1 // SPDX-License-Identifier: GPL-2.0
5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
10 #include <subcmd/parse-options.h>
11 #include "../util/cloexec.h"
27 #include <sys/resource.h>
29 #include <sys/prctl.h>
31 #include <sys/types.h>
32 #include <linux/kernel.h>
33 #include <linux/time64.h>
34 #include <linux/numa.h>
35 #include <linux/zalloc.h>
37 #include "../util/header.h"
38 #include "../util/mutex.h"
39 #include <api/fs/fs.h>
44 # define RUSAGE_THREAD 1
48 * Regular printout to the terminal, suppressed if -q is specified:
50 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
56 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
60 cpu_set_t
*bind_cpumask
;
66 unsigned int loops_done
;
72 struct mutex
*process_lock
;
75 /* Parameters set by options: */
78 /* Startup synchronization: */
79 bool serialize_startup
;
85 /* Working set sizes: */
86 const char *mb_global_str
;
87 const char *mb_proc_str
;
88 const char *mb_proc_locked_str
;
89 const char *mb_thread_str
;
93 double mb_proc_locked
;
96 /* Access patterns to the working set: */
100 bool data_zero_memset
;
106 /* Working set initialization: */
118 long bytes_process_locked
;
123 bool show_convergence
;
124 bool measure_convergence
;
130 /* Affinity options -C and -N: */
136 /* Global, read-writable area, accessible to all processes and threads: */
141 struct mutex startup_mutex
;
142 struct cond startup_cond
;
143 int nr_tasks_started
;
145 struct mutex start_work_mutex
;
146 struct cond start_work_cond
;
147 int nr_tasks_working
;
150 struct mutex stop_work_mutex
;
153 struct thread_data
*threads
;
155 /* Convergence latency measurement: */
164 static struct global_info
*g
= NULL
;
166 static int parse_cpus_opt(const struct option
*opt
, const char *arg
, int unset
);
167 static int parse_nodes_opt(const struct option
*opt
, const char *arg
, int unset
);
171 static const struct option options
[] = {
172 OPT_INTEGER('p', "nr_proc" , &p0
.nr_proc
, "number of processes"),
173 OPT_INTEGER('t', "nr_threads" , &p0
.nr_threads
, "number of threads per process"),
175 OPT_STRING('G', "mb_global" , &p0
.mb_global_str
, "MB", "global memory (MBs)"),
176 OPT_STRING('P', "mb_proc" , &p0
.mb_proc_str
, "MB", "process memory (MBs)"),
177 OPT_STRING('L', "mb_proc_locked", &p0
.mb_proc_locked_str
,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
178 OPT_STRING('T', "mb_thread" , &p0
.mb_thread_str
, "MB", "thread memory (MBs)"),
180 OPT_UINTEGER('l', "nr_loops" , &p0
.nr_loops
, "max number of loops to run (default: unlimited)"),
181 OPT_UINTEGER('s', "nr_secs" , &p0
.nr_secs
, "max number of seconds to run (default: 5 secs)"),
182 OPT_UINTEGER('u', "usleep" , &p0
.sleep_usecs
, "usecs to sleep per loop iteration"),
184 OPT_BOOLEAN('R', "data_reads" , &p0
.data_reads
, "access the data via reads (can be mixed with -W)"),
185 OPT_BOOLEAN('W', "data_writes" , &p0
.data_writes
, "access the data via writes (can be mixed with -R)"),
186 OPT_BOOLEAN('B', "data_backwards", &p0
.data_backwards
, "access the data backwards as well"),
187 OPT_BOOLEAN('Z', "data_zero_memset", &p0
.data_zero_memset
,"access the data via glibc bzero only"),
188 OPT_BOOLEAN('r', "data_rand_walk", &p0
.data_rand_walk
, "access the data with random (32bit LFSR) walk"),
191 OPT_BOOLEAN('z', "init_zero" , &p0
.init_zero
, "bzero the initial allocations"),
192 OPT_BOOLEAN('I', "init_random" , &p0
.init_random
, "randomize the contents of the initial allocations"),
193 OPT_BOOLEAN('0', "init_cpu0" , &p0
.init_cpu0
, "do the initial allocations on CPU#0"),
194 OPT_INTEGER('x', "perturb_secs", &p0
.perturb_secs
, "perturb thread 0/0 every X secs, to test convergence stability"),
196 OPT_INCR ('d', "show_details" , &p0
.show_details
, "Show details"),
197 OPT_INCR ('a', "all" , &p0
.run_all
, "Run all tests in the suite"),
198 OPT_INTEGER('H', "thp" , &p0
.thp
, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
199 OPT_BOOLEAN('c', "show_convergence", &p0
.show_convergence
, "show convergence details, "
200 "convergence is reached when each process (all its threads) is running on a single NUMA node."),
201 OPT_BOOLEAN('m', "measure_convergence", &p0
.measure_convergence
, "measure convergence latency"),
202 OPT_BOOLEAN('q', "quiet" , &quiet
,
203 "quiet mode (do not show any warnings or messages)"),
204 OPT_BOOLEAN('S', "serialize-startup", &p0
.serialize_startup
,"serialize thread startup"),
206 /* Special option string parsing callbacks: */
207 OPT_CALLBACK('C', "cpus", NULL
, "cpu[,cpu2,...cpuN]",
208 "bind the first N tasks to these specific cpus (the rest is unbound)",
210 OPT_CALLBACK('M', "memnodes", NULL
, "node[,node2,...nodeN]",
211 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
216 static const char * const bench_numa_usage
[] = {
217 "perf bench numa <options>",
221 static const char * const numa_usage
[] = {
222 "perf bench numa mem [<options>]",
227 * To get number of numa nodes present.
229 static int nr_numa_nodes(void)
233 for (i
= 0; i
< g
->p
.nr_nodes
; i
++) {
234 if (numa_bitmask_isbitset(numa_nodes_ptr
, i
))
242 * To check if given numa node is present.
244 static int is_node_present(int node
)
246 return numa_bitmask_isbitset(numa_nodes_ptr
, node
);
250 * To check given numa node has cpus.
