1 // SPDX-License-Identifier: GPL-2.0-only
3 * builtin-timechart.c - make an svg timechart of system activity
5 * (C) Copyright 2009 Intel Corporation
8 * Arjan van de Ven <arjan@linux.intel.com>
15 #include "util/color.h"
16 #include <linux/list.h>
17 #include "util/evlist.h" // for struct evsel_str_handler
18 #include "util/evsel.h"
19 #include <linux/kernel.h>
20 #include <linux/rbtree.h>
21 #include <linux/time64.h>
22 #include <linux/zalloc.h>
23 #include "util/symbol.h"
24 #include "util/thread.h"
25 #include "util/callchain.h"
27 #include "util/header.h"
28 #include <subcmd/pager.h>
29 #include <subcmd/parse-options.h>
30 #include "util/parse-events.h"
31 #include "util/event.h"
32 #include "util/session.h"
33 #include "util/svghelper.h"
34 #include "util/tool.h"
35 #include "util/data.h"
36 #include "util/debug.h"
37 #include "util/string2.h"
38 #include "util/tracepoint.h"
39 #include "util/util.h"
40 #include <linux/err.h>
41 #include <event-parse.h>
43 #ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
44 FILE *open_memstream(char **ptr
, size_t *sizeloc
);
47 #define SUPPORT_OLD_POWER_EVENTS 1
48 #define PWR_EVENT_EXIT -1
55 struct perf_tool tool
;
56 struct per_pid
*all_data
;
57 struct power_event
*power_events
;
58 struct wake_event
*wake_events
;
61 u64 min_freq
, /* Lowest CPU frequency seen */
62 max_freq
, /* Highest CPU frequency seen */
64 first_time
, last_time
;
70 /* IO related settings */
83 * Datastructure layout:
84 * We keep an list of "pid"s, matching the kernels notion of a task struct.
85 * Each "pid" entry, has a list of "comm"s.
86 * this is because we want to track different programs different, while
87 * exec will reuse the original pid (by design).
88 * Each comm has a list of samples that will be used to draw
104 struct per_pidcomm
*all
;
105 struct per_pidcomm
*current
;
110 struct per_pidcomm
*next
;
126 struct cpu_sample
*samples
;
127 struct io_sample
*io_samples
;
130 struct sample_wrapper
{
131 struct sample_wrapper
*next
;
134 unsigned char data
[];
138 #define TYPE_RUNNING 1
139 #define TYPE_WAITING 2
140 #define TYPE_BLOCKED 3
143 struct cpu_sample
*next
;
149 const char *backtrace
;
162 struct io_sample
*next
;
177 struct power_event
*next
;
186 struct wake_event
*next
;
190 const char *backtrace
;
193 struct process_filter
{
196 struct process_filter
*next
;
199 static struct process_filter
*process_filter
;
202 static struct per_pid
*find_create_pid(struct timechart
*tchart
, int pid
)
204 struct per_pid
*cursor
= tchart
->all_data
;
207 if (cursor
->pid
== pid
)
209 cursor
= cursor
->next
;
211 cursor
= zalloc(sizeof(*cursor
));
212 assert(cursor
!= NULL
);
214 cursor
->next
= tchart
->all_data
;
215 tchart
->all_data
= cursor
;
219 static struct per_pidcomm
*create_pidcomm(struct per_pid
*p
)
221 struct per_pidcomm
*c
;
223 c
= zalloc(sizeof(*c
));
232 static void pid_set_comm(struct timechart
*tchart
, int pid
, char *comm
)
235 struct per_pidcomm
*c
;
236 p
= find_create_pid(tchart
, pid
);
239 if (c
->comm
&& strcmp(c
->comm
, comm
) == 0) {
244 c
->comm
= strdup(comm
);
250 c
= create_pidcomm(p
);
252 c
->comm
= strdup(comm
);
255 static void pid_fork(struct timechart
*tchart
, int pid
, int ppid
, u64 timestamp
)
257 struct per_pid
*p
, *pp
;
258 p
= find_create_pid(tchart
, pid
);
259 pp
= find_create_pid(tchart
, ppid
);
261 if (pp
->current
&& pp
->current
->comm
&& !p
->current
)
262 pid_set_comm(tchart
, pid
, pp
->current
->comm
);
264 p
->start_time
= timestamp
;
265 if (p
->current
&& !p
->current
->start_time
) {
266 p
->current
->start_time
= timestamp
;
267 p
->current
->state_since
= timestamp
;
271 static void pid_exit(struct timechart
*tchart
, int pid
, u64 timestamp
)
274 p
= find_create_pid(tchart
, pid
);
275 p
->end_time
= timestamp
;
277 p
->current
->end_time
= timestamp
;
280 static void pid_put_sample(struct timechart
*tchart
, int pid
, int type
,
281 unsigned int cpu
, u64 start
, u64 end
,
282 const char *backtrace
)
285 struct per_pidcomm
*c
;
286 struct cpu_sample
*sample
;
288 p
= find_create_pid(tchart
, pid
);
291 c
= create_pidcomm(p
);
295 sample
= zalloc(sizeof(*sample
));
296 assert(sample
!= NULL
);
297 sample
->start_time
= start
;
298 sample
->end_time
= end
;
300 sample
->next
= c
->samples
;
302 sample
->backtrace
= backtrace
;
305 if (sample
->type
== TYPE_RUNNING
&& end
> start
&& start
> 0) {
306 c
->total_time
+= (end
-start
);
307 p
->total_time
+= (end
-start
);
310 if (c
->start_time
== 0 || c
->start_time
> start
)
311 c
->start_time
= start
;
312 if (p
->start_time
== 0 || p
->start_time
> start
)
313 p
->start_time
= start
;
316 #define MAX_CPUS 4096
318 static u64
*cpus_cstate_start_times
;
319 static int *cpus_cstate_state
;
320 static u64
*cpus_pstate_start_times
;
321 static u64
*cpus_pstate_state
;
323 static int process_comm_event(const struct perf_tool
*tool
,
324 union perf_event
*event
,
325 struct perf_sample
*sample __maybe_unused
,
326 struct machine
*machine __maybe_unused
)
328 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
329 pid_set_comm(tchart
, event
->comm
