282 static const struct mm_walk_ops migrate_vma_walk_ops
= {
283 .pmd_entry
= migrate_vma_collect_pmd
,
284 .pte_hole
= migrate_vma_collect_hole
,
285 .walk_lock
= PGWALK_RDLOCK
,
289 * migrate_vma_collect() - collect pages over a range of virtual addresses
290 * @migrate: migrate struct containing all migration information
292 * This will walk the CPU page table. For each virtual address backed by a
293 * valid page, it updates the src array and takes a reference on the page, in
294 * order to pin the page until we lock it and unmap it.
296 static void migrate_vma_collect(struct migrate_vma
*migrate
)
298 struct mmu_notifier_range range
;
301 * Note that the pgmap_owner is passed to the mmu notifier callback so
302 * that the registered device driver can skip invalidating device
303 * private page mappings that won't be migrated.
305 mmu_notifier_range_init_owner(&range
, MMU_NOTIFY_MIGRATE
, 0,
306 migrate
->vma
->vm_mm
, migrate
->start
, migrate
->end
,
307 migrate
->pgmap_owner
);
308 mmu_notifier_invalidate_range_start(&range
);
310 walk_page_range(migrate
->vma
->vm_mm
, migrate
->start
, migrate
->end
,
311 &migrate_vma_walk_ops
, migrate
);
313 mmu_notifier_invalidate_range_end(&range
);
314 migrate
->end
= migrate
->start
+ (migrate
->npages
<< PAGE_SHIFT
);
318 * migrate_vma_check_page() - check if page is pinned or not
319 * @page: struct page to check
321 * Pinned pages cannot be migrated. This is the same test as in
322 * folio_migrate_mapping(), except that here we allow migration of a
325 static bool migrate_vma_check_page(struct page
*page
, struct page
*fault_page
)
327 struct folio
*folio
= page_folio(page
);
330 * One extra ref because caller holds an extra reference, either from
331 * folio_isolate_lru() for a regular folio, or migrate_vma_collect() for
334 int extra
= 1 + (page
== fault_page
);
337 * FIXME support THP (transparent huge page), it is bit more complex to
338 * check them than regular pages, because they can be mapped with a pmd
339 * or with a pte (split pte mapping).
341 if (folio_test_large(folio
))
344 /* Page from ZONE_DEVICE have one extra reference */
345 if (folio_is_zone_device(folio
))
348 /* For file back page */
349 if (folio_mapping(folio
))
350 extra
+= 1 + folio_has_private(folio
);
352 if ((folio_ref_count(folio
) - extra
) > folio_mapcount(folio
))
359 * Unmaps pages for migration. Returns number of source pfns marked as
362 static unsigned long migrate_device_unmap(unsigned long *src_pfns
,
363 unsigned long npages
,
364 struct page
*fault_page
)
366 unsigned long i
, restore
= 0;
367 bool allow_drain
= true;
368 unsigned long unmapped
= 0;
372 for (i
= 0; i
< npages
; i
++) {
373 struct page
*page
= migrate_pfn_to_page(src_pfns
[i
]);
377 if (src_pfns
[i
] & MIGRATE_PFN_MIGRATE
)
382 folio
= page_folio(page
);
383 /* ZONE_DEVICE folios are not on LRU */
384 if (!folio_is_zone_device(folio
)) {
385 if (!folio_test_lru(folio
) && allow_drain
) {
386 /* Drain CPU's lru cache */
391 if (!folio_isolate_lru(folio
)) {
392 src_pfns
[i
] &= ~MIGRATE_PFN_MIGRATE
;
397 /* Drop the reference we took in collect */
401 if (folio_mapped(folio
))
402 try_to_migrate(folio
, 0);
404 if (folio_mapped(folio
) ||
405 !migrate_vma_check_page(page
, fault_page
)) {
406 if (!folio_is_zone_device(folio
)) {
408 folio_putback_lru(folio
);
411 src_pfns
[i
] &= ~MIGRATE_PFN_MIGRATE
;
419 for (i
= 0; i
< npages
&& restore
; i
++) {
420 struct page
*page
= migrate_pfn_to_page(src_pfns
[i
]);
423 if (!page
|| (src_pfns
[i
] & MIGRATE_PFN_MIGRATE
))
426 folio
= page_folio(page
);
427 remove_migration_ptes(folio
, folio
, 0);
439 * migrate_vma_unmap() - replace page mapping with special migration pte entry
440 * @migrate: migrate struct containing all migration information
442 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
443 * special migration pte entry and check if it has been pinned. Pinned pages are
444 * restored because we cannot migrate them.
