Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / tools / perf / builtin-timechart.c
blob068d297aaf44b2df165c670656add870754ef112
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * builtin-timechart.c - make an svg timechart of system activity
5 * (C) Copyright 2009 Intel Corporation
7 * Authors:
8 * Arjan van de Ven <arjan@linux.intel.com>
9 */
11 #include <errno.h>
12 #include <inttypes.h>
14 #include "builtin.h"
15 #include "util/color.h"
16 #include <linux/list.h>
17 #include "util/evlist.h" // for struct evsel_str_handler
18 #include "util/evsel.h"
19 #include <linux/kernel.h>
20 #include <linux/rbtree.h>
21 #include <linux/time64.h>
22 #include <linux/zalloc.h>
23 #include "util/symbol.h"
24 #include "util/thread.h"
25 #include "util/callchain.h"
27 #include "util/header.h"
28 #include <subcmd/pager.h>
29 #include <subcmd/parse-options.h>
30 #include "util/parse-events.h"
31 #include "util/event.h"
32 #include "util/session.h"
33 #include "util/svghelper.h"
34 #include "util/tool.h"
35 #include "util/data.h"
36 #include "util/debug.h"
37 #include "util/string2.h"
38 #include "util/tracepoint.h"
39 #include "util/util.h"
40 #include <linux/err.h>
41 #include <event-parse.h>
43 #ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
44 FILE *open_memstream(char **ptr, size_t *sizeloc);
45 #endif
47 #define SUPPORT_OLD_POWER_EVENTS 1
48 #define PWR_EVENT_EXIT -1
50 struct per_pid;
51 struct power_event;
52 struct wake_event;
54 struct timechart {
55 struct perf_tool tool;
56 struct per_pid *all_data;
57 struct power_event *power_events;
58 struct wake_event *wake_events;
59 int proc_num;
60 unsigned int numcpus;
61 u64 min_freq, /* Lowest CPU frequency seen */
62 max_freq, /* Highest CPU frequency seen */
63 turbo_frequency,
64 first_time, last_time;
65 bool power_only,
66 tasks_only,
67 with_backtrace,
68 topology;
69 bool force;
70 /* IO related settings */
71 bool io_only,
72 skip_eagain;
73 u64 io_events;
74 u64 min_time,
75 merge_dist;
78 struct per_pidcomm;
79 struct cpu_sample;
80 struct io_sample;
83 * Datastructure layout:
84 * We keep an list of "pid"s, matching the kernels notion of a task struct.
85 * Each "pid" entry, has a list of "comm"s.
86 * this is because we want to track different programs different, while
87 * exec will reuse the original pid (by design).
88 * Each comm has a list of samples that will be used to draw
89 * final graph.
92 struct per_pid {
93 struct per_pid *next;
95 int pid;
96 int ppid;
98 u64 start_time;
99 u64 end_time;
100 u64 total_time;
101 u64 total_bytes;
102 int display;
104 struct per_pidcomm *all;
105 struct per_pidcomm *current;
109 struct per_pidcomm {
110 struct per_pidcomm *next;
112 u64 start_time;
113 u64 end_time;
114 u64 total_time;
115 u64 max_bytes;
116 u64 total_bytes;
118 int Y;
119 int display;
121 long state;
122 u64 state_since;
124 char *comm;
126 struct cpu_sample *samples;
127 struct io_sample *io_samples;
130 struct sample_wrapper {
131 struct sample_wrapper *next;
133 u64 timestamp;
134 unsigned char data[];
137 #define TYPE_NONE 0
138 #define TYPE_RUNNING 1
139 #define TYPE_WAITING 2
140 #define TYPE_BLOCKED 3
142 struct cpu_sample {
143 struct cpu_sample *next;
145 u64 start_time;
146 u64 end_time;
147 int type;
148 int cpu;
149 const char *backtrace;
152 enum {
153 IOTYPE_READ,
154 IOTYPE_WRITE,
155 IOTYPE_SYNC,
156 IOTYPE_TX,
157 IOTYPE_RX,
158 IOTYPE_POLL,
161 struct io_sample {
162 struct io_sample *next;
164 u64 start_time;
165 u64 end_time;
166 u64 bytes;
167 int type;
168 int fd;
169 int err;
170 int merges;
173 #define CSTATE 1
174 #define PSTATE 2
176 struct power_event {
177 struct power_event *next;
178 int type;
179 int state;
180 u64 start_time;
181 u64 end_time;
182 int cpu;
185 struct wake_event {
186 struct wake_event *next;
187 int waker;
188 int wakee;
189 u64 time;
190 const char *backtrace;
193 struct process_filter {
194 char *name;
195 int pid;
196 struct process_filter *next;
199 static struct process_filter *process_filter;
202 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
204 struct per_pid *cursor = tchart->all_data;
206 while (cursor) {
207 if (cursor->pid == pid)
208 return cursor;
209 cursor = cursor->next;
211 cursor = zalloc(sizeof(*cursor));
212 assert(cursor != NULL);
213 cursor->pid = pid;
214 cursor->next = tchart->all_data;
215 tchart->all_data = cursor;
216 return cursor;
219 static struct per_pidcomm *create_pidcomm(struct per_pid *p)
221 struct per_pidcomm *c;
223 c = zalloc(sizeof(*c));
224 if (!c)
225 return NULL;
226 p->current = c;
227 c->next = p->all;
228 p->all = c;
229 return c;
232 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
234 struct per_pid *p;
235 struct per_pidcomm *c;
236 p = find_create_pid(tchart, pid);
237 c = p->all;
238 while (c) {
239 if (c->comm && strcmp(c->comm, comm) == 0) {
240 p->current = c;
241 return;
243 if (!c->comm) {
244 c->comm = strdup(comm);
245 p->current = c;
246 return;
248 c = c->next;
250 c = create_pidcomm(p);
251 assert(c != NULL);
252 c->comm = strdup(comm);
255 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
257 struct per_pid *p, *pp;
258 p = find_create_pid(tchart, pid);
259 pp = find_create_pid(tchart, ppid);
260 p->ppid = ppid;
261 if (pp->current && pp->current->comm && !p->current)
262 pid_set_comm(tchart, pid, pp->current->comm);
264 p->start_time = timestamp;
265 if (p->current && !p->current->start_time) {
266 p->current->start_time = timestamp;
267 p->current->state_since = timestamp;
271 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
273 struct per_pid *p;
274 p = find_create_pid(tchart, pid);
275 p->end_time = timestamp;
276 if (p->current)
277 p->current->end_time = timestamp;
280 static void pid_put_sample(struct timechart *tchart, int pid, int type,
281 unsigned int cpu, u64 start, u64 end,
282 const char *backtrace)
284 struct per_pid *p;
285 struct per_pidcomm *c;
286 struct cpu_sample *sample;
288 p = find_create_pid(tchart, pid);
289 c = p->current;
290 if (!c) {
291 c = create_pidcomm(p);
292 assert(c != NULL);
295 sample = zalloc(sizeof(*sample));
296 assert(sample != NULL);
297 sample->start_time = start;
298 sample->end_time = end;
299 sample->type = type;
300 sample->next = c->samples;
301 sample->cpu = cpu;
302 sample->backtrace = backtrace;