.tid
, event
->comm
.comm
);
333 static int process_fork_event(const struct perf_tool
*tool
,
334 union perf_event
*event
,
335 struct perf_sample
*sample __maybe_unused
,
336 struct machine
*machine __maybe_unused
)
338 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
339 pid_fork(tchart
, event
->fork
.pid
, event
->fork
.ppid
, event
->fork
.time
);
343 static int process_exit_event(const struct perf_tool
*tool
,
344 union perf_event
*event
,
345 struct perf_sample
*sample __maybe_unused
,
346 struct machine
*machine __maybe_unused
)
348 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
349 pid_exit(tchart
, event
->fork
.pid
, event
->fork
.time
);
353 #ifdef SUPPORT_OLD_POWER_EVENTS
354 static int use_old_power_events
;
357 static void c_state_start(int cpu
, u64 timestamp
, int state
)
359 cpus_cstate_start_times
[cpu
] = timestamp
;
360 cpus_cstate_state
[cpu
] = state
;
363 static void c_state_end(struct timechart
*tchart
, int cpu
, u64 timestamp
)
365 struct power_event
*pwr
= zalloc(sizeof(*pwr
));
370 pwr
->state
= cpus_cstate_state
[cpu
];
371 pwr
->start_time
= cpus_cstate_start_times
[cpu
];
372 pwr
->end_time
= timestamp
;
375 pwr
->next
= tchart
->power_events
;
377 tchart
->power_events
= pwr
;
380 static struct power_event
*p_state_end(struct timechart
*tchart
, int cpu
,
383 struct power_event
*pwr
= zalloc(sizeof(*pwr
));
388 pwr
->state
= cpus_pstate_state
[cpu
];
389 pwr
->start_time
= cpus_pstate_start_times
[cpu
];
390 pwr
->end_time
= timestamp
;
393 pwr
->next
= tchart
->power_events
;
394 if (!pwr
->start_time
)
395 pwr
->start_time
= tchart
->first_time
;
397 tchart
->power_events
= pwr
;
401 static void p_state_change(struct timechart
*tchart
, int cpu
, u64 timestamp
, u64 new_freq
)
403 struct power_event
*pwr
;
405 if (new_freq
> 8000000) /* detect invalid data */
408 pwr
= p_state_end(tchart
, cpu
, timestamp
);
412 cpus_pstate_state
[cpu
] = new_freq
;
413 cpus_pstate_start_times
[cpu
] = timestamp
;
415 if ((u64
)new_freq
> tchart
->max_freq
)
416 tchart
->max_freq
= new_freq
;
418 if (new_freq
< tchart
->min_freq
|| tchart
->min_freq
== 0)
419 tchart
->min_freq
= new_freq
;
421 if (new_freq
== tchart
->max_freq
- 1000)
422 tchart
->turbo_frequency
= tchart
->max_freq
;
425 static void sched_wakeup(struct timechart
*tchart
, int cpu
, u64 timestamp
,
426 int waker
, int wakee
, u8 flags
, const char *backtrace
)
429 struct wake_event
*we
= zalloc(sizeof(*we
));
434 we
->time
= timestamp
;
436 we
->backtrace
= backtrace
;
438 if ((flags
& TRACE_FLAG_HARDIRQ
) || (flags
& TRACE_FLAG_SOFTIRQ
))
442 we
->next
= tchart
->wake_events
;
443 tchart
->wake_events
= we
;
444 p
= find_create_pid(tchart
, we
->wakee
);
446 if (p
&& p
->current
&& p
->current
->state
== TYPE_NONE
) {
447 p
->current
->state_since
= timestamp
;
448 p
->current
->state
= TYPE_WAITING
;
450 if (p
&& p
->current
&& p
->current
->state
== TYPE_BLOCKED
) {
451 pid_put_sample(tchart
, p
->pid
, p
->current
->state
, cpu
,
452 p
->current
->state_since
, timestamp
, NULL
);
453 p
->current
->state_since
= timestamp
;
454 p
->current
->state
= TYPE_WAITING
;
458 static void sched_switch(struct timechart
*tchart
, int cpu
, u64 timestamp
,
459 int prev_pid
, int next_pid
, u64 prev_state
,
460 const char *backtrace
)
462 struct per_pid
*p
= NULL
, *prev_p
;
464 prev_p
= find_create_pid(tchart
, prev_pid
);
466 p
= find_create_pid(tchart
, next_pid
);
468 if (prev_p
->current
&& prev_p
->current
->state
!= TYPE_NONE
)
469 pid_put_sample(tchart
, prev_pid
, TYPE_RUNNING
, cpu
,
470 prev_p
->current
->state_since
, timestamp
,
472 if (p
&& p
->current
) {
473 if (p
->current
->state
!= TYPE_NONE
)
474 pid_put_sample(tchart
, next_pid
, p
->current
->state
, cpu
,
475 p
->current
->state_since
, timestamp
,
478 p
->current
->state_since
= timestamp
;
479 p
->current
->state
= TYPE_RUNNING
;
482 if (prev_p
->current
) {
483 prev_p
->current
->state
= TYPE_NONE
;
484 prev_p
->current
->state_since
= timestamp
;
486 prev_p
->current
->state
= TYPE_BLOCKED
;
488 prev_p
->current
->state
= TYPE_WAITING
;
492 static const char *cat_backtrace(union perf_event
*event
,
493 struct perf_sample
*sample
,
494 struct machine
*machine
)
496 struct addr_location al
;
500 u8 cpumode
= PERF_RECORD_MISC_USER
;
501 struct ip_callchain
*chain
= sample
->callchain
;
502 FILE *f
= open_memstream(&p
, &p_len
);
505 perror("open_memstream error");
509 addr_location__init(&al
);
513 if (machine__resolve(machine
, &al
, sample
) < 0) {
514 fprintf(stderr
, "problem processing %d event, skipping it.\n",
519 for (i
= 0; i
< chain
->nr
; i
++) {
521 struct addr_location tal
;
523 if (callchain_param
.order
== ORDER_CALLEE
)
526 ip
= chain
->ips
[chain
->nr
- i
- 1];
528 if (ip
>= PERF_CONTEXT_MAX
) {
530 case PERF_CONTEXT_HV
:
531 cpumode
= PERF_RECORD_MISC_HYPERVISOR
;
533 case PERF_CONTEXT_KERNEL
:
534 cpumode
= PERF_RECORD_MISC_KERNEL
;
536 case PERF_CONTEXT_USER
:
537 cpumode
= PERF_RECORD_MISC_USER
;
540 pr_debug("invalid callchain context: "
541 "%"PRId64
"\n", (s64
) ip
);
544 * It seems the callchain is corrupted.
