1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/highmem.h>
4 #include <linux/sched.h>
5 #include <linux/hugetlb.h>
6 #include <linux/mmu_context.h>
7 #include <linux/swap.h>
8 #include <linux/swapops.h>
10 #include <asm/tlbflush.h>
15 * We want to know the real level where a entry is located ignoring any
16 * folding of levels which may be happening. For example if p4d is folded then
17 * a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
19 static int real_depth(int depth
)
21 if (depth
== 3 && PTRS_PER_PMD
== 1)
23 if (depth
== 2 && PTRS_PER_PUD
== 1)
25 if (depth
== 1 && PTRS_PER_P4D
== 1)
30 static int walk_pte_range_inner(pte_t
*pte
, unsigned long addr
,
31 unsigned long end
, struct mm_walk
*walk
)
33 const struct mm_walk_ops
*ops
= walk
->ops
;
37 if (ops
->install_pte
&& pte_none(ptep_get(pte
))) {
40 err
= ops
->install_pte(addr
, addr
+ PAGE_SIZE
, &new_pte
,
45 set_pte_at(walk
->mm
, addr
, pte
, new_pte
);
46 /* Non-present before, so for arches that need it. */
47 if (!WARN_ON_ONCE(walk
->no_vma
))
48 update_mmu_cache(walk
->vma
, addr
, pte
);
50 err
= ops
->pte_entry(pte
, addr
, addr
+ PAGE_SIZE
, walk
);
54 if (addr
>= end
- PAGE_SIZE
)
62 static int walk_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
71 * pte_offset_map() might apply user-specific validation.
72 * Indeed, on x86_64 the pmd entries set up by init_espfix_ap()
73 * fit its pmd_bad() check (_PAGE_NX set and _PAGE_RW clear),
74 * and CONFIG_EFI_PGT_DUMP efi_mm goes so far as to walk them.
76 if (walk
->mm
== &init_mm
|| addr
>= TASK_SIZE
)
77 pte
= pte_offset_kernel(pmd
, addr
);
79 pte
= pte_offset_map(pmd
, addr
);
81 err
= walk_pte_range_inner(pte
, addr
, end
, walk
);
82 if (walk
->mm
!= &init_mm
&& addr
< TASK_SIZE
)
86 pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
88 err
= walk_pte_range_inner(pte
, addr
, end
, walk
);
89 pte_unmap_unlock(pte
, ptl
);
93 walk
->action
= ACTION_AGAIN
;
97 static int walk_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
,
102 const struct mm_walk_ops
*ops
= walk
->ops
;
103 bool has_handler
= ops
->pte_entry
;
104 bool has_install
= ops
->install_pte
;
106 int depth
= real_depth(3);
108 pmd
= pmd_offset(pud
, addr
);
111 next
= pmd_addr_end(addr
, end
);
112 if (pmd_none(*pmd
)) {
114 err
= __pte_alloc(walk
->mm
, pmd
);
115 else if (ops
->pte_hole
)
116 err
= ops
->pte_hole(addr
, next
, depth
, walk
);
123 walk
->action
= ACTION_SUBTREE
;
126 * This implies that each ->pmd_entry() handler
127 * needs to know about pmd_trans_huge() pmds
130 err
= ops
->pmd_entry(pmd
, addr
, next
, walk
);
134 if (walk
->action
== ACTION_AGAIN
)
136 if (walk
->action
== ACTION_CONTINUE
)
139 if (!has_handler
) { /* No handlers for lower page tables. */
141 continue; /* Nothing to do. */
143 * We are ONLY installing, so avoid unnecessarily
144 * splitting a present huge page.