303 c->samples = sample;
305 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
306 c->total_time += (end-start);
307 p->total_time += (end-start);
310 if (c->start_time == 0 || c->start_time > start)
311 c->start_time = start;
312 if (p->start_time == 0 || p->start_time > start)
313 p->start_time = start;
316 #define MAX_CPUS 4096
318 static u64 *cpus_cstate_start_times;
319 static int *cpus_cstate_state;
320 static u64 *cpus_pstate_start_times;
321 static u64 *cpus_pstate_state;
323 static int process_comm_event(const struct perf_tool *tool,
324 union perf_event *event,
325 struct perf_sample *sample __maybe_unused,
326 struct machine *machine __maybe_unused)
328 struct timechart *tchart = container_of(tool, struct timechart, tool);
329 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
330 return 0;
333 static int process_fork_event(const struct perf_tool *tool,
334 union perf_event *event,
335 struct perf_sample *sample __maybe_unused,
336 struct machine *machine __maybe_unused)
338 struct timechart *tchart = container_of(tool, struct timechart, tool);
339 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
340 return 0;
343 static int process_exit_event(const struct perf_tool *tool,
344 union perf_event *event,
345 struct perf_sample *sample __maybe_unused,
346 struct machine *machine __maybe_unused)
348 struct timechart *tchart = container_of(tool, struct timechart, tool);
349 pid_exit(tchart, event->fork.pid, event->fork.time);
350 return 0;
353 #ifdef SUPPORT_OLD_POWER_EVENTS
354 static int use_old_power_events;
355 #endif
357 static void c_state_start(int cpu, u64 timestamp, int state)
359 cpus_cstate_start_times[cpu] = timestamp;
360 cpus_cstate_state[cpu] = state;
363 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
365 struct power_event *pwr = zalloc(sizeof(*pwr));
367 if (!pwr)
368 return;
370 pwr->state = cpus_cstate_state[cpu];
371 pwr->start_time = cpus_cstate_start_times[cpu];
372 pwr->end_time = timestamp;
373 pwr->cpu = cpu;
374 pwr->type = CSTATE;
375 pwr->next = tchart->power_events;
377 tchart->power_events = pwr;
380 static struct power_event *p_state_end(struct timechart *tchart, int cpu,
381 u64 timestamp)
383 struct power_event *pwr = zalloc(sizeof(*pwr));
385 if (!pwr)
386 return NULL;
388 pwr->state = cpus_pstate_state[cpu];
389 pwr->start_time = cpus_pstate_start_times[cpu];
390 pwr->end_time = timestamp;
391 pwr->cpu = cpu;
392 pwr->type = PSTATE;
393 pwr->next = tchart->power_events;
394 if (!pwr->start_time)
395 pwr->start_time = tchart->first_time;
397 tchart->power_events = pwr;
398 return pwr;
401 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
403 struct power_event *pwr;
405 if (new_freq > 8000000) /* detect invalid data */
406 return;
408 pwr = p_state_end(tchart, cpu, timestamp);
409 if (!pwr)
410 return;
412 cpus_pstate_state[cpu] = new_freq;
413 cpus_pstate_start_times[cpu] = timestamp;
415 if ((u64)new_freq > tchart->max_freq)
416 tchart->max_freq = new_freq;
418 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
419 tchart->min_freq = new_freq;
421 if (new_freq == tchart->max_freq - 1000)
422 tchart->turbo_frequency = tchart->max_freq;
425 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
426 int waker, int wakee, u8 flags, const char *backtrace)
428 struct per_pid *p;
429 struct wake_event *we = zalloc(sizeof(*we));
431 if (!we)
432 return;
434 we->time = timestamp;
435 we->waker = waker;
436 we->backtrace = backtrace;
438 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
439 we->waker = -1;
441 we->wakee = wakee;
442 we->next = tchart->wake_events;
443 tchart->wake_events = we;
444 p = find_create_pid(tchart, we->wakee);
446 if (p && p->current && p->current->state == TYPE_NONE) {
447 p->current->state_since = timestamp;
448 p->current->state = TYPE_WAITING;
450 if (p && p->current && p->current->state == TYPE_BLOCKED) {
451 pid_put_sample(tchart, p->pid, p->current->state, cpu,
452 p->current->state_since, timestamp, NULL);
453 p->current->state_since = timestamp;
454 p->current->state = TYPE_WAITING;
458 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
459 int prev_pid, int next_pid, u64 prev_state,
460 const char *backtrace)
462 struct per_pid *p = NULL, *prev_p;
464 prev_p = find_create_pid(tchart, prev_pid);
466 p = find_create_pid(tchart, next_pid);
468 if (prev_p->current && prev_p->current->state != TYPE_NONE)
469 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
470 prev_p->current->state_since, timestamp,
471 backtrace);
472 if (p && p->current) {
473 if (p->current->state != TYPE_NONE)
474 pid_put_sample(tchart, next_pid, p->current->state, cpu,
475 p->current->state_since, timestamp,
476 backtrace);
478 p->current->state_since = timestamp;
479 p->current->state = TYPE_RUNNING;
482 if (prev_p->current) {
483 prev_p->current->state = TYPE_NONE;
484 prev_p->current->state_since = timestamp;
485 if (prev_state & 2)
486 prev_p->current->state = TYPE_BLOCKED;
487 if (prev_state == 0)
488 prev_p->current->state = TYPE_WAITING;
492 static const char *cat_backtrace(union perf_event *event,
493 struct perf_sample *sample,
494 struct machine *machine)
496 struct addr_location al;
497 unsigned int i;
498 char *p = NULL;
499 size_t p_len;
500 u8 cpumode = PERF_RECORD_MISC_USER;
501 struct ip_callchain *chain = sample->callchain;
502 FILE *f = open_memstream(&p, &p_len);
504 if (!f) {
505 perror("open_memstream error");
506 return NULL;
509 addr_location__init(&al);
510 if (!chain)
511 goto exit;
513 if (machine__resolve(machine, &al, sample) < 0) {
514 fprintf(stderr, "problem processing %d event, skipping it.\n",
515 event->header.type);
516 goto exit;
519 for (i = 0; i < chain->nr; i++) {
520 u64 ip;
521 struct addr_location tal;
523 if (callchain_param.order == ORDER_CALLEE)
524 ip = chain->ips[i];
525 else
526 ip = chain->ips[chain->nr - i - 1];
528 if (ip >= PERF_CONTEXT_MAX) {
529 switch (ip) {
530 case PERF_CONTEXT_HV:
531 cpumode = PERF_RECORD_MISC_HYPERVISOR;
532 break;
533 case PERF_CONTEXT_KERNEL:
534 cpumode = PERF_RECORD_MISC_KERNEL;
535 break;
536 case PERF_CONTEXT_USER:
537 cpumode = PERF_RECORD_MISC_USER;
538 break;
539 default:
540 pr_debug("invalid callchain context: "
541 "%"PRId64"\n", (s64) ip);
544 * It seems the callchain is corrupted.