553 addr_location__init(&tal
);
555 if (thread__find_symbol(al
.thread
, cpumode
, ip
, &tal
))
556 fprintf(f
, "..... %016" PRIx64
" %s\n", ip
, tal
.sym
->name
);
558 fprintf(f
, "..... %016" PRIx64
"\n", ip
);
560 addr_location__exit(&tal
);
563 addr_location__exit(&al
);
569 typedef int (*tracepoint_handler
)(struct timechart
*tchart
,
571 struct perf_sample
*sample
,
572 const char *backtrace
);
574 static int process_sample_event(const struct perf_tool
*tool
,
575 union perf_event
*event
,
576 struct perf_sample
*sample
,
578 struct machine
*machine
)
580 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
582 if (evsel
->core
.attr
.sample_type
& PERF_SAMPLE_TIME
) {
583 if (!tchart
->first_time
|| tchart
->first_time
> sample
->time
)
584 tchart
->first_time
= sample
->time
;
585 if (tchart
->last_time
< sample
->time
)
586 tchart
->last_time
= sample
->time
;
589 if (evsel
->handler
!= NULL
) {
590 tracepoint_handler f
= evsel
->handler
;
591 return f(tchart
, evsel
, sample
,
592 cat_backtrace(event
, sample
, machine
));
599 process_sample_cpu_idle(struct timechart
*tchart __maybe_unused
,
601 struct perf_sample
*sample
,
602 const char *backtrace __maybe_unused
)
604 u32 state
= evsel__intval(evsel
, sample
, "state");
605 u32 cpu_id
= evsel__intval(evsel
, sample
, "cpu_id");
607 if (state
== (u32
)PWR_EVENT_EXIT
)
608 c_state_end(tchart
, cpu_id
, sample
->time
);
610 c_state_start(cpu_id
, sample
->time
, state
);
615 process_sample_cpu_frequency(struct timechart
*tchart
,
617 struct perf_sample
*sample
,
618 const char *backtrace __maybe_unused
)
620 u32 state
= evsel__intval(evsel
, sample
, "state");
621 u32 cpu_id
= evsel__intval(evsel
, sample
, "cpu_id");
623 p_state_change(tchart
, cpu_id
, sample
->time
, state
);
628 process_sample_sched_wakeup(struct timechart
*tchart
,
630 struct perf_sample
*sample
,
631 const char *backtrace
)
633 u8 flags
= evsel__intval(evsel
, sample
, "common_flags");
634 int waker
= evsel__intval(evsel
, sample
, "common_pid");
635 int wakee
= evsel__intval(evsel
, sample
, "pid");
637 sched_wakeup(tchart
, sample
->cpu
, sample
->time
, waker
, wakee
, flags
, backtrace
);
642 process_sample_sched_switch(struct timechart
*tchart
,
644 struct perf_sample
*sample
,
645 const char *backtrace
)
647 int prev_pid
= evsel__intval(evsel
, sample
, "prev_pid");
648 int next_pid
= evsel__intval(evsel
, sample
, "next_pid");
649 u64 prev_state
= evsel__intval(evsel
, sample
, "prev_state");
651 sched_switch(tchart
, sample
->cpu
, sample
->time
, prev_pid
, next_pid
,
652 prev_state
, backtrace
);
656 #ifdef SUPPORT_OLD_POWER_EVENTS
658 process_sample_power_start(struct timechart
*tchart __maybe_unused
,
660 struct perf_sample
*sample
,
661 const char *backtrace __maybe_unused
)
663 u64 cpu_id
= evsel__intval(evsel
, sample
, "cpu_id");
664 u64 value
= evsel__intval(evsel
, sample
, "value");
666 c_state_start(cpu_id
, sample
->time
, value
);
671 process_sample_power_end(struct timechart
*tchart
,
672 struct evsel
*evsel __maybe_unused
,
673 struct perf_sample
*sample
,
674 const char *backtrace __maybe_unused
)
676 c_state_end(tchart
, sample
->cpu
, sample
->time
);
681 process_sample_power_frequency(struct timechart
*tchart
,
683 struct perf_sample
*sample
,
684 const char *backtrace __maybe_unused
)
686 u64 cpu_id
= evsel__intval(evsel
, sample
, "cpu_id");
687 u64 value
= evsel__intval(evsel
, sample
, "value");
689 p_state_change(tchart
, cpu_id
, sample
->time
, value
);
692 #endif /* SUPPORT_OLD_POWER_EVENTS */
695 * After the last sample we need to wrap up the current C/P state
696 * and close out each CPU for these.
698 static void end_sample_processing(struct timechart
*tchart
)
701 struct power_event
*pwr
;
703 for (cpu
= 0; cpu
<= tchart
->numcpus
; cpu
++) {
706 pwr
= zalloc(sizeof(*pwr
));
710 pwr
->state
= cpus_cstate_state
[cpu
];
711 pwr
->start_time
= cpus_cstate_start_times
[cpu
];
712 pwr
->end_time
= tchart
->last_time
;
715 pwr
->next
= tchart
->power_events
;
717 tchart
->power_events
= pwr
;
721 pwr
= p_state_end(tchart
, cpu
, tchart
->last_time
);
726 pwr
->state
= tchart
->min_freq
;
730 static int pid_begin_io_sample(struct timechart
*tchart
, int pid
, int type
,
733 struct per_pid
*p
= find_create_pid(tchart
, pid
);
734 struct per_pidcomm
*c
= p
->current
;
735 struct io_sample
*sample
;
736 struct io_sample
*prev
;
739 c
= create_pidcomm(p
);
744 prev
= c
->io_samples
;
746 if (prev
&& prev
->start_time
&& !prev
->end_time
) {
747 pr_warning("Skip invalid start event: "
748 "previous event already started!\n");
750 /* remove previous event that has been started,
751 * we are not sure we will ever get an end for it */
752 c
->io_samples
= prev
->next
;
757 sample
= zalloc(sizeof(*sample
));
760 sample
->start_time
= start
;
763 sample
->next
= c
->io_samples
;
764 c
->io_samples
= sample
;
766 if (c
->start_time
== 0 || c
->start_time
> start
)
767 c
->start_time
= start
;
772 static int pid_end_io_sample(struct timechart
*tchart
, int pid
, int type
,
775 struct per_pid
*p
= find_create_pid(tchart
, pid
);
776 struct per_pidcomm
*c
= p
->current
;
777 struct io_sample
*sample
, *prev
;
780 pr_warning("Invalid pidcomm!\n");
784 sample
