1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
10 #include <linux/ptrace.h>
11 #include <linux/kernel.h>
13 /* s8 will be marked as poison while it's a reg of riscv */
20 #include "libbpf_common.h"
21 #include "libbpf_internal.h"
23 #include "str_error.h"
25 /* libbpf's USDT support consists of BPF-side state/code and user-space
26 * state/code working together in concert. BPF-side parts are defined in
27 * usdt.bpf.h header library. User-space state is encapsulated by struct
28 * usdt_manager and all the supporting code centered around usdt_manager.
30 * usdt.bpf.h defines two BPF maps that usdt_manager expects: USDT spec map
31 * and IP-to-spec-ID map, which is auxiliary map necessary for kernels that
32 * don't support BPF cookie (see below). These two maps are implicitly
33 * embedded into user's end BPF object file when user's code included
34 * usdt.bpf.h. This means that libbpf doesn't do anything special to create
35 * these USDT support maps. They are created by normal libbpf logic of
36 * instantiating BPF maps when opening and loading BPF object.
38 * As such, libbpf is basically unaware of the need to do anything
39 * USDT-related until the very first call to bpf_program__attach_usdt(), which
40 * can be called by user explicitly or happen automatically during skeleton
41 * attach (or, equivalently, through generic bpf_program__attach() call). At
42 * this point, libbpf will instantiate and initialize struct usdt_manager and
43 * store it in bpf_object. USDT manager is per-BPF object construct, as each
44 * independent BPF object might or might not have USDT programs, and thus all
45 * the expected USDT-related state. There is no coordination between two
46 * bpf_object in parts of USDT attachment, they are oblivious of each other's
47 * existence and libbpf is just oblivious, dealing with bpf_object-specific
50 * Quick crash course on USDTs.
52 * From user-space application's point of view, USDT is essentially just
53 * a slightly special function call that normally has zero overhead, unless it
54 * is being traced by some external entity (e.g, BPF-based tool). Here's how
55 * a typical application can trigger USDT probe:
57 * #include <sys/sdt.h> // provided by systemtap-sdt-devel package
58 * // folly also provide similar functionality in folly/tracing/StaticTracepoint.h
60 * STAP_PROBE3(my_usdt_provider, my_usdt_probe_name, 123, x, &y);
62 * USDT is identified by it's <provider-name>:<probe-name> pair of names. Each
63 * individual USDT has a fixed number of arguments (3 in the above example)
64 * and specifies values of each argument as if it was a function call.
66 * USDT call is actually not a function call, but is instead replaced by
67 * a single NOP instruction (thus zero overhead, effectively). But in addition
68 * to that, those USDT macros generate special SHT_NOTE ELF records in
69 * .note.stapsdt ELF section. Here's an example USDT definition as emitted by
70 * `readelf -n <binary>`:
72 * stapsdt 0x00000089 NT_STAPSDT (SystemTap probe descriptors)
75 * Location: 0x0000000000549df3, Base: 0x00000000008effa4, Semaphore: 0x0000000000a4606e
76 * Arguments: -4@-1204(%rbp) -4@%edi -8@-1216(%rbp) -8@%r8 -4@$5 -8@%r9 8@%rdx 8@%r10 -4@$-9 -2@%cx -2@%ax -1@%sil
78 * In this case we have USDT test:usdt12 with 12 arguments.
80 * Location and base are offsets used to calculate absolute IP address of that
81 * NOP instruction that kernel can replace with an interrupt instruction to
82 * trigger instrumentation code (BPF program for all that we care about).
84 * Semaphore above is and optional feature. It records an address of a 2-byte
85 * refcount variable (normally in '.probes' ELF section) used for signaling if
86 * there is anything that is attached to USDT. This is useful for user
87 * applications if, for example, they need to prepare some arguments that are
88 * passed only to USDTs and preparation is expensive. By checking if USDT is
89 * "activated", an application can avoid paying those costs unnecessarily.
90 * Recent enough kernel has built-in support for automatically managing this
91 * refcount, which libbpf expects and relies on. If USDT is defined without
92 * associated semaphore, this value will be zero. See selftests for semaphore
95 * Arguments is the most interesting part. This USDT specification string is
96 * providing information about all the USDT arguments and their locations. The
97 * part before @ sign defined byte size of the argument (1, 2, 4, or 8) and
98 * whether the argument is signed or unsigned (negative size means signed).
99 * The part after @ sign is assembly-like definition of argument location
100 * (see [0] for more details). Technically, assembler can provide some pretty
101 * advanced definitions, but libbpf is currently supporting three most common
103 * 1) immediate constant, see 5th and 9th args above (-4@$5 and -4@-9);
104 * 2) register value, e.g., 8@%rdx, which means "unsigned 8-byte integer
105 * whose value is in register %rdx";
106 * 3) memory dereference addressed by register, e.g., -4@-1204(%rbp), which
107 * specifies signed 32-bit integer stored at offset -1204 bytes from
108 * memory address stored in %rbp.
110 * [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
112 * During attachment, libbpf parses all the relevant USDT specifications and
113 * prepares `struct usdt_spec` (USDT spec), which is then provided to BPF-side
114 * code through spec map. This allows BPF applications to quickly fetch the
115 * actual value at runtime using a simple BPF-side code.
117 * With basics out of the way, let's go over less immediately obvious aspects
118 * of supporting USDTs.
120 * First, there is no special USDT BPF program type. It is actually just
121 * a uprobe BPF program (which for kernel, at least currently, is just a kprobe
122 * program, so BPF_PROG_TYPE_KPROBE program type). With the only difference
123 * that uprobe is usually attached at the function entry, while USDT will
124 * normally will be somewhere inside the function. But it should always be
125 * pointing to NOP instruction, which makes such uprobes the fastest uprobe
128 * Second, it's important to realize that such STAP_PROBEn(provider, name, ...)
129 * macro invocations can end up being inlined many-many times, depending on
130 * specifics of each individual user application. So single conceptual USDT
131 * (identified by provider:name pair of identifiers) is, generally speaking,
132 * multiple uprobe locations (USDT call sites) in different places in user
133 * application. Further, again due to inlining, each USDT call site might end
134 * up having the same argument #N be located in a different place. In one call
135 * site it could be a constant, in another will end up in a register, and in
136 * yet another could be some other register or even somewhere on the stack.
138 * As such, "attaching to USDT" means (in general case) attaching the same
139 * uprobe BPF program to multiple target locations in user application, each
140 * potentially having a completely different USDT spec associated with it.
141 * To wire all this up together libbpf allocates a unique integer spec ID for
142 * each unique USDT spec. Spec IDs are allocated as sequential small integers
143 * so that they can be used as keys in array BPF map (for performance reasons).
144 * Spec ID allocation and accounting is big part of what usdt_manager is
145 * about. This state has to be maintained per-BPF object and coordinate
146 * between different USDT attachments within the same BPF object.
148 * Spec ID is the key in spec BPF map, value is the actual USDT spec layed out
149 * as struct usdt_spec. Each invocation of BPF program at runtime needs to
150 * know its associated spec ID. It gets it either through BPF cookie, which
151 * libbpf sets to spec ID during attach time, or, if kernel is too old to
152 * support BPF cookie, through IP-to-spec-ID map that libbpf maintains in such
153 * case. The latter means that some modes of operation can't be supported
154 * without BPF cookie. Such mode is attaching to shared library "generically",
155 * without specifying target process. In such case, it's impossible to
156 * calculate absolute IP addresses for IP-to-spec-ID map, and thus such mode
157 * is not supported without BPF cookie support.