545 * Discard all.
547 zfree(&p);
548 goto exit;
550 continue;
553 addr_location__init(&tal);
554 tal.filtered = 0;
555 if (thread__find_symbol(al.thread, cpumode, ip, &tal))
556 fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
557 else
558 fprintf(f, "..... %016" PRIx64 "\n", ip);
560 addr_location__exit(&tal);
562 exit:
563 addr_location__exit(&al);
564 fclose(f);
566 return p;
569 typedef int (*tracepoint_handler)(struct timechart *tchart,
570 struct evsel *evsel,
571 struct perf_sample *sample,
572 const char *backtrace);
574 static int process_sample_event(const struct perf_tool *tool,
575 union perf_event *event,
576 struct perf_sample *sample,
577 struct evsel *evsel,
578 struct machine *machine)
580 struct timechart *tchart = container_of(tool, struct timechart, tool);
582 if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
583 if (!tchart->first_time || tchart->first_time > sample->time)
584 tchart->first_time = sample->time;
585 if (tchart->last_time < sample->time)
586 tchart->last_time = sample->time;
589 if (evsel->handler != NULL) {
590 tracepoint_handler f = evsel->handler;
591 return f(tchart, evsel, sample,
592 cat_backtrace(event, sample, machine));
595 return 0;
598 static int
599 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
600 struct evsel *evsel,
601 struct perf_sample *sample,
602 const char *backtrace __maybe_unused)
604 u32 state = evsel__intval(evsel, sample, "state");
605 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
607 if (state == (u32)PWR_EVENT_EXIT)
608 c_state_end(tchart, cpu_id, sample->time);
609 else
610 c_state_start(cpu_id, sample->time, state);
611 return 0;
614 static int
615 process_sample_cpu_frequency(struct timechart *tchart,
616 struct evsel *evsel,
617 struct perf_sample *sample,
618 const char *backtrace __maybe_unused)
620 u32 state = evsel__intval(evsel, sample, "state");
621 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
623 p_state_change(tchart, cpu_id, sample->time, state);
624 return 0;
627 static int
628 process_sample_sched_wakeup(struct timechart *tchart,
629 struct evsel *evsel,
630 struct perf_sample *sample,
631 const char *backtrace)
633 u8 flags = evsel__intval(evsel, sample, "common_flags");
634 int waker = evsel__intval(evsel, sample, "common_pid");
635 int wakee = evsel__intval(evsel, sample, "pid");
637 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
638 return 0;
641 static int
642 process_sample_sched_switch(struct timechart *tchart,
643 struct evsel *evsel,
644 struct perf_sample *sample,
645 const char *backtrace)
647 int prev_pid = evsel__intval(evsel, sample, "prev_pid");
648 int next_pid = evsel__intval(evsel, sample, "next_pid");
649 u64 prev_state = evsel__intval(evsel, sample, "prev_state");
651 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
652 prev_state, backtrace);
653 return 0;
656 #ifdef SUPPORT_OLD_POWER_EVENTS
657 static int
658 process_sample_power_start(struct timechart *tchart __maybe_unused,
659 struct evsel *evsel,
660 struct perf_sample *sample,
661 const char *backtrace __maybe_unused)
663 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
664 u64 value = evsel__intval(evsel, sample, "value");
666 c_state_start(cpu_id, sample->time, value);
667 return 0;
670 static int
671 process_sample_power_end(struct timechart *tchart,
672 struct evsel *evsel __maybe_unused,
673 struct perf_sample *sample,
674 const char *backtrace __maybe_unused)
676 c_state_end(tchart, sample->cpu, sample->time);
677 return 0;
680 static int
681 process_sample_power_frequency(struct timechart *tchart,
682 struct evsel *evsel,
683 struct perf_sample *sample,
684 const char *backtrace __maybe_unused)
686 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
687 u64 value = evsel__intval(evsel, sample, "value");
689 p_state_change(tchart, cpu_id, sample->time, value);
690 return 0;
692 #endif /* SUPPORT_OLD_POWER_EVENTS */
695 * After the last sample we need to wrap up the current C/P state
696 * and close out each CPU for these.