252 static bool node_has_cpus(int node
)
254 struct bitmask
*cpumask
= numa_allocate_cpumask();
255 bool ret
= false; /* fall back to nocpus */
259 if (!numa_node_to_cpus(node
, cpumask
)) {
260 for (cpu
= 0; cpu
< (int)cpumask
->size
; cpu
++) {
261 if (numa_bitmask_isbitset(cpumask
, cpu
)) {
267 numa_free_cpumask(cpumask
);
272 static cpu_set_t
*bind_to_cpu(int target_cpu
)
274 int nrcpus
= numa_num_possible_cpus();
275 cpu_set_t
*orig_mask
, *mask
;
278 orig_mask
= CPU_ALLOC(nrcpus
);
280 size
= CPU_ALLOC_SIZE(nrcpus
);
281 CPU_ZERO_S(size
, orig_mask
);
283 if (sched_getaffinity(0, size
, orig_mask
))
286 mask
= CPU_ALLOC(nrcpus
);
290 CPU_ZERO_S(size
, mask
);
292 if (target_cpu
== -1) {
295 for (cpu
= 0; cpu
< g
->p
.nr_cpus
; cpu
++)
296 CPU_SET_S(cpu
, size
, mask
);
298 if (target_cpu
< 0 || target_cpu
>= g
->p
.nr_cpus
)
301 CPU_SET_S(target_cpu
, size
, mask
);
304 if (sched_setaffinity(0, size
, mask
))
314 /* BUG_ON due to failure in allocation of orig_mask/mask */
319 static cpu_set_t
*bind_to_node(int target_node
)
321 int nrcpus
= numa_num_possible_cpus();
323 cpu_set_t
*orig_mask
, *mask
;
326 orig_mask
= CPU_ALLOC(nrcpus
);
328 size
= CPU_ALLOC_SIZE(nrcpus
);
329 CPU_ZERO_S(size
, orig_mask
);
331 if (sched_getaffinity(0, size
, orig_mask
))
334 mask
= CPU_ALLOC(nrcpus
);
338 CPU_ZERO_S(size
, mask
);
340 if (target_node
== NUMA_NO_NODE
) {
341 for (cpu
= 0; cpu
< g
->p
.nr_cpus
; cpu
++)
342 CPU_SET_S(cpu
, size
, mask
);
344 struct bitmask
*cpumask
= numa_allocate_cpumask();
349 if (!numa_node_to_cpus(target_node
, cpumask
)) {
350 for (cpu
= 0; cpu
< (int)cpumask
->size
; cpu
++) {
351 if (numa_bitmask_isbitset(cpumask
, cpu
))
352 CPU_SET_S(cpu
, size
, mask
);
355 numa_free_cpumask(cpumask
);
358 if (sched_setaffinity(0, size
, mask
))
368 /* BUG_ON due to failure in allocation of orig_mask/mask */
373 static void bind_to_cpumask(cpu_set_t
*mask
)
376 size_t size
= CPU_ALLOC_SIZE(numa_num_possible_cpus());
378 ret
= sched_setaffinity(0, size
, mask
);
385 static void mempol_restore(void)
389 ret
= set_mempolicy(MPOL_DEFAULT
, NULL
, g
->p
.nr_nodes
-1);
394 static void bind_to_memnode(int node
)
396 struct bitmask
*node_mask
;
399 if (node
== NUMA_NO_NODE
)
402 node_mask
= numa_allocate_nodemask();
405 numa_bitmask_clearall(node_mask
);
406 numa_bitmask_setbit(node_mask
, node
);
408 ret
= set_mempolicy(MPOL_BIND
, node_mask
->maskp
, node_mask
->size
+ 1);
409 dprintf("binding to node %d, mask: %016lx => %d\n", node
, *node_mask
->maskp
, ret
);
411 numa_bitmask_free(node_mask
);
415 #define HPSIZE (2*1024*1024)
417 #define set_taskname(fmt...) \
421 snprintf(name, 20, fmt); \
422 prctl(PR_SET_NAME, name); \
425 static u8
*alloc_data(ssize_t bytes0
, int map_flags
,
426 int init_zero
, int init_cpu0
, int thp
, int init_random
)
428 cpu_set_t
*orig_mask
= NULL
;
436 /* Allocate and initialize all memory on CPU#0: */
438 int node
= numa_node_of_cpu(0);
440 orig_mask
= bind_to_node(node
);
441 bind_to_memnode(node
);
444 bytes
= bytes0
+ HPSIZE
;
446 buf
= (void *)mmap(0, bytes
, PROT_READ
|PROT_WRITE
, MAP_ANON
|map_flags
, -1, 0);
447 BUG_ON(buf
== (void *)-1);
449 if (map_flags
== MAP_PRIVATE
) {
451 ret
= madvise(buf
, bytes
, MADV_HUGEPAGE
);
452 if (ret
&& !g
->print_once
) {
454 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
458 ret
= madvise(buf
, bytes
, MADV_NOHUGEPAGE
);
459 if (ret
&& !g
->print_once
) {
461 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
469 /* Initialize random contents, different in each word: */
471 u64
*wbuf
= (void *)buf
;
475 for (i
= 0; i
< bytes
/8; i
++)
480 /* Align to 2MB boundary: */
481 buf
= (void *)(((unsigned long)buf
+ HPSIZE
-1) & ~(HPSIZE
-1));
483 /* Restore affinity: */
485 bind_to_cpumask(orig_mask
);
493 static void free_data(void *data
, ssize_t bytes
)
500 ret
= munmap(data
, bytes
);
505 * Create a shared memory buffer that can be shared between processes, zeroed:
507 static void * zalloc_shared_data(ssize_t bytes
)
509 return alloc_data(bytes
, MAP_SHARED
, 1, g
->p
.init_cpu0
, g
->p
.thp
, g
->p
.init_random
);
513 * Create a shared memory buffer that can be shared between processes:
515 static void * setup_shared_data(ssize_t bytes
)
517 return alloc_data(bytes
, MAP_SHARED
, 0, g
->p
.init_cpu0
, g
->p
.thp
, g
->p
.init_random
);
521 * Allocate process-local memory - this will either be shared between
522 * threads of this process, or only be accessed by this thread:
524 static void * setup_private_data(ssize_t bytes
)
526 return alloc_data(bytes
, MAP_PRIVATE
, 0, g
->p
.init_cpu0
, g
->p
.thp
, g
->p
.init_random
);
529 static int parse_cpu_list(const char *arg
)
531 p0
.cpu_list_str
= strdup(arg
);
533 dprintf("got CPU list: {%s}\n", p0
.cpu_list_str
);
539 * Check whether a CPU is online
542 * 1 -> if CPU is online
543 * 0 -> if CPU is offline
546 static int is_cpu_online(unsigned int cpu
)
554 snprintf(buf
, sizeof(buf
),
555 "/sys/devices/system/cpu/cpu%d", cpu
);
556 if (stat(buf
, &statbuf
) != 0)
560 * Check if /sys/devices/system/cpu/cpux/online file
561 * exists. Some cases cpu0 won't have online file since
562 * it is not expected to be turned off generally.