146 if (pmd_present(*pmd
) &&
147 (pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)))
152 split_huge_pmd(walk
->vma
, pmd
, addr
);
153 else if (pmd_leaf(*pmd
) || !pmd_present(*pmd
))
154 continue; /* Nothing to do. */
156 err
= walk_pte_range(pmd
, addr
, next
, walk
);
160 if (walk
->action
== ACTION_AGAIN
)
163 } while (pmd
++, addr
= next
, addr
!= end
);
168 static int walk_pud_range(p4d_t
*p4d
, unsigned long addr
, unsigned long end
,
169 struct mm_walk
*walk
)
173 const struct mm_walk_ops
*ops
= walk
->ops
;
174 bool has_handler
= ops
->pmd_entry
|| ops
->pte_entry
;
175 bool has_install
= ops
->install_pte
;
177 int depth
= real_depth(2);
179 pud
= pud_offset(p4d
, addr
);
182 next
= pud_addr_end(addr
, end
);
183 if (pud_none(*pud
)) {
185 err
= __pmd_alloc(walk
->mm
, pud
, addr
);
186 else if (ops
->pte_hole
)
187 err
= ops
->pte_hole(addr
, next
, depth
, walk
);
194 walk
->action
= ACTION_SUBTREE
;
197 err
= ops
->pud_entry(pud
, addr
, next
, walk
);
201 if (walk
->action
== ACTION_AGAIN
)
203 if (walk
->action
== ACTION_CONTINUE
)
206 if (!has_handler
) { /* No handlers for lower page tables. */
208 continue; /* Nothing to do. */
210 * We are ONLY installing, so avoid unnecessarily
211 * splitting a present huge page.
213 if (pud_present(*pud
) &&
214 (pud_trans_huge(*pud
) || pud_devmap(*pud
)))
219 split_huge_pud(walk
->vma
, pud
, addr
);
220 else if (pud_leaf(*pud
) || !pud_present(*pud
))
221 continue; /* Nothing to do. */
226 err
= walk_pmd_range(pud
, addr
, next
, walk
);
229 } while (pud
++, addr
= next
, addr
!= end
);
234 static int walk_p4d_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
,
235 struct mm_walk
*walk
)
239 const struct mm_walk_ops
*ops
= walk
->ops
;
240 bool has_handler
= ops
->pud_entry
|| ops
->pmd_entry
|| ops
->pte_entry
;
241 bool has_install
= ops
->install_pte
;
243 int depth
= real_depth(1);
245 p4d
= p4d_offset(pgd
, addr
);
247 next
= p4d_addr_end(addr
, end
);
248 if (p4d_none_or_clear_bad(p4d
)) {
250 err
= __pud_alloc(walk
->mm
, p4d
, addr
);
251 else if (ops
->pte_hole
)
252 err
= ops
->pte_hole(addr
, next
, depth
, walk
);
258 if (ops
->p4d_entry
) {
259 err
= ops
->p4d_entry(p4d
, addr
, next
, walk
);
263 if (has_handler
|| has_install
)
264 err
= walk_pud_range(p4d
, addr
, next
, walk
);
267 } while (p4d
++, addr
= next
, addr
!= end
);
272 static int walk_pgd_range(unsigned long addr
, unsigned long end
,
273 struct mm_walk
*walk
)
277 const struct mm_walk_ops
*ops
= walk
->ops
;
278 bool has_handler
= ops
->p4d_entry
|| ops
->pud_entry
|| ops
->pmd_entry
||
280 bool has_install
= ops
->install_pte
;
284 pgd
= walk
->pgd
+ pgd_index(addr
);
286 pgd
= pgd_offset(walk
->mm
, addr
);
288 next
= pgd_addr_end(addr
, end
);
289 if (pgd_none_or_clear_bad(pgd
)) {
291 err
= __p4d_alloc(walk
->mm
, pgd
, addr
);
292 else if (ops
->pte_hole
)
293 err
= ops
->pte_hole(addr
, next
, 0, walk
);
299 if (ops
->pgd_entry
) {
300 err
= ops
->pgd_entry(pgd
, addr
, next
, walk
);
304 if (has_handler
|| has_install
)
305 err
= walk_p4d_range(pgd
, addr
, next
, walk
);
308 } while (pgd
++, addr
= next
, addr
!= end
);
313 #ifdef CONFIG_HUGETLB_PAGE