698 static void end_sample_processing(struct timechart *tchart)
700 u64 cpu;
701 struct power_event *pwr;
703 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
704 /* C state */
705 #if 0
706 pwr = zalloc(sizeof(*pwr));
707 if (!pwr)
708 return;
710 pwr->state = cpus_cstate_state[cpu];
711 pwr->start_time = cpus_cstate_start_times[cpu];
712 pwr->end_time = tchart->last_time;
713 pwr->cpu = cpu;
714 pwr->type = CSTATE;
715 pwr->next = tchart->power_events;
717 tchart->power_events = pwr;
718 #endif
719 /* P state */
721 pwr = p_state_end(tchart, cpu, tchart->last_time);
722 if (!pwr)
723 return;
725 if (!pwr->state)
726 pwr->state = tchart->min_freq;
730 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
731 u64 start, int fd)
733 struct per_pid *p = find_create_pid(tchart, pid);
734 struct per_pidcomm *c = p->current;
735 struct io_sample *sample;
736 struct io_sample *prev;
738 if (!c) {
739 c = create_pidcomm(p);
740 if (!c)
741 return -ENOMEM;
744 prev = c->io_samples;
746 if (prev && prev->start_time && !prev->end_time) {
747 pr_warning("Skip invalid start event: "
748 "previous event already started!\n");
750 /* remove previous event that has been started,
751 * we are not sure we will ever get an end for it */
752 c->io_samples = prev->next;
753 free(prev);
754 return 0;
757 sample = zalloc(sizeof(*sample));
758 if (!sample)
759 return -ENOMEM;
760 sample->start_time = start;
761 sample->type = type;
762 sample->fd = fd;
763 sample->next = c->io_samples;
764 c->io_samples = sample;
766 if (c->start_time == 0 || c->start_time > start)
767 c->start_time = start;
769 return 0;
772 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
773 u64 end, long ret)
775 struct per_pid *p = find_create_pid(tchart, pid);
776 struct per_pidcomm *c = p->current;
777 struct io_sample *sample, *prev;
779 if (!c) {
780 pr_warning("Invalid pidcomm!\n");
781 return -1;
784 sample = c->io_samples;
786 if (!sample) /* skip partially captured events */
787 return 0;
789 if (sample->end_time) {
790 pr_warning("Skip invalid end event: "
791 "previous event already ended!\n");
792 return 0;
795 if (sample->type != type) {
796 pr_warning("Skip invalid end event: invalid event type!\n");
797 return 0;
800 sample->end_time = end;
801 prev = sample->next;
803 /* we want to be able to see small and fast transfers, so make them
804 * at least min_time long, but don't overlap them */
805 if (sample->end_time - sample->start_time < tchart->min_time)
806 sample->end_time = sample->start_time + tchart->min_time;
807 if (prev && sample->start_time < prev->end_time) {
808 if (prev->err) /* try to make errors more visible */
809 sample->start_time = prev->end_time;
810 else
811 prev->end_time = sample->start_time;
814 if (ret < 0) {
815 sample->err = ret;
816 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
817 type == IOTYPE_TX || type == IOTYPE_RX) {
819 if ((u64)ret > c->max_bytes)
820 c->max_bytes = ret;
822 c->total_bytes += ret;
823 p->total_bytes += ret;
824 sample->bytes = ret;
827 /* merge two requests to make svg smaller and render-friendly */
828 if (prev &&
829 prev->type == sample->type &&
830 prev->err == sample->err &&
831 prev->fd == sample->fd &&
832 prev->end_time + tchart->merge_dist >= sample->start_time) {
834 sample->bytes += prev->bytes;
835 sample->merges += prev->merges + 1;
837 sample->start_time = prev->start_time;
838 sample->next = prev->next;
839 free(prev);
841 if (!sample->err && sample->bytes > c->max_bytes)
842 c->max_bytes = sample->bytes;
845 tchart->io_events++;
847 return 0;
850 static int
851 process_enter_read(struct timechart *tchart,
852 struct evsel *evsel,
853 struct perf_sample *sample)
855 long fd = evsel__intval(evsel, sample, "fd");
856 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
857 sample->time, fd);
860 static int
861 process_exit_read(struct timechart *tchart,
862 struct evsel *evsel,
863 struct perf_sample *sample)
865 long ret = evsel__intval(evsel, sample, "ret");
866 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
867 sample->time, ret);
870 static int
871 process_enter_write(struct timechart *tchart,
872 struct evsel *evsel,
873 struct perf_sample *sample)
875 long fd = evsel__intval(evsel, sample, "fd");
876 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
877 sample->time, fd);
880 static int
881 process_exit_write(struct timechart *tchart,
882 struct evsel *evsel,
883 struct perf_sample *sample)
885 long ret = evsel__intval(evsel, sample, "ret");
886 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
887 sample->time, ret);
890 static int
891 process_enter_sync(struct timechart *tchart,
892 struct evsel *evsel,
893 struct perf_sample *sample)
895 long fd = evsel__intval(evsel, sample, "fd");
896 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
897 sample->time, fd);
900 static int
901 process_exit_sync(struct timechart *tchart,
902 struct evsel *evsel,
903 struct perf_sample *sample)
905 long ret = evsel__intval(evsel, sample, "ret");
906 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
907 sample->time, ret);
910 static int
911 process_enter_tx(struct timechart *tchart,
912 struct evsel *evsel,
913 struct perf_sample *sample)
915 long fd = evsel__intval(evsel, sample, "fd");
916 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
917 sample->time, fd);
920 static int
921 process_exit_tx(struct timechart *tchart,
922 struct evsel *evsel,
923 struct perf_sample *sample)
925 long ret = evsel__intval(evsel, sample, "ret");
926 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
927 sample->time, ret);
930 static int
931 process_enter_rx(struct timechart *tchart,
932 struct evsel *evsel,
933 struct perf_sample *sample)
935 long fd = evsel__intval(evsel, sample, "fd");