563 * In kernels without CONFIG_HOTPLUG_CPU, this
566 snprintf(buf
, sizeof(buf
),
567 "/sys/devices/system/cpu/cpu%d/online", cpu
);
568 if (stat(buf
, &statbuf
) != 0)
572 * Read online file using sysfs__read_str.
573 * If read or open fails, return -1.
574 * If read succeeds, return value from file
575 * which gets stored in "str"
577 snprintf(buf
, sizeof(buf
),
578 "devices/system/cpu/cpu%d/online", cpu
);
580 if (sysfs__read_str(buf
, &str
, &strlen
) < 0)
589 static int parse_setup_cpu_list(void)
591 struct thread_data
*td
;
595 if (!g
->p
.cpu_list_str
)
598 dprintf("g->p.nr_tasks: %d\n", g
->p
.nr_tasks
);
600 str0
= str
= strdup(g
->p
.cpu_list_str
);
605 tprintf("# binding tasks to CPUs:\n");
609 int bind_cpu
, bind_cpu_0
, bind_cpu_1
;
610 char *tok
, *tok_end
, *tok_step
, *tok_len
, *tok_mul
;
615 tok
= strsep(&str
, ",");
619 tok_end
= strstr(tok
, "-");
621 dprintf("\ntoken: {%s}, end: {%s}\n", tok
, tok_end
);
623 /* Single CPU specified: */
624 bind_cpu_0
= bind_cpu_1
= atol(tok
);
626 /* CPU range specified (for example: "5-11"): */
627 bind_cpu_0
= atol(tok
);
628 bind_cpu_1
= atol(tok_end
+ 1);
632 tok_step
= strstr(tok
, "#");
634 step
= atol(tok_step
+ 1);
635 BUG_ON(step
<= 0 || step
>= g
->p
.nr_cpus
);
640 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
641 * where the _4 means the next 4 CPUs are allowed.
644 tok_len
= strstr(tok
, "_");
646 bind_len
= atol(tok_len
+ 1);
647 BUG_ON(bind_len
<= 0 || bind_len
> g
->p
.nr_cpus
);
650 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
652 tok_mul
= strstr(tok
, "x");
654 mul
= atol(tok_mul
+ 1);
658 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0
, bind_len
, bind_cpu_1
, step
, mul
);
660 if (bind_cpu_0
>= g
->p
.nr_cpus
|| bind_cpu_1
>= g
->p
.nr_cpus
) {
661 printf("\nTest not applicable, system has only %d CPUs.\n", g
->p
.nr_cpus
);
665 if (is_cpu_online(bind_cpu_0
) != 1 || is_cpu_online(bind_cpu_1
) != 1) {
666 printf("\nTest not applicable, bind_cpu_0 or bind_cpu_1 is offline\n");
670 BUG_ON(bind_cpu_0
< 0 || bind_cpu_1
< 0);
671 BUG_ON(bind_cpu_0
> bind_cpu_1
);
673 for (bind_cpu
= bind_cpu_0
; bind_cpu
<= bind_cpu_1
; bind_cpu
+= step
) {
674 size_t size
= CPU_ALLOC_SIZE(g
->p
.nr_cpus
);
677 for (i
= 0; i
< mul
; i
++) {
680 if (t
>= g
->p
.nr_tasks
) {
681 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu
);
689 tprintf("%2d/%d", bind_cpu
, bind_len
);
691 tprintf("%2d", bind_cpu
);
694 td
->bind_cpumask
= CPU_ALLOC(g
->p
.nr_cpus
);
695 BUG_ON(!td
->bind_cpumask
);
696 CPU_ZERO_S(size
, td
->bind_cpumask
);
697 for (cpu
= bind_cpu
; cpu
< bind_cpu
+bind_len
; cpu
++) {
698 if (cpu
< 0 || cpu
>= g
->p
.nr_cpus
) {
699 CPU_FREE(td
->bind_cpumask
);
702 CPU_SET_S(cpu
, size
, td
->bind_cpumask
);
712 if (t
< g
->p
.nr_tasks
)
713 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t
, g
->p
.nr_tasks
- t
);
719 static int parse_cpus_opt(const struct option
*opt __maybe_unused
,
720 const char *arg
, int unset __maybe_unused
)
725 return parse_cpu_list(arg
);
728 static int parse_node_list(const char *arg
)
730 p0
.node_list_str
= strdup(arg
);
732 dprintf("got NODE list: {%s}\n", p0
.node_list_str
);
737 static int parse_setup_node_list(void)
739 struct thread_data
*td
;
743 if (!g
->p
.node_list_str
)
746 dprintf("g->p.nr_tasks: %d\n", g
->p
.nr_tasks
);
748 str0
= str
= strdup(g
->p
.node_list_str
);
753 tprintf("# binding tasks to NODEs:\n");
757 int bind_node
, bind_node_0
, bind_node_1
;
758 char *tok
, *tok_end
, *tok_step
, *tok_mul
;
762 tok
= strsep(&str
, ",");
766 tok_end
= strstr(tok
, "-");
768 dprintf("\ntoken: {%s}, end: {%s}\n", tok
, tok_end
);
770 /* Single NODE specified: */
771 bind_node_0
= bind_node_1
= atol(tok
);
773 /* NODE range specified (for example: "5-11"): */
774 bind_node_0
= atol(tok
);
775 bind_node_1
= atol(tok_end
+ 1);
779 tok_step
= strstr(tok
, "#");
781 step
= atol(tok_step
+ 1);
782 BUG_ON(step
<= 0 || step
>= g
->p
.nr_nodes
);
785 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
787 tok_mul
= strstr(tok
, "x");
789 mul
= atol(tok_mul
+ 1);
793 dprintf("NODEs: %d-%d #%d\n", bind_node_0
, bind_node_1
, step
);
795 if (bind_node_0
>= g
->p
.nr_nodes
|| bind_node_1
>= g
->p
.nr_nodes
) {
796 printf("\nTest not applicable, system has only %d nodes.\n", g
->p
.nr_nodes
);
800 BUG_ON(bind_node_0
< 0 || bind_node_1
< 0);
801 BUG_ON(bind_node_0
> bind_node_1
);
803 for (bind_node
= bind_node_0
; bind_node
<= bind_node_1
; bind_node
+= step
) {
806 for (i
= 0; i
< mul
; i
++) {
807 if (t
>= g
->p
.nr_tasks
|| !node_has_cpus(bind_node
)) {
808 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node
);
814 tprintf(" %2d", bind_node
);
816 tprintf(",%2d", bind_node
);
818 td
->bind_node
= bind_node
;
827 if (t
< g
->p
.nr_tasks
)
828 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t
, g
->p
.nr_tasks
- t
);
834 static int parse_nodes_opt(const struct option
*opt __maybe_unused
,
835 const char *arg
, int unset __maybe_unused
)
840 return parse_node_list(arg
);
843 static inline uint32_t lfsr_32(uint32_t lfsr
)
845 const uint32_t taps
= BIT(1) | BIT(5) | BIT(6) | BIT(31);
846 return (lfsr
>>1) ^ ((0x0u
- (lfsr
& 0x1u
)) & taps
);
850 * Make sure there's real data dependency to RAM (when read
851 * accesses are enabled), so the compiler, the CPU and the
852 * kernel (KSM, zero page, etc.) cannot optimize away RAM
855 static inline u64
access_data(u64
*data
, u64 val
)
859 if (g
->p
.data_writes
)
865 * The worker process does two types of work, a forwards going
866 * loop and a backwards going loop.