= c
->io_samples
;
786 if (!sample
) /* skip partially captured events */
789 if (sample
->end_time
) {
790 pr_warning("Skip invalid end event: "
791 "previous event already ended!\n");
795 if (sample
->type
!= type
) {
796 pr_warning("Skip invalid end event: invalid event type!\n");
800 sample
->end_time
= end
;
803 /* we want to be able to see small and fast transfers, so make them
804 * at least min_time long, but don't overlap them */
805 if (sample
->end_time
- sample
->start_time
< tchart
->min_time
)
806 sample
->end_time
= sample
->start_time
+ tchart
->min_time
;
807 if (prev
&& sample
->start_time
< prev
->end_time
) {
808 if (prev
->err
) /* try to make errors more visible */
809 sample
->start_time
= prev
->end_time
;
811 prev
->end_time
= sample
->start_time
;
816 } else if (type
== IOTYPE_READ
|| type
== IOTYPE_WRITE
||
817 type
== IOTYPE_TX
|| type
== IOTYPE_RX
) {
819 if ((u64
)ret
> c
->max_bytes
)
822 c
->total_bytes
+= ret
;
823 p
->total_bytes
+= ret
;
827 /* merge two requests to make svg smaller and render-friendly */
829 prev
->type
== sample
->type
&&
830 prev
->err
== sample
->err
&&
831 prev
->fd
== sample
->fd
&&
832 prev
->end_time
+ tchart
->merge_dist
>= sample
->start_time
) {
834 sample
->bytes
+= prev
->bytes
;
835 sample
->merges
+= prev
->merges
+ 1;
837 sample
->start_time
= prev
->start_time
;
838 sample
->next
= prev
->next
;
841 if (!sample
->err
&& sample
->bytes
> c
->max_bytes
)
842 c
->max_bytes
= sample
->bytes
;
851 process_enter_read(struct timechart
*tchart
,
853 struct perf_sample
*sample
)
855 long fd
= evsel__intval(evsel
, sample
, "fd");
856 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_READ
,
861 process_exit_read(struct timechart
*tchart
,
863 struct perf_sample
*sample
)
865 long ret
= evsel__intval(evsel
, sample
, "ret");
866 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_READ
,
871 process_enter_write(struct timechart
*tchart
,
873 struct perf_sample
*sample
)
875 long fd
= evsel__intval(evsel
, sample
, "fd");
876 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_WRITE
,
881 process_exit_write(struct timechart
*tchart
,
883 struct perf_sample
*sample
)
885 long ret
= evsel__intval(evsel
, sample
, "ret");
886 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_WRITE
,
891 process_enter_sync(struct timechart
*tchart
,
893 struct perf_sample
*sample
)
895 long fd
= evsel__intval(evsel
, sample
, "fd");
896 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_SYNC
,
901 process_exit_sync(struct timechart
*tchart
,
903 struct perf_sample
*sample
)
905 long ret
= evsel__intval(evsel
, sample
, "ret");
906 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_SYNC
,
911 process_enter_tx(struct timechart
*tchart
,
913 struct perf_sample
*sample
)
915 long fd
= evsel__intval(evsel
, sample
, "fd");
916 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_TX
,
921 process_exit_tx(struct timechart
*tchart
,
923 struct perf_sample
*sample
)
925 long ret
= evsel__intval(evsel
, sample
, "ret");
926 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_TX
,
931 process_enter_rx(struct timechart
*tchart
,
933 struct perf_sample
*sample
)
935 long fd
= evsel__intval(evsel
, sample
, "fd");
936 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_RX
,
941 process_exit_rx(struct timechart
*tchart
,
943 struct perf_sample
*sample
)
945 long ret
= evsel__intval(evsel
, sample
, "ret");
946 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_RX
,
951 process_enter_poll(struct timechart
*tchart
,
953 struct perf_sample
*sample
)
955 long fd
= evsel__intval(evsel
, sample
, "fd");
956 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_POLL
,
961 process_exit_poll(struct timechart
*tchart
,
963 struct perf_sample
*sample
)
965 long ret
= evsel__intval(evsel
, sample
, "ret");
966 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_POLL
,
971 * Sort the pid datastructure
973 static void sort_pids(struct timechart
*tchart
)
975 struct per_pid
*new_list
, *p
, *cursor
, *prev
;
976 /* sort by ppid first, then by pid, lowest to highest */
980 while (tchart
->all_data
) {
981 p
= tchart
->all_data
;
982 tchart
->all_data
= p
->next
;
985 if (new_list
== NULL
) {
993 if (cursor
->ppid
> p
->ppid
||
994 (cursor
->ppid
== p
->ppid
&& cursor
->pid
> p
->pid
)) {
995 /* must insert before */
997 p
->next
= prev
->next
;
1010 cursor
= cursor
->next
;
1015 tchart
->all_data
= new_list
;
1019 static void draw_c_p_states(struct timechart
*tchart
)
1021 struct power_event
*pwr
;
1022 pwr
= tchart
->power_events
;
1025 * two pass drawing so that the P state bars are on top of the C state blocks
1028 if (pwr
->type
== CSTATE
)
1029 svg_cstate(pwr
->cpu
, pwr
->start_time
, pwr
->end_time
, pwr
->state
);
1033 pwr
= tchart
->power_events
;
1035 if (pwr
->type
== PSTATE
) {
1037 pwr
->state
= tchart
->min_freq
;
1038 svg_pstate(pwr
->cpu
, pwr
->start_time
, pwr
->end_time
, pwr
->state
);
1044 static void draw_wakeups(struct timechart
*tchart
)
1046 struct wake_event
*we
;
1048 struct per_pidcomm
*c
;
1050 we
= tchart
->wake_events
;
1052 int from
= 0, to
= 0;
1053 char *task_from
= NULL
, *task_to
= NULL
;
1055 /* locate the column of the waker and wakee */