159 * Note that libbpf is using BPF cookie functionality for its own internal
160 * needs, so user itself can't rely on BPF cookie feature. To that end, libbpf
161 * provides conceptually equivalent USDT cookie support. It's still u64
162 * user-provided value that can be associated with USDT attachment. Note that
163 * this will be the same value for all USDT call sites within the same single
164 * *logical* USDT attachment. This makes sense because to user attaching to
165 * USDT is a single BPF program triggered for singular USDT probe. The fact
166 * that this is done at multiple actual locations is a mostly hidden
167 * implementation details. This USDT cookie value can be fetched with
168 * bpf_usdt_cookie(ctx) API provided by usdt.bpf.h
170 * Lastly, while single USDT can have tons of USDT call sites, it doesn't
171 * necessarily have that many different USDT specs. It very well might be
172 * that 1000 USDT call sites only need 5 different USDT specs, because all the
173 * arguments are typically contained in a small set of registers or stack
174 * locations. As such, it's wasteful to allocate as many USDT spec IDs as
175 * there are USDT call sites. So libbpf tries to be frugal and performs
176 * on-the-fly deduplication during a single USDT attachment to only allocate
177 * the minimal required amount of unique USDT specs (and thus spec IDs). This
178 * is trivially achieved by using USDT spec string (Arguments string from USDT
179 * note) as a lookup key in a hashmap. USDT spec string uniquely defines
180 * everything about how to fetch USDT arguments, so two USDT call sites
181 * sharing USDT spec string can safely share the same USDT spec and spec ID.
182 * Note, this spec string deduplication is happening only during the same USDT
183 * attachment, so each USDT spec shares the same USDT cookie value. This is
184 * not generally true for other USDT attachments within the same BPF object,
185 * as even if USDT spec string is the same, USDT cookie value can be
186 * different. It was deemed excessive to try to deduplicate across independent
187 * USDT attachments by taking into account USDT spec string *and* USDT cookie
188 * value, which would complicated spec ID accounting significantly for little
192 #define USDT_BASE_SEC ".stapsdt.base"
193 #define USDT_SEMA_SEC ".probes"
194 #define USDT_NOTE_SEC ".note.stapsdt"
195 #define USDT_NOTE_TYPE 3
196 #define USDT_NOTE_NAME "stapsdt"
198 /* should match exactly enum __bpf_usdt_arg_type from usdt.bpf.h */
205 /* should match exactly struct __bpf_usdt_arg_spec from usdt.bpf.h */
206 struct usdt_arg_spec
{
208 enum usdt_arg_type arg_type
;
214 /* should match BPF_USDT_MAX_ARG_CNT in usdt.bpf.h */
215 #define USDT_MAX_ARG_CNT 12
217 /* should match struct __bpf_usdt_spec from usdt.bpf.h */
219 struct usdt_arg_spec args
[USDT_MAX_ARG_CNT
];
225 const char *provider
;
227 /* USDT args specification string, e.g.:
228 * "-4@%esi -4@-24(%rbp) -4@%ecx 2@%ax 8@%rdx"
240 struct usdt_spec spec
;
241 const char *spec_str
;
244 struct usdt_manager
{
245 struct bpf_map
*specs_map
;
246 struct bpf_map
*ip_to_spec_id_map
;
249 size_t free_spec_cnt
;
250 size_t next_free_spec_id
;
253 bool has_sema_refcnt
;
254 bool has_uprobe_multi
;
257 struct usdt_manager
*usdt_manager_new(struct bpf_object
*obj
)
259 static const char *ref_ctr_sysfs_path
= "/sys/bus/event_source/devices/uprobe/format/ref_ctr_offset";
260 struct usdt_manager
*man
;
261 struct bpf_map
*specs_map
, *ip_to_spec_id_map
;
263 specs_map
= bpf_object__find_map_by_name(obj
, "__bpf_usdt_specs");
264 ip_to_spec_id_map
= bpf_object__find_map_by_name(obj
, "__bpf_usdt_ip_to_spec_id");
265 if (!specs_map
|| !ip_to_spec_id_map
) {
266 pr_warn("usdt: failed to find USDT support BPF maps, did you forget to include bpf/usdt.bpf.h?\n");
267 return ERR_PTR(-ESRCH
);
270 man
= calloc(1, sizeof(*man
));
272 return ERR_PTR(-ENOMEM
);
274 man
->specs_map
= specs_map
;
275 man
->ip_to_spec_id_map
= ip_to_spec_id_map
;
277 /* Detect if BPF cookie is supported for kprobes.
278 * We don't need IP-to-ID mapping if we can use BPF cookies.
279 * Added in: 7adfc6c9b315 ("bpf: Add bpf_get_attach_cookie() BPF helper to access bpf_cookie value")
281 man
->has_bpf_cookie
= kernel_supports(obj
, FEAT_BPF_COOKIE
);
283 /* Detect kernel support for automatic refcounting of USDT semaphore.
284 * If this is not supported, USDTs with semaphores will not be supported.