868 * We do this so that on multiprocessor systems we do not create
869 * a 'train' of processing, with highly synchronized processes,
870 * skewing the whole benchmark.
872 static u64
do_work(u8
*__data
, long bytes
, int nr
, int nr_max
, int loop
, u64 val
)
874 long words
= bytes
/sizeof(u64
);
875 u64
*data
= (void *)__data
;
876 long chunk_0
, chunk_1
;
881 BUG_ON(!data
&& words
);
882 BUG_ON(data
&& !words
);
887 /* Very simple memset() work variant: */
888 if (g
->p
.data_zero_memset
&& !g
->p
.data_rand_walk
) {
893 /* Spread out by PID/TID nr and by loop nr: */
894 chunk_0
= words
/nr_max
;
895 chunk_1
= words
/g
->p
.nr_loops
;
896 off
= nr
*chunk_0
+ loop
*chunk_1
;
901 if (g
->p
.data_rand_walk
) {
902 u32 lfsr
= nr
+ loop
+ val
;
905 for (i
= 0; i
< words
/1024; i
++) {
908 lfsr
= lfsr_32(lfsr
);
910 start
= lfsr
% words
;
911 end
= min(start
+ 1024, words
-1);
913 if (g
->p
.data_zero_memset
) {
914 bzero(data
+ start
, (end
-start
) * sizeof(u64
));
916 for (j
= start
; j
< end
; j
++)
917 val
= access_data(data
+ j
, val
);
920 } else if (!g
->p
.data_backwards
|| (nr
+ loop
) & 1) {
921 /* Process data forwards: */
928 if (unlikely(d
>= d1
))
930 if (unlikely(d
== d0
))
933 val
= access_data(d
, val
);
938 /* Process data backwards: */
945 if (unlikely(d
< data
))
947 if (unlikely(d
== d0
))
950 val
= access_data(d
, val
);
959 static void update_curr_cpu(int task_nr
, unsigned long bytes_worked
)
963 cpu
= sched_getcpu();
965 g
->threads
[task_nr
].curr_cpu
= cpu
;
966 prctl(0, bytes_worked
);
970 * Count the number of nodes a process's threads
973 * A count of 1 means that the process is compressed
974 * to a single node. A count of g->p.nr_nodes means it's
975 * spread out on the whole system.
977 static int count_process_nodes(int process_nr
)
983 node_present
= (char *)malloc(g
->p
.nr_nodes
* sizeof(char));
984 BUG_ON(!node_present
);
985 for (nodes
= 0; nodes
< g
->p
.nr_nodes
; nodes
++)
986 node_present
[nodes
] = 0;
988 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
989 struct thread_data
*td
;
993 task_nr
= process_nr
*g
->p
.nr_threads
+ t
;
994 td
= g
->threads
+ task_nr
;
996 node
= numa_node_of_cpu(td
->curr_cpu
);
997 if (node
< 0) /* curr_cpu was likely still -1 */ {
1002 node_present
[node
] = 1;
1007 for (n
= 0; n
< g
->p
.nr_nodes
; n
++)
1008 nodes
+= node_present
[n
];
1015 * Count the number of distinct process-threads a node contains.
1017 * A count of 1 means that the node contains only a single
1018 * process. If all nodes on the system contain at most one
1019 * process then we are well-converged.
1021 static int count_node_processes(int node
)
1026 for (p
= 0; p
< g
->p
.nr_proc
; p
++) {
1027 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1028 struct thread_data
*td
;
1032 task_nr
= p
*g
->p
.nr_threads
+ t
;
1033 td
= g
->threads
+ task_nr
;
1035 n
= numa_node_of_cpu(td
->curr_cpu
);
1046 static void calc_convergence_compression(int *strong
)
1048 unsigned int nodes_min
, nodes_max
;
1054 for (p
= 0; p
< g
->p
.nr_proc
; p
++) {
1055 unsigned int nodes
= count_process_nodes(p
);
1062 nodes_min
= min(nodes
, nodes_min
);
1063 nodes_max
= max(nodes
, nodes_max
);
1066 /* Strong convergence: all threads compress on a single node: */
1067 if (nodes_min
== 1 && nodes_max
== 1) {
1071 tprintf(" {%d-%d}", nodes_min
, nodes_max
);
1075 static void calc_convergence(double runtime_ns_max
, double *convergence
)
1077 unsigned int loops_done_min
, loops_done_max
;
1090 if (!g
->p
.show_convergence
&& !g
->p
.measure_convergence
)
1093 nodes
= (int *)malloc(g
->p
.nr_nodes
* sizeof(int));
1095 for (node
= 0; node
< g
->p
.nr_nodes
; node
++)
1098 loops_done_min
= -1;
1101 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
1102 struct thread_data
*td
= g
->threads
+ t
;
1103 unsigned int loops_done
;
1107 /* Not all threads have written it yet: */
1111 node
= numa_node_of_cpu(cpu
);
1115 loops_done
= td
->loops_done
;
1116 loops_done_min
= min(loops_done
, loops_done_min
);
1117 loops_done_max
= max(loops_done
, loops_done_max
);
1121 nr_min
= g
->p
.nr_tasks
;
1124 for (node
= 0; node
< g
->p
.nr_nodes
; node
++) {
1125 if (!is_node_present(node
))
1128 nr_min
= min(nr
, nr_min
);
1129 nr_max
= max(nr
, nr_max
);
1132 BUG_ON(nr_min
> nr_max
);
1134 BUG_ON(sum
> g
->p
.nr_tasks
);
1136 if (0 && (sum
< g
->p
.nr_tasks
)) {
1142 * Count the number of distinct process groups present
1143 * on nodes - when we are converged this will decrease
1148 for (node
= 0; node
< g
->p
.nr_nodes
; node
++) {
1151 if (!is_node_present(node
))
1153 processes
= count_node_processes(node
);
1155 tprintf(" %2d/%-2d", nr
, processes
);
1157 process_groups
+= processes
;
1160 distance
= nr_max
- nr_min
;
1162 tprintf(" [%2d/%-2d]", distance
, process_groups
);
1164 tprintf(" l:%3d-%-3d (%3d)",
1165 loops_done_min
, loops_done_max
, loops_done_max
-loops_done_min
);
1167 if (loops_done_min
&& loops_done_max
) {
1168 double skew
= 1.0 - (double)loops_done_min
/loops_done_max
;
1170 tprintf(" [%4.1f%%]", skew
* 100.0);
1173 calc_convergence_compression(&strong
);
1175 if (strong
&& process_groups
== g
->p
.nr_proc
) {
1176 if (!*convergence
) {
1177 *convergence
= runtime_ns_max
;