1056 p
= tchart
->all_data
;
1058 if (p
->pid
== we
->waker
|| p
->pid
== we
->wakee
) {
1061 if (c
->Y
&& c
->start_time
<= we
->time
&& c
->end_time
>= we
->time
) {
1062 if (p
->pid
== we
->waker
&& !from
) {
1064 task_from
= strdup(c
->comm
);
1066 if (p
->pid
== we
->wakee
&& !to
) {
1068 task_to
= strdup(c
->comm
);
1075 if (p
->pid
== we
->waker
&& !from
) {
1077 task_from
= strdup(c
->comm
);
1079 if (p
->pid
== we
->wakee
&& !to
) {
1081 task_to
= strdup(c
->comm
);
1090 task_from
= malloc(40);
1091 sprintf(task_from
, "[%i]", we
->waker
);
1094 task_to
= malloc(40);
1095 sprintf(task_to
, "[%i]", we
->wakee
);
1098 if (we
->waker
== -1)
1099 svg_interrupt(we
->time
, to
, we
->backtrace
);
1100 else if (from
&& to
&& abs(from
- to
) == 1)
1101 svg_wakeline(we
->time
, from
, to
, we
->backtrace
);
1103 svg_partial_wakeline(we
->time
, from
, task_from
, to
,
1104 task_to
, we
->backtrace
);
1112 static void draw_cpu_usage(struct timechart
*tchart
)
1115 struct per_pidcomm
*c
;
1116 struct cpu_sample
*sample
;
1117 p
= tchart
->all_data
;
1121 sample
= c
->samples
;
1123 if (sample
->type
== TYPE_RUNNING
) {
1124 svg_process(sample
->cpu
,
1132 sample
= sample
->next
;
1140 static void draw_io_bars(struct timechart
*tchart
)
1146 struct per_pidcomm
*c
;
1147 struct io_sample
*sample
;
1150 p
= tchart
->all_data
;
1160 svg_box(Y
, c
->start_time
, c
->end_time
, "process3");
1161 for (sample
= c
->io_samples
; sample
; sample
= sample
->next
) {
1162 double h
= (double)sample
->bytes
/ c
->max_bytes
;
1164 if (tchart
->skip_eagain
&&
1165 sample
->err
== -EAGAIN
)
1171 if (sample
->type
== IOTYPE_SYNC
)
1176 sample
->err
? "error" : "sync",
1180 else if (sample
->type
== IOTYPE_POLL
)
1185 sample
->err
? "error" : "poll",
1189 else if (sample
->type
== IOTYPE_READ
)
1194 sample
->err
? "error" : "disk",
1198 else if (sample
->type
== IOTYPE_WRITE
)
1203 sample
->err
? "error" : "disk",
1207 else if (sample
->type
== IOTYPE_RX
)
1212 sample
->err
? "error" : "net",
1216 else if (sample
->type
== IOTYPE_TX
)
1221 sample
->err
? "error" : "net",
1228 bytes
= c
->total_bytes
;
1230 bytes
= bytes
/ 1024;
1234 bytes
= bytes
/ 1024;
1238 bytes
= bytes
/ 1024;
1243 sprintf(comm
, "%s:%i (%3.1f %sbytes)", c
->comm
?: "", p
->pid
, bytes
, suf
);
1244 svg_text(Y
, c
->start_time
, comm
);
1254 static void draw_process_bars(struct timechart
*tchart
)
1257 struct per_pidcomm
*c
;
1258 struct cpu_sample
*sample
;
1261 Y
= 2 * tchart
->numcpus
+ 2;
1263 p
= tchart
->all_data
;
1273 svg_box(Y
, c
->start_time
, c
->end_time
, "process");
1274 sample
= c
->samples
;
1276 if (sample
->type
== TYPE_RUNNING
)
1277 svg_running(Y
, sample
->cpu
,
1281 if (sample
->type
== TYPE_BLOCKED
)
1282 svg_blocked(Y
, sample
->cpu
,
1286 if (sample
->type
== TYPE_WAITING
)
1287 svg_waiting(Y
, sample
->cpu
,
1291 sample
= sample
->next
;
1296 if (c
->total_time
> 5000000000) /* 5 seconds */
1297 sprintf(comm
, "%s:%i (%2.2fs)", c
->comm
, p
->pid
, c
->total_time
/ (double)NSEC_PER_SEC
);
1299 sprintf(comm
, "%s:%i (%3.1fms)", c
->comm
, p
->pid
, c
->total_time
/ (double)NSEC_PER_MSEC
);
1301 svg_text(Y
, c
->start_time
, comm
);
1311 static void add_process_filter(const char *string
)
1313 int pid
= strtoull(string
, NULL
, 10);
1314 struct process_filter
*filt
= malloc(sizeof(*filt
));
1319 filt
->name
= strdup(string
);
1321 filt
->next
= process_filter
;
1323 process_filter
= filt
;
1326 static int passes_filter(struct per_pid
*p
, struct per_pidcomm
*c
)
1328 struct process_filter
*filt
;
1329 if (!process_filter
)
1332 filt
= process_filter
;
1334 if (filt
->pid
&& p
->pid
== filt
->pid
)
1336 if (strcmp(filt
->name
, c
->comm
) == 0)
1343 static int determine_display_tasks_filtered(struct timechart
*tchart
)
1346 struct per_pidcomm
*c
;
1349 p
= tchart
->all_data
;
1352 if (p
->start_time
== 1)
1353 p
->start_time
= tchart
->first_time
;
1355 /* no exit marker, task kept running to the end */
1356 if (p
->end_time
== 0)
1357 p
->end_time
= tchart
->last_time
;
1364 if (c
->start_time
== 1)
1365 c
->start_time
= tchart
->first_time
;
1367 if (passes_filter(p
, c
)) {
1373 if (c
->end_time
== 0)
1374 c
->end_time
= tchart
->last_time
;
1383 static int determine_display_tasks(struct timechart
*tchart
, u64 threshold
)
1386 struct per_pidcomm
*c
;
1389 p
= tchart
->all_data
;
1392 if (p
->start_time
== 1)
1393 p
->start_time
= tchart
->first_time
;
1395 /* no exit marker, task kept running to the end */
1396 if (p
->end_time
== 0)
1397 p
->end_time
= tchart
->last_time
;
1398 if (p
->total_time
>= threshold
)
1406 if (c
->start_time
== 1)
1407 c
->start_time
= tchart
->first_time
;
1409 if (c
->total_time
>= threshold
) {
1414 if (c
->end_time
== 0)
1415 c
->end_time
= tchart
->last_time
;
1424 static int determine_display_io_tasks(struct timechart
*timechart
, u64 threshold
)
1427 struct per_pidcomm
*c
;
1430 p
= timechart
->all_data
;
1432 /* no exit marker, task kept running to the end */
1433 if (p
->end_time
== 0)
1434 p
->end_time
= timechart
->last_time
;
1441 if (c
->total_bytes
>= threshold
) {
1446 if (c
->end_time
== 0)
1447 c
->end_time
= timechart
->last_time
;
1456 #define BYTES_THRESH (1 * 1024 * 1024)