285 * Added in: a6ca88b241d5 ("trace_uprobe: support reference counter in fd-based uprobe")
287 man
->has_sema_refcnt
= faccessat(AT_FDCWD
, ref_ctr_sysfs_path
, F_OK
, AT_EACCESS
) == 0;
290 * Detect kernel support for uprobe multi link to be used for attaching
293 man
->has_uprobe_multi
= kernel_supports(obj
, FEAT_UPROBE_MULTI_LINK
);
297 void usdt_manager_free(struct usdt_manager
*man
)
299 if (IS_ERR_OR_NULL(man
))
302 free(man
->free_spec_ids
);
306 static int sanity_check_usdt_elf(Elf
*elf
, const char *path
)
311 if (elf_kind(elf
) != ELF_K_ELF
) {
312 pr_warn("usdt: unrecognized ELF kind %d for '%s'\n", elf_kind(elf
), path
);
316 switch (gelf_getclass(elf
)) {
318 if (sizeof(void *) != 8) {
319 pr_warn("usdt: attaching to 64-bit ELF binary '%s' is not supported\n", path
);
324 if (sizeof(void *) != 4) {
325 pr_warn("usdt: attaching to 32-bit ELF binary '%s' is not supported\n", path
);
330 pr_warn("usdt: unsupported ELF class for '%s'\n", path
);
334 if (!gelf_getehdr(elf
, &ehdr
))
337 if (ehdr
.e_type
!= ET_EXEC
&& ehdr
.e_type
!= ET_DYN
) {
338 pr_warn("usdt: unsupported type of ELF binary '%s' (%d), only ET_EXEC and ET_DYN are supported\n",
343 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
344 endianness
= ELFDATA2LSB
;
345 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
346 endianness
= ELFDATA2MSB
;
348 # error "Unrecognized __BYTE_ORDER__"
350 if (endianness
!= ehdr
.e_ident
[EI_DATA
]) {
351 pr_warn("usdt: ELF endianness mismatch for '%s'\n", path
);
358 static int find_elf_sec_by_name(Elf
*elf
, const char *sec_name
, GElf_Shdr
*shdr
, Elf_Scn
**scn
)
363 if (elf_getshdrstrndx(elf
, &shstrndx
))
366 /* check if ELF is corrupted and avoid calling elf_strptr if yes */
367 if (!elf_rawdata(elf_getscn(elf
, shstrndx
), NULL
))
370 while ((sec
= elf_nextscn(elf
, sec
)) != NULL
) {
373 if (!gelf_getshdr(sec
, shdr
))
376 name
= elf_strptr(elf
, shstrndx
, shdr
->sh_name
);
377 if (name
&& strcmp(sec_name
, name
) == 0) {
393 static int cmp_elf_segs(const void *_a
, const void *_b
)
395 const struct elf_seg
*a
= _a
;
396 const struct elf_seg
*b
= _b
;
398 return a
->start
< b
->start
? -1 : 1;
401 static int parse_elf_segs(Elf
*elf
, const char *path
, struct elf_seg
**segs
, size_t *seg_cnt
)
411 if (elf_getphdrnum(elf
, &n
)) {
416 for (i
= 0; i
< n
; i
++) {
417 if (!gelf_getphdr(elf
, i
, &phdr
)) {
422 pr_debug("usdt: discovered PHDR #%d in '%s': vaddr 0x%lx memsz 0x%lx offset 0x%lx type 0x%lx flags 0x%lx\n",
423 i
, path
, (long)phdr
.p_vaddr
, (long)phdr
.p_memsz
, (long)phdr
.p_offset
,
424 (long)phdr
.p_type
, (long)phdr
.p_flags
);
425 if (phdr
.p_type
!= PT_LOAD
)
428 tmp
= libbpf_reallocarray(*segs
, *seg_cnt
+ 1, sizeof(**segs
));
433 seg
= *segs
+ *seg_cnt
;
436 seg
->start
= phdr
.p_vaddr
;
437 seg
->end
= phdr
.p_vaddr
+ phdr
.p_memsz
;
438 seg
->offset
= phdr
.p_offset
;
439 seg
->is_exec
= phdr
.p_flags
& PF_X
;
443 pr_warn("usdt: failed to find PT_LOAD program headers in '%s'\n", path
);
447 qsort(*segs
, *seg_cnt
, sizeof(**segs
), cmp_elf_segs
);
451 static int parse_vma_segs(int pid
, const char *lib_path
, struct elf_seg
**segs
, size_t *seg_cnt
)
453 char path
[PATH_MAX
], line
[PATH_MAX
], mode
[16];
454 size_t seg_start
, seg_end
, seg_off
;
461 /* Handle containerized binaries only accessible from
462 * /proc/<pid>/root/<path>. They will be reported as just /<path> in
465 if (sscanf(lib_path
, "/proc/%d/root%s", &tmp_pid
, path
) == 2 && pid
== tmp_pid
)
468 if (!realpath(lib_path
, path
)) {
469 pr_warn("usdt: failed to get absolute path of '%s' (err %s), using path as is...\n",
470 lib_path
, errstr(-errno
));
471 libbpf_strlcpy(path
, lib_path
, sizeof(path
));
475 sprintf(line
, "/proc/%d/maps", pid
);
476 f
= fopen(line
, "re");
479 pr_warn("usdt: failed to open '%s' to get base addr of '%s': %s\n",
480 line
, lib_path
, errstr(err
));
484 /* We need to handle lines with no path at the end:
486 * 7f5c6f5d1000-7f5c6f5d3000 rw-p 001c7000 08:04 21238613 /usr/lib64/libc-2.17.so
487 * 7f5c6f5d3000-7f5c6f5d8000 rw-p 00000000 00:00 0
488 * 7f5c6f5d8000-7f5c6f5d9000 r-xp 00000000 103:01 362990598 /data/users/andriin/linux/tools/bpf/usdt/libhello_usdt.so
490 while (fscanf(f
, "%zx-%zx %s %zx %*s %*d%[^\n]\n",
491 &seg_start
, &seg_end
, mode
, &seg_off
, line
) == 5) {
494 /* to handle no path case (see above) we need to capture line
495 * without skipping any whitespaces. So we need to strip
496 * leading whitespaces manually here
499 while (isblank(line
[i
]))
501 if (strcmp(line
+ i
, path
) != 0)
504 pr_debug("usdt: discovered segment for lib '%s': addrs %zx-%zx mode %s offset %zx\n",
505 path
, seg_start
, seg_end
, mode
, seg_off
);
507 /* ignore non-executable sections for shared libs */
511 tmp
= libbpf_reallocarray(*segs
, *seg_cnt
+ 1, sizeof(**segs
));
518 seg
= *segs
+ *seg_cnt
;
521 seg
->start
= seg_start
;
523 seg
->offset
= seg_off
;
528 pr_warn("usdt: failed to find '%s' (resolved to '%s') within PID %d memory mappings\n",
529 lib_path
, path
, pid
);
534 qsort(*segs
, *seg_cnt
, sizeof(**segs
), cmp_elf_segs
);
541 static struct elf_seg
*find_elf_seg(struct elf_seg
*segs
, size_t seg_cnt
, long virtaddr
)
546 /* for ELF binaries (both executables and shared libraries), we are
547 * given virtual address (absolute for executables, relative for
548 * libraries) which should match address range of [seg_start, seg_end)
550 for (i
= 0, seg
= segs
; i
< seg_cnt
; i
++, seg
++) {
551 if (seg
->start
<= virtaddr
&& virtaddr
< seg
->end
)
557 static struct elf_seg
*find_vma_seg(struct elf_seg
*segs
, size_t seg_cnt
, long offset
)
562 /* for VMA segments from /proc/<pid>/maps file, provided "address" is
563 * actually a file offset, so should be fall within logical
564 * offset-based range of [offset_start, offset_end)
566 for (i
= 0, seg
= segs
; i
< seg_cnt
; i
++, seg
++) {
567 if (seg
->offset
<= offset
&& offset
< seg
->offset
+ (seg
->end
- seg
->start
))
573 static int parse_usdt_note(Elf
*elf
, const char *path
, GElf_Nhdr
*nhdr
,
574 const char *data
, size_t name_off
, size_t desc_off
,
575 struct usdt_note
*usdt_note
);
577 static int parse_usdt_spec(struct usdt_spec
*spec
, const struct usdt_note
*note
, __u64 usdt_cookie
);
579 static int collect_usdt_targets(struct usdt_manager
*man
, Elf
*elf
, const char *path
, pid_t pid
,
580 const char *usdt_provider
, const char *usdt_name
, __u64 usdt_cookie
,
581 struct usdt_target
**out_targets
, size_t *out_target_cnt
)
583 size_t off
, name_off
, desc_off
, seg_cnt
= 0, vma_seg_cnt
= 0, target_cnt
= 0;
584 struct elf_seg
*segs
= NULL
, *vma_segs
= NULL
;
585 struct usdt_target
*targets
= NULL
, *target
;