314 static unsigned long hugetlb_entry_end(struct hstate
*h
, unsigned long addr
,
317 unsigned long boundary
= (addr
& huge_page_mask(h
)) + huge_page_size(h
);
318 return boundary
< end
? boundary
: end
;
321 static int walk_hugetlb_range(unsigned long addr
, unsigned long end
,
322 struct mm_walk
*walk
)
324 struct vm_area_struct
*vma
= walk
->vma
;
325 struct hstate
*h
= hstate_vma(vma
);
327 unsigned long hmask
= huge_page_mask(h
);
328 unsigned long sz
= huge_page_size(h
);
330 const struct mm_walk_ops
*ops
= walk
->ops
;
333 hugetlb_vma_lock_read(vma
);
335 next
= hugetlb_entry_end(h
, addr
, end
);
336 pte
= hugetlb_walk(vma
, addr
& hmask
, sz
);
338 err
= ops
->hugetlb_entry(pte
, hmask
, addr
, next
, walk
);
339 else if (ops
->pte_hole
)
340 err
= ops
->pte_hole(addr
, next
, -1, walk
);
343 } while (addr
= next
, addr
!= end
);
344 hugetlb_vma_unlock_read(vma
);
349 #else /* CONFIG_HUGETLB_PAGE */
350 static int walk_hugetlb_range(unsigned long addr
, unsigned long end
,
351 struct mm_walk
*walk
)
356 #endif /* CONFIG_HUGETLB_PAGE */
359 * Decide whether we really walk over the current vma on [@start, @end)
360 * or skip it via the returned value. Return 0 if we do walk over the
361 * current vma, and return 1 if we skip the vma. Negative values means
362 * error, where we abort the current walk.
364 static int walk_page_test(unsigned long start
, unsigned long end
,
365 struct mm_walk
*walk
)
367 struct vm_area_struct
*vma
= walk
->vma
;
368 const struct mm_walk_ops
*ops
= walk
->ops
;
371 return ops
->test_walk(start
, end
, walk
);
374 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
375 * range, so we don't walk over it as we do for normal vmas. However,
376 * Some callers are interested in handling hole range and they don't
377 * want to just ignore any single address range. Such users certainly
378 * define their ->pte_hole() callbacks, so let's delegate them to handle
381 if (vma
->vm_flags
& VM_PFNMAP
) {
384 err
= ops
->pte_hole(start
, end
, -1, walk
);
385 return err
? err
: 1;
390 static int __walk_page_range(unsigned long start
, unsigned long end
,
391 struct mm_walk
*walk
)
394 struct vm_area_struct
*vma
= walk
->vma
;
395 const struct mm_walk_ops
*ops
= walk
->ops
;
396 bool is_hugetlb
= is_vm_hugetlb_page(vma
);
398 /* We do not support hugetlb PTE installation. */
399 if (ops
->install_pte
&& is_hugetlb
)
403 err
= ops
->pre_vma(start
, end
, walk
);
409 if (ops
->hugetlb_entry
)
410 err
= walk_hugetlb_range(start
, end
, walk
);
412 err
= walk_pgd_range(start
, end
, walk
);
420 static inline void process_mm_walk_lock(struct mm_struct
*mm
,
421 enum page_walk_lock walk_lock
)
423 if (walk_lock
== PGWALK_RDLOCK
)
424 mmap_assert_locked(mm
);
426 mmap_assert_write_locked(mm
);
429 static inline void process_vma_walk_lock(struct vm_area_struct
*vma
,
430 enum page_walk_lock walk_lock
)
432 #ifdef CONFIG_PER_VMA_LOCK
435 vma_start_write(vma
);
437 case PGWALK_WRLOCK_VERIFY
:
438 vma_assert_write_locked(vma
);
441 /* PGWALK_RDLOCK is handled by process_mm_walk_lock */
448 * See the comment for walk_page_range(), this performs the heavy lifting of the
449 * operation, only sets no restrictions on how the walk proceeds.
