1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/uio.h>
37 #include <linux/bitops.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/overflow.h>
40 #include <linux/pgtable.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 #include <linux/page_owner.h>
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/vmalloc.h>
51 #include "pgalloc-track.h"
53 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
54 static unsigned int __ro_after_init ioremap_max_page_shift
= BITS_PER_LONG
- 1;
56 static int __init
set_nohugeiomap(char *str
)
58 ioremap_max_page_shift
= PAGE_SHIFT
;
61 early_param("nohugeiomap", set_nohugeiomap
);
62 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
63 static const unsigned int ioremap_max_page_shift
= PAGE_SHIFT
;
64 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
66 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
67 static bool __ro_after_init vmap_allow_huge
= true;
69 static int __init
set_nohugevmalloc(char *str
)
71 vmap_allow_huge
= false;
74 early_param("nohugevmalloc", set_nohugevmalloc
);
75 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
76 static const bool vmap_allow_huge
= false;
77 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
79 bool is_vmalloc_addr(const void *x
)
81 unsigned long addr
= (unsigned long)kasan_reset_tag(x
);
83 return addr
>= VMALLOC_START
&& addr
< VMALLOC_END
;
85 EXPORT_SYMBOL(is_vmalloc_addr
);
87 struct vfree_deferred
{
88 struct llist_head list
;
89 struct work_struct wq
;
91 static DEFINE_PER_CPU(struct vfree_deferred
, vfree_deferred
);
93 /*** Page table manipulation functions ***/
94 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
95 phys_addr_t phys_addr
, pgprot_t prot
,
96 unsigned int max_page_shift
, pgtbl_mod_mask
*mask
)
101 unsigned long size
= PAGE_SIZE
;
103 pfn
= phys_addr
>> PAGE_SHIFT
;
104 pte
= pte_alloc_kernel_track(pmd
, addr
, mask
);
108 if (unlikely(!pte_none(ptep_get(pte
)))) {
109 if (pfn_valid(pfn
)) {
110 page
= pfn_to_page(pfn
);
111 dump_page(page
, "remapping already mapped page");
116 #ifdef CONFIG_HUGETLB_PAGE
117 size
= arch_vmap_pte_range_map_size(addr
, end
, pfn
, max_page_shift
);
118 if (size
!= PAGE_SIZE
) {
119 pte_t entry
= pfn_pte(pfn
, prot
);
121 entry
= arch_make_huge_pte(entry
, ilog2(size
), 0);
122 set_huge_pte_at(&init_mm
, addr
, pte
, entry
, size
);
123 pfn
+= PFN_DOWN(size
);
127 set_pte_at(&init_mm
, addr
, pte
, pfn_pte(pfn
, prot
));
129 } while (pte
+= PFN_DOWN(size
), addr
+= size
, addr
!= end
);
130 *mask
|= PGTBL_PTE_MODIFIED
;
134 static int vmap_try_huge_pmd(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
135 phys_addr_t phys_addr
, pgprot_t prot
,
136 unsigned int max_page_shift
)
138 if (max_page_shift
< PMD_SHIFT
)
141 if (!arch_vmap_pmd_supported(prot
))
144 if ((end
- addr
) != PMD_SIZE
)
147 if (!IS_ALIGNED(addr
, PMD_SIZE
))
150 if (!IS_ALIGNED(phys_addr
, PMD_SIZE
))
153 if (pmd_present(*pmd
) && !pmd_free_pte_page(pmd
, addr
))
156 return pmd_set_huge(pmd
, phys_addr
, prot
);
159 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
,
160 phys_addr_t phys_addr
, pgprot_t prot
,
161 unsigned int max_page_shift
, pgtbl_mod_mask
*mask
)
166 pmd
= pmd_alloc_track(&init_mm
, pud
, addr
, mask
);
170 next
= pmd_addr_end(addr
, end
);
172 if (vmap_try_huge_pmd(pmd
, addr
, next
, phys_addr
, prot
,
174 *mask
|= PGTBL_PMD_MODIFIED
;
178 if (vmap_pte_range(pmd
, addr
, next
, phys_addr
, prot
, max_page_shift
, mask
))
180 } while (pmd
++, phys_addr
+= (next
- addr
), addr
= next
, addr
!= end
);
184 static int vmap_try_huge_pud(pud_t
*pud
, unsigned long addr
, unsigned long end
,
185 phys_addr_t phys_addr
, pgprot_t prot
,
186 unsigned int max_page_shift
)
188 if (max_page_shift
< PUD_SHIFT
)
191 if (!arch_vmap_pud_supported(prot
))
194 if ((end
- addr
) != PUD_SIZE
)
197 if (!IS_ALIGNED(addr
, PUD_SIZE
))
200 if (!IS_ALIGNED(phys_addr
, PUD_SIZE
))
203 if (pud_present(*pud
) && !pud_free_pmd_page(pud
, addr
))
206 return pud_set_huge(pud
, phys_addr
, prot
);
209 static int vmap_pud_range(p4d_t
*p4d
, unsigned long addr
, unsigned long end
,
210 phys_addr_t phys_addr
, pgprot_t prot
,
211 unsigned int max_page_shift
, pgtbl_mod_mask
*mask
)
216 pud
= pud_alloc_track(&init_mm
, p4d
, addr
, mask
);
220 next
= pud_addr_end(addr
, end
);
222 if (vmap_try_huge_pud(pud
, addr
, next
, phys_addr
, prot
,
224 *mask
|= PGTBL_PUD_MODIFIED
;
228 if (vmap_pmd_range(pud
, addr
, next
, phys_addr
, prot
,
229 max_page_shift
, mask
))
231 } while (pud
++, phys_addr
+= (next
- addr
), addr
= next
, addr
!= end
);
235 static int vmap_try_huge_p4d(p4d_t
*p4d
, unsigned long addr
, unsigned long end
,
236 phys_addr_t phys_addr
, pgprot_t prot
,
237 unsigned int max_page_shift
)
239 if (max_page_shift
< P4D_SHIFT
)
242 if (!arch_vmap_p4d_supported(prot
))
245 if ((end
- addr
) != P4D_SIZE
)
248 if (!IS_ALIGNED(addr
, P4D_SIZE
))
251 if (!IS_ALIGNED(phys_addr
, P4D_SIZE
))
254 if (p4d_present(*p4d
) && !p4d_free_pud_page(p4d
, addr
))
257 return p4d_set_huge(p4d
, phys_addr
, prot
);
260 static int vmap_p4d_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
,
261 phys_addr_t phys_addr
, pgprot_t prot
,
262 unsigned int max_page_shift
, pgtbl_mod_mask
*mask
)
267 p4d
= p4d_alloc_track(&init_mm
, pgd
, addr
, mask
);
271 next
= p4d_addr_end(addr
, end
);
273 if (vmap_try_huge_p4d(p4d
, addr
, next
, phys_addr
, prot
,
275 *mask
|= PGTBL_P4D_MODIFIED
;
279 if (vmap_pud_range(p4d
, addr
, next
, phys_addr
, prot
,
280 max_page_shift
, mask
))
282 } while (p4d
++, phys_addr
+= (next
- addr
), addr
= next
, addr
!= end
);
286 static int vmap_range_noflush(unsigned long addr
, unsigned long end
,
287 phys_addr_t phys_addr
, pgprot_t prot
,
288 unsigned int max_page_shift
)
294 pgtbl_mod_mask mask
= 0;
300 pgd
= pgd_offset_k(addr
);
302 next
= pgd_addr_end(addr
, end
);
303 err
= vmap_p4d_range(pgd
, addr
, next
, phys_addr
, prot
,
304 max_page_shift
, &mask
);
307 } while (pgd
++, phys_addr
+= (next
- addr
), addr
= next
, addr
!= end
);
309 if (mask
& ARCH_PAGE_TABLE_SYNC_MASK
)
310 arch_sync_kernel_mappings(start
, end
);
315 int vmap_page_range(unsigned long addr
, unsigned long end
,
316 phys_addr_t phys_addr
, pgprot_t prot
)
320 err
= vmap_range_noflush(addr
, end
, phys_addr
, pgprot_nx(prot
),
321 ioremap_max_page_shift
);
322 flush_cache_vmap(addr
, end
);
324 err
= kmsan_ioremap_page_range(addr
, end
, phys_addr
, prot
,
325 ioremap_max_page_shift
);
329 int ioremap_page_range(unsigned long addr
, unsigned long end
,
330 phys_addr_t phys_addr
, pgprot_t prot
)
332 struct vm_struct
*area
;
334 area
= find_vm_area((void *)addr
);
335 if (!area
|| !(area
->flags
& VM_IOREMAP
)) {
336 WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr
);
339 if (addr
!= (unsigned long)area
->addr
||
340 (void *)end
!= area
->addr
+ get_vm_area_size(area
)) {
341 WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n",
342 addr
, end
, (long)area
->addr
,
343 (long)area
->addr
+ get_vm_area_size(area
));
346 return vmap_page_range(addr
, end
, phys_addr
, prot
);
349 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
350 pgtbl_mod_mask
*mask
)
354 pte
= pte_offset_kernel(pmd
, addr
);
356 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
357 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
358 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
359 *mask
|= PGTBL_PTE_MODIFIED
;
362 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
,
363 pgtbl_mod_mask
*mask
)
369 pmd
= pmd_offset(pud
, addr
);
371 next
= pmd_addr_end(addr
, end
);
373 cleared
= pmd_clear_huge(pmd
);
374 if (cleared
|| pmd_bad(*pmd
))
375 *mask
|= PGTBL_PMD_MODIFIED
;
379 if (pmd_none_or_clear_bad(pmd
))
381 vunmap_pte_range(pmd
, addr
, next
, mask
);
384 } while (pmd
++, addr
= next
, addr
!= end
);
387 static void vunmap_pud_range(p4d_t
*p4d
, unsigned long addr
, unsigned long end
,
388 pgtbl_mod_mask
*mask
)
394 pud
= pud_offset(p4d
, addr
);
396 next
= pud_addr_end(addr
, end
);
398 cleared
= pud_clear_huge(pud
);
399 if (cleared
|| pud_bad(*pud
))
400 *mask
|= PGTBL_PUD_MODIFIED
;
404 if (pud_none_or_clear_bad(pud
))
406 vunmap_pmd_range(pud
, addr
, next
, mask
);
407 } while (pud
++, addr
= next
, addr
!= end
);
410 static void vunmap_p4d_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
,
411 pgtbl_mod_mask
*mask
)
416 p4d
= p4d_offset(pgd
, addr
);
418 next
= p4d_addr_end(addr
, end
);
422 *mask
|= PGTBL_P4D_MODIFIED
;
424 if (p4d_none_or_clear_bad(p4d
))
426 vunmap_pud_range(p4d
, addr
, next
, mask
);
427 } while (p4d
++, addr
= next
, addr
!= end
);
431 * vunmap_range_noflush is similar to vunmap_range, but does not
432 * flush caches or TLBs.
434 * The caller is responsible for calling flush_cache_vmap() before calling
435 * this function, and flush_tlb_kernel_range after it has returned
436 * successfully (and before the addresses are expected to cause a page fault
437 * or be re-mapped for something else, if TLB flushes are being delayed or
440 * This is an internal function only. Do not use outside mm/.
442 void __vunmap_range_noflush(unsigned long start
, unsigned long end
)
446 unsigned long addr
= start
;
447 pgtbl_mod_mask mask
= 0;
450 pgd
= pgd_offset_k(addr
);
452 next
= pgd_addr_end(addr
, end
);
454 mask
|= PGTBL_PGD_MODIFIED
;
455 if (pgd_none_or_clear_bad(pgd
))
457 vunmap_p4d_range(pgd
, addr
, next
, &mask
);
458 } while (pgd
++, addr
= next
, addr
!= end
);
460 if (mask
& ARCH_PAGE_TABLE_SYNC_MASK
)
461 arch_sync_kernel_mappings(start
, end
);
464 void vunmap_range_noflush(unsigned long start
, unsigned long end
)
466 kmsan_vunmap_range_noflush(start
, end
);
467 __vunmap_range_noflush(start
, end
);
471 * vunmap_range - unmap kernel virtual addresses
472 * @addr: start of the VM area to unmap
473 * @end: end of the VM area to unmap (non-inclusive)
475 * Clears any present PTEs in the virtual address range, flushes TLBs and
476 * caches. Any subsequent access to the address before it has been re-mapped
479 void vunmap_range(unsigned long addr
, unsigned long end
)
481 flush_cache_vunmap(addr
, end
);
482 vunmap_range_noflush(addr
, end
);
483 flush_tlb_kernel_range(addr
, end
);
486 static int vmap_pages_pte_range(pmd_t
*pmd
, unsigned long addr
,
487 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
,
488 pgtbl_mod_mask
*mask
)
493 * nr is a running index into the array which helps higher level
494 * callers keep track of where we're up to.
497 pte
= pte_alloc_kernel_track(pmd
, addr
, mask
);
501 struct page
*page
= pages
[*nr
];
503 if (WARN_ON(!pte_none(ptep_get(pte
))))
507 if (WARN_ON(!pfn_valid(page_to_pfn(page
))))
510 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
512 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
513 *mask
|= PGTBL_PTE_MODIFIED
;
517 static int vmap_pages_pmd_range(pud_t
*pud
, unsigned long addr
,
518 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
,
519 pgtbl_mod_mask
*mask
)
524 pmd
= pmd_alloc_track(&init_mm
, pud
, addr
, mask
);
528 next
= pmd_addr_end(addr
, end
);
529 if (vmap_pages_pte_range(pmd
, addr
, next
, prot
, pages
, nr
, mask
))
531 } while (pmd
++, addr
= next
, addr
!= end
);
535 static int vmap_pages_pud_range(p4d_t
*p4d
, unsigned long addr
,
536 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
,
537 pgtbl_mod_mask
*mask
)
542 pud
= pud_alloc_track(&init_mm
, p4d
, addr
, mask
);
546 next
= pud_addr_end(addr
, end
);
547 if (vmap_pages_pmd_range(pud
, addr
, next
, prot
, pages
, nr
, mask
))
549 } while (pud
++, addr
= next
, addr
!= end
);
553 static int vmap_pages_p4d_range(pgd_t
*pgd
, unsigned long addr
,
554 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
,
555 pgtbl_mod_mask
*mask
)
560 p4d
= p4d_alloc_track(&init_mm
, pgd
, addr
, mask
);
564 next
= p4d_addr_end(addr
, end
);
565 if (vmap_pages_pud_range(p4d
, addr
, next
, prot
, pages
, nr
, mask
))
567 } while (p4d
++, addr
= next
, addr
!= end
);
571 static int vmap_small_pages_range_noflush(unsigned long addr
, unsigned long end
,
572 pgprot_t prot
, struct page
**pages
)
574 unsigned long start
= addr
;
579 pgtbl_mod_mask mask
= 0;
582 pgd
= pgd_offset_k(addr
);
584 next
= pgd_addr_end(addr
, end
);
586 mask
|= PGTBL_PGD_MODIFIED
;
587 err
= vmap_pages_p4d_range(pgd
, addr
, next
, prot
, pages
, &nr
, &mask
);
590 } while (pgd
++, addr
= next
, addr
!= end
);
592 if (mask
& ARCH_PAGE_TABLE_SYNC_MASK
)
593 arch_sync_kernel_mappings(start
, end
);
599 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
602 * The caller is responsible for calling flush_cache_vmap() after this
603 * function returns successfully and before the addresses are accessed.
605 * This is an internal function only. Do not use outside mm/.
607 int __vmap_pages_range_noflush(unsigned long addr
, unsigned long end
,
608 pgprot_t prot
, struct page
**pages
, unsigned int page_shift
)
610 unsigned int i
, nr
= (end
- addr
) >> PAGE_SHIFT
;
612 WARN_ON(page_shift
< PAGE_SHIFT
);
614 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC
) ||
615 page_shift
== PAGE_SHIFT
)
616 return vmap_small_pages_range_noflush(addr
, end
, prot
, pages
);
618 for (i
= 0; i
< nr
; i
+= 1U << (page_shift
- PAGE_SHIFT
)) {
621 err
= vmap_range_noflush(addr
, addr
+ (1UL << page_shift
),
622 page_to_phys(pages
[i
]), prot
,
627 addr
+= 1UL << page_shift
;
633 int vmap_pages_range_noflush(unsigned long addr
, unsigned long end
,
634 pgprot_t prot
, struct page
**pages
, unsigned int page_shift
)
636 int ret
= kmsan_vmap_pages_range_noflush(addr
, end
, prot
, pages
,
641 return __vmap_pages_range_noflush(addr
, end
, prot
, pages
, page_shift
);
645 * vmap_pages_range - map pages to a kernel virtual address
646 * @addr: start of the VM area to map
647 * @end: end of the VM area to map (non-inclusive)
648 * @prot: page protection flags to use
649 * @pages: pages to map (always PAGE_SIZE pages)
650 * @page_shift: maximum shift that the pages may be mapped with, @pages must
651 * be aligned and contiguous up to at least this shift.
654 * 0 on success, -errno on failure.
656 int vmap_pages_range(unsigned long addr
, unsigned long end
,
657 pgprot_t prot
, struct page
**pages
, unsigned int page_shift
)
661 err
= vmap_pages_range_noflush(addr
, end
, prot
, pages
, page_shift
);
662 flush_cache_vmap(addr
, end
);
666 static int check_sparse_vm_area(struct vm_struct
*area
, unsigned long start
,
670 if (WARN_ON_ONCE(area
->flags
& VM_FLUSH_RESET_PERMS
))
672 if (WARN_ON_ONCE(area
->flags
& VM_NO_GUARD
))
674 if (WARN_ON_ONCE(!(area
->flags
& VM_SPARSE
)))
676 if ((end
- start
) >> PAGE_SHIFT
> totalram_pages())
678 if (start
< (unsigned long)area
->addr
||
679 (void *)end
> area
->addr
+ get_vm_area_size(area
))
685 * vm_area_map_pages - map pages inside given sparse vm_area
687 * @start: start address inside vm_area
688 * @end: end address inside vm_area
689 * @pages: pages to map (always PAGE_SIZE pages)
691 int vm_area_map_pages(struct vm_struct
*area
, unsigned long start
,
692 unsigned long end
, struct page
**pages
)
696 err
= check_sparse_vm_area(area
, start
, end
);
700 return vmap_pages_range(start
, end
, PAGE_KERNEL
, pages
, PAGE_SHIFT
);
704 * vm_area_unmap_pages - unmap pages inside given sparse vm_area
706 * @start: start address inside vm_area
707 * @end: end address inside vm_area
709 void vm_area_unmap_pages(struct vm_struct
*area
, unsigned long start
,
712 if (check_sparse_vm_area(area
, start
, end
))
715 vunmap_range(start
, end
);
718 int is_vmalloc_or_module_addr(const void *x
)
721 * ARM, x86-64 and sparc64 put modules in a special place,
722 * and fall back on vmalloc() if that fails. Others
723 * just put it in the vmalloc space.