936 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
937 sample->time, fd);
940 static int
941 process_exit_rx(struct timechart *tchart,
942 struct evsel *evsel,
943 struct perf_sample *sample)
945 long ret = evsel__intval(evsel, sample, "ret");
946 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
947 sample->time, ret);
950 static int
951 process_enter_poll(struct timechart *tchart,
952 struct evsel *evsel,
953 struct perf_sample *sample)
955 long fd = evsel__intval(evsel, sample, "fd");
956 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
957 sample->time, fd);
960 static int
961 process_exit_poll(struct timechart *tchart,
962 struct evsel *evsel,
963 struct perf_sample *sample)
965 long ret = evsel__intval(evsel, sample, "ret");
966 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
967 sample->time, ret);
971 * Sort the pid datastructure
973 static void sort_pids(struct timechart *tchart)
975 struct per_pid *new_list, *p, *cursor, *prev;
976 /* sort by ppid first, then by pid, lowest to highest */
978 new_list = NULL;
980 while (tchart->all_data) {
981 p = tchart->all_data;
982 tchart->all_data = p->next;
983 p->next = NULL;
985 if (new_list == NULL) {
986 new_list = p;
987 p->next = NULL;
988 continue;
990 prev = NULL;
991 cursor = new_list;
992 while (cursor) {
993 if (cursor->ppid > p->ppid ||
994 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
995 /* must insert before */
996 if (prev) {
997 p->next = prev->next;
998 prev->next = p;
999 cursor = NULL;
1000 continue;
1001 } else {
1002 p->next = new_list;
1003 new_list = p;
1004 cursor = NULL;
1005 continue;
1009 prev = cursor;
1010 cursor = cursor->next;
1011 if (!cursor)
1012 prev->next = p;
1015 tchart->all_data = new_list;
1019 static void draw_c_p_states(struct timechart *tchart)
1021 struct power_event *pwr;
1022 pwr = tchart->power_events;
1025 * two pass drawing so that the P state bars are on top of the C state blocks
1027 while (pwr) {
1028 if (pwr->type == CSTATE)
1029 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1030 pwr = pwr->next;
1033 pwr = tchart->power_events;
1034 while (pwr) {
1035 if (pwr->type == PSTATE) {
1036 if (!pwr->state)
1037 pwr->state = tchart->min_freq;
1038 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1040 pwr = pwr->next;
1044 static void draw_wakeups(struct timechart *tchart)
1046 struct wake_event *we;
1047 struct per_pid *p;
1048 struct per_pidcomm *c;
1050 we = tchart->wake_events;
1051 while (we) {
1052 int from = 0, to = 0;
1053 char *task_from = NULL, *task_to = NULL;
1055 /* locate the column of the waker and wakee */
1056 p = tchart->all_data;
1057 while (p) {
1058 if (p->pid == we->waker || p->pid == we->wakee) {
1059 c = p->all;
1060 while (c) {
1061 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1062 if (p->pid == we->waker && !from) {
1063 from = c->Y;
1064 task_from = strdup(c->comm);
1066 if (p->pid == we->wakee && !to) {
1067 to = c->Y;
1068 task_to = strdup(c->comm);
1071 c = c->next;
1073 c = p->all;
1074 while (c) {
1075 if (p->pid == we->waker && !from) {
1076 from = c->Y;
1077 task_from = strdup(c->comm);
1079 if (p->pid == we->wakee && !to) {
1080 to = c->Y;
1081 task_to = strdup(c->comm);
1083 c = c->next;
1086 p = p->next;
1089 if (!task_from) {
1090 task_from = malloc(40);
1091 sprintf(task_from, "[%i]", we->waker);
1093 if (!task_to) {
1094 task_to = malloc(40);
1095 sprintf(task_to, "[%i]", we->wakee);
1098 if (we->waker == -1)
1099 svg_interrupt(we->time, to, we->backtrace);
1100 else if (from && to && abs(from - to) == 1)
1101 svg_wakeline(we->time, from, to, we->backtrace);
1102 else
1103 svg_partial_wakeline(we->time, from, task_from, to,
1104 task_to, we->backtrace);
1105 we = we->next;
1107 free(task_from);
1108 free(task_to);
1112 static void draw_cpu_usage(struct timechart *tchart)
1114 struct per_pid *p;
1115 struct per_pidcomm *c;
1116 struct cpu_sample *sample;
1117 p = tchart->all_data;
1118 while (p) {
1119 c = p->all;
1120 while (c) {
1121 sample = c->samples;
1122 while (sample) {
1123 if (sample->type == TYPE_RUNNING) {
1124 svg_process(sample->cpu,
1125 sample->start_time,
1126 sample->end_time,
1127 p->pid,
1128 c->comm,
1129 sample->backtrace);
1132 sample = sample->next;
1134 c = c->next;
1136 p = p->next;
1140 static void draw_io_bars(struct timechart *tchart)
1142 const char *suf;
1143 double bytes;
1144 char comm[256];
1145 struct per_pid *p;
1146 struct per_pidcomm *c;
1147 struct io_sample *sample;
1148 int Y = 1;
1150 p = tchart->all_data;
1151 while (p) {
1152 c = p->all;
1153 while (c) {
1154 if (!c->display) {
1155 c->Y = 0;
1156 c = c->next;
1157 continue;
1160 svg_box(Y, c->start_time, c->end_time, "process3");
1161 for (sample = c->io_samples; sample; sample = sample->next) {
1162 double h = (double)sample->bytes / c->max_bytes;
1164 if (tchart->skip_eagain &&
1165 sample->err == -EAGAIN)
1166 continue;
1168 if (sample->err)
1169 h = 1;
1171 if (sample->type == IOTYPE_SYNC)
1172 svg_fbox(Y,
1173 sample->start_time,
1174 sample->end_time,
1176 sample->err ? "error" : "sync",
1177 sample->fd,
1178 sample->err,
1179 sample->merges);
1180 else if (sample->type == IOTYPE_POLL)
1181 svg_fbox(Y,
1182 sample->start_time,
1183 sample->end_time,
1185 sample->err ? "error" : "poll",
1186 sample->fd,
1187 sample->err,
1188 sample->merges);
1189 else if (sample->type == IOTYPE_READ)
1190 svg_ubox(Y,
1191 sample->start_time,
1192 sample->end_time,
1194 sample->err ? "error" : "disk",
1195 sample->fd,
1196 sample->err,
1197 sample->merges);
1198 else if (sample->type == IOTYPE_WRITE)
1199 svg_lbox(Y,
1200 sample->start_time,
1201 sample->end_time,
1203 sample->err ? "error" : "disk",
1204 sample->fd,
1205 sample->err,
1206 sample->merges);
1207 else if (sample->type == IOTYPE_RX)