1178 tprintf(" (%6.1fs converged)\n", *convergence
/ NSEC_PER_SEC
);
1179 if (g
->p
.measure_convergence
) {
1180 g
->all_converged
= true;
1181 g
->stop_work
= true;
1186 tprintf(" (%6.1fs de-converged)", runtime_ns_max
/ NSEC_PER_SEC
);
1195 static void show_summary(double runtime_ns_max
, int l
, double *convergence
)
1197 tprintf("\r # %5.1f%% [%.1f mins]",
1198 (double)(l
+1)/g
->p
.nr_loops
*100.0, runtime_ns_max
/ NSEC_PER_SEC
/ 60.0);
1200 calc_convergence(runtime_ns_max
, convergence
);
1202 if (g
->p
.show_details
>= 0)
1206 static void *worker_thread(void *__tdata
)
1208 struct thread_data
*td
= __tdata
;
1209 struct timeval start0
, start
, stop
, diff
;
1210 int process_nr
= td
->process_nr
;
1211 int thread_nr
= td
->thread_nr
;
1212 unsigned long last_perturbance
;
1213 int task_nr
= td
->task_nr
;
1214 int details
= g
->p
.show_details
;
1215 int first_task
, last_task
;
1216 double convergence
= 0;
1218 double runtime_ns_max
;
1222 u64 bytes_done
, secs
;
1225 struct rusage rusage
;
1227 bind_to_cpumask(td
->bind_cpumask
);
1228 bind_to_memnode(td
->bind_node
);
1230 set_taskname("thread %d/%d", process_nr
, thread_nr
);
1232 global_data
= g
->data
;
1233 process_data
= td
->process_data
;
1234 thread_data
= setup_private_data(g
->p
.bytes_thread
);
1239 if (process_nr
== g
->p
.nr_proc
-1 && thread_nr
== g
->p
.nr_threads
-1)
1243 if (process_nr
== 0 && thread_nr
== 0)
1247 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1248 process_nr
, thread_nr
, global_data
, process_data
, thread_data
);
1251 if (g
->p
.serialize_startup
) {
1252 mutex_lock(&g
->startup_mutex
);
1253 g
->nr_tasks_started
++;
1254 /* The last thread wakes the main process. */
1255 if (g
->nr_tasks_started
== g
->p
.nr_tasks
)
1256 cond_signal(&g
->startup_cond
);
1258 mutex_unlock(&g
->startup_mutex
);
1260 /* Here we will wait for the main process to start us all at once: */
1261 mutex_lock(&g
->start_work_mutex
);
1262 g
->start_work
= false;
1263 g
->nr_tasks_working
++;
1264 while (!g
->start_work
)
1265 cond_wait(&g
->start_work_cond
, &g
->start_work_mutex
);
1267 mutex_unlock(&g
->start_work_mutex
);
1270 gettimeofday(&start0
, NULL
);
1272 start
= stop
= start0
;
1273 last_perturbance
= start
.tv_sec
;
1275 for (l
= 0; l
< g
->p
.nr_loops
; l
++) {
1281 val
+= do_work(global_data
, g
->p
.bytes_global
, process_nr
, g
->p
.nr_proc
, l
, val
);
1282 val
+= do_work(process_data
, g
->p
.bytes_process
, thread_nr
, g
->p
.nr_threads
, l
, val
);
1283 val
+= do_work(thread_data
, g
->p
.bytes_thread
, 0, 1, l
, val
);
1285 if (g
->p
.sleep_usecs
) {
1286 mutex_lock(td
->process_lock
);
1287 usleep(g
->p
.sleep_usecs
);
1288 mutex_unlock(td
->process_lock
);
1291 * Amount of work to be done under a process-global lock:
1293 if (g
->p
.bytes_process_locked
) {
1294 mutex_lock(td
->process_lock
);
1295 val
+= do_work(process_data
, g
->p
.bytes_process_locked
, thread_nr
, g
->p
.nr_threads
, l
, val
);
1296 mutex_unlock(td
->process_lock
);
1299 work_done
= g
->p
.bytes_global
+ g
->p
.bytes_process
+
1300 g
->p
.bytes_process_locked
+ g
->p
.bytes_thread
;
1302 update_curr_cpu(task_nr
, work_done
);
1303 bytes_done
+= work_done
;
1305 if (details
< 0 && !g
->p
.perturb_secs
&& !g
->p
.measure_convergence
&& !g
->p
.nr_secs
)
1310 gettimeofday(&stop
, NULL
);
1312 /* Check whether our max runtime timed out: */
1314 timersub(&stop
, &start0
, &diff
);
1315 if ((u32
)diff
.tv_sec
>= g
->p
.nr_secs
) {
1316 g
->stop_work
= true;
1321 /* Update the summary at most once per second: */
1322 if (start
.tv_sec
== stop
.tv_sec
)
1326 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1327 * by migrating to CPU#0:
1329 if (first_task
&& g
->p
.perturb_secs
&& (int)(stop
.tv_sec
- last_perturbance
) >= g
->p
.perturb_secs
) {
1330 cpu_set_t
*orig_mask
;
1334 last_perturbance
= stop
.tv_sec
;
1337 * Depending on where we are running, move into
1338 * the other half of the system, to create some
1341 this_cpu
= g
->threads
[task_nr
].curr_cpu
;
1342 if (this_cpu
< g
->p
.nr_cpus
/2)
1343 target_cpu
= g
->p
.nr_cpus
-1;
1347 orig_mask
= bind_to_cpu(target_cpu
);
1349 /* Here we are running on the target CPU already */
1351 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu
);
1353 bind_to_cpumask(orig_mask
);
1354 CPU_FREE(orig_mask
);
1358 timersub(&stop
, &start
, &diff
);
1359 runtime_ns_max
= diff
.tv_sec
* NSEC_PER_SEC
;
1360 runtime_ns_max
+= diff
.tv_usec
* NSEC_PER_USEC
;
1363 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64
"]\n",
1364 process_nr
, thread_nr
, runtime_ns_max
/ bytes_done
, val
);
1371 timersub(&stop
, &start0
, &diff
);
1372 runtime_ns_max
= diff
.tv_sec
* NSEC_PER_SEC
;
1373 runtime_ns_max
+= diff
.tv_usec
* NSEC_PER_USEC
;
1375 show_summary(runtime_ns_max
, l
, &convergence
);
1378 gettimeofday(&stop
, NULL
);
1379 timersub(&stop
, &start0
, &diff
);
1380 td
->runtime_ns
= diff
.tv_sec
* NSEC_PER_SEC
;
1381 td
->runtime_ns
+= diff
.tv_usec
* NSEC_PER_USEC
;
1382 secs
= td
->runtime_ns
/ NSEC_PER_SEC
;
1383 td
->speed_gbs
= secs
? bytes_done
/ secs
/ 1e9
: 0;
1385 getrusage(RUSAGE_THREAD
, &rusage
);
1386 td
->system_time_ns
= rusage
.ru_stime
.tv_sec
* NSEC_PER_SEC
;
1387 td
->system_time_ns
+= rusage
.ru_stime