725 #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR)
726 unsigned long addr
= (unsigned long)kasan_reset_tag(x
);
727 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
730 return is_vmalloc_addr(x
);
732 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr
);
735 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
736 * return the tail page that corresponds to the base page address, which
737 * matches small vmap mappings.
739 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
741 unsigned long addr
= (unsigned long) vmalloc_addr
;
742 struct page
*page
= NULL
;
743 pgd_t
*pgd
= pgd_offset_k(addr
);
750 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
751 * architectures that do not vmalloc module space
753 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
757 if (WARN_ON_ONCE(pgd_leaf(*pgd
)))
758 return NULL
; /* XXX: no allowance for huge pgd */
759 if (WARN_ON_ONCE(pgd_bad(*pgd
)))
762 p4d
= p4d_offset(pgd
, addr
);
766 return p4d_page(*p4d
) + ((addr
& ~P4D_MASK
) >> PAGE_SHIFT
);
767 if (WARN_ON_ONCE(p4d_bad(*p4d
)))
770 pud
= pud_offset(p4d
, addr
);
774 return pud_page(*pud
) + ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
775 if (WARN_ON_ONCE(pud_bad(*pud
)))
778 pmd
= pmd_offset(pud
, addr
);
782 return pmd_page(*pmd
) + ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
783 if (WARN_ON_ONCE(pmd_bad(*pmd
)))
786 ptep
= pte_offset_kernel(pmd
, addr
);
787 pte
= ptep_get(ptep
);
788 if (pte_present(pte
))
789 page
= pte_page(pte
);
793 EXPORT_SYMBOL(vmalloc_to_page
);
796 * Map a vmalloc()-space virtual address to the physical page frame number.
798 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
800 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
802 EXPORT_SYMBOL(vmalloc_to_pfn
);
805 /*** Global kva allocator ***/
807 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
808 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
811 static DEFINE_SPINLOCK(free_vmap_area_lock
);
812 static bool vmap_initialized __read_mostly
;
815 * This kmem_cache is used for vmap_area objects. Instead of
816 * allocating from slab we reuse an object from this cache to
817 * make things faster. Especially in "no edge" splitting of
820 static struct kmem_cache
*vmap_area_cachep
;
823 * This linked list is used in pair with free_vmap_area_root.
824 * It gives O(1) access to prev/next to perform fast coalescing.
826 static LIST_HEAD(free_vmap_area_list
);
829 * This augment red-black tree represents the free vmap space.
830 * All vmap_area objects in this tree are sorted by va->va_start
831 * address. It is used for allocation and merging when a vmap
832 * object is released.
834 * Each vmap_area node contains a maximum available free block
835 * of its sub-tree, right or left. Therefore it is possible to
836 * find a lowest match of free area.
838 static struct rb_root free_vmap_area_root
= RB_ROOT
;
841 * Preload a CPU with one object for "no edge" split case. The
842 * aim is to get rid of allocations from the atomic context, thus
843 * to use more permissive allocation masks.
845 static DEFINE_PER_CPU(struct vmap_area
*, ne_fit_preload_node
);
848 * This structure defines a single, solid model where a list and
849 * rb-tree are part of one entity protected by the lock. Nodes are
850 * sorted in ascending order, thus for O(1) access to left/right
851 * neighbors a list is used as well as for sequential traversal.
855 struct list_head head
;
860 * A fast size storage contains VAs up to 1M size. A pool consists
861 * of linked between each other ready to go VAs of certain sizes.
862 * An index in the pool-array corresponds to number of pages + 1.
864 #define MAX_VA_SIZE_PAGES 256
867 struct list_head head
;
872 * An effective vmap-node logic. Users make use of nodes instead
873 * of a global heap. It allows to balance an access and mitigate
876 static struct vmap_node
{
877 /* Simple size segregated storage. */
878 struct vmap_pool pool
[MAX_VA_SIZE_PAGES
];
879 spinlock_t pool_lock
;
882 /* Bookkeeping data of this node. */
887 * Ready-to-free areas.
889 struct list_head purge_list
;
890 struct work_struct purge_work
;
891 unsigned long nr_purged
;
895 * Initial setup consists of one single node, i.e. a balancing
896 * is fully disabled. Later on, after vmap is initialized these
897 * parameters are updated based on a system capacity.
899 static struct vmap_node
*vmap_nodes
= &single
;
900 static __read_mostly
unsigned int nr_vmap_nodes
= 1;
901 static __read_mostly
unsigned int vmap_zone_size
= 1;
903 static inline unsigned int
904 addr_to_node_id(unsigned long addr
)
906 return (addr
/ vmap_zone_size
) % nr_vmap_nodes
;
909 static inline struct vmap_node
*
910 addr_to_node(unsigned long addr
)
912 return &vmap_nodes
[addr_to_node_id(addr
)];
915 static inline struct vmap_node
*
916 id_to_node(unsigned int id
)
918 return &vmap_nodes
[id
% nr_vmap_nodes
];
922 * We use the value 0 to represent "no node", that is why
923 * an encoded value will be the node-id incremented by 1.
924 * It is always greater then 0. A valid node_id which can
925 * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id
926 * is not valid 0 is returned.
929 encode_vn_id(unsigned int node_id
)
931 /* Can store U8_MAX [0:254] nodes. */
932 if (node_id
< nr_vmap_nodes
)
933 return (node_id
+ 1) << BITS_PER_BYTE
;
935 /* Warn and no node encoded. */
936 WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id
);
941 * Returns an encoded node-id, the valid range is within
942 * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is
943 * returned if extracted data is wrong.
946 decode_vn_id(unsigned int val
)
948 unsigned int node_id
= (val
>> BITS_PER_BYTE
) - 1;
950 /* Can store U8_MAX [0:254] nodes. */
951 if (node_id
< nr_vmap_nodes
)
954 /* If it was _not_ zero, warn. */
955 WARN_ONCE(node_id
!= UINT_MAX
,
956 "Decode wrong node id (%d)\n", node_id
);
958 return nr_vmap_nodes
;
962 is_vn_id_valid(unsigned int node_id
)
964 if (node_id
< nr_vmap_nodes
)
970 static __always_inline
unsigned long
971 va_size(struct vmap_area
*va
)
973 return (va
->va_end
- va
->va_start
);
976 static __always_inline
unsigned long
977 get_subtree_max_size(struct rb_node
*node
)
979 struct vmap_area
*va
;
981 va
= rb_entry_safe(node
, struct vmap_area
, rb_node
);
982 return va
? va
->subtree_max_size
: 0;
985 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb
,
986 struct vmap_area
, rb_node
, unsigned long, subtree_max_size
, va_size
)
988 static void reclaim_and_purge_vmap_areas(void);
989 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list
);
990 static void drain_vmap_area_work(struct work_struct
*work
);
991 static DECLARE_WORK(drain_vmap_work
, drain_vmap_area_work
);
993 static atomic_long_t nr_vmalloc_pages
;
995 unsigned long vmalloc_nr_pages(void)
997 return atomic_long_read(&nr_vmalloc_pages
);
1000 static struct vmap_area
*__find_vmap_area(unsigned long addr
, struct rb_root
*root
)
1002 struct rb_node
*n
= root
->rb_node
;
1004 addr
= (unsigned long)kasan_reset_tag((void *)addr
);
1007 struct vmap_area
*va
;
1009 va
= rb_entry(n
, struct vmap_area
, rb_node
);
1010 if (addr
< va
->va_start
)
1012 else if (addr
>= va
->va_end
)
1021 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
1022 static struct vmap_area
*
1023 __find_vmap_area_exceed_addr(unsigned long addr
, struct rb_root
*root
)
1025 struct vmap_area
*va
= NULL
;
1026 struct rb_node
*n
= root
->rb_node
;
1028 addr
= (unsigned long)kasan_reset_tag((void *)addr
);
1031 struct vmap_area
*tmp
;
1033 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
1034 if (tmp
->va_end
> addr
) {
1036 if (tmp
->va_start
<= addr
)
1048 * Returns a node where a first VA, that satisfies addr < va_end, resides.
1049 * If success, a node is locked. A user is responsible to unlock it when a
1050 * VA is no longer needed to be accessed.
1052 * Returns NULL if nothing found.
1054 static struct vmap_node
*
1055 find_vmap_area_exceed_addr_lock(unsigned long addr
, struct vmap_area
**va
)
1057 unsigned long va_start_lowest
;
1058 struct vmap_node
*vn
;
1062 for (i
= 0, va_start_lowest
= 0; i
< nr_vmap_nodes
; i
++) {
1063 vn
= &vmap_nodes
[i
];
1065 spin_lock(&vn
->busy
.lock
);
1066 *va
= __find_vmap_area_exceed_addr(addr
, &vn
->busy
.root
);
1069 if (!va_start_lowest
|| (*va
)->va_start
< va_start_lowest
)
1070 va_start_lowest
= (*va
)->va_start
;
1071 spin_unlock(&vn
->busy
.lock
);
1075 * Check if found VA exists, it might have gone away. In this case we
1076 * repeat the search because a VA has been removed concurrently and we
1077 * need to proceed to the next one, which is a rare case.
1079 if (va_start_lowest
) {
1080 vn
= addr_to_node(va_start_lowest
);
1082 spin_lock(&vn
->busy
.lock
);
1083 *va
= __find_vmap_area(va_start_lowest
, &vn
->busy
.root
);
1088 spin_unlock(&vn
->busy
.lock
);
1096 * This function returns back addresses of parent node
1097 * and its left or right link for further processing.
1099 * Otherwise NULL is returned. In that case all further
1100 * steps regarding inserting of conflicting overlap range
1101 * have to be declined and actually considered as a bug.
1103 static __always_inline
struct rb_node
**
1104 find_va_links(struct vmap_area
*va
,
1105 struct rb_root
*root
, struct rb_node
*from
,
1106 struct rb_node
**parent
)
1108 struct vmap_area
*tmp_va
;
1109 struct rb_node
**link
;
1112 link
= &root
->rb_node
;
1113 if (unlikely(!*link
)) {
1122 * Go to the bottom of the tree. When we hit the last point
1123 * we end up with parent rb_node and correct direction, i name
1124 * it link, where the new va->rb_node will be attached to.
1127 tmp_va
= rb_entry(*link
, struct vmap_area
, rb_node
);
1130 * During the traversal we also do some sanity check.
1131 * Trigger the BUG() if there are sides(left/right)
1134 if (va
->va_end
<= tmp_va
->va_start
)
1135 link
= &(*link
)->rb_left
;
1136 else if (va
->va_start
>= tmp_va
->va_end
)
1137 link
= &(*link
)->rb_right
;
1139 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
1140 va
->va_start
, va
->va_end
, tmp_va
->va_start
, tmp_va
->va_end
);
1146 *parent
= &tmp_va
->rb_node
;
1150 static __always_inline
struct list_head
*
1151 get_va_next_sibling(struct rb_node
*parent
, struct rb_node
**link
)
1153 struct list_head
*list
;
1155 if (unlikely(!parent
))
1157 * The red-black tree where we try to find VA neighbors
1158 * before merging or inserting is empty, i.e. it means
1159 * there is no free vmap space. Normally it does not
1160 * happen but we handle this case anyway.
1164 list
= &rb_entry(parent
, struct vmap_area
, rb_node
)->list
;
1165 return (&parent
->rb_right
== link
? list
->next
: list
);
1168 static __always_inline
void
1169 __link_va(struct vmap_area
*va
, struct rb_root
*root
,
1170 struct rb_node
*parent
, struct rb_node
**link
,
1171 struct list_head
*head
, bool augment
)
1174 * VA is still not in the list, but we can
1175 * identify its future previous list_head node.
1177 if (likely(parent
)) {
1178 head
= &rb_entry(parent
, struct vmap_area
, rb_node
)->list
;
1179 if (&parent
->rb_right
!= link
)
1183 /* Insert to the rb-tree */
1184 rb_link_node(&va
->rb_node
, parent
, link
);
1187 * Some explanation here. Just perform simple insertion
1188 * to the tree. We do not set va->subtree_max_size to
1189 * its current size before calling rb_insert_augmented().
1190 * It is because we populate the tree from the bottom
1191 * to parent levels when the node _is_ in the tree.
1193 * Therefore we set subtree_max_size to zero after insertion,
1194 * to let __augment_tree_propagate_from() puts everything to
1195 * the correct order later on.
1197 rb_insert_augmented(&va
->rb_node
,
1198 root
, &free_vmap_area_rb_augment_cb
);
1199 va
->subtree_max_size
= 0;
1201 rb_insert_color(&va
->rb_node
, root
);
1204 /* Address-sort this list */
1205 list_add(&va
->list
, head
);
1208 static __always_inline
void
1209 link_va(struct vmap_area
*va
, struct rb_root
*root
,
1210 struct rb_node
*parent
, struct rb_node
**link
,
1211 struct list_head
*head
)
1213 __link_va(va
, root
, parent
, link
, head
, false);
1216 static __always_inline
void
1217 link_va_augment(struct vmap_area
*va
, struct rb_root
*root
,
1218 struct rb_node
*parent
, struct rb_node
**link
,
1219 struct list_head
*head
)
1221 __link_va(va
, root
, parent
, link
, head
, true);
1224 static __always_inline
void
1225 __unlink_va(struct vmap_area
*va
, struct rb_root
*root
, bool augment
)
1227 if (WARN_ON(RB_EMPTY_NODE(&va
->rb_node
)))
1231 rb_erase_augmented(&va
->rb_node
,
1232 root
, &free_vmap_area_rb_augment_cb
);
1234 rb_erase(&va
->rb_node
, root
);
1236 list_del_init(&va
->list
);
1237 RB_CLEAR_NODE(&va
->rb_node
);
1240 static __always_inline
void
1241 unlink_va(struct vmap_area
*va
, struct rb_root
*root
)
1243 __unlink_va(va
, root
, false);
1246 static __always_inline
void
1247 unlink_va_augment(struct vmap_area
*va
, struct rb_root
*root
)
1249 __unlink_va(va
, root
, true);
1252 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1254 * Gets called when remove the node and rotate.
1256 static __always_inline
unsigned long
1257 compute_subtree_max_size(struct vmap_area
*va
)
1259 return max3(va_size(va
),
1260 get_subtree_max_size(va
->rb_node
.rb_left
),
1261 get_subtree_max_size(va
->rb_node
.rb_right
));
1265 augment_tree_propagate_check(void)
1267 struct vmap_area
*va
;
1268 unsigned long computed_size
;
1270 list_for_each_entry(va
, &free_vmap_area_list
, list
) {
1271 computed_size
= compute_subtree_max_size(va
);
1272 if (computed_size
!= va
->subtree_max_size
)
1273 pr_emerg("tree is corrupted: %lu, %lu\n",
1274 va_size(va
), va
->subtree_max_size
);
1280 * This function populates subtree_max_size from bottom to upper
1281 * levels starting from VA point. The propagation must be done
1282 * when VA size is modified by changing its va_start/va_end. Or
1283 * in case of newly inserting of VA to the tree.
1285 * It means that __augment_tree_propagate_from() must be called:
1286 * - After VA has been inserted to the tree(free path);
1287 * - After VA has been shrunk(allocation path);
1288 * - After VA has been increased(merging path).
1290 * Please note that, it does not mean that upper parent nodes
1291 * and their subtree_max_size are recalculated all the time up
1300 * For example if we modify the node 4, shrinking it to 2, then
1301 * no any modification is required. If we shrink the node 2 to 1
1302 * its subtree_max_size is updated only, and set to 1. If we shrink
1303 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1304 * node becomes 4--6.
1306 static __always_inline
void
1307 augment_tree_propagate_from(struct vmap_area
*va
)
1310 * Populate the tree from bottom towards the root until
1311 * the calculated maximum available size of checked node
1312 * is equal to its current one.
1314 free_vmap_area_rb_augment_cb_propagate(&va
->rb_node
, NULL
);
1316 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1317 augment_tree_propagate_check();
1322 insert_vmap_area(struct vmap_area
*va
,
1323 struct rb_root
*root
, struct list_head
*head
)
1325 struct rb_node
**link
;
1326 struct rb_node
*parent
;
1328 link
= find_va_links(va
, root
, NULL
, &parent
);
1330 link_va(va
, root
, parent
, link
, head
);
1334 insert_vmap_area_augment(struct vmap_area
*va
,
1335 struct rb_node
*from
, struct rb_root
*root
,
1336 struct list_head
*head
)
1338 struct rb_node
**link
;
1339 struct rb_node
*parent
;
1342 link
= find_va_links(va
, NULL
, from
, &parent
);
1344 link
= find_va_links(va
, root
, NULL
, &parent
);
1347 link_va_augment(va
, root
, parent
, link
, head
);
1348 augment_tree_propagate_from(va
);
1353 * Merge de-allocated chunk of VA memory with previous
1354 * and next free blocks. If coalesce is not done a new
1355 * free area is inserted. If VA has been merged, it is
1358 * Please note, it can return NULL in case of overlap
1359 * ranges, followed by WARN() report. Despite it is a
1360 * buggy behaviour, a system can be alive and keep
1363 static __always_inline
struct vmap_area
*
1364 __merge_or_add_vmap_area(struct vmap_area
*va
,
1365 struct rb_root
*root
, struct list_head
*head
, bool augment
)
1367 struct vmap_area
*sibling
;
1368 struct list_head
*next
;
1369 struct rb_node
**link
;
1370 struct rb_node
*parent
;
1371 bool merged
= false;
1374 * Find a place in the tree where VA potentially will be
1375 * inserted, unless it is merged with its sibling/siblings.
1377 link
= find_va_links(va
, root
, NULL
, &parent
);
1382 * Get next node of VA to check if merging can be done.
1384 next
= get_va_next_sibling(parent
, link
);
1385 if (unlikely(next
== NULL
))
1391 * |<------VA------>|<-----Next----->|
1396 sibling
= list_entry(next
, struct vmap_area
, list
);
1397 if (sibling
->va_start
== va
->va_end
) {
1398 sibling
->va_start
= va
->va_start
;
1400 /* Free vmap_area object. */
1401 kmem_cache_free(vmap_area_cachep
, va
);
1403 /* Point to the new merged area. */
1412 * |<-----Prev----->|<------VA------>|
1416 if (next
->prev
!= head
) {
1417 sibling
= list_entry(next
->prev
, struct vmap_area
, list
);
1418 if (sibling
->va_end
== va
->va_start
) {
1420 * If both neighbors are coalesced, it is important
1421 * to unlink the "next" node first, followed by merging
1422 * with "previous" one. Otherwise the tree might not be
1423 * fully populated if a sibling's augmented value is
1424 * "normalized" because of rotation operations.