446 * This is the last step before we call the device driver callback to allocate
447 * destination memory and copy contents of original page over to new page.
449 static void migrate_vma_unmap(struct migrate_vma
*migrate
)
451 migrate
->cpages
= migrate_device_unmap(migrate
->src
, migrate
->npages
,
452 migrate
->fault_page
);
456 * migrate_vma_setup() - prepare to migrate a range of memory
457 * @args: contains the vma, start, and pfns arrays for the migration
459 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
462 * Prepare to migrate a range of memory virtual address range by collecting all
463 * the pages backing each virtual address in the range, saving them inside the
464 * src array. Then lock those pages and unmap them. Once the pages are locked
465 * and unmapped, check whether each page is pinned or not. Pages that aren't
466 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
467 * corresponding src array entry. Then restores any pages that are pinned, by
468 * remapping and unlocking those pages.
470 * The caller should then allocate destination memory and copy source memory to
471 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
472 * flag set). Once these are allocated and copied, the caller must update each
473 * corresponding entry in the dst array with the pfn value of the destination
474 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
477 * Note that the caller does not have to migrate all the pages that are marked
478 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
479 * device memory to system memory. If the caller cannot migrate a device page
480 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
481 * consequences for the userspace process, so it must be avoided if at all
484 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
485 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
486 * allowing the caller to allocate device memory for those unbacked virtual
487 * addresses. For this the caller simply has to allocate device memory and
488 * properly set the destination entry like for regular migration. Note that
489 * this can still fail, and thus inside the device driver you must check if the
490 * migration was successful for those entries after calling migrate_vma_pages(),
491 * just like for regular migration.
493 * After that, the callers must call migrate_vma_pages() to go over each entry
494 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
495 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
496 * then migrate_vma_pages() to migrate struct page information from the source
497 * struct page to the destination struct page. If it fails to migrate the
498 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
501 * At this point all successfully migrated pages have an entry in the src
502 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
503 * array entry with MIGRATE_PFN_VALID flag set.
505 * Once migrate_vma_pages() returns the caller may inspect which pages were
506 * successfully migrated, and which were not. Successfully migrated pages will
507 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
509 * It is safe to update device page table after migrate_vma_pages() because
510 * both destination and source page are still locked, and the mmap_lock is held
511 * in read mode (hence no one can unmap the range being migrated).
513 * Once the caller is done cleaning up things and updating its page table (if it
514 * chose to do so, this is not an obligation) it finally calls
515 * migrate_vma_finalize() to update the CPU page table to point to new pages
516 * for successfully migrated pages or otherwise restore the CPU page table to
517 * point to the original source pages.
519 int migrate_vma_setup(struct migrate_vma
*args
)
521 long nr_pages
= (args
->end
- args
->start
) >> PAGE_SHIFT
;
523 args
->start
&= PAGE_MASK
;
524 args
->end
&= PAGE_MASK
;
525 if (!args
->vma
|| is_vm_hugetlb_page(args
->vma
) ||
526 (args
->vma
->vm_flags
& VM_SPECIAL
) || vma_is_dax(args
->vma
))
530 if (args
->start
< args
->vma
->vm_start
||
531 args
->start
>= args
->vma
->vm_end
)
533 if (args
->end
<= args
->vma
->vm_start
|| args
->end
> args
->vma
->vm_end
)
535 if (!args
->src
|| !args
->dst
)
537 if (args
->fault_page
&& !is_device_private_page(args
->fault_page
))
540 memset(args
->src
, 0, sizeof(*args
->src
) * nr_pages
);
544 migrate_vma_collect(args
);
547 migrate_vma_unmap(args
);
550 * At this point pages are locked and unmapped, and thus they have
551 * stable content and can safely be copied to destination memory that
552 * is allocated by the drivers.