1208 svg_ubox(Y,
1209 sample->start_time,
1210 sample->end_time,
1212 sample->err ? "error" : "net",
1213 sample->fd,
1214 sample->err,
1215 sample->merges);
1216 else if (sample->type == IOTYPE_TX)
1217 svg_lbox(Y,
1218 sample->start_time,
1219 sample->end_time,
1221 sample->err ? "error" : "net",
1222 sample->fd,
1223 sample->err,
1224 sample->merges);
1227 suf = "";
1228 bytes = c->total_bytes;
1229 if (bytes > 1024) {
1230 bytes = bytes / 1024;
1231 suf = "K";
1233 if (bytes > 1024) {
1234 bytes = bytes / 1024;
1235 suf = "M";
1237 if (bytes > 1024) {
1238 bytes = bytes / 1024;
1239 suf = "G";
1243 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1244 svg_text(Y, c->start_time, comm);
1246 c->Y = Y;
1247 Y++;
1248 c = c->next;
1250 p = p->next;
1254 static void draw_process_bars(struct timechart *tchart)
1256 struct per_pid *p;
1257 struct per_pidcomm *c;
1258 struct cpu_sample *sample;
1259 int Y = 0;
1261 Y = 2 * tchart->numcpus + 2;
1263 p = tchart->all_data;
1264 while (p) {
1265 c = p->all;
1266 while (c) {
1267 if (!c->display) {
1268 c->Y = 0;
1269 c = c->next;
1270 continue;
1273 svg_box(Y, c->start_time, c->end_time, "process");
1274 sample = c->samples;
1275 while (sample) {
1276 if (sample->type == TYPE_RUNNING)
1277 svg_running(Y, sample->cpu,
1278 sample->start_time,
1279 sample->end_time,
1280 sample->backtrace);
1281 if (sample->type == TYPE_BLOCKED)
1282 svg_blocked(Y, sample->cpu,
1283 sample->start_time,
1284 sample->end_time,
1285 sample->backtrace);
1286 if (sample->type == TYPE_WAITING)
1287 svg_waiting(Y, sample->cpu,
1288 sample->start_time,
1289 sample->end_time,
1290 sample->backtrace);
1291 sample = sample->next;
1294 if (c->comm) {
1295 char comm[256];
1296 if (c->total_time > 5000000000) /* 5 seconds */
1297 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1298 else
1299 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1301 svg_text(Y, c->start_time, comm);
1303 c->Y = Y;
1304 Y++;
1305 c = c->next;
1307 p = p->next;
1311 static void add_process_filter(const char *string)
1313 int pid = strtoull(string, NULL, 10);
1314 struct process_filter *filt = malloc(sizeof(*filt));
1316 if (!filt)
1317 return;
1319 filt->name = strdup(string);
1320 filt->pid = pid;
1321 filt->next = process_filter;
1323 process_filter = filt;
1326 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1328 struct process_filter *filt;
1329 if (!process_filter)
1330 return 1;
1332 filt = process_filter;
1333 while (filt) {
1334 if (filt->pid && p->pid == filt->pid)
1335 return 1;
1336 if (strcmp(filt->name, c->comm) == 0)
1337 return 1;
1338 filt = filt->next;
1340 return 0;
1343 static int determine_display_tasks_filtered(struct timechart *tchart)
1345 struct per_pid *p;
1346 struct per_pidcomm *c;
1347 int count = 0;
1349 p = tchart->all_data;
1350 while (p) {
1351 p->display = 0;
1352 if (p->start_time == 1)
1353 p->start_time = tchart->first_time;
1355 /* no exit marker, task kept running to the end */
1356 if (p->end_time == 0)
1357 p->end_time = tchart->last_time;
1359 c = p->all;
1361 while (c) {
1362 c->display = 0;
1364 if (c->start_time == 1)
1365 c->start_time = tchart->first_time;
1367 if (passes_filter(p, c)) {
1368 c->display = 1;
1369 p->display = 1;
1370 count++;
1373 if (c->end_time == 0)
1374 c->end_time = tchart->last_time;
1376 c = c->next;
1378 p = p->next;
1380 return count;
1383 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1385 struct per_pid *p;
1386 struct per_pidcomm *c;
1387 int count = 0;
1389 p = tchart->all_data;
1390 while (p) {
1391 p->display = 0;
1392 if (p->start_time == 1)
1393 p->start_time = tchart->first_time;
1395 /* no exit marker, task kept running to the end */
1396 if (p->end_time == 0)
1397 p->end_time = tchart->last_time;
1398 if (p->total_time >= threshold)
1399 p->display = 1;
1401 c = p->all;
1403 while (c) {
1404 c->display = 0;
1406 if (c->start_time == 1)
1407 c->start_time = tchart->first_time;
1409 if (c->total_time >= threshold) {
1410 c->display = 1;
1411 count++;
1414 if (c->end_time == 0)
1415 c->end_time = tchart->last_time;
1417 c = c->next;
1419 p = p->next;
1421 return count;
1424 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1426 struct per_pid *p;
1427 struct per_pidcomm *c;
1428 int count = 0;
1430 p = timechart->all_data;
1431 while (p) {
1432 /* no exit marker, task kept running to the end */
1433 if (p->end_time == 0)
1434 p->end_time = timechart->last_time;
1436 c = p->all;
1438 while (c) {
1439 c->display = 0;
1441 if (c->total_bytes >= threshold) {
1442 c->display = 1;
1443 count++;
1446 if (c->end_time == 0)
1447 c->end_time = timechart->last_time;
1449 c = c->next;
1451 p = p->next;
1453 return count;
1456 #define BYTES_THRESH (1 * 1024 * 1024)
1457 #define TIME_THRESH 10000000
1459 static void write_svg_file(struct timechart *tchart, const char *filename)
1461 u64 i;
1462 int count;
1463 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1465 if (tchart->power_only)
1466 tchart->proc_num = 0;
1468 /* We'd like to show at least proc_num tasks;
1469 * be less picky if we have fewer */
1470 do {
1471 if (process_filter)
1472 count = determine_display_tasks_filtered(tchart);
1473 else if (tchart->io_events)
1474 count = determine_display_io_tasks(tchart, thresh);
1475 else
1476 count = determine_display_tasks(tchart, thresh);
1477 thresh /= 10;
1478 } while (!process_filter && thresh && count < tchart->proc_num);
1480 if (!tchart->proc_num)
1481 count = 0;
1483 if (tchart->io_events) {
1484 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1486 svg_time_grid(0.5);
1487 svg_io_legenda();
1489 draw_io_bars(tchart);
1490 } else {
1491 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1493 svg_time_grid(0);
1495 svg_legenda();