1427 __unlink_va(va
, root
, augment
);
1429 sibling
->va_end
= va
->va_end
;
1431 /* Free vmap_area object. */
1432 kmem_cache_free(vmap_area_cachep
, va
);
1434 /* Point to the new merged area. */
1442 __link_va(va
, root
, parent
, link
, head
, augment
);
1447 static __always_inline
struct vmap_area
*
1448 merge_or_add_vmap_area(struct vmap_area
*va
,
1449 struct rb_root
*root
, struct list_head
*head
)
1451 return __merge_or_add_vmap_area(va
, root
, head
, false);
1454 static __always_inline
struct vmap_area
*
1455 merge_or_add_vmap_area_augment(struct vmap_area
*va
,
1456 struct rb_root
*root
, struct list_head
*head
)
1458 va
= __merge_or_add_vmap_area(va
, root
, head
, true);
1460 augment_tree_propagate_from(va
);
1465 static __always_inline
bool
1466 is_within_this_va(struct vmap_area
*va
, unsigned long size
,
1467 unsigned long align
, unsigned long vstart
)
1469 unsigned long nva_start_addr
;
1471 if (va
->va_start
> vstart
)
1472 nva_start_addr
= ALIGN(va
->va_start
, align
);
1474 nva_start_addr
= ALIGN(vstart
, align
);
1476 /* Can be overflowed due to big size or alignment. */
1477 if (nva_start_addr
+ size
< nva_start_addr
||
1478 nva_start_addr
< vstart
)
1481 return (nva_start_addr
+ size
<= va
->va_end
);
1485 * Find the first free block(lowest start address) in the tree,
1486 * that will accomplish the request corresponding to passing
1487 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1488 * a search length is adjusted to account for worst case alignment
1491 static __always_inline
struct vmap_area
*
1492 find_vmap_lowest_match(struct rb_root
*root
, unsigned long size
,
1493 unsigned long align
, unsigned long vstart
, bool adjust_search_size
)
1495 struct vmap_area
*va
;
1496 struct rb_node
*node
;
1497 unsigned long length
;
1499 /* Start from the root. */
1500 node
= root
->rb_node
;
1502 /* Adjust the search size for alignment overhead. */
1503 length
= adjust_search_size
? size
+ align
- 1 : size
;
1506 va
= rb_entry(node
, struct vmap_area
, rb_node
);
1508 if (get_subtree_max_size(node
->rb_left
) >= length
&&
1509 vstart
< va
->va_start
) {
1510 node
= node
->rb_left
;
1512 if (is_within_this_va(va
, size
, align
, vstart
))
1516 * Does not make sense to go deeper towards the right
1517 * sub-tree if it does not have a free block that is
1518 * equal or bigger to the requested search length.
1520 if (get_subtree_max_size(node
->rb_right
) >= length
) {
1521 node
= node
->rb_right
;
1526 * OK. We roll back and find the first right sub-tree,
1527 * that will satisfy the search criteria. It can happen
1528 * due to "vstart" restriction or an alignment overhead
1529 * that is bigger then PAGE_SIZE.
1531 while ((node
= rb_parent(node
))) {
1532 va
= rb_entry(node
, struct vmap_area
, rb_node
);
1533 if (is_within_this_va(va
, size
, align
, vstart
))
1536 if (get_subtree_max_size(node
->rb_right
) >= length
&&
1537 vstart
<= va
->va_start
) {
1539 * Shift the vstart forward. Please note, we update it with
1540 * parent's start address adding "1" because we do not want
1541 * to enter same sub-tree after it has already been checked
1542 * and no suitable free block found there.
1544 vstart
= va
->va_start
+ 1;
1545 node
= node
->rb_right
;
1555 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1556 #include <linux/random.h>
1558 static struct vmap_area
*
1559 find_vmap_lowest_linear_match(struct list_head
*head
, unsigned long size
,
1560 unsigned long align
, unsigned long vstart
)
1562 struct vmap_area
*va
;
1564 list_for_each_entry(va
, head
, list
) {
1565 if (!is_within_this_va(va
, size
, align
, vstart
))
1575 find_vmap_lowest_match_check(struct rb_root
*root
, struct list_head
*head
,
1576 unsigned long size
, unsigned long align
)
1578 struct vmap_area
*va_1
, *va_2
;
1579 unsigned long vstart
;
1582 get_random_bytes(&rnd
, sizeof(rnd
));
1583 vstart
= VMALLOC_START
+ rnd
;
1585 va_1
= find_vmap_lowest_match(root
, size
, align
, vstart
, false);
1586 va_2
= find_vmap_lowest_linear_match(head
, size
, align
, vstart
);
1589 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1590 va_1
, va_2
, vstart
);
1596 FL_FIT_TYPE
= 1, /* full fit */
1597 LE_FIT_TYPE
= 2, /* left edge fit */
1598 RE_FIT_TYPE
= 3, /* right edge fit */
1599 NE_FIT_TYPE
= 4 /* no edge fit */
1602 static __always_inline
enum fit_type
1603 classify_va_fit_type(struct vmap_area
*va
,
1604 unsigned long nva_start_addr
, unsigned long size
)
1608 /* Check if it is within VA. */
1609 if (nva_start_addr
< va
->va_start
||
1610 nva_start_addr
+ size
> va
->va_end
)
1614 if (va
->va_start
== nva_start_addr
) {
1615 if (va
->va_end
== nva_start_addr
+ size
)
1619 } else if (va
->va_end
== nva_start_addr
+ size
) {
1628 static __always_inline
int
1629 va_clip(struct rb_root
*root
, struct list_head
*head
,
1630 struct vmap_area
*va
, unsigned long nva_start_addr
,
1633 struct vmap_area
*lva
= NULL
;
1634 enum fit_type type
= classify_va_fit_type(va
, nva_start_addr
, size
);
1636 if (type
== FL_FIT_TYPE
) {
1638 * No need to split VA, it fully fits.
1644 unlink_va_augment(va
, root
);
1645 kmem_cache_free(vmap_area_cachep
, va
);
1646 } else if (type
== LE_FIT_TYPE
) {
1648 * Split left edge of fit VA.
1654 va
->va_start
+= size
;
1655 } else if (type
== RE_FIT_TYPE
) {
1657 * Split right edge of fit VA.
1663 va
->va_end
= nva_start_addr
;
1664 } else if (type
== NE_FIT_TYPE
) {
1666 * Split no edge of fit VA.
1672 lva
= __this_cpu_xchg(ne_fit_preload_node
, NULL
);
1673 if (unlikely(!lva
)) {
1675 * For percpu allocator we do not do any pre-allocation
1676 * and leave it as it is. The reason is it most likely
1677 * never ends up with NE_FIT_TYPE splitting. In case of
1678 * percpu allocations offsets and sizes are aligned to
1679 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1680 * are its main fitting cases.
1682 * There are a few exceptions though, as an example it is
1683 * a first allocation (early boot up) when we have "one"
1684 * big free space that has to be split.
1686 * Also we can hit this path in case of regular "vmap"
1687 * allocations, if "this" current CPU was not preloaded.
1688 * See the comment in alloc_vmap_area() why. If so, then
1689 * GFP_NOWAIT is used instead to get an extra object for
1690 * split purpose. That is rare and most time does not
1693 * What happens if an allocation gets failed. Basically,
1694 * an "overflow" path is triggered to purge lazily freed
1695 * areas to free some memory, then, the "retry" path is
1696 * triggered to repeat one more time. See more details
1697 * in alloc_vmap_area() function.
1699 lva
= kmem_cache_alloc(vmap_area_cachep
, GFP_NOWAIT
);
1705 * Build the remainder.
1707 lva
->va_start
= va
->va_start
;
1708 lva
->va_end
= nva_start_addr
;
1711 * Shrink this VA to remaining size.
1713 va
->va_start
= nva_start_addr
+ size
;
1718 if (type
!= FL_FIT_TYPE
) {
1719 augment_tree_propagate_from(va
);
1721 if (lva
) /* type == NE_FIT_TYPE */
1722 insert_vmap_area_augment(lva
, &va
->rb_node
, root
, head
);
1728 static unsigned long
1729 va_alloc(struct vmap_area
*va
,
1730 struct rb_root
*root
, struct list_head
*head
,
1731 unsigned long size
, unsigned long align
,
1732 unsigned long vstart
, unsigned long vend
)
1734 unsigned long nva_start_addr
;
1737 if (va
->va_start
> vstart
)
1738 nva_start_addr
= ALIGN(va
->va_start
, align
);
1740 nva_start_addr
= ALIGN(vstart
, align
);
1742 /* Check the "vend" restriction. */
1743 if (nva_start_addr
+ size
> vend
)
1746 /* Update the free vmap_area. */
1747 ret
= va_clip(root
, head
, va
, nva_start_addr
, size
);
1748 if (WARN_ON_ONCE(ret
))
1751 return nva_start_addr
;
1755 * Returns a start address of the newly allocated area, if success.
1756 * Otherwise a vend is returned that indicates failure.
1758 static __always_inline
unsigned long
1759 __alloc_vmap_area(struct rb_root
*root
, struct list_head
*head
,
1760 unsigned long size
, unsigned long align
,
1761 unsigned long vstart
, unsigned long vend
)
1763 bool adjust_search_size
= true;
1764 unsigned long nva_start_addr
;
1765 struct vmap_area
*va
;
1768 * Do not adjust when:
1769 * a) align <= PAGE_SIZE, because it does not make any sense.
1770 * All blocks(their start addresses) are at least PAGE_SIZE
1772 * b) a short range where a requested size corresponds to exactly
1773 * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1774 * With adjusted search length an allocation would not succeed.
1776 if (align
<= PAGE_SIZE
|| (align
> PAGE_SIZE
&& (vend
- vstart
) == size
))
1777 adjust_search_size
= false;
1779 va
= find_vmap_lowest_match(root
, size
, align
, vstart
, adjust_search_size
);
1783 nva_start_addr
= va_alloc(va
, root
, head
, size
, align
, vstart
, vend
);
1784 if (nva_start_addr
== vend
)
1787 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1788 find_vmap_lowest_match_check(root
, head
, size
, align
);
1791 return nva_start_addr
;
1795 * Free a region of KVA allocated by alloc_vmap_area
1797 static void free_vmap_area(struct vmap_area
*va
)
1799 struct vmap_node
*vn
= addr_to_node(va
->va_start
);
1802 * Remove from the busy tree/list.
1804 spin_lock(&vn
->busy
.lock
);
1805 unlink_va(va
, &vn
->busy
.root
);
1806 spin_unlock(&vn
->busy
.lock
);
1809 * Insert/Merge it back to the free tree/list.
1811 spin_lock(&free_vmap_area_lock
);
1812 merge_or_add_vmap_area_augment(va
, &free_vmap_area_root
, &free_vmap_area_list
);
1813 spin_unlock(&free_vmap_area_lock
);
1817 preload_this_cpu_lock(spinlock_t
*lock
, gfp_t gfp_mask
, int node
)
1819 struct vmap_area
*va
= NULL
, *tmp
;
1822 * Preload this CPU with one extra vmap_area object. It is used
1823 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1824 * a CPU that does an allocation is preloaded.
1826 * We do it in non-atomic context, thus it allows us to use more
1827 * permissive allocation masks to be more stable under low memory
1828 * condition and high memory pressure.
1830 if (!this_cpu_read(ne_fit_preload_node
))
1831 va
= kmem_cache_alloc_node(vmap_area_cachep
, gfp_mask
, node
);
1836 if (va
&& !__this_cpu_try_cmpxchg(ne_fit_preload_node
, &tmp
, va
))
1837 kmem_cache_free(vmap_area_cachep
, va
);
1840 static struct vmap_pool
*
1841 size_to_va_pool(struct vmap_node
*vn
, unsigned long size
)
1843 unsigned int idx
= (size
- 1) / PAGE_SIZE
;
1845 if (idx
< MAX_VA_SIZE_PAGES
)
1846 return &vn
->pool
[idx
];
1852 node_pool_add_va(struct vmap_node
*n
, struct vmap_area
*va
)
1854 struct vmap_pool
*vp
;
1856 vp
= size_to_va_pool(n
, va_size(va
));
1860 spin_lock(&n
->pool_lock
);
1861 list_add(&va
->list
, &vp
->head
);
1862 WRITE_ONCE(vp
->len
, vp
->len
+ 1);
1863 spin_unlock(&n
->pool_lock
);
1868 static struct vmap_area
*
1869 node_pool_del_va(struct vmap_node
*vn
, unsigned long size
,
1870 unsigned long align
, unsigned long vstart
,
1873 struct vmap_area
*va
= NULL
;
1874 struct vmap_pool
*vp
;
1877 vp
= size_to_va_pool(vn
, size
);
1878 if (!vp
|| list_empty(&vp
->head
))
1881 spin_lock(&vn
->pool_lock
);
1882 if (!list_empty(&vp
->head
)) {
1883 va
= list_first_entry(&vp
->head
, struct vmap_area
, list
);
1885 if (IS_ALIGNED(va
->va_start
, align
)) {
1887 * Do some sanity check and emit a warning
1888 * if one of below checks detects an error.
1890 err
|= (va_size(va
) != size
);
1891 err
|= (va
->va_start
< vstart
);
1892 err
|= (va
->va_end
> vend
);
1894 if (!WARN_ON_ONCE(err
)) {
1895 list_del_init(&va
->list
);
1896 WRITE_ONCE(vp
->len
, vp
->len
- 1);
1901 list_move_tail(&va
->list
, &vp
->head
);
1905 spin_unlock(&vn
->pool_lock
);
1910 static struct vmap_area
*
1911 node_alloc(unsigned long size
, unsigned long align
,
1912 unsigned long vstart
, unsigned long vend
,
1913 unsigned long *addr
, unsigned int *vn_id
)
1915 struct vmap_area
*va
;
1921 * Fallback to a global heap if not vmalloc or there
1924 if (vstart
!= VMALLOC_START
|| vend
!= VMALLOC_END
||
1928 *vn_id
= raw_smp_processor_id() % nr_vmap_nodes
;
1929 va
= node_pool_del_va(id_to_node(*vn_id
), size
, align
, vstart
, vend
);
1930 *vn_id
= encode_vn_id(*vn_id
);
1933 *addr
= va
->va_start
;
1938 static inline void setup_vmalloc_vm(struct vm_struct
*vm
,
1939 struct vmap_area
*va
, unsigned long flags
, const void *caller
)
1942 vm
->addr
= (void *)va
->va_start
;
1943 vm
->size
= va_size(va
);
1944 vm
->caller
= caller
;
1949 * Allocate a region of KVA of the specified size and alignment, within the
1950 * vstart and vend. If vm is passed in, the two will also be bound.
1952 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
1953 unsigned long align
,
1954 unsigned long vstart
, unsigned long vend
,
1955 int node
, gfp_t gfp_mask
,
1956 unsigned long va_flags
, struct vm_struct
*vm
)
1958 struct vmap_node
*vn
;
1959 struct vmap_area
*va
;
1960 unsigned long freed
;
1966 if (unlikely(!size
|| offset_in_page(size
) || !is_power_of_2(align
)))
1967 return ERR_PTR(-EINVAL
);
1969 if (unlikely(!vmap_initialized
))
1970 return ERR_PTR(-EBUSY
);
1975 * If a VA is obtained from a global heap(if it fails here)
1976 * it is anyway marked with this "vn_id" so it is returned
1977 * to this pool's node later. Such way gives a possibility
1978 * to populate pools based on users demand.
1980 * On success a ready to go VA is returned.
1982 va
= node_alloc(size
, align
, vstart
, vend
, &addr
, &vn_id
);
1984 gfp_mask
= gfp_mask
& GFP_RECLAIM_MASK
;
1986 va
= kmem_cache_alloc_node(vmap_area_cachep
, gfp_mask
, node
);
1988 return ERR_PTR(-ENOMEM
);
1991 * Only scan the relevant parts containing pointers to other objects
1992 * to avoid false negatives.
1994 kmemleak_scan_area(&va
->rb_node
, SIZE_MAX
, gfp_mask
);
1999 preload_this_cpu_lock(&free_vmap_area_lock
, gfp_mask
, node
);
2000 addr
= __alloc_vmap_area(&free_vmap_area_root
, &free_vmap_area_list
,
2001 size
, align
, vstart
, vend
);
2002 spin_unlock(&free_vmap_area_lock
);
2005 trace_alloc_vmap_area(addr
, size
, align
, vstart
, vend
, addr
== vend
);
2008 * If an allocation fails, the "vend" address is
2009 * returned. Therefore trigger the overflow path.
2011 if (unlikely(addr
== vend
))
2014 va
->va_start
= addr
;
2015 va
->va_end
= addr
+ size
;
2017 va
->flags
= (va_flags
| vn_id
);
2020 vm
->addr
= (void *)va
->va_start
;
2021 vm
->size
= va_size(va
);
2025 vn
= addr_to_node(va
->va_start
);
2027 spin_lock(&vn
->busy
.lock
);
2028 insert_vmap_area(va
, &vn
->busy
.root
, &vn
->busy
.head
);
2029 spin_unlock(&vn
->busy
.lock
);
2031 BUG_ON(!IS_ALIGNED(va
->va_start
, align
));
2032 BUG_ON(va
->va_start
< vstart
);
2033 BUG_ON(va
->va_end
> vend
);
2035 ret
= kasan_populate_vmalloc(addr
, size
);
2038 return ERR_PTR(ret
);
2045 reclaim_and_purge_vmap_areas();
2051 blocking_notifier_call_chain(&vmap_notify_list
, 0, &freed
);
2058 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit())
2059 pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n",
2060 size
, vstart
, vend
);
2062 kmem_cache_free(vmap_area_cachep
, va
);
2063 return ERR_PTR(-EBUSY
);
2066 int register_vmap_purge_notifier(struct notifier_block
*nb
)
2068 return blocking_notifier_chain_register(&vmap_notify_list
, nb
);
2070 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier
);
2072 int unregister_vmap_purge_notifier(struct notifier_block
*nb
)
2074 return blocking_notifier_chain_unregister(&vmap_notify_list
, nb
);
2076 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier
);
2079 * lazy_max_pages is the maximum amount of virtual address space we gather up
2080 * before attempting to purge with a TLB flush.