557 EXPORT_SYMBOL(migrate_vma_setup
);
560 * This code closely matches the code in:
561 * __handle_mm_fault()
563 * do_anonymous_page()
564 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
565 * private or coherent page.
567 static void migrate_vma_insert_page(struct migrate_vma
*migrate
,
572 struct folio
*folio
= page_folio(page
);
573 struct vm_area_struct
*vma
= migrate
->vma
;
574 struct mm_struct
*mm
= vma
->vm_mm
;
585 /* Only allow populating anonymous memory */
586 if (!vma_is_anonymous(vma
))
589 pgdp
= pgd_offset(mm
, addr
);
590 p4dp
= p4d_alloc(mm
, pgdp
, addr
);
593 pudp
= pud_alloc(mm
, p4dp
, addr
);
596 pmdp
= pmd_alloc(mm
, pudp
, addr
);
599 if (pmd_trans_huge(*pmdp
) || pmd_devmap(*pmdp
))
601 if (pte_alloc(mm
, pmdp
))
603 if (unlikely(anon_vma_prepare(vma
)))
605 if (mem_cgroup_charge(folio
, vma
->vm_mm
, GFP_KERNEL
))
609 * The memory barrier inside __folio_mark_uptodate makes sure that
610 * preceding stores to the folio contents become visible before
611 * the set_pte_at() write.
613 __folio_mark_uptodate(folio
);
615 if (folio_is_device_private(folio
)) {
616 swp_entry_t swp_entry
;
618 if (vma
->vm_flags
& VM_WRITE
)
619 swp_entry
= make_writable_device_private_entry(
622 swp_entry
= make_readable_device_private_entry(
624 entry
= swp_entry_to_pte(swp_entry
);
626 if (folio_is_zone_device(folio
) &&
627 !folio_is_device_coherent(folio
)) {
628 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
631 entry
= mk_pte(page
, vma
->vm_page_prot
);
632 if (vma
->vm_flags
& VM_WRITE
)
633 entry
= pte_mkwrite(pte_mkdirty(entry
), vma
);
636 ptep
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
639 orig_pte
= ptep_get(ptep
);
641 if (check_stable_address_space(mm
))
644 if (pte_present(orig_pte
)) {
645 unsigned long pfn
= pte_pfn(orig_pte
);
647 if (!is_zero_pfn(pfn
))
650 } else if (!pte_none(orig_pte
))
654 * Check for userfaultfd but do not deliver the fault. Instead,
657 if (userfaultfd_missing(vma
))
660 inc_mm_counter(mm
, MM_ANONPAGES
);
661 folio_add_new_anon_rmap(folio
, vma
, addr
, RMAP_EXCLUSIVE
);
662 if (!folio_is_zone_device(folio
))
663 folio_add_lru_vma(folio
, vma
);
667 flush_cache_page(vma
, addr
, pte_pfn(orig_pte
));
668 ptep_clear_flush(vma
, addr
, ptep
);
670 set_pte_at(mm
, addr
, ptep
, entry
);
671 update_mmu_cache(vma
, addr
, ptep
);
673 pte_unmap_unlock(ptep
, ptl
);
674 *src
= MIGRATE_PFN_MIGRATE
;
678 pte_unmap_unlock(ptep
, ptl
);
680 *src
&= ~MIGRATE_PFN_MIGRATE
;
683 static void __migrate_device_pages(unsigned long *src_pfns
,
684 unsigned long *dst_pfns
, unsigned long npages
,
685 struct migrate_vma
*migrate
)
687 struct mmu_notifier_range range
;
689 bool notified
= false;
691 for (i
= 0; i
< npages
; i
++) {
692 struct page
*newpage
= migrate_pfn_to_page(dst_pfns
[i
]);
693 struct page
*page
= migrate_pfn_to_page(src_pfns
[i
]);
694 struct address_space
*mapping
;
695 struct folio
*newfolio
, *folio
;
696 int r
, extra_cnt
= 0;
699 src_pfns
[i
] &= ~MIGRATE_PFN_MIGRATE
;
706 if (!(src_pfns
[i
] & MIGRATE_PFN_MIGRATE
))
710 * The only time there is no vma is when called from
711 * migrate_device_coherent_folio(). However this isn't
712 * called if the page could not be unmapped.