587 Elf_Scn
*notes_scn
, *base_scn
;
588 GElf_Shdr base_shdr
, notes_shdr
;
597 err
= find_elf_sec_by_name(elf
, USDT_NOTE_SEC
, ¬es_shdr
, ¬es_scn
);
599 pr_warn("usdt: no USDT notes section (%s) found in '%s'\n", USDT_NOTE_SEC
, path
);
603 if (notes_shdr
.sh_type
!= SHT_NOTE
|| !gelf_getehdr(elf
, &ehdr
)) {
604 pr_warn("usdt: invalid USDT notes section (%s) in '%s'\n", USDT_NOTE_SEC
, path
);
608 err
= parse_elf_segs(elf
, path
, &segs
, &seg_cnt
);
610 pr_warn("usdt: failed to process ELF program segments for '%s': %s\n",
615 /* .stapsdt.base ELF section is optional, but is used for prelink
616 * offset compensation (see a big comment further below)
618 if (find_elf_sec_by_name(elf
, USDT_BASE_SEC
, &base_shdr
, &base_scn
) == 0)
619 base_addr
= base_shdr
.sh_addr
;
621 data
= elf_getdata(notes_scn
, 0);
623 while ((off
= gelf_getnote(data
, off
, &nhdr
, &name_off
, &desc_off
)) > 0) {
624 long usdt_abs_ip
, usdt_rel_ip
, usdt_sema_off
= 0;
625 struct usdt_note note
;
626 struct elf_seg
*seg
= NULL
;
629 err
= parse_usdt_note(elf
, path
, &nhdr
, data
->d_buf
, name_off
, desc_off
, ¬e
);
633 if (strcmp(note
.provider
, usdt_provider
) != 0 || strcmp(note
.name
, usdt_name
) != 0)
636 /* We need to compensate "prelink effect". See [0] for details,
637 * relevant parts quoted here:
639 * Each SDT probe also expands into a non-allocated ELF note. You can
640 * find this by looking at SHT_NOTE sections and decoding the format;
641 * see below for details. Because the note is non-allocated, it means
642 * there is no runtime cost, and also preserved in both stripped files
645 * However, this means that prelink won't adjust the note's contents
646 * for address offsets. Instead, this is done via the .stapsdt.base
647 * section. This is a special section that is added to the text. We
648 * will only ever have one of these sections in a final link and it
649 * will only ever be one byte long. Nothing about this section itself
650 * matters, we just use it as a marker to detect prelink address
653 * Each probe note records the link-time address of the .stapsdt.base
654 * section alongside the probe PC address. The decoder compares the
655 * base address stored in the note with the .stapsdt.base section's
656 * sh_addr. Initially these are the same, but the section header will
657 * be adjusted by prelink. So the decoder applies the difference to
658 * the probe PC address to get the correct prelinked PC address; the
659 * same adjustment is applied to the semaphore address, if any.
661 * [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
663 usdt_abs_ip
= note
.loc_addr
;
665 usdt_abs_ip
+= base_addr
- note
.base_addr
;
667 /* When attaching uprobes (which is what USDTs basically are)
668 * kernel expects file offset to be specified, not a relative
669 * virtual address, so we need to translate virtual address to
670 * file offset, for both ET_EXEC and ET_DYN binaries.
672 seg
= find_elf_seg(segs
, seg_cnt
, usdt_abs_ip
);
675 pr_warn("usdt: failed to find ELF program segment for '%s:%s' in '%s' at IP 0x%lx\n",
676 usdt_provider
, usdt_name
, path
, usdt_abs_ip
);
681 pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx) for '%s:%s' at IP 0x%lx is not executable\n",
682 path
, seg
->start
, seg
->end
, usdt_provider
, usdt_name
,
686 /* translate from virtual address to file offset */
687 usdt_rel_ip
= usdt_abs_ip
- seg
->start
+ seg
->offset
;
689 if (ehdr
.e_type
== ET_DYN
&& !man
->has_bpf_cookie
) {
690 /* If we don't have BPF cookie support but need to
691 * attach to a shared library, we'll need to know and
692 * record absolute addresses of attach points due to
693 * the need to lookup USDT spec by absolute IP of
694 * triggered uprobe. Doing this resolution is only
695 * possible when we have a specific PID of the process
696 * that's using specified shared library. BPF cookie
697 * removes the absolute address limitation as we don't
698 * need to do this lookup (we just use BPF cookie as
699 * an index of USDT spec), so for newer kernels with
700 * BPF cookie support libbpf supports USDT attachment
701 * to shared libraries with no PID filter.
704 pr_warn("usdt: attaching to shared libraries without specific PID is not supported on current kernel\n");
709 /* vma_segs are lazily initialized only if necessary */
710 if (vma_seg_cnt
== 0) {
711 err
= parse_vma_segs(pid
, path
, &vma_segs
, &vma_seg_cnt
);
713 pr_warn("usdt: failed to get memory segments in PID %d for shared library '%s': %s\n",
714 pid
, path
, errstr(err
));
719 seg
= find_vma_seg(vma_segs
, vma_seg_cnt
, usdt_rel_ip
);
722 pr_warn("usdt: failed to find shared lib memory segment for '%s:%s' in '%s' at relative IP 0x%lx\n",
723 usdt_provider
, usdt_name
, path
, usdt_rel_ip
);
727 usdt_abs_ip
= seg
->start
- seg
->offset
+ usdt_rel_ip
;
730 pr_debug("usdt: probe for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved abs_ip 0x%lx rel_ip 0x%lx) args '%s' in segment [0x%lx, 0x%lx) at offset 0x%lx\n",
731 usdt_provider
, usdt_name
, ehdr
.e_type
== ET_EXEC
? "exec" : "lib ", path
,
732 note
.loc_addr
, note
.base_addr
, usdt_abs_ip
, usdt_rel_ip
, note
.args
,
733 seg
? seg
->start
: 0, seg
? seg
->end
: 0, seg
? seg
->offset
: 0);
735 /* Adjust semaphore address to be a file offset */
736 if (note
.sema_addr
) {
737 if (!man
->has_sema_refcnt
) {
738 pr_warn("usdt: kernel doesn't support USDT semaphore refcounting for '%s:%s' in '%s'\n",
739 usdt_provider
, usdt_name
, path
);
744 seg
= find_elf_seg(segs
, seg_cnt
, note
.sema_addr
);
747 pr_warn("usdt: failed to find ELF loadable segment with semaphore of '%s:%s' in '%s' at 0x%lx\n",
748 usdt_provider
, usdt_name
, path
, note
.sema_addr
);
753 pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx] for semaphore of '%s:%s' at 0x%lx is executable\n",
754 path
, seg
->start
, seg
->end
, usdt_provider
, usdt_name
,
759 usdt_sema_off
= note
.sema_addr
- seg
->start
+ seg
->offset
;
761 pr_debug("usdt: sema for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved 0x%lx) in segment [0x%lx, 0x%lx] at offset 0x%lx\n",
762 usdt_provider
, usdt_name
, ehdr
.e_type
== ET_EXEC
? "exec" : "lib ",
763 path
, note
.sema_addr
, note
.base_addr
, usdt_sema_off
,
764 seg
->start
, seg
->end
, seg
->offset
);
767 /* Record adjusted addresses and offsets and parse USDT spec */
768 tmp
= libbpf_reallocarray(targets
, target_cnt
+ 1, sizeof(*targets
));
775 target
= &targets
[target_cnt
];
776 memset(target
, 0, sizeof(*target
));
778 target
->abs_ip
= usdt_abs_ip
;
779 target
->rel_ip
= usdt_rel_ip
;
780 target
->sema_off
= usdt_sema_off
;
782 /* notes.args references strings from ELF itself, so they can