2082 * There is a tradeoff here: a larger number will cover more kernel page tables
2083 * and take slightly longer to purge, but it will linearly reduce the number of
2084 * global TLB flushes that must be performed. It would seem natural to scale
2085 * this number up linearly with the number of CPUs (because vmapping activity
2086 * could also scale linearly with the number of CPUs), however it is likely
2087 * that in practice, workloads might be constrained in other ways that mean
2088 * vmap activity will not scale linearly with CPUs. Also, I want to be
2089 * conservative and not introduce a big latency on huge systems, so go with
2090 * a less aggressive log scale. It will still be an improvement over the old
2091 * code, and it will be simple to change the scale factor if we find that it
2092 * becomes a problem on bigger systems.
2094 static unsigned long lazy_max_pages(void)
2098 log
= fls(num_online_cpus());
2100 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
2103 static atomic_long_t vmap_lazy_nr
= ATOMIC_LONG_INIT(0);
2106 * Serialize vmap purging. There is no actual critical section protected
2107 * by this lock, but we want to avoid concurrent calls for performance
2108 * reasons and to make the pcpu_get_vm_areas more deterministic.
2110 static DEFINE_MUTEX(vmap_purge_lock
);
2112 /* for per-CPU blocks */
2113 static void purge_fragmented_blocks_allcpus(void);
2114 static cpumask_t purge_nodes
;
2117 reclaim_list_global(struct list_head
*head
)
2119 struct vmap_area
*va
, *n
;
2121 if (list_empty(head
))
2124 spin_lock(&free_vmap_area_lock
);
2125 list_for_each_entry_safe(va
, n
, head
, list
)
2126 merge_or_add_vmap_area_augment(va
,
2127 &free_vmap_area_root
, &free_vmap_area_list
);
2128 spin_unlock(&free_vmap_area_lock
);
2132 decay_va_pool_node(struct vmap_node
*vn
, bool full_decay
)
2134 LIST_HEAD(decay_list
);
2135 struct rb_root decay_root
= RB_ROOT
;
2136 struct vmap_area
*va
, *nva
;
2137 unsigned long n_decay
;
2140 for (i
= 0; i
< MAX_VA_SIZE_PAGES
; i
++) {
2141 LIST_HEAD(tmp_list
);
2143 if (list_empty(&vn
->pool
[i
].head
))
2146 /* Detach the pool, so no-one can access it. */
2147 spin_lock(&vn
->pool_lock
);
2148 list_replace_init(&vn
->pool
[i
].head
, &tmp_list
);
2149 spin_unlock(&vn
->pool_lock
);
2152 WRITE_ONCE(vn
->pool
[i
].len
, 0);
2154 /* Decay a pool by ~25% out of left objects. */
2155 n_decay
= vn
->pool
[i
].len
>> 2;
2157 list_for_each_entry_safe(va
, nva
, &tmp_list
, list
) {
2158 list_del_init(&va
->list
);
2159 merge_or_add_vmap_area(va
, &decay_root
, &decay_list
);
2162 WRITE_ONCE(vn
->pool
[i
].len
, vn
->pool
[i
].len
- 1);
2170 * Attach the pool back if it has been partly decayed.
2171 * Please note, it is supposed that nobody(other contexts)
2172 * can populate the pool therefore a simple list replace
2173 * operation takes place here.
2175 if (!full_decay
&& !list_empty(&tmp_list
)) {
2176 spin_lock(&vn
->pool_lock
);
2177 list_replace_init(&tmp_list
, &vn
->pool
[i
].head
);
2178 spin_unlock(&vn
->pool_lock
);
2182 reclaim_list_global(&decay_list
);
2186 kasan_release_vmalloc_node(struct vmap_node
*vn
)
2188 struct vmap_area
*va
;
2189 unsigned long start
, end
;
2191 start
= list_first_entry(&vn
->purge_list
, struct vmap_area
, list
)->va_start
;
2192 end
= list_last_entry(&vn
->purge_list
, struct vmap_area
, list
)->va_end
;
2194 list_for_each_entry(va
, &vn
->purge_list
, list
) {
2195 if (is_vmalloc_or_module_addr((void *) va
->va_start
))
2196 kasan_release_vmalloc(va
->va_start
, va
->va_end
,
2197 va
->va_start
, va
->va_end
,
2198 KASAN_VMALLOC_PAGE_RANGE
);
2201 kasan_release_vmalloc(start
, end
, start
, end
, KASAN_VMALLOC_TLB_FLUSH
);
2204 static void purge_vmap_node(struct work_struct
*work
)
2206 struct vmap_node
*vn
= container_of(work
,
2207 struct vmap_node
, purge_work
);
2208 unsigned long nr_purged_pages
= 0;
2209 struct vmap_area
*va
, *n_va
;
2210 LIST_HEAD(local_list
);
2212 if (IS_ENABLED(CONFIG_KASAN_VMALLOC
))
2213 kasan_release_vmalloc_node(vn
);
2217 list_for_each_entry_safe(va
, n_va
, &vn
->purge_list
, list
) {
2218 unsigned long nr
= va_size(va
) >> PAGE_SHIFT
;
2219 unsigned int vn_id
= decode_vn_id(va
->flags
);
2221 list_del_init(&va
->list
);
2223 nr_purged_pages
+= nr
;
2226 if (is_vn_id_valid(vn_id
) && !vn
->skip_populate
)
2227 if (node_pool_add_va(vn
, va
))
2230 /* Go back to global. */
2231 list_add(&va
->list
, &local_list
);
2234 atomic_long_sub(nr_purged_pages
, &vmap_lazy_nr
);
2236 reclaim_list_global(&local_list
);
2240 * Purges all lazily-freed vmap areas.
2242 static bool __purge_vmap_area_lazy(unsigned long start
, unsigned long end
,
2243 bool full_pool_decay
)
2245 unsigned long nr_purged_areas
= 0;
2246 unsigned int nr_purge_helpers
;
2247 unsigned int nr_purge_nodes
;
2248 struct vmap_node
*vn
;
2251 lockdep_assert_held(&vmap_purge_lock
);
2254 * Use cpumask to mark which node has to be processed.
2256 purge_nodes
= CPU_MASK_NONE
;
2258 for (i
= 0; i
< nr_vmap_nodes
; i
++) {
2259 vn
= &vmap_nodes
[i
];
2261 INIT_LIST_HEAD(&vn
->purge_list
);
2262 vn
->skip_populate
= full_pool_decay
;
2263 decay_va_pool_node(vn
, full_pool_decay
);
2265 if (RB_EMPTY_ROOT(&vn
->lazy
.root
))
2268 spin_lock(&vn
->lazy
.lock
);
2269 WRITE_ONCE(vn
->lazy
.root
.rb_node
, NULL
);
2270 list_replace_init(&vn
->lazy
.head
, &vn
->purge_list
);
2271 spin_unlock(&vn
->lazy
.lock
);
2273 start
= min(start
, list_first_entry(&vn
->purge_list
,
2274 struct vmap_area
, list
)->va_start
);
2276 end
= max(end
, list_last_entry(&vn
->purge_list
,
2277 struct vmap_area
, list
)->va_end
);
2279 cpumask_set_cpu(i
, &purge_nodes
);
2282 nr_purge_nodes
= cpumask_weight(&purge_nodes
);
2283 if (nr_purge_nodes
> 0) {
2284 flush_tlb_kernel_range(start
, end
);
2286 /* One extra worker is per a lazy_max_pages() full set minus one. */
2287 nr_purge_helpers
= atomic_long_read(&vmap_lazy_nr
) / lazy_max_pages();
2288 nr_purge_helpers
= clamp(nr_purge_helpers
, 1U, nr_purge_nodes
) - 1;
2290 for_each_cpu(i
, &purge_nodes
) {
2291 vn
= &vmap_nodes
[i
];
2293 if (nr_purge_helpers
> 0) {
2294 INIT_WORK(&vn
->purge_work
, purge_vmap_node
);
2296 if (cpumask_test_cpu(i
, cpu_online_mask
))
2297 schedule_work_on(i
, &vn
->purge_work
);
2299 schedule_work(&vn
->purge_work
);
2303 vn
->purge_work
.func
= NULL
;
2304 purge_vmap_node(&vn
->purge_work
);
2305 nr_purged_areas
+= vn
->nr_purged
;
2309 for_each_cpu(i
, &purge_nodes
) {
2310 vn
= &vmap_nodes
[i
];
2312 if (vn
->purge_work
.func
) {
2313 flush_work(&vn
->purge_work
);
2314 nr_purged_areas
+= vn
->nr_purged
;
2319 trace_purge_vmap_area_lazy(start
, end
, nr_purged_areas
);
2320 return nr_purged_areas
> 0;
2324 * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
2326 static void reclaim_and_purge_vmap_areas(void)
2329 mutex_lock(&vmap_purge_lock
);
2330 purge_fragmented_blocks_allcpus();
2331 __purge_vmap_area_lazy(ULONG_MAX
, 0, true);
2332 mutex_unlock(&vmap_purge_lock
);
2335 static void drain_vmap_area_work(struct work_struct
*work
)
2337 mutex_lock(&vmap_purge_lock
);
2338 __purge_vmap_area_lazy(ULONG_MAX
, 0, false);
2339 mutex_unlock(&vmap_purge_lock
);
2343 * Free a vmap area, caller ensuring that the area has been unmapped,
2344 * unlinked and flush_cache_vunmap had been called for the correct
2347 static void free_vmap_area_noflush(struct vmap_area
*va
)
2349 unsigned long nr_lazy_max
= lazy_max_pages();
2350 unsigned long va_start
= va
->va_start
;
2351 unsigned int vn_id
= decode_vn_id(va
->flags
);
2352 struct vmap_node
*vn
;
2353 unsigned long nr_lazy
;
2355 if (WARN_ON_ONCE(!list_empty(&va
->list
)))
2358 nr_lazy
= atomic_long_add_return(va_size(va
) >> PAGE_SHIFT
,
2362 * If it was request by a certain node we would like to
2363 * return it to that node, i.e. its pool for later reuse.
2365 vn
= is_vn_id_valid(vn_id
) ?
2366 id_to_node(vn_id
):addr_to_node(va
->va_start
);
2368 spin_lock(&vn
->lazy
.lock
);
2369 insert_vmap_area(va
, &vn
->lazy
.root
, &vn
->lazy
.head
);
2370 spin_unlock(&vn
->lazy
.lock
);
2372 trace_free_vmap_area_noflush(va_start
, nr_lazy
, nr_lazy_max
);
2374 /* After this point, we may free va at any time */
2375 if (unlikely(nr_lazy
> nr_lazy_max
))
2376 schedule_work(&drain_vmap_work
);
2380 * Free and unmap a vmap area
2382 static void free_unmap_vmap_area(struct vmap_area
*va
)
2384 flush_cache_vunmap(va
->va_start
, va
->va_end
);
2385 vunmap_range_noflush(va
->va_start
, va
->va_end
);
2386 if (debug_pagealloc_enabled_static())
2387 flush_tlb_kernel_range(va
->va_start
, va
->va_end
);
2389 free_vmap_area_noflush(va
);
2392 struct vmap_area
*find_vmap_area(unsigned long addr
)
2394 struct vmap_node
*vn
;
2395 struct vmap_area
*va
;
2398 if (unlikely(!vmap_initialized
))
2402 * An addr_to_node_id(addr) converts an address to a node index
2403 * where a VA is located. If VA spans several zones and passed
2404 * addr is not the same as va->va_start, what is not common, we
2405 * may need to scan extra nodes. See an example:
2408 * -|-----|-----|-----|-----|-
2411 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed
2412 * addr is within 2 or 0 nodes we should do extra work.
2414 i
= j
= addr_to_node_id(addr
);
2416 vn
= &vmap_nodes
[i
];
2418 spin_lock(&vn
->busy
.lock
);
2419 va
= __find_vmap_area(addr
, &vn
->busy
.root
);
2420 spin_unlock(&vn
->busy
.lock
);
2424 } while ((i
= (i
+ 1) % nr_vmap_nodes
) != j
);
2429 static struct vmap_area
*find_unlink_vmap_area(unsigned long addr
)
2431 struct vmap_node
*vn
;
2432 struct vmap_area
*va
;
2436 * Check the comment in the find_vmap_area() about the loop.
2438 i
= j
= addr_to_node_id(addr
);
2440 vn
= &vmap_nodes
[i
];
2442 spin_lock(&vn
->busy
.lock
);
2443 va
= __find_vmap_area(addr
, &vn
->busy
.root
);
2445 unlink_va(va
, &vn
->busy
.root
);
2446 spin_unlock(&vn
->busy
.lock
);
2450 } while ((i
= (i
+ 1) % nr_vmap_nodes
) != j
);
2455 /*** Per cpu kva allocator ***/
2458 * vmap space is limited especially on 32 bit architectures. Ensure there is
2459 * room for at least 16 percpu vmap blocks per CPU.
2462 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
2463 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
2464 * instead (we just need a rough idea)
2466 #if BITS_PER_LONG == 32
2467 #define VMALLOC_SPACE (128UL*1024*1024)
2469 #define VMALLOC_SPACE (128UL*1024*1024*1024)
2472 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
2473 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
2474 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
2475 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
2476 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
2477 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
2478 #define VMAP_BBMAP_BITS \
2479 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
2480 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
2481 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
2483 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
2486 * Purge threshold to prevent overeager purging of fragmented blocks for
2487 * regular operations: Purge if vb->free is less than 1/4 of the capacity.
2489 #define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4)
2491 #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/
2492 #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/
2493 #define VMAP_FLAGS_MASK 0x3
2495 struct vmap_block_queue
{
2497 struct list_head free
;
2500 * An xarray requires an extra memory dynamically to
2501 * be allocated. If it is an issue, we can use rb-tree
2504 struct xarray vmap_blocks
;
2509 struct vmap_area
*va
;
2510 unsigned long free
, dirty
;
2511 DECLARE_BITMAP(used_map
, VMAP_BBMAP_BITS
);
2512 unsigned long dirty_min
, dirty_max
; /*< dirty range */
2513 struct list_head free_list
;
2514 struct rcu_head rcu_head
;
2515 struct list_head purge
;
2519 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
2520 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
2523 * In order to fast access to any "vmap_block" associated with a
2524 * specific address, we use a hash.
2526 * A per-cpu vmap_block_queue is used in both ways, to serialize
2527 * an access to free block chains among CPUs(alloc path) and it
2528 * also acts as a vmap_block hash(alloc/free paths). It means we
2529 * overload it, since we already have the per-cpu array which is
2530 * used as a hash table. When used as a hash a 'cpu' passed to
2531 * per_cpu() is not actually a CPU but rather a hash index.
2533 * A hash function is addr_to_vb_xa() which hashes any address
2534 * to a specific index(in a hash) it belongs to. This then uses a
2535 * per_cpu() macro to access an array with generated index.
2542 * 0 10 20 30 40 50 60
2543 * |------|------|------|------|------|------|...<vmap address space>
2544 * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2
2546 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
2547 * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
2549 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
2550 * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
2552 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
2553 * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
2555 * This technique almost always avoids lock contention on insert/remove,
2556 * however xarray spinlocks protect against any contention that remains.
2558 static struct xarray
*
2559 addr_to_vb_xa(unsigned long addr
)
2561 int index
= (addr
/ VMAP_BLOCK_SIZE
) % nr_cpu_ids
;
2564 * Please note, nr_cpu_ids points on a highest set
2565 * possible bit, i.e. we never invoke cpumask_next()
2566 * if an index points on it which is nr_cpu_ids - 1.