715 addr
= migrate
->start
+ i
*PAGE_SIZE
;
719 mmu_notifier_range_init_owner(&range
,
720 MMU_NOTIFY_MIGRATE
, 0,
721 migrate
->vma
->vm_mm
, addr
, migrate
->end
,
722 migrate
->pgmap_owner
);
723 mmu_notifier_invalidate_range_start(&range
);
725 migrate_vma_insert_page(migrate
, addr
, newpage
,
730 newfolio
= page_folio(newpage
);
731 folio
= page_folio(page
);
732 mapping
= folio_mapping(folio
);
734 if (folio_is_device_private(newfolio
) ||
735 folio_is_device_coherent(newfolio
)) {
738 * For now only support anonymous memory migrating to
739 * device private or coherent memory.
741 * Try to get rid of swap cache if possible.
743 if (!folio_test_anon(folio
) ||
744 !folio_free_swap(folio
)) {
745 src_pfns
[i
] &= ~MIGRATE_PFN_MIGRATE
;
749 } else if (folio_is_zone_device(newfolio
)) {
751 * Other types of ZONE_DEVICE page are not supported.
753 src_pfns
[i
] &= ~MIGRATE_PFN_MIGRATE
;
757 BUG_ON(folio_test_writeback(folio
));
759 if (migrate
&& migrate
->fault_page
== page
)
761 r
= folio_migrate_mapping(mapping
, newfolio
, folio
, extra_cnt
);
762 if (r
!= MIGRATEPAGE_SUCCESS
)
763 src_pfns
[i
] &= ~MIGRATE_PFN_MIGRATE
;
765 folio_migrate_flags(newfolio
, folio
);
769 mmu_notifier_invalidate_range_end(&range
);
773 * migrate_device_pages() - migrate meta-data from src page to dst page
774 * @src_pfns: src_pfns returned from migrate_device_range()
775 * @dst_pfns: array of pfns allocated by the driver to migrate memory to
776 * @npages: number of pages in the range
778 * Equivalent to migrate_vma_pages(). This is called to migrate struct page
779 * meta-data from source struct page to destination.
781 void migrate_device_pages(unsigned long *src_pfns
, unsigned long *dst_pfns
,
782 unsigned long npages
)
784 __migrate_device_pages(src_pfns
, dst_pfns
, npages
, NULL
);
786 EXPORT_SYMBOL(migrate_device_pages
);
789 * migrate_vma_pages() - migrate meta-data from src page to dst page
790 * @migrate: migrate struct containing all migration information
792 * This migrates struct page meta-data from source struct page to destination
793 * struct page. This effectively finishes the migration from source page to the
796 void migrate_vma_pages(struct migrate_vma
*migrate
)
798 __migrate_device_pages(migrate
->src
, migrate
->dst
, migrate
->npages
, migrate
);
800 EXPORT_SYMBOL(migrate_vma_pages
);
803 * migrate_device_finalize() - complete page migration
804 * @src_pfns: src_pfns returned from migrate_device_range()
805 * @dst_pfns: array of pfns allocated by the driver to migrate memory to
806 * @npages: number of pages in the range
808 * Completes migration of the page by removing special migration entries.
809 * Drivers must ensure copying of page data is complete and visible to the CPU
810 * before calling this.