783 * be referenced safely until elf_end() call
785 target
->spec_str
= note
.args
;
787 err
= parse_usdt_spec(&target
->spec
, ¬e
, usdt_cookie
);
794 *out_targets
= targets
;
795 *out_target_cnt
= target_cnt
;
806 struct bpf_link_usdt
{
807 struct bpf_link link
;
809 struct usdt_manager
*usdt_man
;
817 struct bpf_link
*link
;
820 struct bpf_link
*multi_link
;
823 static int bpf_link_usdt_detach(struct bpf_link
*link
)
825 struct bpf_link_usdt
*usdt_link
= container_of(link
, struct bpf_link_usdt
, link
);
826 struct usdt_manager
*man
= usdt_link
->usdt_man
;
829 bpf_link__destroy(usdt_link
->multi_link
);
831 /* When having multi_link, uprobe_cnt is 0 */
832 for (i
= 0; i
< usdt_link
->uprobe_cnt
; i
++) {
833 /* detach underlying uprobe link */
834 bpf_link__destroy(usdt_link
->uprobes
[i
].link
);
835 /* there is no need to update specs map because it will be
836 * unconditionally overwritten on subsequent USDT attaches,
837 * but if BPF cookies are not used we need to remove entry
838 * from ip_to_spec_id map, otherwise we'll run into false
839 * conflicting IP errors
841 if (!man
->has_bpf_cookie
) {
842 /* not much we can do about errors here */
843 (void)bpf_map_delete_elem(bpf_map__fd(man
->ip_to_spec_id_map
),
844 &usdt_link
->uprobes
[i
].abs_ip
);
848 /* try to return the list of previously used spec IDs to usdt_manager
849 * for future reuse for subsequent USDT attaches
851 if (!man
->free_spec_ids
) {
852 /* if there were no free spec IDs yet, just transfer our IDs */
853 man
->free_spec_ids
= usdt_link
->spec_ids
;
854 man
->free_spec_cnt
= usdt_link
->spec_cnt
;
855 usdt_link
->spec_ids
= NULL
;
857 /* otherwise concat IDs */
858 size_t new_cnt
= man
->free_spec_cnt
+ usdt_link
->spec_cnt
;
861 new_free_ids
= libbpf_reallocarray(man
->free_spec_ids
, new_cnt
,
862 sizeof(*new_free_ids
));
863 /* If we couldn't resize free_spec_ids, we'll just leak
864 * a bunch of free IDs; this is very unlikely to happen and if
865 * system is so exhausted on memory, it's the least of user's
866 * concerns, probably.
867 * So just do our best here to return those IDs to usdt_manager.
868 * Another edge case when we can legitimately get NULL is when
869 * new_cnt is zero, which can happen in some edge cases, so we
870 * need to be careful about that.
872 if (new_free_ids
|| new_cnt
== 0) {
873 memcpy(new_free_ids
+ man
->free_spec_cnt
, usdt_link
->spec_ids
,
874 usdt_link
->spec_cnt
* sizeof(*usdt_link
->spec_ids
));
875 man
->free_spec_ids
= new_free_ids
;
876 man
->free_spec_cnt
= new_cnt
;
883 static void bpf_link_usdt_dealloc(struct bpf_link
*link
)
885 struct bpf_link_usdt
*usdt_link
= container_of(link
, struct bpf_link_usdt
, link
);
887 free(usdt_link
->spec_ids
);
888 free(usdt_link
->uprobes
);
892 static size_t specs_hash_fn(long key
, void *ctx
)
894 return str_hash((char *)key
);
897 static bool specs_equal_fn(long key1
, long key2
, void *ctx
)
899 return strcmp((char *)key1
, (char *)key2
) == 0;
902 static int allocate_spec_id(struct usdt_manager
*man
, struct hashmap
*specs_hash
,
903 struct bpf_link_usdt
*link
, struct usdt_target
*target
,
904 int *spec_id
, bool *is_new
)
910 /* check if we already allocated spec ID for this spec string */
911 if (hashmap__find(specs_hash
, target
->spec_str
, &tmp
)) {
917 /* otherwise it's a new ID that needs to be set up in specs map and
918 * returned back to usdt_manager when USDT link is detached
920 new_ids
= libbpf_reallocarray(link
->spec_ids
, link
->spec_cnt
+ 1, sizeof(*link
->spec_ids
));
923 link
->spec_ids
= new_ids
;
925 /* get next free spec ID, giving preference to free list, if not empty */
926 if (man
->free_spec_cnt
) {
927 *spec_id
= man
->free_spec_ids
[man
->free_spec_cnt
- 1];
929 /* cache spec ID for current spec string for future lookups */
930 err
= hashmap__add(specs_hash
, target
->spec_str
, *spec_id
);
934 man
->free_spec_cnt
--;
936 /* don't allocate spec ID bigger than what fits in specs map */
937 if (man
->next_free_spec_id
>= bpf_map__max_entries(man
->specs_map
))
940 *spec_id
= man
->next_free_spec_id
;
942 /* cache spec ID for current spec string for future lookups */
943 err
= hashmap__add(specs_hash
, target
->spec_str
, *spec_id
);
947 man
->next_free_spec_id
++;
950 /* remember new spec ID in the link for later return back to free list on detach */
951 link
->spec_ids
[link
->spec_cnt
] = *spec_id
;
957 struct bpf_link
*usdt_manager_attach_usdt(struct usdt_manager
*man
, const struct bpf_program
*prog
,
958 pid_t pid
, const char *path
,
959 const char *usdt_provider
, const char *usdt_name
,
962 unsigned long *offsets
= NULL
, *ref_ctr_offsets
= NULL
;
963 int i
, err
, spec_map_fd
, ip_map_fd
;
964 LIBBPF_OPTS(bpf_uprobe_opts
, opts
);
965 struct hashmap
*specs_hash
= NULL
;
966 struct bpf_link_usdt
*link
= NULL
;
967 struct usdt_target
*targets
= NULL
;
968 __u64
*cookies
= NULL
;
969 struct elf_fd elf_fd
;
972 spec_map_fd
= bpf_map__fd(man
->specs_map
);
973 ip_map_fd
= bpf_map__fd(man
->ip_to_spec_id_map
);
975 err
= elf_open(path
, &elf_fd
);
977 return libbpf_err_ptr(err
);
979 err
= sanity_check_usdt_elf(elf_fd
.elf
, path
);
983 /* normalize PID filter */
989 /* discover USDT in given binary, optionally limiting
990 * activations to a given PID, if pid > 0
992 err
= collect_usdt_targets(man
, elf_fd
.elf
, path
, pid
, usdt_provider
, usdt_name
,
993 usdt_cookie
, &targets
, &target_cnt
);
995 err
= (err
== 0) ? -ENOENT
: err
;
999 specs_hash
= hashmap__new(specs_hash_fn
, specs_equal_fn
, NULL
);
1000 if (IS_ERR(specs_hash
)) {
1001 err
= PTR_ERR(specs_hash
);
1005 link
= calloc(1, sizeof(*link
));
1011 link
->usdt_man
= man
;
1012 link
->link
.detach
= &bpf_link_usdt_detach
;
1013 link
->link
.dealloc
= &bpf_link_usdt_dealloc
;
1015 if (man
->has_uprobe_multi
) {
1016 offsets
= calloc(target_cnt
, sizeof(*offsets
));
1017 cookies
= calloc(target_cnt
, sizeof(*cookies
));
1018 ref_ctr_offsets
= calloc(target_cnt
, sizeof(*ref_ctr_offsets
));
1020 if (!offsets
|| !ref_ctr_offsets
|| !cookies
) {
1025 link
->uprobes
= calloc(target_cnt
, sizeof(*link
->uprobes
));
1026 if (!link
->uprobes
) {
1032 for (i
= 0; i
< target_cnt
; i
++) {
1033 struct usdt_target
*target
= &targets
[i
];
1034 struct bpf_link
*uprobe_link
;
1038 /* Spec ID can be either reused or newly allocated. If it is
1039 * newly allocated, we'll need to fill out spec map, otherwise
1040 * entire spec should be valid and can be just used by a new
1041 * uprobe. We reuse spec when USDT arg spec is identical. We
1042 * also never share specs between two different USDT
1043 * attachments ("links"), so all the reused specs already
1044 * share USDT cookie value implicitly.