.tv_usec
* NSEC_PER_USEC
;
1388 td
->user_time_ns
= rusage
.ru_utime
.tv_sec
* NSEC_PER_SEC
;
1389 td
->user_time_ns
+= rusage
.ru_utime
.tv_usec
* NSEC_PER_USEC
;
1391 free_data(thread_data
, g
->p
.bytes_thread
);
1393 mutex_lock(&g
->stop_work_mutex
);
1394 g
->bytes_done
+= bytes_done
;
1395 mutex_unlock(&g
->stop_work_mutex
);
1401 * A worker process starts a couple of threads:
1403 static void worker_process(int process_nr
)
1405 struct mutex process_lock
;
1406 struct thread_data
*td
;
1407 pthread_t
*pthreads
;
1413 mutex_init(&process_lock
);
1414 set_taskname("process %d", process_nr
);
1417 * Pick up the memory policy and the CPU binding of our first thread,
1418 * so that we initialize memory accordingly:
1420 task_nr
= process_nr
*g
->p
.nr_threads
;
1421 td
= g
->threads
+ task_nr
;
1423 bind_to_memnode(td
->bind_node
);
1424 bind_to_cpumask(td
->bind_cpumask
);
1426 pthreads
= zalloc(g
->p
.nr_threads
* sizeof(pthread_t
));
1427 process_data
= setup_private_data(g
->p
.bytes_process
);
1429 if (g
->p
.show_details
>= 3) {
1430 printf(" # process %2d global mem: %p, process mem: %p\n",
1431 process_nr
, g
->data
, process_data
);
1434 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1435 task_nr
= process_nr
*g
->p
.nr_threads
+ t
;
1436 td
= g
->threads
+ task_nr
;
1438 td
->process_data
= process_data
;
1439 td
->process_nr
= process_nr
;
1441 td
->task_nr
= task_nr
;
1444 td
->process_lock
= &process_lock
;
1446 ret
= pthread_create(pthreads
+ t
, NULL
, worker_thread
, td
);
1450 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1451 ret
= pthread_join(pthreads
[t
], NULL
);
1455 free_data(process_data
, g
->p
.bytes_process
);
1459 static void print_summary(void)
1461 if (g
->p
.show_details
< 0)
1465 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1466 g
->p
.nr_tasks
, g
->p
.nr_tasks
== 1 ? "task" : "tasks", nr_numa_nodes(), g
->p
.nr_cpus
);
1467 printf(" # %5dx %5ldMB global shared mem operations\n",
1468 g
->p
.nr_loops
, g
->p
.bytes_global
/1024/1024);
1469 printf(" # %5dx %5ldMB process shared mem operations\n",
1470 g
->p
.nr_loops
, g
->p
.bytes_process
/1024/1024);
1471 printf(" # %5dx %5ldMB thread local mem operations\n",
1472 g
->p
.nr_loops
, g
->p
.bytes_thread
/1024/1024);
1476 printf("\n ###\n"); fflush(stdout
);
1479 static void init_thread_data(void)
1481 ssize_t size
= sizeof(*g
->threads
)*g
->p
.nr_tasks
;
1484 g
->threads
= zalloc_shared_data(size
);
1486 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
1487 struct thread_data
*td
= g
->threads
+ t
;
1488 size_t cpuset_size
= CPU_ALLOC_SIZE(g
->p
.nr_cpus
);
1491 /* Allow all nodes by default: */
1492 td
->bind_node
= NUMA_NO_NODE
;
1494 /* Allow all CPUs by default: */
1495 td
->bind_cpumask
= CPU_ALLOC(g
->p
.nr_cpus
);
1496 BUG_ON(!td
->bind_cpumask
);
1497 CPU_ZERO_S(cpuset_size
, td
->bind_cpumask
);
1498 for (cpu
= 0; cpu
< g
->p
.nr_cpus
; cpu
++)
1499 CPU_SET_S(cpu
, cpuset_size
, td
->bind_cpumask
);
1503 static void deinit_thread_data(void)
1505 ssize_t size
= sizeof(*g
->threads
)*g
->p
.nr_tasks
;
1508 /* Free the bind_cpumask allocated for thread_data */
1509 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
1510 struct thread_data
*td
= g
->threads
+ t
;
1511 CPU_FREE(td
->bind_cpumask
);
1514 free_data(g
->threads
, size
);
1517 static int init(void)
1519 g
= (void *)alloc_data(sizeof(*g
), MAP_SHARED
, 1, 0, 0 /* THP */, 0);
1521 /* Copy over options: */
1524 g
->p
.nr_cpus
= numa_num_configured_cpus();
1526 g
->p
.nr_nodes
= numa_max_node() + 1;
1528 /* char array in count_process_nodes(): */
1529 BUG_ON(g
->p
.nr_nodes
< 0);
1531 if (quiet
&& !g
->p
.show_details
)
1532 g
->p
.show_details
= -1;
1534 /* Some memory should be specified: */
1535 if (!g
->p
.mb_global_str
&& !g
->p
.mb_proc_str
&& !g
->p
.mb_thread_str
)
1538 if (g
->p
.mb_global_str
) {
1539 g
->p
.mb_global
= atof(g
->p
.mb_global_str
);
1540 BUG_ON(g
->p
.mb_global
< 0);
1543 if (g
->p
.mb_proc_str
) {
1544 g
->p
.mb_proc
= atof(g
->p
.mb_proc_str
);
1545 BUG_ON(g
->p
.mb_proc
< 0);
1548 if (g
->p
.mb_proc_locked_str
) {
1549 g
->p
.mb_proc_locked
= atof(g
->p
.mb_proc_locked_str
);
1550 BUG_ON(g
->p
.mb_proc_locked
< 0);
1551 BUG_ON(g
->p
.mb_proc_locked
> g
->p
.mb_proc
);
1554 if (g
->p
.mb_thread_str
) {
1555 g
->p
.mb_thread
= atof(g
->p
.mb_thread_str
);
1556 BUG_ON(g
->p
.mb_thread
< 0);
1559 BUG_ON(g
->p
.nr_threads
<= 0);
1560 BUG_ON(g
->p
.nr_proc
<= 0);
1562 g
->p
.nr_tasks
= g
->p
.nr_proc
*g
->p
.nr_threads
;
1564 g
->p
.bytes_global
= g
->p
.mb_global
*1024L*1024L;
1565 g
->p
.bytes_process
= g
->p
.mb_proc
*1024L*1024L;
1566 g
->p
.bytes_process_locked
= g
->p
.mb_proc_locked
*1024L*1024L;
1567 g
->p
.bytes_thread
= g
->p
.mb_thread
*1024L*1024L;
1569 g
->data
= setup_shared_data(g
->p
.bytes_global
);
1571 /* Startup serialization: */
1572 mutex_init_pshared(&g
->start_work_mutex
);
1573 cond_init_pshared(&g
->start_work_cond
);
1574 mutex_init_pshared(&g
->startup_mutex
);
1575 cond_init_pshared(&g
->startup_cond
);
1576 mutex_init_pshared(&g
->stop_work_mutex
);
1581 if (parse_setup_cpu_list() || parse_setup_node_list())
1590 static void deinit(void)
1592 free_data(g
->data
, g
->p
.bytes_global
);