451 * We usually restrict the ability to install PTEs, but this functionality is
452 * available to internal memory management code and provided in mm/internal.h.
454 int walk_page_range_mm(struct mm_struct
*mm
, unsigned long start
,
455 unsigned long end
, const struct mm_walk_ops
*ops
,
460 struct vm_area_struct
*vma
;
461 struct mm_walk walk
= {
473 process_mm_walk_lock(walk
.mm
, ops
->walk_lock
);
475 vma
= find_vma(walk
.mm
, start
);
477 if (!vma
) { /* after the last vma */
481 err
= ops
->pte_hole(start
, next
, -1, &walk
);
482 } else if (start
< vma
->vm_start
) { /* outside vma */
484 next
= min(end
, vma
->vm_start
);
486 err
= ops
->pte_hole(start
, next
, -1, &walk
);
487 } else { /* inside vma */
488 process_vma_walk_lock(vma
, ops
->walk_lock
);
490 next
= min(end
, vma
->vm_end
);
491 vma
= find_vma(mm
, vma
->vm_end
);
493 err
= walk_page_test(start
, next
, &walk
);
496 * positive return values are purely for
497 * controlling the pagewalk, so should never
498 * be passed to the callers.
505 err
= __walk_page_range(start
, next
, &walk
);
509 } while (start
= next
, start
< end
);
514 * Determine if the walk operations specified are permitted to be used for a
517 * This check is performed on all functions which are parameterised by walk
518 * operations and exposed in include/linux/pagewalk.h.
520 * Internal memory management code can use the walk_page_range_mm() function to
521 * be able to use all page walking operations.
523 static bool check_ops_valid(const struct mm_walk_ops
*ops
)
526 * The installation of PTEs is solely under the control of memory
527 * management logic and subject to many subtle locking, security and
528 * cache considerations so we cannot permit other users to do so, and
529 * certainly not for exported symbols.
531 if (ops
->install_pte
)
538 * walk_page_range - walk page table with caller specific callbacks
539 * @mm: mm_struct representing the target process of page table walk
540 * @start: start address of the virtual address range
541 * @end: end address of the virtual address range
542 * @ops: operation to call during the walk
543 * @private: private data for callbacks' usage
545 * Recursively walk the page table tree of the process represented by @mm
546 * within the virtual address range [@start, @end). During walking, we can do
547 * some caller-specific works for each entry, by setting up pmd_entry(),
548 * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
549 * callbacks, the associated entries/pages are just ignored.
550 * The return values of these callbacks are commonly defined like below:
552 * - 0 : succeeded to handle the current entry, and if you don't reach the
553 * end address yet, continue to walk.
554 * - >0 : succeeded to handle the current entry, and return to the caller
555 * with caller specific value.
556 * - <0 : failed to handle the current entry, and return to the caller
559 * Before starting to walk page table, some callers want to check whether
560 * they really want to walk over the current vma, typically by checking
561 * its vm_flags. walk_page_test() and @ops->test_walk() are used for this
564 * If operations need to be staged before and committed after a vma is walked,
565 * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
566 * since it is intended to handle commit-type operations, can't return any
569 * struct mm_walk keeps current values of some common data like vma and pmd,
570 * which are useful for the access from callbacks. If you want to pass some
571 * caller-specific data to callbacks, @private should be helpful.
574 * Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
575 * because these function traverse vma list and/or access to vma's data.