1046 err
= allocate_spec_id(man
, specs_hash
, link
, target
, &spec_id
, &is_new
);
1050 if (is_new
&& bpf_map_update_elem(spec_map_fd
, &spec_id
, &target
->spec
, BPF_ANY
)) {
1052 pr_warn("usdt: failed to set USDT spec #%d for '%s:%s' in '%s': %s\n",
1053 spec_id
, usdt_provider
, usdt_name
, path
, errstr(err
));
1056 if (!man
->has_bpf_cookie
&&
1057 bpf_map_update_elem(ip_map_fd
, &target
->abs_ip
, &spec_id
, BPF_NOEXIST
)) {
1059 if (err
== -EEXIST
) {
1060 pr_warn("usdt: IP collision detected for spec #%d for '%s:%s' in '%s'\n",
1061 spec_id
, usdt_provider
, usdt_name
, path
);
1063 pr_warn("usdt: failed to map IP 0x%lx to spec #%d for '%s:%s' in '%s': %s\n",
1064 target
->abs_ip
, spec_id
, usdt_provider
, usdt_name
,
1070 if (man
->has_uprobe_multi
) {
1071 offsets
[i
] = target
->rel_ip
;
1072 ref_ctr_offsets
[i
] = target
->sema_off
;
1073 cookies
[i
] = spec_id
;
1075 opts
.ref_ctr_offset
= target
->sema_off
;
1076 opts
.bpf_cookie
= man
->has_bpf_cookie
? spec_id
: 0;
1077 uprobe_link
= bpf_program__attach_uprobe_opts(prog
, pid
, path
,
1078 target
->rel_ip
, &opts
);
1079 err
= libbpf_get_error(uprobe_link
);
1081 pr_warn("usdt: failed to attach uprobe #%d for '%s:%s' in '%s': %s\n",
1082 i
, usdt_provider
, usdt_name
, path
, errstr(err
));
1086 link
->uprobes
[i
].link
= uprobe_link
;
1087 link
->uprobes
[i
].abs_ip
= target
->abs_ip
;
1092 if (man
->has_uprobe_multi
) {
1093 LIBBPF_OPTS(bpf_uprobe_multi_opts
, opts_multi
,
1094 .ref_ctr_offsets
= ref_ctr_offsets
,
1100 link
->multi_link
= bpf_program__attach_uprobe_multi(prog
, pid
, path
,
1102 if (!link
->multi_link
) {
1104 pr_warn("usdt: failed to attach uprobe multi for '%s:%s' in '%s': %s\n",
1105 usdt_provider
, usdt_name
, path
, errstr(err
));
1110 free(ref_ctr_offsets
);
1115 hashmap__free(specs_hash
);
1121 free(ref_ctr_offsets
);
1125 bpf_link__destroy(&link
->link
);
1127 hashmap__free(specs_hash
);
1129 return libbpf_err_ptr(err
);
1132 /* Parse out USDT ELF note from '.note.stapsdt' section.
1133 * Logic inspired by perf's code.
1135 static int parse_usdt_note(Elf
*elf
, const char *path
, GElf_Nhdr
*nhdr
,
1136 const char *data
, size_t name_off
, size_t desc_off
,
1137 struct usdt_note
*note
)
1139 const char *provider
, *name
, *args
;
1143 /* sanity check USDT note name and type first */
1144 if (strncmp(data
+ name_off
, USDT_NOTE_NAME
, nhdr
->n_namesz
) != 0)
1146 if (nhdr
->n_type
!= USDT_NOTE_TYPE
)
1149 /* sanity check USDT note contents ("description" in ELF terminology) */
1150 len
= nhdr
->n_descsz
;
1151 data
= data
+ desc_off
;
1153 /* +3 is the very minimum required to store three empty strings */
1154 if (len
< sizeof(addrs
) + 3)
1157 /* get location, base, and semaphore addrs */
1158 memcpy(&addrs
, data
, sizeof(addrs
));
1160 /* parse string fields: provider, name, args */
1161 provider
= data
+ sizeof(addrs
);
1163 name
= (const char *)memchr(provider
, '\0', data
+ len
- provider
);
1164 if (!name
) /* non-zero-terminated provider */
1167 if (name
>= data
+ len
|| *name
== '\0') /* missing or empty name */
1170 args
= memchr(name
, '\0', data
+ len
- name
);
1171 if (!args
) /* non-zero-terminated name */
1174 if (args
>= data
+ len
) /* missing arguments spec */
1177 note
->provider
= provider
;
1179 if (*args
== '\0' || *args
== ':')
1183 note
->loc_addr
= addrs
[0];
1184 note
->base_addr
= addrs
[1];
1185 note
->sema_addr
= addrs
[2];
1190 static int parse_usdt_arg(const char *arg_str
, int arg_num
, struct usdt_arg_spec
*arg
, int *arg_sz
);
1192 static int parse_usdt_spec(struct usdt_spec
*spec
, const struct usdt_note
*note
, __u64 usdt_cookie
)
1194 struct usdt_arg_spec
*arg
;
1198 spec
->usdt_cookie
= usdt_cookie
;
1203 if (spec
->arg_cnt
>= USDT_MAX_ARG_CNT
) {
1204 pr_warn("usdt: too many USDT arguments (> %d) for '%s:%s' with args spec '%s'\n",
1205 USDT_MAX_ARG_CNT
, note
->provider
, note
->name
, note
->args
);
1209 arg
= &spec
->args
[spec
->arg_cnt
];
1210 len
= parse_usdt_arg(s
, spec
->arg_cnt
, arg
, &arg_sz
);
1214 arg
->arg_signed
= arg_sz
< 0;
1219 case 1: case 2: case 4: case 8:
1220 arg
->arg_bitshift
= 64 - arg_sz
* 8;
1223 pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n",
1224 spec
->arg_cnt
, s
, arg_sz
);
1235 /* Architecture-specific logic for parsing USDT argument location specs */
1237 #if defined(__x86_64__) || defined(__i386__)
1239 static int calc_pt_regs_off(const char *reg_name
)
1242 const char *names
[4];
1246 #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg64)
1248 #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg32)
1250 { {"rip", "eip", "", ""}, reg_off(rip
, eip
) },
1251 { {"rax", "eax", "ax", "al"}, reg_off(rax
, eax
) },
1252 { {"rbx", "ebx", "bx", "bl"}, reg_off(rbx
, ebx
) },
1253 { {"rcx", "ecx", "cx", "cl"}, reg_off(rcx
, ecx
) },
1254 { {"rdx", "edx", "dx", "dl"}, reg_off(rdx
, edx
) },
1255 { {"rsi", "esi", "si", "sil"}, reg_off(rsi
, esi
) },
1256 { {"rdi", "edi", "di", "dil"}, reg_off(rdi
, edi
) },
1257 { {"rbp", "ebp", "bp", "bpl"}, reg_off(rbp