1497 for (i = 0; i < tchart->numcpus; i++)
1498 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1500 draw_cpu_usage(tchart);
1501 if (tchart->proc_num)
1502 draw_process_bars(tchart);
1503 if (!tchart->tasks_only)
1504 draw_c_p_states(tchart);
1505 if (tchart->proc_num)
1506 draw_wakeups(tchart);
1509 svg_close();
1512 static int process_header(struct perf_file_section *section __maybe_unused,
1513 struct perf_header *ph,
1514 int feat,
1515 int fd __maybe_unused,
1516 void *data)
1518 struct timechart *tchart = data;
1520 switch (feat) {
1521 case HEADER_NRCPUS:
1522 tchart->numcpus = ph->env.nr_cpus_avail;
1523 break;
1525 case HEADER_CPU_TOPOLOGY:
1526 if (!tchart->topology)
1527 break;
1529 if (svg_build_topology_map(&ph->env))
1530 fprintf(stderr, "problem building topology\n");
1531 break;
1533 default:
1534 break;
1537 return 0;
1540 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1542 const struct evsel_str_handler power_tracepoints[] = {
1543 { "power:cpu_idle", process_sample_cpu_idle },
1544 { "power:cpu_frequency", process_sample_cpu_frequency },
1545 { "sched:sched_wakeup", process_sample_sched_wakeup },
1546 { "sched:sched_switch", process_sample_sched_switch },
1547 #ifdef SUPPORT_OLD_POWER_EVENTS
1548 { "power:power_start", process_sample_power_start },
1549 { "power:power_end", process_sample_power_end },
1550 { "power:power_frequency", process_sample_power_frequency },
1551 #endif
1553 { "syscalls:sys_enter_read", process_enter_read },
1554 { "syscalls:sys_enter_pread64", process_enter_read },
1555 { "syscalls:sys_enter_readv", process_enter_read },
1556 { "syscalls:sys_enter_preadv", process_enter_read },
1557 { "syscalls:sys_enter_write", process_enter_write },
1558 { "syscalls:sys_enter_pwrite64", process_enter_write },
1559 { "syscalls:sys_enter_writev", process_enter_write },
1560 { "syscalls:sys_enter_pwritev", process_enter_write },
1561 { "syscalls:sys_enter_sync", process_enter_sync },
1562 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1563 { "syscalls:sys_enter_fsync", process_enter_sync },
1564 { "syscalls:sys_enter_msync", process_enter_sync },
1565 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1566 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1567 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1568 { "syscalls:sys_enter_sendto", process_enter_tx },
1569 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1570 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1571 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1572 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1573 { "syscalls:sys_enter_poll", process_enter_poll },
1574 { "syscalls:sys_enter_ppoll", process_enter_poll },
1575 { "syscalls:sys_enter_pselect6", process_enter_poll },
1576 { "syscalls:sys_enter_select", process_enter_poll },
1578 { "syscalls:sys_exit_read", process_exit_read },
1579 { "syscalls:sys_exit_pread64", process_exit_read },
1580 { "syscalls:sys_exit_readv", process_exit_read },
1581 { "syscalls:sys_exit_preadv", process_exit_read },
1582 { "syscalls:sys_exit_write", process_exit_write },
1583 { "syscalls:sys_exit_pwrite64", process_exit_write },
1584 { "syscalls:sys_exit_writev", process_exit_write },
1585 { "syscalls:sys_exit_pwritev", process_exit_write },
1586 { "syscalls:sys_exit_sync", process_exit_sync },
1587 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1588 { "syscalls:sys_exit_fsync", process_exit_sync },
1589 { "syscalls:sys_exit_msync", process_exit_sync },
1590 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1591 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1592 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1593 { "syscalls:sys_exit_sendto", process_exit_tx },
1594 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1595 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1596 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1597 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1598 { "syscalls:sys_exit_poll", process_exit_poll },
1599 { "syscalls:sys_exit_ppoll", process_exit_poll },
1600 { "syscalls:sys_exit_pselect6", process_exit_poll },
1601 { "syscalls:sys_exit_select", process_exit_poll },
1603 struct perf_data data = {
1604 .path = input_name,
1605 .mode = PERF_DATA_MODE_READ,
1606 .force = tchart->force,
1608 struct perf_session *session;
1609 int ret = -EINVAL;
1611 perf_tool__init(&tchart->tool, /*ordered_events=*/true);
1612 tchart->tool.comm = process_comm_event;
1613 tchart->tool.fork = process_fork_event;
1614 tchart->tool.exit = process_exit_event;
1615 tchart->tool.sample = process_sample_event;
1617 session = perf_session__new(&data, &tchart->tool);
1618 if (IS_ERR(session))
1619 return PTR_ERR(session);
1621 symbol__init(&session->header.env);
1623 (void)perf_header__process_sections(&session->header,
1624 perf_data__fd(session->data),
1625 tchart,
1626 process_header);
1628 if (!perf_session__has_traces(session, "timechart record"))
1629 goto out_delete;
1631 if (perf_session__set_tracepoints_handlers(session,
1632 power_tracepoints)) {
1633 pr_err("Initializing session tracepoint handlers failed\n");
1634 goto out_delete;
1637 ret = perf_session__process_events(session);
1638 if (ret)
1639 goto out_delete;
1641 end_sample_processing(tchart);
1643 sort_pids(tchart);
1645 write_svg_file(tchart, output_name);
1647 pr_info("Written %2.1f seconds of trace to %s.\n",
1648 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1649 out_delete:
1650 perf_session__delete(session);
1651 return ret;
1654 static int timechart__io_record(int argc, const char **argv)
1656 unsigned int rec_argc, i;
1657 const char **rec_argv;
1658 const char **p;
1659 char *filter = NULL;
1661 const char * const common_args[] = {
1662 "record", "-a", "-R", "-c", "1",