577 int walk_page_range(struct mm_struct
*mm
, unsigned long start
,
578 unsigned long end
, const struct mm_walk_ops
*ops
,
581 if (!check_ops_valid(ops
))
584 return walk_page_range_mm(mm
, start
, end
, ops
, private);
588 * walk_page_range_novma - walk a range of pagetables not backed by a vma
589 * @mm: mm_struct representing the target process of page table walk
590 * @start: start address of the virtual address range
591 * @end: end address of the virtual address range
592 * @ops: operation to call during the walk
593 * @pgd: pgd to walk if different from mm->pgd
594 * @private: private data for callbacks' usage
596 * Similar to walk_page_range() but can walk any page tables even if they are
597 * not backed by VMAs. Because 'unusual' entries may be walked this function
598 * will also not lock the PTEs for the pte_entry() callback. This is useful for
599 * walking the kernel pages tables or page tables for firmware.
601 * Note: Be careful to walk the kernel pages tables, the caller may be need to
602 * take other effective approaches (mmap lock may be insufficient) to prevent
603 * the intermediate kernel page tables belonging to the specified address range
604 * from being freed (e.g. memory hot-remove).
606 int walk_page_range_novma(struct mm_struct
*mm
, unsigned long start
,
607 unsigned long end
, const struct mm_walk_ops
*ops
,
611 struct mm_walk walk
= {
619 if (start
>= end
|| !walk
.mm
)
621 if (!check_ops_valid(ops
))
625 * 1) For walking the user virtual address space:
627 * The mmap lock protects the page walker from changes to the page
628 * tables during the walk. However a read lock is insufficient to
629 * protect those areas which don't have a VMA as munmap() detaches
630 * the VMAs before downgrading to a read lock and actually tearing
631 * down PTEs/page tables. In which case, the mmap write lock should
634 * 2) For walking the kernel virtual address space:
636 * The kernel intermediate page tables usually do not be freed, so
637 * the mmap map read lock is sufficient. But there are some exceptions.
638 * E.g. memory hot-remove. In which case, the mmap lock is insufficient
639 * to prevent the intermediate kernel pages tables belonging to the
640 * specified address range from being freed. The caller should take
641 * other actions to prevent this race.
644 mmap_assert_locked(walk
.mm
);
646 mmap_assert_write_locked(walk
.mm
);
648 return walk_pgd_range(start
, end
, &walk
);
651 int walk_page_range_vma(struct vm_area_struct
*vma
, unsigned long start
,
652 unsigned long end
, const struct mm_walk_ops
*ops
,
655 struct mm_walk walk
= {
662 if (start
>= end
|| !walk
.mm
)
664 if (start
< vma
->vm_start
|| end
> vma
->vm_end
)
666 if (!check_ops_valid(ops
))
669 process_mm_walk_lock(walk
.mm
, ops
->walk_lock
);
670 process_vma_walk_lock(vma
, ops
->walk_lock
);
671 return __walk_page_range(start
, end
, &walk
);
674 int walk_page_vma(struct vm_area_struct
*vma
, const struct mm_walk_ops
*ops
,
677 struct mm_walk walk
= {
686 if (!check_ops_valid(ops
))
689 process_mm_walk_lock(walk
.mm
, ops
->walk_lock
);
690 process_vma_walk_lock(vma
, ops
->walk_lock
);
691 return __walk_page_range(vma
->vm_start
, vma
->vm_end
, &walk
);
695 * walk_page_mapping - walk all memory areas mapped into a struct address_space.
696 * @mapping: Pointer to the struct address_space
697 * @first_index: First page offset in the address_space
698 * @nr: Number of incremental page offsets to cover
699 * @ops: operation to call during the walk
700 * @private: private data for callbacks' usage
702 * This function walks all memory areas mapped into a struct address_space.
703 * The walk is limited to only the given page-size index range, but if
704 * the index boundaries cross a huge page-table entry, that entry will be
707 * Also see walk_page_range() for additional information.
710 * This function can't require that the struct mm_struct::mmap_lock is held,
711 * since @mapping may be mapped by multiple processes. Instead
712 * @mapping->i_mmap_rwsem must be held. This might have implications in the
713 * callbacks, and it's up tho the caller to ensure that the
714 * struct mm_struct::mmap_lock is not needed.