1595 deinit_thread_data();
1597 free_data(g
, sizeof(*g
));
1602 * Print a short or long result, depending on the verbosity setting:
1604 static void print_res(const char *name
, double val
,
1605 const char *txt_unit
, const char *txt_short
, const char *txt_long
)
1611 printf(" %-30s %15.3f, %-15s %s\n", name
, val
, txt_unit
, txt_short
);
1613 printf(" %14.3f %s\n", val
, txt_long
);
1616 static int __bench_numa(const char *name
)
1618 struct timeval start
, stop
, diff
;
1619 u64 runtime_ns_min
, runtime_ns_sum
;
1620 pid_t
*pids
, pid
, wpid
;
1621 double delta_runtime
;
1623 double runtime_sec_max
;
1624 double runtime_sec_min
;
1632 pids
= zalloc(g
->p
.nr_proc
* sizeof(*pids
));
1635 if (g
->p
.serialize_startup
) {
1637 tprintf(" # Startup synchronization: ..."); fflush(stdout
);
1640 gettimeofday(&start
, NULL
);
1642 for (i
= 0; i
< g
->p
.nr_proc
; i
++) {
1644 dprintf(" # process %2d: PID %d\n", i
, pid
);
1648 /* Child process: */
1657 if (g
->p
.serialize_startup
) {
1658 bool threads_ready
= false;
1662 * Wait for all the threads to start up. The last thread will
1663 * signal this process.
1665 mutex_lock(&g
->startup_mutex
);
1666 while (g
->nr_tasks_started
!= g
->p
.nr_tasks
)
1667 cond_wait(&g
->startup_cond
, &g
->startup_mutex
);
1669 mutex_unlock(&g
->startup_mutex
);
1671 /* Wait for all threads to be at the start_work_cond. */
1672 while (!threads_ready
) {
1673 mutex_lock(&g
->start_work_mutex
);
1674 threads_ready
= (g
->nr_tasks_working
== g
->p
.nr_tasks
);
1675 mutex_unlock(&g
->start_work_mutex
);
1680 gettimeofday(&stop
, NULL
);
1682 timersub(&stop
, &start
, &diff
);
1684 startup_sec
= diff
.tv_sec
* NSEC_PER_SEC
;
1685 startup_sec
+= diff
.tv_usec
* NSEC_PER_USEC
;
1686 startup_sec
/= NSEC_PER_SEC
;
1688 tprintf(" threads initialized in %.6f seconds.\n", startup_sec
);
1692 /* Start all threads running. */
1693 mutex_lock(&g
->start_work_mutex
);
1694 g
->start_work
= true;
1695 mutex_unlock(&g
->start_work_mutex
);
1696 cond_broadcast(&g
->start_work_cond
);
1698 gettimeofday(&start
, NULL
);
1701 /* Parent process: */
1704 for (i
= 0; i
< g
->p
.nr_proc
; i
++) {
1705 wpid
= waitpid(pids
[i
], &wait_stat
, 0);
1707 BUG_ON(!WIFEXITED(wait_stat
));
1712 runtime_ns_min
= -1LL;
1714 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
1715 u64 thread_runtime_ns
= g
->threads
[t
].runtime_ns
;
1717 runtime_ns_sum
+= thread_runtime_ns
;
1718 runtime_ns_min
= min(thread_runtime_ns
, runtime_ns_min
);
1721 gettimeofday(&stop
, NULL
);
1722 timersub(&stop
, &start
, &diff
);
1724 BUG_ON(bench_format
!= BENCH_FORMAT_DEFAULT
);
1726 tprintf("\n ###\n");
1729 runtime_sec_max
= diff
.tv_sec
* NSEC_PER_SEC
;
1730 runtime_sec_max
+= diff
.tv_usec
* NSEC_PER_USEC
;
1731 runtime_sec_max
/= NSEC_PER_SEC
;
1733 runtime_sec_min
= runtime_ns_min
/ NSEC_PER_SEC
;
1735 bytes
= g
->bytes_done
;
1736 runtime_avg
= (double)runtime_ns_sum
/ g
->p
.nr_tasks
/ NSEC_PER_SEC
;
1738 if (g
->p
.measure_convergence
) {
1739 print_res(name
, runtime_sec_max
,
1740 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1743 print_res(name
, runtime_sec_max
,
1744 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1746 print_res(name
, runtime_sec_min
,
1747 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1749 print_res(name
, runtime_avg
,
1750 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1752 delta_runtime
= (runtime_sec_max
- runtime_sec_min
)/2.0;
1753 print_res(name
, delta_runtime
/ runtime_sec_max
* 100.0,
1754 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1756 print_res(name
, bytes
/ g
->p
.nr_tasks
/ 1e9
,
1757 "GB,", "data/thread", "GB data processed, per thread");
1759 print_res(name
, bytes
/ 1e9
,
1760 "GB,", "data-total", "GB data processed, total");
1762 print_res(name
, runtime_sec_max
* NSEC_PER_SEC
/ (bytes
/ g
->p
.nr_tasks
),
1763 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1765 print_res(name
, bytes
/ g
->p
.nr_tasks
/ 1e9
/ runtime_sec_max
,
1766 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1768 print_res(name
, bytes
/ runtime_sec_max
/ 1e9
,
1769 "GB/sec,", "total-speed", "GB/sec total speed");
1771 if (g
->p
.show_details
>= 2) {
1772 char tname
[14 + 2 * 11 + 1];
1773 struct thread_data
*td
;
1774 for (p
= 0; p
< g
->p
.nr_proc
; p
++) {
1775 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1776 memset(tname
, 0, sizeof(tname
));
1777 td
= g
->threads
+ p
*g
->p
.nr_threads
+ t
;
1778 snprintf(tname
, sizeof(tname
), "process%d:thread%d", p
, t
);
1779 print_res(tname
, td
->speed_gbs
,
1780 "GB/sec", "thread-speed", "GB/sec/thread speed");
1781 print_res(tname
, td
->system_time_ns
/ NSEC_PER_SEC
,
1782 "secs", "thread-system-time", "system CPU time/thread");
1783 print_res(tname
, td
->user_time_ns
/ NSEC_PER_SEC
,
1784 "secs", "thread-user-time", "user CPU time/thread");
1798 static int command_size(const char **argv
)
1807 BUG_ON(size
>= MAX_ARGS
);
1812 static void init_params(struct params
*p
, const char *name
, int argc
, const char **argv
)
1816 printf("\n # Running %s \"perf bench numa", name
);
1818 for (i
= 0; i
< argc
; i
++)
1819 printf(" %s", argv
[i
]);
1823 memset(p
, 0, sizeof(*p
));
1825 /* Initialize nonzero defaults: */
1827 p