812 void migrate_device_finalize(unsigned long *src_pfns
,
813 unsigned long *dst_pfns
, unsigned long npages
)
817 for (i
= 0; i
< npages
; i
++) {
818 struct folio
*dst
= NULL
, *src
= NULL
;
819 struct page
*newpage
= migrate_pfn_to_page(dst_pfns
[i
]);
820 struct page
*page
= migrate_pfn_to_page(src_pfns
[i
]);
823 dst
= page_folio(newpage
);
833 src
= page_folio(page
);
835 if (!(src_pfns
[i
] & MIGRATE_PFN_MIGRATE
) || !dst
) {
843 remove_migration_ptes(src
, dst
, 0);
846 if (folio_is_zone_device(src
))
849 folio_putback_lru(src
);
853 if (folio_is_zone_device(dst
))
856 folio_putback_lru(dst
);
860 EXPORT_SYMBOL(migrate_device_finalize
);
863 * migrate_vma_finalize() - restore CPU page table entry
864 * @migrate: migrate struct containing all migration information
866 * This replaces the special migration pte entry with either a mapping to the
867 * new page if migration was successful for that page, or to the original page
870 * This also unlocks the pages and puts them back on the lru, or drops the extra
871 * refcount, for device pages.
873 void migrate_vma_finalize(struct migrate_vma
*migrate
)
875 migrate_device_finalize(migrate
->src
, migrate
->dst
, migrate
->npages
);
877 EXPORT_SYMBOL(migrate_vma_finalize
);
880 * migrate_device_range() - migrate device private pfns to normal memory.
881 * @src_pfns: array large enough to hold migrating source device private pfns.
882 * @start: starting pfn in the range to migrate.
883 * @npages: number of pages to migrate.
885 * migrate_vma_setup() is similar in concept to migrate_vma_setup() except that
886 * instead of looking up pages based on virtual address mappings a range of
887 * device pfns that should be migrated to system memory is used instead.
889 * This is useful when a driver needs to free device memory but doesn't know the
890 * virtual mappings of every page that may be in device memory. For example this
891 * is often the case when a driver is being unloaded or unbound from a device.
893 * Like migrate_vma_setup() this function will take a reference and lock any
894 * migrating pages that aren't free before unmapping them. Drivers may then
895 * allocate destination pages and start copying data from the device to CPU
896 * memory before calling migrate_device_pages().
898 int migrate_device_range(unsigned long *src_pfns
, unsigned long start
,
899 unsigned long npages
)
901 unsigned long i
, pfn
;
903 for (pfn
= start
, i
= 0; i
< npages
; pfn
++, i
++) {
906 folio
= folio_get_nontail_page(pfn_to_page(pfn
));
912 if (!folio_trylock(folio
)) {
918 src_pfns
[i
] = migrate_pfn(pfn
) | MIGRATE_PFN_MIGRATE
;
921 migrate_device_unmap(src_pfns
, npages
, NULL
);
925 EXPORT_SYMBOL(migrate_device_range
);
928 * Migrate a device coherent folio back to normal memory. The caller should have
929 * a reference on folio which will be copied to the new folio if migration is
930 * successful or dropped on failure.
932 int migrate_device_coherent_folio(struct folio
*folio
)
934 unsigned long src_pfn
, dst_pfn
= 0;
935 struct folio
*dfolio
;
937 WARN_ON_ONCE(folio_test_large(folio
));
940 src_pfn
= migrate_pfn(folio_pfn(folio
)) | MIGRATE_PFN_MIGRATE
;
943 * We don't have a VMA and don't need to walk the page tables to find
944 * the source folio. So call migrate_vma_unmap() directly to unmap the
945 * folio as migrate_vma_setup() will fail if args.vma == NULL.
947 migrate_device_unmap(&src_pfn
, 1, NULL
);
948 if (!(src_pfn
& MIGRATE_PFN_MIGRATE
))
951 dfolio
= folio_alloc(GFP_USER
| __GFP_NOWARN
, 0);
954 dst_pfn
= migrate_pfn(folio_pfn(dfolio
));
957 migrate_device_pages(&src_pfn
, &dst_pfn
, 1);
958 if (src_pfn
& MIGRATE_PFN_MIGRATE
)
959 folio_copy(dfolio
, folio
);
960 migrate_device_finalize(&src_pfn
, &dst_pfn
, 1);
962 if (src_pfn
& MIGRATE_PFN_MIGRATE
)