2568 if (!cpu_possible(index
))
2569 index
= cpumask_next(index
, cpu_possible_mask
);
2571 return &per_cpu(vmap_block_queue
, index
).vmap_blocks
;
2575 * We should probably have a fallback mechanism to allocate virtual memory
2576 * out of partially filled vmap blocks. However vmap block sizing should be
2577 * fairly reasonable according to the vmalloc size, so it shouldn't be a
2581 static unsigned long addr_to_vb_idx(unsigned long addr
)
2583 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
2584 addr
/= VMAP_BLOCK_SIZE
;
2588 static void *vmap_block_vaddr(unsigned long va_start
, unsigned long pages_off
)
2592 addr
= va_start
+ (pages_off
<< PAGE_SHIFT
);
2593 BUG_ON(addr_to_vb_idx(addr
) != addr_to_vb_idx(va_start
));
2594 return (void *)addr
;
2598 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2599 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
2600 * @order: how many 2^order pages should be occupied in newly allocated block
2601 * @gfp_mask: flags for the page level allocator
2603 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2605 static void *new_vmap_block(unsigned int order
, gfp_t gfp_mask
)
2607 struct vmap_block_queue
*vbq
;
2608 struct vmap_block
*vb
;
2609 struct vmap_area
*va
;
2611 unsigned long vb_idx
;
2615 node
= numa_node_id();
2617 vb
= kmalloc_node(sizeof(struct vmap_block
),
2618 gfp_mask
& GFP_RECLAIM_MASK
, node
);
2620 return ERR_PTR(-ENOMEM
);
2622 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
2623 VMALLOC_START
, VMALLOC_END
,
2625 VMAP_RAM
|VMAP_BLOCK
, NULL
);
2628 return ERR_CAST(va
);
2631 vaddr
= vmap_block_vaddr(va
->va_start
, 0);
2632 spin_lock_init(&vb
->lock
);
2634 /* At least something should be left free */
2635 BUG_ON(VMAP_BBMAP_BITS
<= (1UL << order
));
2636 bitmap_zero(vb
->used_map
, VMAP_BBMAP_BITS
);
2637 vb
->free
= VMAP_BBMAP_BITS
- (1UL << order
);
2639 vb
->dirty_min
= VMAP_BBMAP_BITS
;
2641 bitmap_set(vb
->used_map
, 0, (1UL << order
));
2642 INIT_LIST_HEAD(&vb
->free_list
);
2643 vb
->cpu
= raw_smp_processor_id();
2645 xa
= addr_to_vb_xa(va
->va_start
);
2646 vb_idx
= addr_to_vb_idx(va
->va_start
);
2647 err
= xa_insert(xa
, vb_idx
, vb
, gfp_mask
);
2651 return ERR_PTR(err
);
2654 * list_add_tail_rcu could happened in another core
2655 * rather than vb->cpu due to task migration, which
2656 * is safe as list_add_tail_rcu will ensure the list's
2657 * integrity together with list_for_each_rcu from read
2660 vbq
= per_cpu_ptr(&vmap_block_queue
, vb
->cpu
);
2661 spin_lock(&vbq
->lock
);
2662 list_add_tail_rcu(&vb
->free_list
, &vbq
->free
);
2663 spin_unlock(&vbq
->lock
);
2668 static void free_vmap_block(struct vmap_block
*vb
)
2670 struct vmap_node
*vn
;
2671 struct vmap_block
*tmp
;
2674 xa
= addr_to_vb_xa(vb
->va
->va_start
);
2675 tmp
= xa_erase(xa
, addr_to_vb_idx(vb
->va
->va_start
));
2678 vn
= addr_to_node(vb
->va
->va_start
);
2679 spin_lock(&vn
->busy
.lock
);
2680 unlink_va(vb
->va
, &vn
->busy
.root
);
2681 spin_unlock(&vn
->busy
.lock
);
2683 free_vmap_area_noflush(vb
->va
);
2684 kfree_rcu(vb
, rcu_head
);
2687 static bool purge_fragmented_block(struct vmap_block
*vb
,
2688 struct list_head
*purge_list
, bool force_purge
)
2690 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, vb
->cpu
);
2692 if (vb
->free
+ vb
->dirty
!= VMAP_BBMAP_BITS
||
2693 vb
->dirty
== VMAP_BBMAP_BITS
)
2696 /* Don't overeagerly purge usable blocks unless requested */
2697 if (!(force_purge
|| vb
->free
< VMAP_PURGE_THRESHOLD
))
2700 /* prevent further allocs after releasing lock */
2701 WRITE_ONCE(vb
->free
, 0);
2702 /* prevent purging it again */
2703 WRITE_ONCE(vb
->dirty
, VMAP_BBMAP_BITS
);
2705 vb
->dirty_max
= VMAP_BBMAP_BITS
;
2706 spin_lock(&vbq
->lock
);
2707 list_del_rcu(&vb
->free_list
);
2708 spin_unlock(&vbq
->lock
);
2709 list_add_tail(&vb
->purge
, purge_list
);
2713 static void free_purged_blocks(struct list_head
*purge_list
)
2715 struct vmap_block
*vb
, *n_vb
;
2717 list_for_each_entry_safe(vb
, n_vb
, purge_list
, purge
) {
2718 list_del(&vb
->purge
);
2719 free_vmap_block(vb
);
2723 static void purge_fragmented_blocks(int cpu
)
2726 struct vmap_block
*vb
;
2727 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
2730 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
2731 unsigned long free
= READ_ONCE(vb
->free
);
2732 unsigned long dirty
= READ_ONCE(vb
->dirty
);
2734 if (free
+ dirty
!= VMAP_BBMAP_BITS
||
2735 dirty
== VMAP_BBMAP_BITS
)
2738 spin_lock(&vb
->lock
);
2739 purge_fragmented_block(vb
, &purge
, true);
2740 spin_unlock(&vb
->lock
);
2743 free_purged_blocks(&purge
);
2746 static void purge_fragmented_blocks_allcpus(void)
2750 for_each_possible_cpu(cpu
)
2751 purge_fragmented_blocks(cpu
);
2754 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
2756 struct vmap_block_queue
*vbq
;
2757 struct vmap_block
*vb
;
2761 BUG_ON(offset_in_page(size
));
2762 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
2763 if (WARN_ON(size
== 0)) {
2765 * Allocating 0 bytes isn't what caller wants since
2766 * get_order(0) returns funny result. Just warn and terminate
2769 return ERR_PTR(-EINVAL
);
2771 order
= get_order(size
);
2774 vbq
= raw_cpu_ptr(&vmap_block_queue
);
2775 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
2776 unsigned long pages_off
;
2778 if (READ_ONCE(vb
->free
) < (1UL << order
))
2781 spin_lock(&vb
->lock
);
2782 if (vb
->free
< (1UL << order
)) {
2783 spin_unlock(&vb
->lock
);
2787 pages_off
= VMAP_BBMAP_BITS
- vb
->free
;
2788 vaddr
= vmap_block_vaddr(vb
->va
->va_start
, pages_off
);
2789 WRITE_ONCE(vb
->free
, vb
->free
- (1UL << order
));
2790 bitmap_set(vb
->used_map
, pages_off
, (1UL << order
));
2791 if (vb
->free
== 0) {
2792 spin_lock(&vbq
->lock
);
2793 list_del_rcu(&vb
->free_list
);
2794 spin_unlock(&vbq
->lock
);
2797 spin_unlock(&vb
->lock
);
2803 /* Allocate new block if nothing was found */
2805 vaddr
= new_vmap_block(order
, gfp_mask
);
2810 static void vb_free(unsigned long addr
, unsigned long size
)
2812 unsigned long offset
;
2814 struct vmap_block
*vb
;
2817 BUG_ON(offset_in_page(size
));
2818 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
2820 flush_cache_vunmap(addr
, addr
+ size
);
2822 order
= get_order(size
);
2823 offset
= (addr
& (VMAP_BLOCK_SIZE
- 1)) >> PAGE_SHIFT
;
2825 xa
= addr_to_vb_xa(addr
);
2826 vb
= xa_load(xa
, addr_to_vb_idx(addr
));
2828 spin_lock(&vb
->lock
);
2829 bitmap_clear(vb
->used_map
, offset
, (1UL << order
));
2830 spin_unlock(&vb
->lock
);
2832 vunmap_range_noflush(addr
, addr
+ size
);
2834 if (debug_pagealloc_enabled_static())
2835 flush_tlb_kernel_range(addr
, addr
+ size
);
2837 spin_lock(&vb
->lock
);
2839 /* Expand the not yet TLB flushed dirty range */
2840 vb
->dirty_min
= min(vb
->dirty_min
, offset
);
2841 vb
->dirty_max
= max(vb
->dirty_max
, offset
+ (1UL << order
));
2843 WRITE_ONCE(vb
->dirty
, vb
->dirty
+ (1UL << order
));
2844 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
2846 spin_unlock(&vb
->lock
);
2847 free_vmap_block(vb
);
2849 spin_unlock(&vb
->lock
);
2852 static void _vm_unmap_aliases(unsigned long start
, unsigned long end
, int flush
)
2854 LIST_HEAD(purge_list
);
2857 if (unlikely(!vmap_initialized
))
2860 mutex_lock(&vmap_purge_lock
);
2862 for_each_possible_cpu(cpu
) {
2863 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
2864 struct vmap_block
*vb
;
2868 xa_for_each(&vbq
->vmap_blocks
, idx
, vb
) {
2869 spin_lock(&vb
->lock
);
2872 * Try to purge a fragmented block first. If it's
2873 * not purgeable, check whether there is dirty
2874 * space to be flushed.
2876 if (!purge_fragmented_block(vb
, &purge_list
, false) &&
2877 vb
->dirty_max
&& vb
->dirty
!= VMAP_BBMAP_BITS
) {
2878 unsigned long va_start
= vb
->va
->va_start
;
2881 s
= va_start
+ (vb
->dirty_min
<< PAGE_SHIFT
);
2882 e
= va_start
+ (vb
->dirty_max
<< PAGE_SHIFT
);
2884 start
= min(s
, start
);
2887 /* Prevent that this is flushed again */
2888 vb
->dirty_min
= VMAP_BBMAP_BITS
;
2893 spin_unlock(&vb
->lock
);
2897 free_purged_blocks(&purge_list
);
2899 if (!__purge_vmap_area_lazy(start
, end
, false) && flush
)
2900 flush_tlb_kernel_range(start
, end
);
2901 mutex_unlock(&vmap_purge_lock
);
2905 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2907 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2908 * to amortize TLB flushing overheads. What this means is that any page you
2909 * have now, may, in a former life, have been mapped into kernel virtual
2910 * address by the vmap layer and so there might be some CPUs with TLB entries
2911 * still referencing that page (additional to the regular 1:1 kernel mapping).
2913 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2914 * be sure that none of the pages we have control over will have any aliases
2915 * from the vmap layer.
2917 void vm_unmap_aliases(void)
2919 unsigned long start
= ULONG_MAX
, end
= 0;
2922 _vm_unmap_aliases(start
, end
, flush
);
2924 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
2927 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2928 * @mem: the pointer returned by vm_map_ram
2929 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2931 void vm_unmap_ram(const void *mem
, unsigned int count
)
2933 unsigned long size
= (unsigned long)count
<< PAGE_SHIFT
;
2934 unsigned long addr
= (unsigned long)kasan_reset_tag(mem
);
2935 struct vmap_area
*va
;
2939 BUG_ON(addr
< VMALLOC_START
);
2940 BUG_ON(addr
> VMALLOC_END
);
2941 BUG_ON(!PAGE_ALIGNED(addr
));
2943 kasan_poison_vmalloc(mem
, size
);
2945 if (likely(count
<= VMAP_MAX_ALLOC
)) {
2946 debug_check_no_locks_freed(mem
, size
);
2947 vb_free(addr
, size
);
2951 va
= find_unlink_vmap_area(addr
);
2952 if (WARN_ON_ONCE(!va
))
2955 debug_check_no_locks_freed((void *)va
->va_start
, va_size(va
));
2956 free_unmap_vmap_area(va
);
2958 EXPORT_SYMBOL(vm_unmap_ram
);
2961 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2962 * @pages: an array of pointers to the pages to be mapped
2963 * @count: number of pages
2964 * @node: prefer to allocate data structures on this node
2966 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2967 * faster than vmap so it's good. But if you mix long-life and short-life
2968 * objects with vm_map_ram(), it could consume lots of address space through
2969 * fragmentation (especially on a 32bit machine). You could see failures in
2970 * the end. Please use this function for short-lived objects.
2972 * Returns: a pointer to the address that has been mapped, or %NULL on failure
2974 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
)
2976 unsigned long size
= (unsigned long)count
<< PAGE_SHIFT
;
2980 if (likely(count
<= VMAP_MAX_ALLOC
)) {
2981 mem
= vb_alloc(size
, GFP_KERNEL
);
2984 addr
= (unsigned long)mem
;
2986 struct vmap_area
*va
;
2987 va
= alloc_vmap_area(size
, PAGE_SIZE
,
2988 VMALLOC_START
, VMALLOC_END
,
2989 node
, GFP_KERNEL
, VMAP_RAM
,
2994 addr
= va
->va_start
;
2998 if (vmap_pages_range(addr
, addr
+ size
, PAGE_KERNEL
,
2999 pages
, PAGE_SHIFT
) < 0) {
3000 vm_unmap_ram(mem
, count
);
3005 * Mark the pages as accessible, now that they are mapped.
3006 * With hardware tag-based KASAN, marking is skipped for
3007 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3009 mem
= kasan_unpoison_vmalloc(mem
, size
, KASAN_VMALLOC_PROT_NORMAL
);
3013 EXPORT_SYMBOL(vm_map_ram
);
3015 static struct vm_struct
*vmlist __initdata
;
3017 static inline unsigned int vm_area_page_order(struct vm_struct
*vm
)
3019 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3020 return vm
->page_order
;
3026 unsigned int get_vm_area_page_order(struct vm_struct
*vm
)
3028 return vm_area_page_order(vm
);
3031 static inline void set_vm_area_page_order(struct vm_struct
*vm
, unsigned int order
)
3033 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3034 vm
->page_order
= order
;
3041 * vm_area_add_early - add vmap area early during boot
3042 * @vm: vm_struct to add
3044 * This function is used to add fixed kernel vm area to vmlist before
3045 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
3046 * should contain proper values and the other fields should be zero.
3048 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3050 void __init
vm_area_add_early(struct vm_struct
*vm
)
3052 struct vm_struct
*tmp
, **p
;
3054 BUG_ON(vmap_initialized
);
3055 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
3056 if (tmp
->addr
>= vm
->addr
) {
3057 BUG_ON(tmp
->addr
< vm
->addr
+ vm
->size
);
3060 BUG_ON(tmp
->addr
+ tmp
->size
> vm
->addr
);
3067 * vm_area_register_early - register vmap area early during boot
3068 * @vm: vm_struct to register
3069 * @align: requested alignment
3071 * This function is used to register kernel vm area before
3072 * vmalloc_init() is called. @vm->size and @vm->flags should contain
3073 * proper values on entry and other fields should be zero. On return,
3074 * vm->addr contains the allocated address.
3076 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3078 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
3080 unsigned long addr
= ALIGN(VMALLOC_START
, align
);
3081 struct vm_struct
*cur
, **p
;
3083 BUG_ON(vmap_initialized
);
3085 for (p
= &vmlist
; (cur
= *p
) != NULL
; p
= &cur
->next
) {
3086 if ((unsigned long)cur
->addr
- addr
>= vm
->size
)
3088 addr
= ALIGN((unsigned long)cur
->addr
+ cur
->size
, align
);
3091 BUG_ON(addr
> VMALLOC_END
- vm
->size
);
3092 vm
->addr
= (void *)addr
;
3095 kasan_populate_early_vm_area_shadow(vm
->addr
, vm
->size
);
3098 static void clear_vm_uninitialized_flag(struct vm_struct
*vm
)
3101 * Before removing VM_UNINITIALIZED,
3102 * we should make sure that vm has proper values.
3103 * Pair with smp_rmb() in show_numa_info().
3106 vm
->flags
&= ~VM_UNINITIALIZED
;
3109 struct vm_struct
*__get_vm_area_node(unsigned long size
,
3110 unsigned long align
, unsigned long shift
, unsigned long flags
,
3111 unsigned long start
, unsigned long end
, int node
,
3112 gfp_t gfp_mask
, const void *caller
)
3114 struct vmap_area
*va
;
3115 struct vm_struct
*area
;
3116 unsigned long requested_size
= size
;
3118 BUG_ON(in_interrupt());
3119 size
= ALIGN(size
, 1ul << shift
);
3120 if (unlikely(!size
))
3123 if (flags
& VM_IOREMAP
)
3124 align
= 1ul << clamp_t(int, get_count_order_long(size
),
3125 PAGE_SHIFT
, IOREMAP_MAX_ORDER
);
3127 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
3128 if (unlikely(!area
))
3131 if (!(flags
& VM_NO_GUARD
))
3134 area
->flags
= flags
;
3135 area
->caller
= caller
;
3137 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
, 0, area
);
3144 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
3145 * best-effort approach, as they can be mapped outside of vmalloc code.
3146 * For VM_ALLOC mappings, the pages are marked as accessible after
3147 * getting mapped in __vmalloc_node_range().
3148 * With hardware tag-based KASAN, marking is skipped for
3149 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3151 if (!(flags
& VM_ALLOC
))
3152 area
->addr
= kasan_unpoison_vmalloc(area
->addr
, requested_size
,
3153 KASAN_VMALLOC_PROT_NORMAL
);
3158 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
3159 unsigned long start
, unsigned long end
,
3162 return __get_vm_area_node(size
, 1, PAGE_SHIFT
, flags
, start
, end
,
3163 NUMA_NO_NODE
, GFP_KERNEL
, caller
);
3167 * get_vm_area - reserve a contiguous kernel virtual area
3168 * @size: size of the area
3169 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
3171 * Search an area of @size in the kernel virtual mapping area,
3172 * and reserved it for out purposes. Returns the area descriptor
3173 * on success or %NULL on failure.
3175 * Return: the area descriptor on success or %NULL on failure.
3177 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
3179 return __get_vm_area_node(size
, 1, PAGE_SHIFT
, flags
,
3180 VMALLOC_START
, VMALLOC_END
,
3181 NUMA_NO_NODE
, GFP_KERNEL
,
3182 __builtin_return_address(0));
3185 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
3188 return __get_vm_area_node(size
, 1, PAGE_SHIFT
, flags
,
3189 VMALLOC_START
, VMALLOC_END
,
3190 NUMA_NO_NODE
, GFP_KERNEL
, caller
);
3194 * find_vm_area - find a continuous kernel virtual area
3195 * @addr: base address
3197 * Search for the kernel VM area starting at @addr, and return it.
3198 * It is up to the caller to do all required locking to keep the returned
3201 * Return: the area descriptor on success or %NULL on failure.
3203 struct vm_struct
*find_vm_area(const void *addr
)
3205 struct vmap_area
*va
;
3207 va
= find_vmap_area((unsigned long)addr
);
3215 * remove_vm_area - find and remove a continuous kernel virtual area
3216 * @addr: base address
3218 * Search for the kernel VM area starting at @addr, and remove it.
3219 * This function returns the found VM area, but using it is NOT safe
3220 * on SMP machines, except for its size or flags.
3222 * Return: the area descriptor on success or %NULL on failure.
3224 struct vm_struct
*remove_vm_area(const void *addr
)
3226 struct vmap_area
*va
;
3227 struct vm_struct
*vm
;
3231 if (WARN(!PAGE_ALIGNED(addr
), "Trying to vfree() bad address (%p)\n",
3235 va
= find_unlink_vmap_area((unsigned long)addr
);
3240 debug_check_no_locks_freed(vm
->addr
, get_vm_area_size(vm
));
3241 debug_check_no_obj_freed(vm
->addr
, get_vm_area_size(vm
));
3242 kasan_free_module_shadow(vm
);
3243 kasan_poison_vmalloc(vm
->addr
, get_vm_area_size(vm
));
3245 free_unmap_vmap_area(va
);
3249 static inline void set_area_direct_map(const struct vm_struct
*area
,
3250 int (*set_direct_map
)(struct page
*page
))
3254 /* HUGE_VMALLOC passes small pages to set_direct_map */
3255 for (i
= 0; i
< area
->nr_pages
; i
++)
3256 if (page_address(area
->pages
[i
]))
3257 set_direct_map(area
->pages
[i
]);
3261 * Flush the vm mapping and reset the direct map.
3263 static void vm_reset_perms(struct vm_struct
*area
)
3265 unsigned long start
= ULONG_MAX
, end
= 0;
3266 unsigned int page_order
= vm_area_page_order(area
);
3271 * Find the start and end range of the direct mappings to make sure that
3272 * the vm_unmap_aliases() flush includes the direct map.
3274 for (i
= 0; i
< area
->nr_pages
; i
+= 1U << page_order
) {
3275 unsigned long addr
= (unsigned long)page_address(area
->pages
[i
]);
3278 unsigned long page_size
;
3280 page_size
= PAGE_SIZE
<< page_order
;
3281 start
= min(addr
, start
);
3282 end
= max(addr
+ page_size
, end
);
3288 * Set direct map to something invalid so that it won't be cached if
3289 * there are any accesses after the TLB flush, then flush the TLB and
3290 * reset the direct map permissions to the default.