->serialize_startup
= 1;
1828 p
->data_reads
= true;
1829 p
->data_writes
= true;
1830 p
->data_backwards
= true;
1831 p
->data_rand_walk
= true;
1833 p
->init_random
= true;
1834 p
->mb_global_str
= "1";
1838 p
->run_all
= argc
== 1;
1841 static int run_bench_numa(const char *name
, const char **argv
)
1843 int argc
= command_size(argv
);
1845 init_params(&p0
, name
, argc
, argv
);
1846 argc
= parse_options(argc
, argv
, options
, bench_numa_usage
, 0);
1850 if (__bench_numa(name
))
1859 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1860 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1862 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1863 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1865 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1866 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1869 * The built-in test-suite executed by "perf bench numa -a".
1871 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1873 static const char *tests
[][MAX_ARGS
] = {
1874 /* Basic single-stream NUMA bandwidth measurements: */
1875 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1876 "-C" , "0", "-M", "0", OPT_BW_RAM
},
1877 { "RAM-bw-local-NOTHP,",
1878 "mem", "-p", "1", "-t", "1", "-P", "1024",
1879 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP
},
1880 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1881 "-C" , "0", "-M", "1", OPT_BW_RAM
},
1883 /* 2-stream NUMA bandwidth measurements: */
1884 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1885 "-C", "0,2", "-M", "0x2", OPT_BW_RAM
},
1886 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1887 "-C", "0,2", "-M", "1x2", OPT_BW_RAM
},
1889 /* Cross-stream NUMA bandwidth measurement: */
1890 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1891 "-C", "0,8", "-M", "1,0", OPT_BW_RAM
},
1893 /* Convergence latency measurements: */
1894 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV
},
1895 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV
},
1896 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV
},
1897 { " 2x3-convergence,", "mem", "-p", "2", "-t", "3", "-P", "1020", OPT_CONV
},
1898 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV
},
1899 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV
},
1900 { " 4x4-convergence-NOTHP,",
1901 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP
},
1902 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV
},
1903 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV
},
1904 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV
},
1905 { " 8x4-convergence-NOTHP,",
1906 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP
},
1907 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV
},
1908 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV
},
1909 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV
},
1910 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV
},
1911 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV
},
1913 /* Various NUMA process/thread layout bandwidth measurements: */
1914 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW
},
1915 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW
},
1916 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW
},
1917 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW
},
1918 { " 8x1-bw-process-NOTHP,",
1919 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP
},
1920 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW
},
1922 { " 1x4-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW
},
1923 { " 1x8-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW
},
1924 { "1x16-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW
},
1925 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW
},
1927 { " 2x3-bw-process,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW
},
1928 { " 4x4-bw-process,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW
},
1929 { " 4x6-bw-process,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW
},
1930 { " 4x8-bw-process,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW
},
1931 { " 4x8-bw-process-NOTHP,",
1932 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP
},
1933 { " 3x3-bw-process,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW
},
1934 { " 5x5-bw-process,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW
},
1936 { "2x16-bw-process,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW
},
1937 { "1x32-bw-process,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW
},
1939 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW
},
1940 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP
},
1941 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW
},
1942 { "numa01-bw-thread-NOTHP,",
1943 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP
},
1946 static int bench_all(void)
1948 int nr
= ARRAY_SIZE(tests
);
1952 ret
= system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1955 for (i
= 0; i
< nr
; i
++) {
1956 run_bench_numa(tests
[i
][0], tests
[i
] + 1);
1964 int bench_numa(int argc
, const char **argv
)
1966 init_params(&p0
, "main,", argc
, argv
);
1967 argc
= parse_options(argc
, argv
, options
, bench_numa_usage
, 0);
1974 if (__bench_numa(NULL
))
1980 usage_with_options(numa_usage
, options
);