716 * Also this means that a caller can't rely on the struct
717 * vm_area_struct::vm_flags to be constant across a call,
718 * except for immutable flags. Callers requiring this shouldn't use
721 * Return: 0 on success, negative error code on failure, positive number on
722 * caller defined premature termination.
724 int walk_page_mapping(struct address_space
*mapping
, pgoff_t first_index
,
725 pgoff_t nr
, const struct mm_walk_ops
*ops
,
728 struct mm_walk walk
= {
732 struct vm_area_struct
*vma
;
733 pgoff_t vba
, vea
, cba
, cea
;
734 unsigned long start_addr
, end_addr
;
737 if (!check_ops_valid(ops
))
740 lockdep_assert_held(&mapping
->i_mmap_rwsem
);
741 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, first_index
,
742 first_index
+ nr
- 1) {
743 /* Clip to the vma */
745 vea
= vba
+ vma_pages(vma
);
748 cea
= first_index
+ nr
;
751 start_addr
= ((cba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
;
752 end_addr
= ((cea
- vba
) << PAGE_SHIFT
) + vma
->vm_start
;
753 if (start_addr
>= end_addr
)
757 walk
.mm
= vma
->vm_mm
;
759 err
= walk_page_test(vma
->vm_start
, vma
->vm_end
, &walk
);
766 err
= __walk_page_range(start_addr
, end_addr
, &walk
);
775 * folio_walk_start - walk the page tables to a folio
776 * @fw: filled with information on success.
778 * @addr: the virtual address to use for the page table walk.
779 * @flags: flags modifying which folios to walk to.
781 * Walk the page tables using @addr in a given @vma to a mapped folio and
782 * return the folio, making sure that the page table entry referenced by
783 * @addr cannot change until folio_walk_end() was called.
785 * As default, this function returns only folios that are not special (e.g., not
786 * the zeropage) and never returns folios that are supposed to be ignored by the
787 * VM as documented by vm_normal_page(). If requested, zeropages will be
790 * As default, this function only considers present page table entries.
791 * If requested, it will also consider migration entries.
793 * If this function returns NULL it might either indicate "there is nothing" or
794 * "there is nothing suitable".
796 * On success, @fw is filled and the function returns the folio while the PTL
797 * is still held and folio_walk_end() must be called to clean up,
798 * releasing any held locks. The returned folio must *not* be used after the
799 * call to folio_walk_end(), unless a short-term folio reference is taken before
802 * @fw->page will correspond to the page that is effectively referenced by
803 * @addr. However, for migration entries and shared zeropages @fw->page is
804 * set to NULL. Note that large folios might be mapped by multiple page table
805 * entries, and this function will always only lookup a single entry as
806 * specified by @addr, which might or might not cover more than a single page of
807 * the returned folio.
809 * This function must *not* be used as a naive replacement for
810 * get_user_pages() / pin_user_pages(), especially not to perform DMA or
811 * to carelessly modify page content. This function may *only* be used to grab
812 * short-term folio references, never to grab long-term folio references.
814 * Using the page table entry pointers in @fw for reading or modifying the
815 * entry should be avoided where possible: however, there might be valid
818 * WARNING: Modifying page table entries in hugetlb VMAs requires a lot of care.
819 * For example, PMD page table sharing might require prior unsharing. Also,
820 * logical hugetlb entries might span multiple physical page table entries,
821 * which *must* be modified in a single operation (set_huge_pte_at(),
822 * huge_ptep_set_*, ...). Note that the page table entry stored in @fw might
823 * not correspond to the first physical entry of a logical hugetlb entry.
825 * The mmap lock must be held in read mode.
827 * Return: folio pointer on success, otherwise NULL.