3292 set_area_direct_map(area
, set_direct_map_invalid_noflush
);
3293 _vm_unmap_aliases(start
, end
, flush_dmap
);
3294 set_area_direct_map(area
, set_direct_map_default_noflush
);
3297 static void delayed_vfree_work(struct work_struct
*w
)
3299 struct vfree_deferred
*p
= container_of(w
, struct vfree_deferred
, wq
);
3300 struct llist_node
*t
, *llnode
;
3302 llist_for_each_safe(llnode
, t
, llist_del_all(&p
->list
))
3307 * vfree_atomic - release memory allocated by vmalloc()
3308 * @addr: memory base address
3310 * This one is just like vfree() but can be called in any atomic context
3313 void vfree_atomic(const void *addr
)
3315 struct vfree_deferred
*p
= raw_cpu_ptr(&vfree_deferred
);
3318 kmemleak_free(addr
);
3321 * Use raw_cpu_ptr() because this can be called from preemptible
3322 * context. Preemption is absolutely fine here, because the llist_add()
3323 * implementation is lockless, so it works even if we are adding to
3324 * another cpu's list. schedule_work() should be fine with this too.
3326 if (addr
&& llist_add((struct llist_node
*)addr
, &p
->list
))
3327 schedule_work(&p
->wq
);
3331 * vfree - Release memory allocated by vmalloc()
3332 * @addr: Memory base address
3334 * Free the virtually continuous memory area starting at @addr, as obtained
3335 * from one of the vmalloc() family of APIs. This will usually also free the
3336 * physical memory underlying the virtual allocation, but that memory is
3337 * reference counted, so it will not be freed until the last user goes away.
3339 * If @addr is NULL, no operation is performed.
3342 * May sleep if called *not* from interrupt context.
3343 * Must not be called in NMI context (strictly speaking, it could be
3344 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
3345 * conventions for vfree() arch-dependent would be a really bad idea).
3347 void vfree(const void *addr
)
3349 struct vm_struct
*vm
;
3352 if (unlikely(in_interrupt())) {
3358 kmemleak_free(addr
);
3364 vm
= remove_vm_area(addr
);
3365 if (unlikely(!vm
)) {
3366 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
3371 if (unlikely(vm
->flags
& VM_FLUSH_RESET_PERMS
))
3373 for (i
= 0; i
< vm
->nr_pages
; i
++) {
3374 struct page
*page
= vm
->pages
[i
];
3377 mod_memcg_page_state(page
, MEMCG_VMALLOC
, -1);
3379 * High-order allocs for huge vmallocs are split, so
3380 * can be freed as an array of order-0 allocations
3385 atomic_long_sub(vm
->nr_pages
, &nr_vmalloc_pages
);
3389 EXPORT_SYMBOL(vfree
);
3392 * vunmap - release virtual mapping obtained by vmap()
3393 * @addr: memory base address
3395 * Free the virtually contiguous memory area starting at @addr,
3396 * which was created from the page array passed to vmap().
3398 * Must not be called in interrupt context.
3400 void vunmap(const void *addr
)
3402 struct vm_struct
*vm
;
3404 BUG_ON(in_interrupt());
3409 vm
= remove_vm_area(addr
);
3410 if (unlikely(!vm
)) {
3411 WARN(1, KERN_ERR
"Trying to vunmap() nonexistent vm area (%p)\n",
3417 EXPORT_SYMBOL(vunmap
);
3420 * vmap - map an array of pages into virtually contiguous space
3421 * @pages: array of page pointers
3422 * @count: number of pages to map
3423 * @flags: vm_area->flags
3424 * @prot: page protection for the mapping
3426 * Maps @count pages from @pages into contiguous kernel virtual space.
3427 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
3428 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
3429 * are transferred from the caller to vmap(), and will be freed / dropped when
3430 * vfree() is called on the return value.
3432 * Return: the address of the area or %NULL on failure
3434 void *vmap(struct page
**pages
, unsigned int count
,
3435 unsigned long flags
, pgprot_t prot
)
3437 struct vm_struct
*area
;
3439 unsigned long size
; /* In bytes */
3443 if (WARN_ON_ONCE(flags
& VM_FLUSH_RESET_PERMS
))
3447 * Your top guard is someone else's bottom guard. Not having a top
3448 * guard compromises someone else's mappings too.
3450 if (WARN_ON_ONCE(flags
& VM_NO_GUARD
))
3451 flags
&= ~VM_NO_GUARD
;
3453 if (count
> totalram_pages())
3456 size
= (unsigned long)count
<< PAGE_SHIFT
;
3457 area
= get_vm_area_caller(size
, flags
, __builtin_return_address(0));
3461 addr
= (unsigned long)area
->addr
;
3462 if (vmap_pages_range(addr
, addr
+ size
, pgprot_nx(prot
),
3463 pages
, PAGE_SHIFT
) < 0) {
3468 if (flags
& VM_MAP_PUT_PAGES
) {
3469 area
->pages
= pages
;
3470 area
->nr_pages
= count
;
3474 EXPORT_SYMBOL(vmap
);
3476 #ifdef CONFIG_VMAP_PFN
3477 struct vmap_pfn_data
{
3478 unsigned long *pfns
;
3483 static int vmap_pfn_apply(pte_t
*pte
, unsigned long addr
, void *private)
3485 struct vmap_pfn_data
*data
= private;
3486 unsigned long pfn
= data
->pfns
[data
->idx
];
3489 if (WARN_ON_ONCE(pfn_valid(pfn
)))
3492 ptent
= pte_mkspecial(pfn_pte(pfn
, data
->prot
));
3493 set_pte_at(&init_mm
, addr
, pte
, ptent
);
3500 * vmap_pfn - map an array of PFNs into virtually contiguous space
3501 * @pfns: array of PFNs
3502 * @count: number of pages to map
3503 * @prot: page protection for the mapping
3505 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
3506 * the start address of the mapping.
3508 void *vmap_pfn(unsigned long *pfns
, unsigned int count
, pgprot_t prot
)
3510 struct vmap_pfn_data data
= { .pfns
= pfns
, .prot
= pgprot_nx(prot
) };
3511 struct vm_struct
*area
;
3513 area
= get_vm_area_caller(count
* PAGE_SIZE
, VM_IOREMAP
,
3514 __builtin_return_address(0));
3517 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
3518 count
* PAGE_SIZE
, vmap_pfn_apply
, &data
)) {
3523 flush_cache_vmap((unsigned long)area
->addr
,
3524 (unsigned long)area
->addr
+ count
* PAGE_SIZE
);
3528 EXPORT_SYMBOL_GPL(vmap_pfn
);
3529 #endif /* CONFIG_VMAP_PFN */
3531 static inline unsigned int
3532 vm_area_alloc_pages(gfp_t gfp
, int nid
,
3533 unsigned int order
, unsigned int nr_pages
, struct page
**pages
)
3535 unsigned int nr_allocated
= 0;
3540 * For order-0 pages we make use of bulk allocator, if
3541 * the page array is partly or not at all populated due
3542 * to fails, fallback to a single page allocator that is
3546 while (nr_allocated
< nr_pages
) {
3547 unsigned int nr
, nr_pages_request
;
3550 * A maximum allowed request is hard-coded and is 100
3551 * pages per call. That is done in order to prevent a
3552 * long preemption off scenario in the bulk-allocator
3553 * so the range is [1:100].
3555 nr_pages_request
= min(100U, nr_pages
- nr_allocated
);
3557 /* memory allocation should consider mempolicy, we can't
3558 * wrongly use nearest node when nid == NUMA_NO_NODE,
3559 * otherwise memory may be allocated in only one node,
3560 * but mempolicy wants to alloc memory by interleaving.
3562 if (IS_ENABLED(CONFIG_NUMA
) && nid
== NUMA_NO_NODE
)
3563 nr
= alloc_pages_bulk_array_mempolicy_noprof(gfp
,
3565 pages
+ nr_allocated
);
3567 nr
= alloc_pages_bulk_array_node_noprof(gfp
, nid
,
3569 pages
+ nr_allocated
);
3575 * If zero or pages were obtained partly,
3576 * fallback to a single page allocator.
3578 if (nr
!= nr_pages_request
)
3583 /* High-order pages or fallback path if "bulk" fails. */
3584 while (nr_allocated
< nr_pages
) {
3585 if (!(gfp
& __GFP_NOFAIL
) && fatal_signal_pending(current
))
3588 if (nid
== NUMA_NO_NODE
)
3589 page
= alloc_pages_noprof(gfp
, order
);
3591 page
= alloc_pages_node_noprof(nid
, gfp
, order
);
3593 if (unlikely(!page
))
3597 * High-order allocations must be able to be treated as
3598 * independent small pages by callers (as they can with
3599 * small-page vmallocs). Some drivers do their own refcounting
3600 * on vmalloc_to_page() pages, some use page->mapping,
3604 split_page(page
, order
);
3607 * Careful, we allocate and map page-order pages, but
3608 * tracking is done per PAGE_SIZE page so as to keep the
3609 * vm_struct APIs independent of the physical/mapped size.
3611 for (i
= 0; i
< (1U << order
); i
++)
3612 pages
[nr_allocated
+ i
] = page
+ i
;
3615 nr_allocated
+= 1U << order
;
3618 return nr_allocated
;
3621 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
3622 pgprot_t prot
, unsigned int page_shift
,
3625 const gfp_t nested_gfp
= (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
;
3626 bool nofail
= gfp_mask
& __GFP_NOFAIL
;
3627 unsigned long addr
= (unsigned long)area
->addr
;
3628 unsigned long size
= get_vm_area_size(area
);
3629 unsigned long array_size
;
3630 unsigned int nr_small_pages
= size
>> PAGE_SHIFT
;
3631 unsigned int page_order
;
3635 array_size
= (unsigned long)nr_small_pages
* sizeof(struct page
*);
3637 if (!(gfp_mask
& (GFP_DMA
| GFP_DMA32
)))
3638 gfp_mask
|= __GFP_HIGHMEM
;
3640 /* Please note that the recursion is strictly bounded. */
3641 if (array_size
> PAGE_SIZE
) {
3642 area
->pages
= __vmalloc_node_noprof(array_size
, 1, nested_gfp
, node
,
3645 area
->pages
= kmalloc_node_noprof(array_size
, nested_gfp
, node
);
3649 warn_alloc(gfp_mask
, NULL
,
3650 "vmalloc error: size %lu, failed to allocated page array size %lu",
3651 nr_small_pages
* PAGE_SIZE
, array_size
);
3656 set_vm_area_page_order(area
, page_shift
- PAGE_SHIFT
);
3657 page_order
= vm_area_page_order(area
);
3660 * High-order nofail allocations are really expensive and
3661 * potentially dangerous (pre-mature OOM, disruptive reclaim
3662 * and compaction etc.
3664 * Please note, the __vmalloc_node_range_noprof() falls-back
3665 * to order-0 pages if high-order attempt is unsuccessful.
3667 area
->nr_pages
= vm_area_alloc_pages((page_order
?
3668 gfp_mask
& ~__GFP_NOFAIL
: gfp_mask
) | __GFP_NOWARN
,
3669 node
, page_order
, nr_small_pages
, area
->pages
);
3671 atomic_long_add(area
->nr_pages
, &nr_vmalloc_pages
);
3672 if (gfp_mask
& __GFP_ACCOUNT
) {
3675 for (i
= 0; i
< area
->nr_pages
; i
++)
3676 mod_memcg_page_state(area
->pages
[i
], MEMCG_VMALLOC
, 1);
3680 * If not enough pages were obtained to accomplish an
3681 * allocation request, free them via vfree() if any.
3683 if (area
->nr_pages
!= nr_small_pages
) {
3685 * vm_area_alloc_pages() can fail due to insufficient memory but
3688 * - a pending fatal signal
3689 * - insufficient huge page-order pages
3691 * Since we always retry allocations at order-0 in the huge page
3692 * case a warning for either is spurious.
3694 if (!fatal_signal_pending(current
) && page_order
== 0)
3695 warn_alloc(gfp_mask
, NULL
,
3696 "vmalloc error: size %lu, failed to allocate pages",
3697 area
->nr_pages
* PAGE_SIZE
);
3702 * page tables allocations ignore external gfp mask, enforce it
3705 if ((gfp_mask
& (__GFP_FS
| __GFP_IO
)) == __GFP_IO
)
3706 flags
= memalloc_nofs_save();
3707 else if ((gfp_mask
& (__GFP_FS
| __GFP_IO
)) == 0)
3708 flags
= memalloc_noio_save();
3711 ret
= vmap_pages_range(addr
, addr
+ size
, prot
, area
->pages
,
3713 if (nofail
&& (ret
< 0))
3714 schedule_timeout_uninterruptible(1);
3715 } while (nofail
&& (ret
< 0));
3717 if ((gfp_mask
& (__GFP_FS
| __GFP_IO
)) == __GFP_IO
)
3718 memalloc_nofs_restore(flags
);
3719 else if ((gfp_mask
& (__GFP_FS
| __GFP_IO
)) == 0)
3720 memalloc_noio_restore(flags
);
3723 warn_alloc(gfp_mask
, NULL
,
3724 "vmalloc error: size %lu, failed to map pages",
3725 area
->nr_pages
* PAGE_SIZE
);
3737 * __vmalloc_node_range - allocate virtually contiguous memory
3738 * @size: allocation size
3739 * @align: desired alignment
3740 * @start: vm area range start
3741 * @end: vm area range end
3742 * @gfp_mask: flags for the page level allocator
3743 * @prot: protection mask for the allocated pages
3744 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3745 * @node: node to use for allocation or NUMA_NO_NODE
3746 * @caller: caller's return address
3748 * Allocate enough pages to cover @size from the page level
3749 * allocator with @gfp_mask flags. Please note that the full set of gfp
3750 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3752 * Zone modifiers are not supported. From the reclaim modifiers
3753 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3754 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3755 * __GFP_RETRY_MAYFAIL are not supported).
3757 * __GFP_NOWARN can be used to suppress failures messages.
3759 * Map them into contiguous kernel virtual space, using a pagetable
3760 * protection of @prot.
3762 * Return: the address of the area or %NULL on failure
3764 void *__vmalloc_node_range_noprof(unsigned long size
, unsigned long align
,
3765 unsigned long start
, unsigned long end
, gfp_t gfp_mask
,
3766 pgprot_t prot
, unsigned long vm_flags
, int node
,
3769 struct vm_struct
*area
;
3771 kasan_vmalloc_flags_t kasan_flags
= KASAN_VMALLOC_NONE
;
3772 unsigned long real_size
= size
;
3773 unsigned long real_align
= align
;
3774 unsigned int shift
= PAGE_SHIFT
;
3776 if (WARN_ON_ONCE(!size
))
3779 if ((size
>> PAGE_SHIFT
) > totalram_pages()) {
3780 warn_alloc(gfp_mask
, NULL
,
3781 "vmalloc error: size %lu, exceeds total pages",
3786 if (vmap_allow_huge
&& (vm_flags
& VM_ALLOW_HUGE_VMAP
)) {
3788 * Try huge pages. Only try for PAGE_KERNEL allocations,
3789 * others like modules don't yet expect huge pages in
3790 * their allocations due to apply_to_page_range not
3794 if (arch_vmap_pmd_supported(prot
) && size
>= PMD_SIZE
)
3797 shift
= arch_vmap_pte_supported_shift(size
);
3799 align
= max(real_align
, 1UL << shift
);
3800 size
= ALIGN(real_size
, 1UL << shift
);
3804 area
= __get_vm_area_node(real_size
, align
, shift
, VM_ALLOC
|
3805 VM_UNINITIALIZED
| vm_flags
, start
, end
, node
,
3808 bool nofail
= gfp_mask
& __GFP_NOFAIL
;
3809 warn_alloc(gfp_mask
, NULL
,
3810 "vmalloc error: size %lu, vm_struct allocation failed%s",
3811 real_size
, (nofail
) ? ". Retrying." : "");
3813 schedule_timeout_uninterruptible(1);
3820 * Prepare arguments for __vmalloc_area_node() and
3821 * kasan_unpoison_vmalloc().
3823 if (pgprot_val(prot
) == pgprot_val(PAGE_KERNEL
)) {
3824 if (kasan_hw_tags_enabled()) {
3826 * Modify protection bits to allow tagging.
3827 * This must be done before mapping.
3829 prot
= arch_vmap_pgprot_tagged(prot
);
3832 * Skip page_alloc poisoning and zeroing for physical
3833 * pages backing VM_ALLOC mapping. Memory is instead
3834 * poisoned and zeroed by kasan_unpoison_vmalloc().
3836 gfp_mask
|= __GFP_SKIP_KASAN
| __GFP_SKIP_ZERO
;
3839 /* Take note that the mapping is PAGE_KERNEL. */
3840 kasan_flags
|= KASAN_VMALLOC_PROT_NORMAL
;
3843 /* Allocate physical pages and map them into vmalloc space. */
3844 ret
= __vmalloc_area_node(area
, gfp_mask
, prot
, shift
, node
);
3849 * Mark the pages as accessible, now that they are mapped.
3850 * The condition for setting KASAN_VMALLOC_INIT should complement the
3851 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3852 * to make sure that memory is initialized under the same conditions.
3853 * Tag-based KASAN modes only assign tags to normal non-executable
3854 * allocations, see __kasan_unpoison_vmalloc().
3856 kasan_flags
|= KASAN_VMALLOC_VM_ALLOC
;
3857 if (!want_init_on_free() && want_init_on_alloc(gfp_mask
) &&
3858 (gfp_mask
& __GFP_SKIP_ZERO
))
3859 kasan_flags
|= KASAN_VMALLOC_INIT
;
3860 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3861 area
->addr
= kasan_unpoison_vmalloc(area
->addr
, real_size
, kasan_flags
);
3864 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3865 * flag. It means that vm_struct is not fully initialized.
3866 * Now, it is fully initialized, so remove this flag here.
3868 clear_vm_uninitialized_flag(area
);
3870 size
= PAGE_ALIGN(size
);
3871 if (!(vm_flags
& VM_DEFER_KMEMLEAK
))
3872 kmemleak_vmalloc(area
, size
, gfp_mask
);
3877 if (shift
> PAGE_SHIFT
) {
3888 * __vmalloc_node - allocate virtually contiguous memory
3889 * @size: allocation size
3890 * @align: desired alignment
3891 * @gfp_mask: flags for the page level allocator
3892 * @node: node to use for allocation or NUMA_NO_NODE
3893 * @caller: caller's return address
3895 * Allocate enough pages to cover @size from the page level allocator with
3896 * @gfp_mask flags. Map them into contiguous kernel virtual space.
3898 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3899 * and __GFP_NOFAIL are not supported
3901 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3904 * Return: pointer to the allocated memory or %NULL on error
3906 void *__vmalloc_node_noprof(unsigned long size
, unsigned long align
,
3907 gfp_t gfp_mask
, int node
, const void *caller
)
3909 return __vmalloc_node_range_noprof(size
, align
, VMALLOC_START
, VMALLOC_END
,
3910 gfp_mask
, PAGE_KERNEL
, 0, node
, caller
);
3913 * This is only for performance analysis of vmalloc and stress purpose.