1457 #define TIME_THRESH 10000000
1459 static void write_svg_file(struct timechart
*tchart
, const char *filename
)
1463 int thresh
= tchart
->io_events
? BYTES_THRESH
: TIME_THRESH
;
1465 if (tchart
->power_only
)
1466 tchart
->proc_num
= 0;
1468 /* We'd like to show at least proc_num tasks;
1469 * be less picky if we have fewer */
1472 count
= determine_display_tasks_filtered(tchart
);
1473 else if (tchart
->io_events
)
1474 count
= determine_display_io_tasks(tchart
, thresh
);
1476 count
= determine_display_tasks(tchart
, thresh
);
1478 } while (!process_filter
&& thresh
&& count
< tchart
->proc_num
);
1480 if (!tchart
->proc_num
)
1483 if (tchart
->io_events
) {
1484 open_svg(filename
, 0, count
, tchart
->first_time
, tchart
->last_time
);
1489 draw_io_bars(tchart
);
1491 open_svg(filename
, tchart
->numcpus
, count
, tchart
->first_time
, tchart
->last_time
);
1497 for (i
= 0; i
< tchart
->numcpus
; i
++)
1498 svg_cpu_box(i
, tchart
->max_freq
, tchart
->turbo_frequency
);
1500 draw_cpu_usage(tchart
);
1501 if (tchart
->proc_num
)
1502 draw_process_bars(tchart
);
1503 if (!tchart
->tasks_only
)
1504 draw_c_p_states(tchart
);
1505 if (tchart
->proc_num
)
1506 draw_wakeups(tchart
);
1512 static int process_header(struct perf_file_section
*section __maybe_unused
,
1513 struct perf_header
*ph
,
1515 int fd __maybe_unused
,
1518 struct timechart
*tchart
= data
;
1522 tchart
->numcpus
= ph
->env
.nr_cpus_avail
;
1525 case HEADER_CPU_TOPOLOGY
:
1526 if (!tchart
->topology
)
1529 if (svg_build_topology_map(&ph
->env
))
1530 fprintf(stderr
, "problem building topology\n");
1540 static int __cmd_timechart(struct timechart
*tchart
, const char *output_name
)
1542 const struct evsel_str_handler power_tracepoints
[] = {
1543 { "power:cpu_idle", process_sample_cpu_idle
},
1544 { "power:cpu_frequency", process_sample_cpu_frequency
},
1545 { "sched:sched_wakeup", process_sample_sched_wakeup
},
1546 { "sched:sched_switch", process_sample_sched_switch
},
1547 #ifdef SUPPORT_OLD_POWER_EVENTS
1548 { "power:power_start", process_sample_power_start
},
1549 { "power:power_end", process_sample_power_end
},
1550 { "power:power_frequency", process_sample_power_frequency
},
1553 { "syscalls:sys_enter_read", process_enter_read
},
1554 { "syscalls:sys_enter_pread64", process_enter_read
},
1555 { "syscalls:sys_enter_readv", process_enter_read
},
1556 { "syscalls:sys_enter_preadv", process_enter_read
},
1557 { "syscalls:sys_enter_write", process_enter_write
},
1558 { "syscalls:sys_enter_pwrite64", process_enter_write
},
1559 { "syscalls:sys_enter_writev", process_enter_write
},
1560 { "syscalls:sys_enter_pwritev", process_enter_write
},
1561 { "syscalls:sys_enter_sync", process_enter_sync
},
1562 { "syscalls:sys_enter_sync_file_range", process_enter_sync
},
1563 { "syscalls:sys_enter_fsync", process_enter_sync
},
1564 { "syscalls:sys_enter_msync", process_enter_sync
},
1565 { "syscalls:sys_enter_recvfrom", process_enter_rx
},
1566 { "syscalls:sys_enter_recvmmsg", process_enter_rx
},
1567 { "syscalls:sys_enter_recvmsg", process_enter_rx
},
1568 { "syscalls:sys_enter_sendto", process_enter_tx
},
1569 { "syscalls:sys_enter_sendmsg", process_enter_tx
},
1570 { "syscalls:sys_enter_sendmmsg", process_enter_tx
},
1571 { "syscalls:sys_enter_epoll_pwait", process_enter_poll
},
1572 { "syscalls:sys_enter_epoll_wait", process_enter_poll
},
1573 { "syscalls:sys_enter_poll", process_enter_poll
},
1574 { "syscalls:sys_enter_ppoll", process_enter_poll
},
1575 { "syscalls:sys_enter_pselect6", process_enter_poll
},
1576 { "syscalls:sys_enter_select", process_enter_poll
},
1578 { "syscalls:sys_exit_read", process_exit_read
},
1579 { "syscalls:sys_exit_pread64", process_exit_read
},
1580 { "syscalls:sys_exit_readv", process_exit_read
},
1581 { "syscalls:sys_exit_preadv", process_exit_read
},
1582 { "syscalls:sys_exit_write", process_exit_write
},
1583 { "syscalls:sys_exit_pwrite64", process_exit_write
},
1584 { "syscalls:sys_exit_writev", process_exit_write
},
1585 { "syscalls:sys_exit_pwritev", process_exit_write
},
1586 { "syscalls:sys_exit_sync", process_exit_sync
},
1587 { "syscalls:sys_exit_sync_file_range", process_exit_sync
},
1588 { "syscalls:sys_exit_fsync", process_exit_sync
},
1589 { "syscalls:sys_exit_msync", process_exit_sync
},
1590 { "syscalls:sys_exit_recvfrom", process_exit_rx
},
1591 { "syscalls:sys_exit_recvmmsg", process_exit_rx
},
1592 { "syscalls:sys_exit_recvmsg", process_exit_rx
},
1593 { "syscalls:sys_exit_sendto", process_exit_tx
},
1594 { "syscalls:sys_exit_sendmsg", process_exit_tx
},
1595 { "syscalls:sys_exit_sendmmsg", process_exit_tx
},
1596 { "syscalls:sys_exit_epoll_pwait", process_exit_poll
},
1597 { "syscalls:sys_exit_epoll_wait", process_exit_poll
},
1598 { "syscalls:sys_exit_poll", process_exit_poll
},
1599 { "syscalls:sys_exit_ppoll", process_exit_poll
},
1600 { "syscalls:sys_exit_pselect6", process_exit_poll
},
1601 { "syscalls:sys_exit_select", process_exit_poll
},
1603 struct perf_data data
= {
1605 .mode
= PERF_DATA_MODE_READ
,
1606 .force
= tchart
->force
,
1608 struct perf_session
*session
;
1611 perf_tool__init(&tchart
->tool
, /*ordered_events=*/true);
1612 tchart
->tool
.comm
= process_comm_event
;
1613 tchart