, ebp
) },
1258 { {"rsp", "esp", "sp", "spl"}, reg_off(rsp
, esp
) },
1261 { {"r8", "r8d", "r8w", "r8b"}, offsetof(struct pt_regs
, r8
) },
1262 { {"r9", "r9d", "r9w", "r9b"}, offsetof(struct pt_regs
, r9
) },
1263 { {"r10", "r10d", "r10w", "r10b"}, offsetof(struct pt_regs
, r10
) },
1264 { {"r11", "r11d", "r11w", "r11b"}, offsetof(struct pt_regs
, r11
) },
1265 { {"r12", "r12d", "r12w", "r12b"}, offsetof(struct pt_regs
, r12
) },
1266 { {"r13", "r13d", "r13w", "r13b"}, offsetof(struct pt_regs
, r13
) },
1267 { {"r14", "r14d", "r14w", "r14b"}, offsetof(struct pt_regs
, r14
) },
1268 { {"r15", "r15d", "r15w", "r15b"}, offsetof(struct pt_regs
, r15
) },
1273 for (i
= 0; i
< ARRAY_SIZE(reg_map
); i
++) {
1274 for (j
= 0; j
< ARRAY_SIZE(reg_map
[i
].names
); j
++) {
1275 if (strcmp(reg_name
, reg_map
[i
].names
[j
]) == 0)
1276 return reg_map
[i
].pt_regs_off
;
1280 pr_warn("usdt: unrecognized register '%s'\n", reg_name
);
1284 static int parse_usdt_arg(const char *arg_str
, int arg_num
, struct usdt_arg_spec
*arg
, int *arg_sz
)
1290 if (sscanf(arg_str
, " %d @ %ld ( %%%15[^)] ) %n", arg_sz
, &off
, reg_name
, &len
) == 3) {
1291 /* Memory dereference case, e.g., -4@-20(%rbp) */
1292 arg
->arg_type
= USDT_ARG_REG_DEREF
;
1294 reg_off
= calc_pt_regs_off(reg_name
);
1297 arg
->reg_off
= reg_off
;
1298 } else if (sscanf(arg_str
, " %d @ ( %%%15[^)] ) %n", arg_sz
, reg_name
, &len
) == 2) {
1299 /* Memory dereference case without offset, e.g., 8@(%rsp) */
1300 arg
->arg_type
= USDT_ARG_REG_DEREF
;
1302 reg_off
= calc_pt_regs_off(reg_name
);
1305 arg
->reg_off
= reg_off
;
1306 } else if (sscanf(arg_str
, " %d @ %%%15s %n", arg_sz
, reg_name
, &len
) == 2) {
1307 /* Register read case, e.g., -4@%eax */
1308 arg
->arg_type
= USDT_ARG_REG
;
1311 reg_off
= calc_pt_regs_off(reg_name
);
1314 arg
->reg_off
= reg_off
;
1315 } else if (sscanf(arg_str
, " %d @ $%ld %n", arg_sz
, &off
, &len
) == 2) {
1316 /* Constant value case, e.g., 4@$71 */
1317 arg
->arg_type
= USDT_ARG_CONST
;
1321 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num
, arg_str
);
1328 #elif defined(__s390x__)
1330 /* Do not support __s390__ for now, since user_pt_regs is broken with -m31. */
1332 static int parse_usdt_arg(const char *arg_str
, int arg_num
, struct usdt_arg_spec
*arg
, int *arg_sz
)
1338 if (sscanf(arg_str
, " %d @ %ld ( %%r%u ) %n", arg_sz
, &off
, ®
, &len
) == 3) {
1339 /* Memory dereference case, e.g., -2@-28(%r15) */
1340 arg
->arg_type
= USDT_ARG_REG_DEREF
;
1343 pr_warn("usdt: unrecognized register '%%r%u'\n", reg
);
1346 arg
->reg_off
= offsetof(user_pt_regs
, gprs
[reg
]);
1347 } else if (sscanf(arg_str
, " %d @ %%r%u %n", arg_sz
, ®
, &len
) == 2) {
1348 /* Register read case, e.g., -8@%r0 */
1349 arg
->arg_type
= USDT_ARG_REG
;
1352 pr_warn("usdt: unrecognized register '%%r%u'\n", reg
);
1355 arg
->reg_off
= offsetof(user_pt_regs
, gprs
[reg
]);
1356 } else if (sscanf(arg_str
, " %d @ %ld %n", arg_sz
, &off
, &len
) == 2) {
1357 /* Constant value case, e.g., 4@71 */
1358 arg
->arg_type
= USDT_ARG_CONST
;
1362 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num
, arg_str
);
1369 #elif defined(__aarch64__)
1371 static int calc_pt_regs_off(const char *reg_name
)
1375 if (sscanf(reg_name
, "x%d", ®_num
) == 1) {
1376 if (reg_num
>= 0 && reg_num
< 31)
1377 return offsetof(struct user_pt_regs
, regs
[reg_num
]);
1378 } else if (strcmp(reg_name
, "sp") == 0) {
1379 return offsetof(struct user_pt_regs
, sp
);
1381 pr_warn("usdt: unrecognized register '%s'\n", reg_name
);
1385 static int parse_usdt_arg(const char *arg_str
, int arg_num
, struct usdt_arg_spec
*arg
, int *arg_sz
)
1391 if (sscanf(arg_str
, " %d @ \[ %15[a-z0-9] , %ld ] %n", arg_sz
, reg_name
, &off
, &len
) == 3) {
1392 /* Memory dereference case, e.g., -4@[sp, 96] */
1393 arg
->arg_type
= USDT_ARG_REG_DEREF
;
1395 reg_off
= calc_pt_regs_off(reg_name
);
1398 arg
->reg_off
= reg_off
;
1399 } else if (sscanf(arg_str
, " %d @ \[ %15[a-z0-9] ] %n", arg_sz
, reg_name
, &len
) == 2) {
1400 /* Memory dereference case, e.g., -4@[sp] */
1401 arg
->arg_type
= USDT_ARG_REG_DEREF
;
1403 reg_off
= calc_pt_regs_off(reg_name
);
1406 arg
->reg_off
= reg_off
;
1407 } else if (sscanf(arg_str
, " %d @ %ld %n", arg_sz
, &off
, &len
) == 2) {
1408 /* Constant value case, e.g., 4@5 */
1409 arg
->arg_type
= USDT_ARG_CONST
;
1412 } else if (sscanf(arg_str
, " %d @ %15[a-z0-9] %n", arg_sz
, reg_name
, &len
) == 2) {
1413 /* Register read case, e.g., -8@x4 */
1414 arg
->arg_type
= USDT_ARG_REG
;
1416 reg_off
= calc_pt_regs_off(reg_name
);
1419 arg
->reg_off
= reg_off
;
1421 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num
, arg_str
);
1428 #elif defined(__riscv)
1430 static int calc_pt_regs_off(const char *reg_name
)
1436 { "ra", offsetof(struct user_regs_struct
, ra
) },
1437 { "sp", offsetof(struct user_regs_struct
, sp
) },
1438 { "gp", offsetof(struct user_regs_struct
, gp
) },
1439 { "tp", offsetof(struct user_regs_struct
, tp
) },
1440 { "a0", offsetof(struct user_regs_struct