3914 * It is required by vmalloc test module, therefore do not use it other
3917 #ifdef CONFIG_TEST_VMALLOC_MODULE
3918 EXPORT_SYMBOL_GPL(__vmalloc_node_noprof
);
3921 void *__vmalloc_noprof(unsigned long size
, gfp_t gfp_mask
)
3923 return __vmalloc_node_noprof(size
, 1, gfp_mask
, NUMA_NO_NODE
,
3924 __builtin_return_address(0));
3926 EXPORT_SYMBOL(__vmalloc_noprof
);
3929 * vmalloc - allocate virtually contiguous memory
3930 * @size: allocation size
3932 * Allocate enough pages to cover @size from the page level
3933 * allocator and map them into contiguous kernel virtual space.
3935 * For tight control over page level allocator and protection flags
3936 * use __vmalloc() instead.
3938 * Return: pointer to the allocated memory or %NULL on error
3940 void *vmalloc_noprof(unsigned long size
)
3942 return __vmalloc_node_noprof(size
, 1, GFP_KERNEL
, NUMA_NO_NODE
,
3943 __builtin_return_address(0));
3945 EXPORT_SYMBOL(vmalloc_noprof
);
3948 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3949 * @size: allocation size
3950 * @gfp_mask: flags for the page level allocator
3952 * Allocate enough pages to cover @size from the page level
3953 * allocator and map them into contiguous kernel virtual space.
3954 * If @size is greater than or equal to PMD_SIZE, allow using
3955 * huge pages for the memory
3957 * Return: pointer to the allocated memory or %NULL on error
3959 void *vmalloc_huge_noprof(unsigned long size
, gfp_t gfp_mask
)
3961 return __vmalloc_node_range_noprof(size
, 1, VMALLOC_START
, VMALLOC_END
,
3962 gfp_mask
, PAGE_KERNEL
, VM_ALLOW_HUGE_VMAP
,
3963 NUMA_NO_NODE
, __builtin_return_address(0));
3965 EXPORT_SYMBOL_GPL(vmalloc_huge_noprof
);
3968 * vzalloc - allocate virtually contiguous memory with zero fill
3969 * @size: allocation size
3971 * Allocate enough pages to cover @size from the page level
3972 * allocator and map them into contiguous kernel virtual space.
3973 * The memory allocated is set to zero.
3975 * For tight control over page level allocator and protection flags
3976 * use __vmalloc() instead.
3978 * Return: pointer to the allocated memory or %NULL on error
3980 void *vzalloc_noprof(unsigned long size
)
3982 return __vmalloc_node_noprof(size
, 1, GFP_KERNEL
| __GFP_ZERO
, NUMA_NO_NODE
,
3983 __builtin_return_address(0));
3985 EXPORT_SYMBOL(vzalloc_noprof
);
3988 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3989 * @size: allocation size
3991 * The resulting memory area is zeroed so it can be mapped to userspace
3992 * without leaking data.
3994 * Return: pointer to the allocated memory or %NULL on error
3996 void *vmalloc_user_noprof(unsigned long size
)
3998 return __vmalloc_node_range_noprof(size
, SHMLBA
, VMALLOC_START
, VMALLOC_END
,
3999 GFP_KERNEL
| __GFP_ZERO
, PAGE_KERNEL
,
4000 VM_USERMAP
, NUMA_NO_NODE
,
4001 __builtin_return_address(0));
4003 EXPORT_SYMBOL(vmalloc_user_noprof
);
4006 * vmalloc_node - allocate memory on a specific node
4007 * @size: allocation size
4010 * Allocate enough pages to cover @size from the page level
4011 * allocator and map them into contiguous kernel virtual space.
4013 * For tight control over page level allocator and protection flags
4014 * use __vmalloc() instead.
4016 * Return: pointer to the allocated memory or %NULL on error
4018 void *vmalloc_node_noprof(unsigned long size
, int node
)
4020 return __vmalloc_node_noprof(size
, 1, GFP_KERNEL
, node
,
4021 __builtin_return_address(0));
4023 EXPORT_SYMBOL(vmalloc_node_noprof
);
4026 * vzalloc_node - allocate memory on a specific node with zero fill
4027 * @size: allocation size
4030 * Allocate enough pages to cover @size from the page level
4031 * allocator and map them into contiguous kernel virtual space.
4032 * The memory allocated is set to zero.
4034 * Return: pointer to the allocated memory or %NULL on error
4036 void *vzalloc_node_noprof(unsigned long size
, int node
)
4038 return __vmalloc_node_noprof(size
, 1, GFP_KERNEL
| __GFP_ZERO
, node
,
4039 __builtin_return_address(0));
4041 EXPORT_SYMBOL(vzalloc_node_noprof
);
4044 * vrealloc - reallocate virtually contiguous memory; contents remain unchanged
4045 * @p: object to reallocate memory for
4046 * @size: the size to reallocate
4047 * @flags: the flags for the page level allocator
4049 * If @p is %NULL, vrealloc() behaves exactly like vmalloc(). If @size is 0 and
4050 * @p is not a %NULL pointer, the object pointed to is freed.
4052 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4053 * initial memory allocation, every subsequent call to this API for the same
4054 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4055 * __GFP_ZERO is not fully honored by this API.
4057 * In any case, the contents of the object pointed to are preserved up to the
4058 * lesser of the new and old sizes.
4060 * This function must not be called concurrently with itself or vfree() for the
4061 * same memory allocation.
4063 * Return: pointer to the allocated memory; %NULL if @size is zero or in case of
4066 void *vrealloc_noprof(const void *p
, size_t size
, gfp_t flags
)
4068 size_t old_size
= 0;
4077 struct vm_struct
*vm
;
4079 vm
= find_vm_area(p
);
4080 if (unlikely(!vm
)) {
4081 WARN(1, "Trying to vrealloc() nonexistent vm area (%p)\n", p
);
4085 old_size
= get_vm_area_size(vm
);
4089 * TODO: Shrink the vm_area, i.e. unmap and free unused pages. What
4090 * would be a good heuristic for when to shrink the vm_area?
4092 if (size
<= old_size
) {
4093 /* Zero out spare memory. */
4094 if (want_init_on_alloc(flags
))
4095 memset((void *)p
+ size
, 0, old_size
- size
);
4100 /* TODO: Grow the vm_area, i.e. allocate and map additional pages. */
4101 n
= __vmalloc_noprof(size
, flags
);
4106 memcpy(n
, p
, old_size
);
4113 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
4114 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4115 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
4116 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
4119 * 64b systems should always have either DMA or DMA32 zones. For others
4120 * GFP_DMA32 should do the right thing and use the normal zone.
4122 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4126 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
4127 * @size: allocation size
4129 * Allocate enough 32bit PA addressable pages to cover @size from the
4130 * page level allocator and map them into contiguous kernel virtual space.
4132 * Return: pointer to the allocated memory or %NULL on error
4134 void *vmalloc_32_noprof(unsigned long size
)
4136 return __vmalloc_node_noprof(size
, 1, GFP_VMALLOC32
, NUMA_NO_NODE
,
4137 __builtin_return_address(0));
4139 EXPORT_SYMBOL(vmalloc_32_noprof
);
4142 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
4143 * @size: allocation size
4145 * The resulting memory area is 32bit addressable and zeroed so it can be
4146 * mapped to userspace without leaking data.
4148 * Return: pointer to the allocated memory or %NULL on error
4150 void *vmalloc_32_user_noprof(unsigned long size
)
4152 return __vmalloc_node_range_noprof(size
, SHMLBA
, VMALLOC_START
, VMALLOC_END
,
4153 GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
4154 VM_USERMAP
, NUMA_NO_NODE
,
4155 __builtin_return_address(0));
4157 EXPORT_SYMBOL(vmalloc_32_user_noprof
);
4160 * Atomically zero bytes in the iterator.
4162 * Returns the number of zeroed bytes.
4164 static size_t zero_iter(struct iov_iter
*iter
, size_t count
)
4166 size_t remains
= count
;
4168 while (remains
> 0) {
4171 num
= min_t(size_t, remains
, PAGE_SIZE
);
4172 copied
= copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num
, iter
);
4179 return count
- remains
;
4183 * small helper routine, copy contents to iter from addr.
4184 * If the page is not present, fill zero.
4186 * Returns the number of copied bytes.
4188 static size_t aligned_vread_iter(struct iov_iter
*iter
,
4189 const char *addr
, size_t count
)
4191 size_t remains
= count
;
4194 while (remains
> 0) {
4195 unsigned long offset
, length
;
4198 offset
= offset_in_page(addr
);
4199 length
= PAGE_SIZE
- offset
;
4200 if (length
> remains
)
4202 page
= vmalloc_to_page(addr
);
4204 * To do safe access to this _mapped_ area, we need lock. But
4205 * adding lock here means that we need to add overhead of
4206 * vmalloc()/vfree() calls for this _debug_ interface, rarely
4207 * used. Instead of that, we'll use an local mapping via
4208 * copy_page_to_iter_nofault() and accept a small overhead in
4209 * this access function.
4212 copied
= copy_page_to_iter_nofault(page
, offset
,
4215 copied
= zero_iter(iter
, length
);
4220 if (copied
!= length
)
4224 return count
- remains
;
4228 * Read from a vm_map_ram region of memory.
4230 * Returns the number of copied bytes.
4232 static size_t vmap_ram_vread_iter(struct iov_iter
*iter
, const char *addr
,
4233 size_t count
, unsigned long flags
)
4236 struct vmap_block
*vb
;
4238 unsigned long offset
;
4239 unsigned int rs
, re
;
4243 * If it's area created by vm_map_ram() interface directly, but
4244 * not further subdividing and delegating management to vmap_block,
4247 if (!(flags
& VMAP_BLOCK
))
4248 return aligned_vread_iter(iter
, addr
, count
);
4253 * Area is split into regions and tracked with vmap_block, read out
4254 * each region and zero fill the hole between regions.
4256 xa
= addr_to_vb_xa((unsigned long) addr
);
4257 vb
= xa_load(xa
, addr_to_vb_idx((unsigned long)addr
));
4261 spin_lock(&vb
->lock
);
4262 if (bitmap_empty(vb
->used_map
, VMAP_BBMAP_BITS
)) {
4263 spin_unlock(&vb
->lock
);
4267 for_each_set_bitrange(rs
, re
, vb
->used_map
, VMAP_BBMAP_BITS
) {
4273 start
= vmap_block_vaddr(vb
->va
->va_start
, rs
);
4276 size_t to_zero
= min_t(size_t, start
- addr
, remains
);
4277 size_t zeroed
= zero_iter(iter
, to_zero
);
4282 if (remains
== 0 || zeroed
!= to_zero
)
4286 /*it could start reading from the middle of used region*/
4287 offset
= offset_in_page(addr
);
4288 n
= ((re
- rs
+ 1) << PAGE_SHIFT
) - offset
;
4292 copied
= aligned_vread_iter(iter
, start
+ offset
, n
);
4301 spin_unlock(&vb
->lock
);
4304 /* zero-fill the left dirty or free regions */
4305 return count
- remains
+ zero_iter(iter
, remains
);
4307 /* We couldn't copy/zero everything */
4308 spin_unlock(&vb
->lock
);
4309 return count
- remains
;
4313 * vread_iter() - read vmalloc area in a safe way to an iterator.
4314 * @iter: the iterator to which data should be written.
4315 * @addr: vm address.
4316 * @count: number of bytes to be read.
4318 * This function checks that addr is a valid vmalloc'ed area, and
4319 * copy data from that area to a given buffer. If the given memory range
4320 * of [addr...addr+count) includes some valid address, data is copied to
4321 * proper area of @buf. If there are memory holes, they'll be zero-filled.
4322 * IOREMAP area is treated as memory hole and no copy is done.
4324 * If [addr...addr+count) doesn't includes any intersects with alive
4325 * vm_struct area, returns 0. @buf should be kernel's buffer.
4327 * Note: In usual ops, vread() is never necessary because the caller
4328 * should know vmalloc() area is valid and can use memcpy().
4329 * This is for routines which have to access vmalloc area without
4330 * any information, as /proc/kcore.
4332 * Return: number of bytes for which addr and buf should be increased
4333 * (same number as @count) or %0 if [addr...addr+count) doesn't
4334 * include any intersection with valid vmalloc area
4336 long vread_iter(struct iov_iter
*iter
, const char *addr
, size_t count
)
4338 struct vmap_node
*vn
;
4339 struct vmap_area
*va
;
4340 struct vm_struct
*vm
;
4342 size_t n
, size
, flags
, remains
;
4345 addr
= kasan_reset_tag(addr
);
4347 /* Don't allow overflow */
4348 if ((unsigned long) addr
+ count
< count
)
4349 count
= -(unsigned long) addr
;
4353 vn
= find_vmap_area_exceed_addr_lock((unsigned long) addr
, &va
);
4357 /* no intersects with alive vmap_area */
4358 if ((unsigned long)addr
+ remains
<= va
->va_start
)
4368 flags
= va
->flags
& VMAP_FLAGS_MASK
;
4370 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
4371 * be set together with VMAP_RAM.
4373 WARN_ON(flags
== VMAP_BLOCK
);
4378 if (vm
&& (vm
->flags
& VM_UNINITIALIZED
))
4381 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4384 vaddr
= (char *) va
->va_start
;
4385 size
= vm
? get_vm_area_size(vm
) : va_size(va
);
4387 if (addr
>= vaddr
+ size
)
4391 size_t to_zero
= min_t(size_t, vaddr
- addr
, remains
);
4392 size_t zeroed
= zero_iter(iter
, to_zero
);
4397 if (remains
== 0 || zeroed
!= to_zero
)
4401 n
= vaddr
+ size
- addr
;
4405 if (flags
& VMAP_RAM
)
4406 copied
= vmap_ram_vread_iter(iter
, addr
, n
, flags
);
4407 else if (!(vm
&& (vm
->flags
& (VM_IOREMAP
| VM_SPARSE
))))
4408 copied
= aligned_vread_iter(iter
, addr
, n
);
4409 else /* IOREMAP | SPARSE area is treated as memory hole */
4410 copied
= zero_iter(iter
, n
);
4420 spin_unlock(&vn
->busy
.lock
);
4421 } while ((vn
= find_vmap_area_exceed_addr_lock(next
, &va
)));
4425 spin_unlock(&vn
->busy
.lock
);
4427 /* zero-fill memory holes */
4428 return count
- remains
+ zero_iter(iter
, remains
);
4430 /* Nothing remains, or We couldn't copy/zero everything. */
4432 spin_unlock(&vn
->busy
.lock
);
4434 return count
- remains
;
4438 * remap_vmalloc_range_partial - map vmalloc pages to userspace
4439 * @vma: vma to cover
4440 * @uaddr: target user address to start at
4441 * @kaddr: virtual address of vmalloc kernel memory
4442 * @pgoff: offset from @kaddr to start at
4443 * @size: size of map area
4445 * Returns: 0 for success, -Exxx on failure
4447 * This function checks that @kaddr is a valid vmalloc'ed area,
4448 * and that it is big enough to cover the range starting at
4449 * @uaddr in @vma. Will return failure if that criteria isn't
4452 * Similar to remap_pfn_range() (see mm/memory.c)
4454 int remap_vmalloc_range_partial(struct vm_area_struct
*vma
, unsigned long uaddr
,
4455 void *kaddr
, unsigned long pgoff
,
4458 struct vm_struct
*area
;
4460 unsigned long end_index
;
4462 if (check_shl_overflow(pgoff
, PAGE_SHIFT
, &off
))
4465 size
= PAGE_ALIGN(size
);
4467 if (!PAGE_ALIGNED(uaddr
) || !PAGE_ALIGNED(kaddr
))
4470 area
= find_vm_area(kaddr
);
4474 if (!(area
->flags
& (VM_USERMAP
| VM_DMA_COHERENT
)))
4477 if (check_add_overflow(size
, off
, &end_index
) ||
4478 end_index
> get_vm_area_size(area
))
4483 struct page
*page
= vmalloc_to_page(kaddr
);
4486 ret
= vm_insert_page(vma
, uaddr
, page
);
4495 vm_flags_set(vma
, VM_DONTEXPAND
| VM_DONTDUMP
);
4501 * remap_vmalloc_range - map vmalloc pages to userspace
4502 * @vma: vma to cover (map full range of vma)
4503 * @addr: vmalloc memory
4504 * @pgoff: number of pages into addr before first page to map
4506 * Returns: 0 for success, -Exxx on failure
4508 * This function checks that addr is a valid vmalloc'ed area, and
4509 * that it is big enough to cover the vma. Will return failure if
4510 * that criteria isn't met.
4512 * Similar to remap_pfn_range() (see mm/memory.c)
4514 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
4515 unsigned long pgoff
)
4517 return remap_vmalloc_range_partial(vma
, vma
->vm_start
,
4519 vma
->vm_end
- vma
->vm_start
);
4521 EXPORT_SYMBOL(remap_vmalloc_range
);
4523 void free_vm_area(struct vm_struct
*area
)
4525 struct vm_struct
*ret
;
4526 ret
= remove_vm_area(area
->addr
);
4527 BUG_ON(ret
!= area
);
4530 EXPORT_SYMBOL_GPL(free_vm_area
);
4533 static struct vmap_area
*node_to_va(struct rb_node
*n
)
4535 return rb_entry_safe(n
, struct vmap_area
, rb_node
);
4539 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
4540 * @addr: target address
4542 * Returns: vmap_area if it is found. If there is no such area
4543 * the first highest(reverse order) vmap_area is returned
4544 * i.e. va->va_start < addr && va->va_end < addr or NULL
4545 * if there are no any areas before @addr.
4547 static struct vmap_area
*
4548 pvm_find_va_enclose_addr(unsigned long addr
)
4550 struct vmap_area
*va
, *tmp
;
4553 n
= free_vmap_area_root
.rb_node
;
4557 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
4558 if (tmp
->va_start
<= addr
) {
4560 if (tmp
->va_end
>= addr
)
4573 * pvm_determine_end_from_reverse - find the highest aligned address
4574 * of free block below VMALLOC_END
4576 * in - the VA we start the search(reverse order);
4577 * out - the VA with the highest aligned end address.
4578 * @align: alignment for required highest address
4580 * Returns: determined end address within vmap_area
4582 static unsigned long
4583 pvm_determine_end_from_reverse(struct vmap_area
**va
, unsigned long align
)
4585 unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
4589 list_for_each_entry_from_reverse((*va
),
4590 &free_vmap_area_list
, list
) {
4591 addr
= min((*va
)->va_end
& ~(align
- 1), vmalloc_end
);
4592 if ((*va
)->va_start
< addr
)
4601 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4602 * @offsets: array containing offset of each area
4603 * @sizes: array containing size of each area
4604 * @nr_vms: the number of areas to allocate
4605 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4607 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4608 * vm_structs on success, %NULL on failure
4610 * Percpu allocator wants to use congruent vm areas so that it can
4611 * maintain the offsets among percpu areas. This function allocates
4612 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
4613 * be scattered pretty far, distance between two areas easily going up
4614 * to gigabytes. To avoid interacting with regular vmallocs, these
4615 * areas are allocated from top.