->tool
.fork
= process_fork_event
;
1614 tchart
->tool
.exit
= process_exit_event
;
1615 tchart
->tool
.sample
= process_sample_event
;
1617 session
= perf_session__new(&data
, &tchart
->tool
);
1618 if (IS_ERR(session
))
1619 return PTR_ERR(session
);
1621 symbol__init(&session
->header
.env
);
1623 (void)perf_header__process_sections(&session
->header
,
1624 perf_data__fd(session
->data
),
1628 if (!perf_session__has_traces(session
, "timechart record"))
1631 if (perf_session__set_tracepoints_handlers(session
,
1632 power_tracepoints
)) {
1633 pr_err("Initializing session tracepoint handlers failed\n");
1637 ret
= perf_session__process_events(session
);
1641 end_sample_processing(tchart
);
1645 write_svg_file(tchart
, output_name
);
1647 pr_info("Written %2.1f seconds of trace to %s.\n",
1648 (tchart
->last_time
- tchart
->first_time
) / (double)NSEC_PER_SEC
, output_name
);
1650 perf_session__delete(session
);
1654 static int timechart__io_record(int argc
, const char **argv
)
1656 unsigned int rec_argc
, i
;
1657 const char **rec_argv
;
1659 char *filter
= NULL
;
1661 const char * const common_args
[] = {
1662 "record", "-a", "-R", "-c", "1",
1664 unsigned int common_args_nr
= ARRAY_SIZE(common_args
);
1666 const char * const disk_events
[] = {
1667 "syscalls:sys_enter_read",
1668 "syscalls:sys_enter_pread64",
1669 "syscalls:sys_enter_readv",
1670 "syscalls:sys_enter_preadv",
1671 "syscalls:sys_enter_write",
1672 "syscalls:sys_enter_pwrite64",
1673 "syscalls:sys_enter_writev",
1674 "syscalls:sys_enter_pwritev",
1675 "syscalls:sys_enter_sync",
1676 "syscalls:sys_enter_sync_file_range",
1677 "syscalls:sys_enter_fsync",
1678 "syscalls:sys_enter_msync",
1680 "syscalls:sys_exit_read",
1681 "syscalls:sys_exit_pread64",
1682 "syscalls:sys_exit_readv",
1683 "syscalls:sys_exit_preadv",
1684 "syscalls:sys_exit_write",
1685 "syscalls:sys_exit_pwrite64",
1686 "syscalls:sys_exit_writev",
1687 "syscalls:sys_exit_pwritev",
1688 "syscalls:sys_exit_sync",
1689 "syscalls:sys_exit_sync_file_range",
1690 "syscalls:sys_exit_fsync",
1691 "syscalls:sys_exit_msync",
1693 unsigned int disk_events_nr
= ARRAY_SIZE(disk_events
);
1695 const char * const net_events
[] = {
1696 "syscalls:sys_enter_recvfrom",
1697 "syscalls:sys_enter_recvmmsg",
1698 "syscalls:sys_enter_recvmsg",
1699 "syscalls:sys_enter_sendto",
1700 "syscalls:sys_enter_sendmsg",
1701 "syscalls:sys_enter_sendmmsg",
1703 "syscalls:sys_exit_recvfrom",
1704 "syscalls:sys_exit_recvmmsg",
1705 "syscalls:sys_exit_recvmsg",
1706 "syscalls:sys_exit_sendto",
1707 "syscalls:sys_exit_sendmsg",
1708 "syscalls:sys_exit_sendmmsg",
1710 unsigned int net_events_nr
= ARRAY_SIZE(net_events
);
1712 const char * const poll_events
[] = {
1713 "syscalls:sys_enter_epoll_pwait",
1714 "syscalls:sys_enter_epoll_wait",
1715 "syscalls:sys_enter_poll",
1716 "syscalls:sys_enter_ppoll",
1717 "syscalls:sys_enter_pselect6",
1718 "syscalls:sys_enter_select",
1720 "syscalls:sys_exit_epoll_pwait",
1721 "syscalls:sys_exit_epoll_wait",
1722 "syscalls:sys_exit_poll",
1723 "syscalls:sys_exit_ppoll",
1724 "syscalls:sys_exit_pselect6",
1725 "syscalls:sys_exit_select",
1727 unsigned int poll_events_nr
= ARRAY_SIZE(poll_events
);
1729 rec_argc
= common_args_nr
+
1730 disk_events_nr
* 4 +
1732 poll_events_nr
* 4 +
1734 rec_argv
= calloc(rec_argc
+ 1, sizeof(char *));
1736 if (rec_argv
== NULL
)
1739 if (asprintf(&filter
, "common_pid != %d", getpid()) < 0) {
1745 for (i
= 0; i
< common_args_nr
; i
++)
1746 *p
++ = strdup(common_args
[i
]);
1748 for (i
= 0; i
< disk_events_nr
; i
++) {
1749 if (!is_valid_tracepoint(disk_events
[i
])) {
1755 *p
++ = strdup(disk_events
[i
]);
1759 for (i
= 0; i
< net_events_nr
; i
++) {
1760 if (!is_valid_tracepoint(net_events
[i
])) {
1766 *p
++ = strdup(net_events
[i
]);
1770 for (i
= 0; i
< poll_events_nr
; i
++) {
1771 if (!is_valid_tracepoint(poll_events
[i
])) {
1777 *p
++ = strdup(poll_events
[i
]);
1782 for (i
= 0; i
< (unsigned int)argc
; i
++)
1785 return cmd_record(rec_argc
, rec_argv
);
1789 static int timechart__record(struct timechart
*tchart
, int argc
, const char **argv
)
1791 unsigned int rec_argc
, i
, j
;
1792 const char **rec_argv
;
1794 unsigned int record_elems
;
1796 const char * const common_args
[] = {
1797 "record", "-a", "-R", "-c", "1",
1799 unsigned int common_args_nr
= ARRAY_SIZE(common_args
);
1801 const char * const backtrace_args
[] = {
1804 unsigned int backtrace_args_no
= ARRAY_SIZE(backtrace_args
);
1806 const char * const power_args
[] = {
1807 "-e", "power:cpu_frequency",
1808 "-e", "power:cpu_idle",
1810 unsigned int power_args_nr
= ARRAY_SIZE(power_args
);
1812 const char * const old_power_args
[] = {
1813 #ifdef SUPPORT_OLD_POWER_EVENTS
1814 "-e", "power:power_start",
1815 "-e", "power:power_end",
1816 "-e", "power:power_frequency",
1819 unsigned int old_power_args_nr
= ARRAY_SIZE(old_power_args
);
1821 const char * const tasks_args
[] = {
1822 "-e", "sched:sched_wakeup",
1823 "-e", "sched:sched_switch",
1825 unsigned int tasks_args_nr
= ARRAY_SIZE(tasks_args
);
1827 #ifdef SUPPORT_OLD_POWER_EVENTS
1828 if (!is_valid_tracepoint("power:cpu_idle") &&
1829 is_valid_tracepoint("power:power_start")) {
1830 use_old_power_events
= 1;