, a0
) },
1441 { "a1", offsetof(struct user_regs_struct
, a1
) },
1442 { "a2", offsetof(struct user_regs_struct
, a2
) },
1443 { "a3", offsetof(struct user_regs_struct
, a3
) },
1444 { "a4", offsetof(struct user_regs_struct
, a4
) },
1445 { "a5", offsetof(struct user_regs_struct
, a5
) },
1446 { "a6", offsetof(struct user_regs_struct
, a6
) },
1447 { "a7", offsetof(struct user_regs_struct
, a7
) },
1448 { "s0", offsetof(struct user_regs_struct
, s0
) },
1449 { "s1", offsetof(struct user_regs_struct
, s1
) },
1450 { "s2", offsetof(struct user_regs_struct
, s2
) },
1451 { "s3", offsetof(struct user_regs_struct
, s3
) },
1452 { "s4", offsetof(struct user_regs_struct
, s4
) },
1453 { "s5", offsetof(struct user_regs_struct
, s5
) },
1454 { "s6", offsetof(struct user_regs_struct
, s6
) },
1455 { "s7", offsetof(struct user_regs_struct
, s7
) },
1456 { "s8", offsetof(struct user_regs_struct
, rv_s8
) },
1457 { "s9", offsetof(struct user_regs_struct
, s9
) },
1458 { "s10", offsetof(struct user_regs_struct
, s10
) },
1459 { "s11", offsetof(struct user_regs_struct
, s11
) },
1460 { "t0", offsetof(struct user_regs_struct
, t0
) },
1461 { "t1", offsetof(struct user_regs_struct
, t1
) },
1462 { "t2", offsetof(struct user_regs_struct
, t2
) },
1463 { "t3", offsetof(struct user_regs_struct
, t3
) },
1464 { "t4", offsetof(struct user_regs_struct
, t4
) },
1465 { "t5", offsetof(struct user_regs_struct
, t5
) },
1466 { "t6", offsetof(struct user_regs_struct
, t6
) },
1470 for (i
= 0; i
< ARRAY_SIZE(reg_map
); i
++) {
1471 if (strcmp(reg_name
, reg_map
[i
].name
) == 0)
1472 return reg_map
[i
].pt_regs_off
;
1475 pr_warn("usdt: unrecognized register '%s'\n", reg_name
);
1479 static int parse_usdt_arg(const char *arg_str
, int arg_num
, struct usdt_arg_spec
*arg
, int *arg_sz
)
1485 if (sscanf(arg_str
, " %d @ %ld ( %15[a-z0-9] ) %n", arg_sz
, &off
, reg_name
, &len
) == 3) {
1486 /* Memory dereference case, e.g., -8@-88(s0) */
1487 arg
->arg_type
= USDT_ARG_REG_DEREF
;
1489 reg_off
= calc_pt_regs_off(reg_name
);
1492 arg
->reg_off
= reg_off
;
1493 } else if (sscanf(arg_str
, " %d @ %ld %n", arg_sz
, &off
, &len
) == 2) {
1494 /* Constant value case, e.g., 4@5 */
1495 arg
->arg_type
= USDT_ARG_CONST
;
1498 } else if (sscanf(arg_str
, " %d @ %15[a-z0-9] %n", arg_sz
, reg_name
, &len
) == 2) {
1499 /* Register read case, e.g., -8@a1 */
1500 arg
->arg_type
= USDT_ARG_REG
;
1502 reg_off
= calc_pt_regs_off(reg_name
);
1505 arg
->reg_off
= reg_off
;
1507 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num
, arg_str
);
1514 #elif defined(__arm__)
1516 static int calc_pt_regs_off(const char *reg_name
)
1522 { "r0", offsetof(struct pt_regs
, uregs
[0]) },
1523 { "r1", offsetof(struct pt_regs
, uregs
[1]) },
1524 { "r2", offsetof(struct pt_regs
, uregs
[2]) },
1525 { "r3", offsetof(struct pt_regs
, uregs
[3]) },
1526 { "r4", offsetof(struct pt_regs
, uregs
[4]) },
1527 { "r5", offsetof(struct pt_regs
, uregs
[5]) },
1528 { "r6", offsetof(struct pt_regs
, uregs
[6]) },
1529 { "r7", offsetof(struct pt_regs
, uregs
[7]) },
1530 { "r8", offsetof(struct pt_regs
, uregs
[8]) },
1531 { "r9", offsetof(struct pt_regs
, uregs
[9]) },
1532 { "r10", offsetof(struct pt_regs
, uregs
[10]) },
1533 { "fp", offsetof(struct pt_regs
, uregs
[11]) },
1534 { "ip", offsetof(struct pt_regs
, uregs
[12]) },
1535 { "sp", offsetof(struct pt_regs
, uregs
[13]) },
1536 { "lr", offsetof(struct pt_regs
, uregs
[14]) },
1537 { "pc", offsetof(struct pt_regs
, uregs
[15]) },
1541 for (i
= 0; i
< ARRAY_SIZE(reg_map
); i
++) {
1542 if (strcmp(reg_name
, reg_map
[i
].name
) == 0)
1543 return reg_map
[i
].pt_regs_off
;
1546 pr_warn("usdt: unrecognized register '%s'\n", reg_name
);
1550 static int parse_usdt_arg(const char *arg_str
, int arg_num
, struct usdt_arg_spec
*arg
, int *arg_sz
)
1556 if (sscanf(arg_str
, " %d @ \[ %15[a-z0-9] , #%ld ] %n",
1557 arg_sz
, reg_name
, &off
, &len
) == 3) {
1558 /* Memory dereference case, e.g., -4@[fp, #96] */
1559 arg
->arg_type
= USDT_ARG_REG_DEREF
;
1561 reg_off
= calc_pt_regs_off(reg_name
);
1564 arg
->reg_off
= reg_off
;
1565 } else if (sscanf(arg_str
, " %d @ \[ %15[a-z0-9] ] %n", arg_sz
, reg_name
, &len
) == 2) {
1566 /* Memory dereference case, e.g., -4@[sp] */
1567 arg
->arg_type
= USDT_ARG_REG_DEREF
;
1569 reg_off
= calc_pt_regs_off(reg_name
);
1572 arg
->reg_off
= reg_off
;
1573 } else if (sscanf(arg_str
, " %d @ #%ld %n", arg_sz
, &off
, &len
) == 2) {
1574 /* Constant value case, e.g., 4@#5 */
1575 arg
->arg_type
= USDT_ARG_CONST
;
1578 } else if (sscanf(arg_str
, " %d @ %15[a-z0-9] %n", arg_sz
, reg_name
, &len
) == 2) {
1579 /* Register read case, e.g., -8@r4 */
1580 arg
->arg_type
= USDT_ARG_REG
;
1582 reg_off
= calc_pt_regs_off(reg_name
);
1585 arg
->reg_off
= reg_off
;
1587 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num
, arg_str
);
1596 static int parse_usdt_arg(const char *arg_str
, int arg_num
, struct usdt_arg_spec
*arg
, int *arg_sz
)
1598 pr_warn("usdt: libbpf doesn't support USDTs on current architecture\n");