4617 * Despite its complicated look, this allocator is rather simple. It
4618 * does everything top-down and scans free blocks from the end looking
4619 * for matching base. While scanning, if any of the areas do not fit the
4620 * base address is pulled down to fit the area. Scanning is repeated till
4621 * all the areas fit and then all necessary data structures are inserted
4622 * and the result is returned.
4624 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
4625 const size_t *sizes
, int nr_vms
,
4628 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
4629 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
4630 struct vmap_area
**vas
, *va
;
4631 struct vm_struct
**vms
;
4632 int area
, area2
, last_area
, term_area
;
4633 unsigned long base
, start
, size
, end
, last_end
, orig_start
, orig_end
;
4634 bool purged
= false;
4636 /* verify parameters and allocate data structures */
4637 BUG_ON(offset_in_page(align
) || !is_power_of_2(align
));
4638 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
4639 start
= offsets
[area
];
4640 end
= start
+ sizes
[area
];
4642 /* is everything aligned properly? */
4643 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
4644 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
4646 /* detect the area with the highest address */
4647 if (start
> offsets
[last_area
])
4650 for (area2
= area
+ 1; area2
< nr_vms
; area2
++) {
4651 unsigned long start2
= offsets
[area2
];
4652 unsigned long end2
= start2
+ sizes
[area2
];
4654 BUG_ON(start2
< end
&& start
< end2
);
4657 last_end
= offsets
[last_area
] + sizes
[last_area
];
4659 if (vmalloc_end
- vmalloc_start
< last_end
) {
4664 vms
= kcalloc(nr_vms
, sizeof(vms
[0]), GFP_KERNEL
);
4665 vas
= kcalloc(nr_vms
, sizeof(vas
[0]), GFP_KERNEL
);
4669 for (area
= 0; area
< nr_vms
; area
++) {
4670 vas
[area
] = kmem_cache_zalloc(vmap_area_cachep
, GFP_KERNEL
);
4671 vms
[area
] = kzalloc(sizeof(struct vm_struct
), GFP_KERNEL
);
4672 if (!vas
[area
] || !vms
[area
])
4676 spin_lock(&free_vmap_area_lock
);
4678 /* start scanning - we scan from the top, begin with the last area */
4679 area
= term_area
= last_area
;
4680 start
= offsets
[area
];
4681 end
= start
+ sizes
[area
];
4683 va
= pvm_find_va_enclose_addr(vmalloc_end
);
4684 base
= pvm_determine_end_from_reverse(&va
, align
) - end
;
4688 * base might have underflowed, add last_end before
4691 if (base
+ last_end
< vmalloc_start
+ last_end
)
4695 * Fitting base has not been found.
4701 * If required width exceeds current VA block, move
4702 * base downwards and then recheck.
4704 if (base
+ end
> va
->va_end
) {
4705 base
= pvm_determine_end_from_reverse(&va
, align
) - end
;
4711 * If this VA does not fit, move base downwards and recheck.
4713 if (base
+ start
< va
->va_start
) {
4714 va
= node_to_va(rb_prev(&va
->rb_node
));
4715 base
= pvm_determine_end_from_reverse(&va
, align
) - end
;
4721 * This area fits, move on to the previous one. If
4722 * the previous one is the terminal one, we're done.
4724 area
= (area
+ nr_vms
- 1) % nr_vms
;
4725 if (area
== term_area
)
4728 start
= offsets
[area
];
4729 end
= start
+ sizes
[area
];
4730 va
= pvm_find_va_enclose_addr(base
+ end
);
4733 /* we've found a fitting base, insert all va's */
4734 for (area
= 0; area
< nr_vms
; area
++) {
4737 start
= base
+ offsets
[area
];
4740 va
= pvm_find_va_enclose_addr(start
);
4741 if (WARN_ON_ONCE(va
== NULL
))
4742 /* It is a BUG(), but trigger recovery instead. */
4745 ret
= va_clip(&free_vmap_area_root
,
4746 &free_vmap_area_list
, va
, start
, size
);
4747 if (WARN_ON_ONCE(unlikely(ret
)))
4748 /* It is a BUG(), but trigger recovery instead. */
4751 /* Allocated area. */
4753 va
->va_start
= start
;
4754 va
->va_end
= start
+ size
;
4757 spin_unlock(&free_vmap_area_lock
);
4759 /* populate the kasan shadow space */
4760 for (area
= 0; area
< nr_vms
; area
++) {
4761 if (kasan_populate_vmalloc(vas
[area
]->va_start
, sizes
[area
]))
4762 goto err_free_shadow
;
4765 /* insert all vm's */
4766 for (area
= 0; area
< nr_vms
; area
++) {
4767 struct vmap_node
*vn
= addr_to_node(vas
[area
]->va_start
);
4769 spin_lock(&vn
->busy
.lock
);
4770 insert_vmap_area(vas
[area
], &vn
->busy
.root
, &vn
->busy
.head
);
4771 setup_vmalloc_vm(vms
[area
], vas
[area
], VM_ALLOC
,
4773 spin_unlock(&vn
->busy
.lock
);
4777 * Mark allocated areas as accessible. Do it now as a best-effort
4778 * approach, as they can be mapped outside of vmalloc code.
4779 * With hardware tag-based KASAN, marking is skipped for
4780 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4782 for (area
= 0; area
< nr_vms
; area
++)
4783 vms
[area
]->addr
= kasan_unpoison_vmalloc(vms
[area
]->addr
,
4784 vms
[area
]->size
, KASAN_VMALLOC_PROT_NORMAL
);
4791 * Remove previously allocated areas. There is no
4792 * need in removing these areas from the busy tree,
4793 * because they are inserted only on the final step
4794 * and when pcpu_get_vm_areas() is success.
4797 orig_start
= vas
[area
]->va_start
;
4798 orig_end
= vas
[area
]->va_end
;
4799 va
= merge_or_add_vmap_area_augment(vas
[area
], &free_vmap_area_root
,
4800 &free_vmap_area_list
);
4802 kasan_release_vmalloc(orig_start
, orig_end
,
4803 va
->va_start
, va
->va_end
,
4804 KASAN_VMALLOC_PAGE_RANGE
| KASAN_VMALLOC_TLB_FLUSH
);
4809 spin_unlock(&free_vmap_area_lock
);
4811 reclaim_and_purge_vmap_areas();
4814 /* Before "retry", check if we recover. */
4815 for (area
= 0; area
< nr_vms
; area
++) {
4819 vas
[area
] = kmem_cache_zalloc(
4820 vmap_area_cachep
, GFP_KERNEL
);
4829 for (area
= 0; area
< nr_vms
; area
++) {
4831 kmem_cache_free(vmap_area_cachep
, vas
[area
]);
4841 spin_lock(&free_vmap_area_lock
);
4843 * We release all the vmalloc shadows, even the ones for regions that
4844 * hadn't been successfully added. This relies on kasan_release_vmalloc
4845 * being able to tolerate this case.
4847 for (area
= 0; area
< nr_vms
; area
++) {
4848 orig_start
= vas
[area
]->va_start
;
4849 orig_end
= vas
[area
]->va_end
;
4850 va
= merge_or_add_vmap_area_augment(vas
[area
], &free_vmap_area_root
,
4851 &free_vmap_area_list
);
4853 kasan_release_vmalloc(orig_start
, orig_end
,
4854 va
->va_start
, va
->va_end
,
4855 KASAN_VMALLOC_PAGE_RANGE
| KASAN_VMALLOC_TLB_FLUSH
);
4859 spin_unlock(&free_vmap_area_lock
);
4866 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4867 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4868 * @nr_vms: the number of allocated areas
4870 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4872 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
4876 for (i
= 0; i
< nr_vms
; i
++)
4877 free_vm_area(vms
[i
]);
4880 #endif /* CONFIG_SMP */
4882 #ifdef CONFIG_PRINTK
4883 bool vmalloc_dump_obj(void *object
)
4886 struct vm_struct
*vm
;
4887 struct vmap_area
*va
;
4888 struct vmap_node
*vn
;
4890 unsigned int nr_pages
;
4892 addr
= PAGE_ALIGN((unsigned long) object
);
4893 vn
= addr_to_node(addr
);
4895 if (!spin_trylock(&vn
->busy
.lock
))
4898 va
= __find_vmap_area(addr
, &vn
->busy
.root
);
4899 if (!va
|| !va
->vm
) {
4900 spin_unlock(&vn
->busy
.lock
);
4905 addr
= (unsigned long) vm
->addr
;
4906 caller
= vm
->caller
;
4907 nr_pages
= vm
->nr_pages
;
4908 spin_unlock(&vn
->busy
.lock
);
4910 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4911 nr_pages
, addr
, caller
);
4917 #ifdef CONFIG_PROC_FS
4918 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
4920 if (IS_ENABLED(CONFIG_NUMA
)) {
4921 unsigned int nr
, *counters
= m
->private;
4922 unsigned int step
= 1U << vm_area_page_order(v
);
4927 if (v
->flags
& VM_UNINITIALIZED
)
4929 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4932 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
4934 for (nr
= 0; nr
< v
->nr_pages
; nr
+= step
)
4935 counters
[page_to_nid(v
->pages
[nr
])] += step
;
4936 for_each_node_state(nr
, N_HIGH_MEMORY
)
4938 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
4942 static void show_purge_info(struct seq_file
*m
)
4944 struct vmap_node
*vn
;
4945 struct vmap_area
*va
;
4948 for (i
= 0; i
< nr_vmap_nodes
; i
++) {
4949 vn
= &vmap_nodes
[i
];
4951 spin_lock(&vn
->lazy
.lock
);
4952 list_for_each_entry(va
, &vn
->lazy
.head
, list
) {
4953 seq_printf(m
, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4954 (void *)va
->va_start
, (void *)va
->va_end
,
4957 spin_unlock(&vn
->lazy
.lock
);
4961 static int vmalloc_info_show(struct seq_file
*m
, void *p
)
4963 struct vmap_node
*vn
;
4964 struct vmap_area
*va
;
4965 struct vm_struct
*v
;
4968 for (i
= 0; i
< nr_vmap_nodes
; i
++) {
4969 vn
= &vmap_nodes
[i
];
4971 spin_lock(&vn
->busy
.lock
);
4972 list_for_each_entry(va
, &vn
->busy
.head
, list
) {
4974 if (va
->flags
& VMAP_RAM
)
4975 seq_printf(m
, "0x%pK-0x%pK %7ld vm_map_ram\n",
4976 (void *)va
->va_start
, (void *)va
->va_end
,
4984 seq_printf(m
, "0x%pK-0x%pK %7ld",
4985 v
->addr
, v
->addr
+ v
->size
, v
->size
);
4988 seq_printf(m
, " %pS", v
->caller
);
4991 seq_printf(m
, " pages=%d", v
->nr_pages
);
4994 seq_printf(m
, " phys=%pa", &v
->phys_addr
);
4996 if (v
->flags
& VM_IOREMAP
)
4997 seq_puts(m
, " ioremap");
4999 if (v
->flags
& VM_SPARSE
)
5000 seq_puts(m
, " sparse");
5002 if (v
->flags
& VM_ALLOC
)
5003 seq_puts(m
, " vmalloc");
5005 if (v
->flags
& VM_MAP
)
5006 seq_puts(m
, " vmap");
5008 if (v
->flags
& VM_USERMAP
)
5009 seq_puts(m
, " user");
5011 if (v
->flags
& VM_DMA_COHERENT
)
5012 seq_puts(m
, " dma-coherent");
5014 if (is_vmalloc_addr(v
->pages
))
5015 seq_puts(m
, " vpages");
5017 show_numa_info(m
, v
);
5020 spin_unlock(&vn
->busy
.lock
);
5024 * As a final step, dump "unpurged" areas.
5030 static int __init
proc_vmalloc_init(void)
5032 void *priv_data
= NULL
;
5034 if (IS_ENABLED(CONFIG_NUMA
))
5035 priv_data
= kmalloc(nr_node_ids
* sizeof(unsigned int), GFP_KERNEL
);
5037 proc_create_single_data("vmallocinfo",
5038 0400, NULL
, vmalloc_info_show
, priv_data
);
5042 module_init(proc_vmalloc_init
);
5046 static void __init
vmap_init_free_space(void)
5048 unsigned long vmap_start
= 1;
5049 const unsigned long vmap_end
= ULONG_MAX
;
5050 struct vmap_area
*free
;
5051 struct vm_struct
*busy
;
5055 * -|-----|.....|-----|-----|-----|.....|-
5057 * |<--------------------------------->|
5059 for (busy
= vmlist
; busy
; busy
= busy
->next
) {
5060 if ((unsigned long) busy
->addr
- vmap_start
> 0) {
5061 free
= kmem_cache_zalloc(vmap_area_cachep
, GFP_NOWAIT
);
5062 if (!WARN_ON_ONCE(!free
)) {
5063 free
->va_start
= vmap_start
;
5064 free
->va_end
= (unsigned long) busy
->addr
;
5066 insert_vmap_area_augment(free
, NULL
,
5067 &free_vmap_area_root
,
5068 &free_vmap_area_list
);
5072 vmap_start
= (unsigned long) busy
->addr
+ busy
->size
;
5075 if (vmap_end
- vmap_start
> 0) {
5076 free
= kmem_cache_zalloc(vmap_area_cachep
, GFP_NOWAIT
);
5077 if (!WARN_ON_ONCE(!free
)) {
5078 free
->va_start
= vmap_start
;
5079 free
->va_end
= vmap_end
;
5081 insert_vmap_area_augment(free
, NULL
,
5082 &free_vmap_area_root
,
5083 &free_vmap_area_list
);
5088 static void vmap_init_nodes(void)
5090 struct vmap_node
*vn
;
5093 #if BITS_PER_LONG == 64
5095 * A high threshold of max nodes is fixed and bound to 128,
5096 * thus a scale factor is 1 for systems where number of cores
5097 * are less or equal to specified threshold.
5099 * As for NUMA-aware notes. For bigger systems, for example
5100 * NUMA with multi-sockets, where we can end-up with thousands
5101 * of cores in total, a "sub-numa-clustering" should be added.
5103 * In this case a NUMA domain is considered as a single entity
5104 * with dedicated sub-nodes in it which describe one group or
5105 * set of cores. Therefore a per-domain purging is supposed to
5106 * be added as well as a per-domain balancing.
5108 n
= clamp_t(unsigned int, num_possible_cpus(), 1, 128);
5111 vn
= kmalloc_array(n
, sizeof(*vn
), GFP_NOWAIT
| __GFP_NOWARN
);
5113 /* Node partition is 16 pages. */
5114 vmap_zone_size
= (1 << 4) * PAGE_SIZE
;
5118 pr_err("Failed to allocate an array. Disable a node layer\n");
5123 for (n
= 0; n
< nr_vmap_nodes
; n
++) {
5124 vn
= &vmap_nodes
[n
];
5125 vn
->busy
.root
= RB_ROOT
;
5126 INIT_LIST_HEAD(&vn
->busy
.head
);
5127 spin_lock_init(&vn
->busy
.lock
);
5129 vn
->lazy
.root
= RB_ROOT
;
5130 INIT_LIST_HEAD(&vn
->lazy
.head
);
5131 spin_lock_init(&vn
->lazy
.lock
);
5133 for (i
= 0; i
< MAX_VA_SIZE_PAGES
; i
++) {
5134 INIT_LIST_HEAD(&vn
->pool
[i
].head
);
5135 WRITE_ONCE(vn
->pool
[i
].len
, 0);
5138 spin_lock_init(&vn
->pool_lock
);
5142 static unsigned long
5143 vmap_node_shrink_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
5145 unsigned long count
;
5146 struct vmap_node
*vn
;
5149 for (count
= 0, i
= 0; i
< nr_vmap_nodes
; i
++) {
5150 vn
= &vmap_nodes
[i
];
5152 for (j
= 0; j
< MAX_VA_SIZE_PAGES
; j
++)
5153 count
+= READ_ONCE(vn
->pool
[j
].len
);
5156 return count
? count
: SHRINK_EMPTY
;
5159 static unsigned long
5160 vmap_node_shrink_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
5164 for (i
= 0; i
< nr_vmap_nodes
; i
++)
5165 decay_va_pool_node(&vmap_nodes
[i
], true);
5170 void __init
vmalloc_init(void)
5172 struct shrinker
*vmap_node_shrinker
;
5173 struct vmap_area
*va
;
5174 struct vmap_node
*vn
;
5175 struct vm_struct
*tmp
;
5179 * Create the cache for vmap_area objects.
5181 vmap_area_cachep
= KMEM_CACHE(vmap_area
, SLAB_PANIC
);
5183 for_each_possible_cpu(i
) {
5184 struct vmap_block_queue
*vbq
;
5185 struct vfree_deferred
*p
;
5187 vbq
= &per_cpu(vmap_block_queue
, i
);
5188 spin_lock_init(&vbq
->lock
);
5189 INIT_LIST_HEAD(&vbq
->free
);
5190 p
= &per_cpu(vfree_deferred
, i
);
5191 init_llist_head(&p
->list
);
5192 INIT_WORK(&p
->wq
, delayed_vfree_work
);
5193 xa_init(&vbq
->vmap_blocks
);
5197 * Setup nodes before importing vmlist.
5201 /* Import existing vmlist entries. */
5202 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
5203 va
= kmem_cache_zalloc(vmap_area_cachep
, GFP_NOWAIT
);
5204 if (WARN_ON_ONCE(!va
))
5207 va
->va_start
= (unsigned long)tmp
->addr
;
5208 va
->va_end
= va
->va_start
+ tmp
->size
;
5211 vn
= addr_to_node(va
->va_start
);
5212 insert_vmap_area(va
, &vn
->busy
.root
, &vn
->busy
.head
);
5216 * Now we can initialize a free vmap space.
5218 vmap_init_free_space();
5219 vmap_initialized
= true;
5221 vmap_node_shrinker
= shrinker_alloc(0, "vmap-node");
5222 if (!vmap_node_shrinker
) {
5223 pr_err("Failed to allocate vmap-node shrinker!\n");
5227 vmap_node_shrinker
->count_objects
= vmap_node_shrink_count
;
5228 vmap_node_shrinker
->scan_objects
= vmap_node_shrink_scan
;
5229 shrinker_register(vmap_node_shrinker
);