1833 old_power_args_nr
= 0;
1837 if (tchart
->power_only
)
1840 if (tchart
->tasks_only
) {
1842 old_power_args_nr
= 0;
1845 if (!tchart
->with_backtrace
)
1846 backtrace_args_no
= 0;
1848 record_elems
= common_args_nr
+ tasks_args_nr
+
1849 power_args_nr
+ old_power_args_nr
+ backtrace_args_no
;
1851 rec_argc
= record_elems
+ argc
;
1852 rec_argv
= calloc(rec_argc
+ 1, sizeof(char *));
1854 if (rec_argv
== NULL
)
1858 for (i
= 0; i
< common_args_nr
; i
++)
1859 *p
++ = strdup(common_args
[i
]);
1861 for (i
= 0; i
< backtrace_args_no
; i
++)
1862 *p
++ = strdup(backtrace_args
[i
]);
1864 for (i
= 0; i
< tasks_args_nr
; i
++)
1865 *p
++ = strdup(tasks_args
[i
]);
1867 for (i
= 0; i
< power_args_nr
; i
++)
1868 *p
++ = strdup(power_args
[i
]);
1870 for (i
= 0; i
< old_power_args_nr
; i
++)
1871 *p
++ = strdup(old_power_args
[i
]);
1873 for (j
= 0; j
< (unsigned int)argc
; j
++)
1876 return cmd_record(rec_argc
, rec_argv
);
1880 parse_process(const struct option
*opt __maybe_unused
, const char *arg
,
1881 int __maybe_unused unset
)
1884 add_process_filter(arg
);
1889 parse_highlight(const struct option
*opt __maybe_unused
, const char *arg
,
1890 int __maybe_unused unset
)
1892 unsigned long duration
= strtoul(arg
, NULL
, 0);
1894 if (svg_highlight
|| svg_highlight_name
)
1898 svg_highlight
= duration
;
1900 svg_highlight_name
= strdup(arg
);
1906 parse_time(const struct option
*opt
, const char *arg
, int __maybe_unused unset
)
1909 u64
*value
= opt
->value
;
1911 if (sscanf(arg
, "%" PRIu64
"%cs", value
, &unit
) > 0) {
1914 *value
*= NSEC_PER_MSEC
;
1917 *value
*= NSEC_PER_USEC
;
1929 int cmd_timechart(int argc
, const char **argv
)
1931 struct timechart tchart
= {
1933 .min_time
= NSEC_PER_MSEC
,
1936 const char *output_name
= "output.svg";
1937 const struct option timechart_common_options
[] = {
1938 OPT_BOOLEAN('P', "power-only", &tchart
.power_only
, "output power data only"),
1939 OPT_BOOLEAN('T', "tasks-only", &tchart
.tasks_only
, "output processes data only"),
1942 const struct option timechart_options
[] = {
1943 OPT_STRING('i', "input", &input_name
, "file", "input file name"),
1944 OPT_STRING('o', "output", &output_name
, "file", "output file name"),
1945 OPT_INTEGER('w', "width", &svg_page_width
, "page width"),
1946 OPT_CALLBACK(0, "highlight", NULL
, "duration or task name",
1947 "highlight tasks. Pass duration in ns or process name.",
1949 OPT_CALLBACK('p', "process", NULL
, "process",
1950 "process selector. Pass a pid or process name.",
1952 OPT_CALLBACK(0, "symfs", NULL
, "directory",
1953 "Look for files with symbols relative to this directory",
1954 symbol__config_symfs
),
1955 OPT_INTEGER('n', "proc-num", &tchart
.proc_num
,
1956 "min. number of tasks to print"),
1957 OPT_BOOLEAN('t', "topology", &tchart
.topology
,
1958 "sort CPUs according to topology"),
1959 OPT_BOOLEAN(0, "io-skip-eagain", &tchart
.skip_eagain
,
1960 "skip EAGAIN errors"),
1961 OPT_CALLBACK(0, "io-min-time", &tchart
.min_time
, "time",
1962 "all IO faster than min-time will visually appear longer",
1964 OPT_CALLBACK(0, "io-merge-dist", &tchart
.merge_dist
, "time",
1965 "merge events that are merge-dist us apart",
1967 OPT_BOOLEAN('f', "force", &tchart
.force
, "don't complain, do it"),
1968 OPT_PARENT(timechart_common_options
),
1970 const char * const timechart_subcommands
[] = { "record", NULL
};
1971 const char *timechart_usage
[] = {
1972 "perf timechart [<options>] {record}",
1975 const struct option timechart_record_options
[] = {
1976 OPT_BOOLEAN('I', "io-only", &tchart
.io_only
,
1977 "record only IO data"),
1978 OPT_BOOLEAN('g', "callchain", &tchart
.with_backtrace
, "record callchain"),
1979 OPT_PARENT(timechart_common_options
),
1981 const char * const timechart_record_usage
[] = {
1982 "perf timechart record [<options>]",
1987 cpus_cstate_start_times
= calloc(MAX_CPUS
, sizeof(*cpus_cstate_start_times
));
1988 if (!cpus_cstate_start_times
)
1990 cpus_cstate_state
= calloc(MAX_CPUS
, sizeof(*cpus_cstate_state
));
1991 if (!cpus_cstate_state
) {
1995 cpus_pstate_start_times
= calloc(MAX_CPUS
, sizeof(*cpus_pstate_start_times
));
1996 if (!cpus_pstate_start_times
) {
2000 cpus_pstate_state
= calloc(MAX_CPUS
, sizeof(*cpus_pstate_state
));
2001 if (!cpus_pstate_state
) {
2006 argc
= parse_options_subcommand(argc
, argv
, timechart_options
, timechart_subcommands
,
2007 timechart_usage
, PARSE_OPT_STOP_AT_NON_OPTION
);
2009 if (tchart
.power_only
&& tchart
.tasks_only
) {
2010 pr_err("-P and -T options cannot be used at the same time.\n");
2015 if (argc
&& strlen(argv
[0]) > 2 && strstarts("record", argv
[0])) {
2016 argc
= parse_options(argc
, argv
, timechart_record_options
,
2017 timechart_record_usage
,
2018 PARSE_OPT_STOP_AT_NON_OPTION
);
2020 if (tchart
.power_only
&& tchart
.tasks_only
) {
2021 pr_err("-P and -T options cannot be used at the same time.\n");
2027 ret
= timechart__io_record(argc
, argv
);
2029 ret
= timechart__record(&tchart
, argc
, argv
);
2032 usage_with_options(timechart_usage
, timechart_options
);
2036 ret
= __cmd_timechart(&tchart
, output_name
);
2038 zfree(&cpus_cstate_start_times
);
2039 zfree(&cpus_cstate_state
);
2040 zfree(&cpus_pstate_start_times
);
2041 zfree(&cpus_pstate_state
);