829 struct folio
*folio_walk_start(struct folio_walk
*fw
,
830 struct vm_area_struct
*vma
, unsigned long addr
,
831 folio_walk_flags_t flags
)
833 unsigned long entry_size
;
834 bool expose_page
= true;
843 mmap_assert_locked(vma
->vm_mm
);
844 vma_pgtable_walk_begin(vma
);
846 if (WARN_ON_ONCE(addr
< vma
->vm_start
|| addr
>= vma
->vm_end
))
849 pgdp
= pgd_offset(vma
->vm_mm
, addr
);
850 if (pgd_none_or_clear_bad(pgdp
))
853 p4dp
= p4d_offset(pgdp
, addr
);
854 if (p4d_none_or_clear_bad(p4dp
))
857 pudp
= pud_offset(p4dp
, addr
);
858 pud
= pudp_get(pudp
);
861 if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES
) &&
862 (!pud_present(pud
) || pud_leaf(pud
))) {
863 ptl
= pud_lock(vma
->vm_mm
, pudp
);
864 pud
= pudp_get(pudp
);
866 entry_size
= PUD_SIZE
;
867 fw
->level
= FW_LEVEL_PUD
;
872 * TODO: FW_MIGRATION support for PUD migration entries
873 * once there are relevant users.
875 if (!pud_present(pud
) || pud_devmap(pud
) || pud_special(pud
)) {
878 } else if (!pud_leaf(pud
)) {
883 * TODO: vm_normal_page_pud() will be handy once we want to
884 * support PUD mappings in VM_PFNMAP|VM_MIXEDMAP VMAs.
886 page
= pud_page(pud
);
891 VM_WARN_ON_ONCE(!pud_present(pud
) || pud_leaf(pud
));
892 pmdp
= pmd_offset(pudp
, addr
);
893 pmd
= pmdp_get_lockless(pmdp
);
896 if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES
) &&
897 (!pmd_present(pmd
) || pmd_leaf(pmd
))) {
898 ptl
= pmd_lock(vma
->vm_mm
, pmdp
);
899 pmd
= pmdp_get(pmdp
);
901 entry_size
= PMD_SIZE
;
902 fw
->level
= FW_LEVEL_PMD
;
909 } else if (pmd_present(pmd
) && !pmd_leaf(pmd
)) {
912 } else if (pmd_present(pmd
)) {
913 page
= vm_normal_page_pmd(vma
, addr
, pmd
);
916 } else if ((flags
& FW_ZEROPAGE
) &&
917 is_huge_zero_pmd(pmd
)) {
918 page
= pfn_to_page(pmd_pfn(pmd
));
922 } else if ((flags
& FW_MIGRATION
) &&
923 is_pmd_migration_entry(pmd
)) {
924 swp_entry_t entry
= pmd_to_swp_entry(pmd
);
926 page
= pfn_swap_entry_to_page(entry
);
935 VM_WARN_ON_ONCE(!pmd_present(pmd
) || pmd_leaf(pmd
));
936 ptep
= pte_offset_map_lock(vma
->vm_mm
, pmdp
, addr
, &ptl
);
939 pte
= ptep_get(ptep
);
941 entry_size
= PAGE_SIZE
;
942 fw
->level
= FW_LEVEL_PTE
;
946 if (pte_present(pte
)) {
947 page
= vm_normal_page(vma
, addr
, pte
);
950 if ((flags
& FW_ZEROPAGE
) &&
951 is_zero_pfn(pte_pfn(pte
))) {
952 page
= pfn_to_page(pte_pfn(pte
));
956 } else if (!pte_none(pte
)) {
957 swp_entry_t entry
= pte_to_swp_entry(pte
);
959 if ((flags
& FW_MIGRATION
) &&
960 is_migration_entry(entry
)) {
961 page
= pfn_swap_entry_to_page(entry
);
966 pte_unmap_unlock(ptep
, ptl
);
968 vma_pgtable_walk_end(vma
);
972 /* Note: Offset from the mapped page, not the folio start. */
973 fw
->page
= nth_page(page
, (addr
& (entry_size
- 1)) >> PAGE_SHIFT
);
977 return page_folio(page
);