1664 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1666 const char * const disk_events[] = {
1667 "syscalls:sys_enter_read",
1668 "syscalls:sys_enter_pread64",
1669 "syscalls:sys_enter_readv",
1670 "syscalls:sys_enter_preadv",
1671 "syscalls:sys_enter_write",
1672 "syscalls:sys_enter_pwrite64",
1673 "syscalls:sys_enter_writev",
1674 "syscalls:sys_enter_pwritev",
1675 "syscalls:sys_enter_sync",
1676 "syscalls:sys_enter_sync_file_range",
1677 "syscalls:sys_enter_fsync",
1678 "syscalls:sys_enter_msync",
1680 "syscalls:sys_exit_read",
1681 "syscalls:sys_exit_pread64",
1682 "syscalls:sys_exit_readv",
1683 "syscalls:sys_exit_preadv",
1684 "syscalls:sys_exit_write",
1685 "syscalls:sys_exit_pwrite64",
1686 "syscalls:sys_exit_writev",
1687 "syscalls:sys_exit_pwritev",
1688 "syscalls:sys_exit_sync",
1689 "syscalls:sys_exit_sync_file_range",
1690 "syscalls:sys_exit_fsync",
1691 "syscalls:sys_exit_msync",
1693 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1695 const char * const net_events[] = {
1696 "syscalls:sys_enter_recvfrom",
1697 "syscalls:sys_enter_recvmmsg",
1698 "syscalls:sys_enter_recvmsg",
1699 "syscalls:sys_enter_sendto",
1700 "syscalls:sys_enter_sendmsg",
1701 "syscalls:sys_enter_sendmmsg",
1703 "syscalls:sys_exit_recvfrom",
1704 "syscalls:sys_exit_recvmmsg",
1705 "syscalls:sys_exit_recvmsg",
1706 "syscalls:sys_exit_sendto",
1707 "syscalls:sys_exit_sendmsg",
1708 "syscalls:sys_exit_sendmmsg",
1710 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1712 const char * const poll_events[] = {
1713 "syscalls:sys_enter_epoll_pwait",
1714 "syscalls:sys_enter_epoll_wait",
1715 "syscalls:sys_enter_poll",
1716 "syscalls:sys_enter_ppoll",
1717 "syscalls:sys_enter_pselect6",
1718 "syscalls:sys_enter_select",
1720 "syscalls:sys_exit_epoll_pwait",
1721 "syscalls:sys_exit_epoll_wait",
1722 "syscalls:sys_exit_poll",
1723 "syscalls:sys_exit_ppoll",
1724 "syscalls:sys_exit_pselect6",
1725 "syscalls:sys_exit_select",
1727 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1729 rec_argc = common_args_nr +
1730 disk_events_nr * 4 +
1731 net_events_nr * 4 +
1732 poll_events_nr * 4 +
1733 argc;
1734 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1736 if (rec_argv == NULL)
1737 return -ENOMEM;
1739 if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1740 free(rec_argv);
1741 return -ENOMEM;
1744 p = rec_argv;
1745 for (i = 0; i < common_args_nr; i++)
1746 *p++ = strdup(common_args[i]);
1748 for (i = 0; i < disk_events_nr; i++) {
1749 if (!is_valid_tracepoint(disk_events[i])) {
1750 rec_argc -= 4;
1751 continue;
1754 *p++ = "-e";
1755 *p++ = strdup(disk_events[i]);
1756 *p++ = "--filter";
1757 *p++ = filter;
1759 for (i = 0; i < net_events_nr; i++) {
1760 if (!is_valid_tracepoint(net_events[i])) {
1761 rec_argc -= 4;
1762 continue;
1765 *p++ = "-e";
1766 *p++ = strdup(net_events[i]);
1767 *p++ = "--filter";
1768 *p++ = filter;
1770 for (i = 0; i < poll_events_nr; i++) {
1771 if (!is_valid_tracepoint(poll_events[i])) {
1772 rec_argc -= 4;
1773 continue;
1776 *p++ = "-e";
1777 *p++ = strdup(poll_events[i]);
1778 *p++ = "--filter";
1779 *p++ = filter;
1782 for (i = 0; i < (unsigned int)argc; i++)
1783 *p++ = argv[i];
1785 return cmd_record(rec_argc, rec_argv);
1789 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1791 unsigned int rec_argc, i, j;
1792 const char **rec_argv;
1793 const char **p;
1794 unsigned int record_elems;
1796 const char * const common_args[] = {
1797 "record", "-a", "-R", "-c", "1",
1799 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1801 const char * const backtrace_args[] = {
1802 "-g",
1804 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1806 const char * const power_args[] = {
1807 "-e", "power:cpu_frequency",
1808 "-e", "power:cpu_idle",
1810 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1812 const char * const old_power_args[] = {
1813 #ifdef SUPPORT_OLD_POWER_EVENTS
1814 "-e", "power:power_start",
1815 "-e", "power:power_end",
1816 "-e", "power:power_frequency",
1817 #endif
1819 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1821 const char * const tasks_args[] = {
1822 "-e", "sched:sched_wakeup",
1823 "-e", "sched:sched_switch",
1825 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1827 #ifdef SUPPORT_OLD_POWER_EVENTS
1828 if (!is_valid_tracepoint("power:cpu_idle") &&
1829 is_valid_tracepoint("power:power_start")) {
1830 use_old_power_events = 1;
1831 power_args_nr = 0;
1832 } else {
1833 old_power_args_nr = 0;
1835 #endif
1837 if (tchart->power_only)
1838 tasks_args_nr = 0;
1840 if (tchart->tasks_only) {
1841 power_args_nr = 0;
1842 old_power_args_nr = 0;
1845 if (!tchart->with_backtrace)
1846 backtrace_args_no = 0;
1848 record_elems = common_args_nr + tasks_args_nr +
1849 power_args_nr + old_power_args_nr + backtrace_args_no;
1851 rec_argc = record_elems + argc;
1852 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1854 if (rec_argv == NULL)
1855 return -ENOMEM;
1857 p = rec_argv;
1858 for (i = 0; i < common_args_nr; i++)
1859 *p++ = strdup(common_args[i]);
1861 for (i = 0; i < backtrace_args_no; i++)
1862 *p++ = strdup(backtrace_args[i]);
1864 for (i = 0; i < tasks_args_nr; i++)
1865 *p++ = strdup(tasks_args[i]);
1867 for (i = 0; i < power_args_nr; i++)
1868 *p++ = strdup(power_args[i]);
1870 for (i = 0; i < old_power_args_nr; i++)
1871 *p++ = strdup(old_power_args[i]);
1873 for (j = 0; j < (unsigned int)argc; j++)
1874 *p++ = argv[j];
1876 return cmd_record(rec_argc, rec_argv);
1879 static int
1880 parse_process(const struct option *opt __maybe_unused, const char *arg,
1881 int __maybe_unused unset)
1883 if (arg)
1884 add_process_filter(arg);
1885 return 0;
1888 static int
1889 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1890 int __maybe_unused unset)
1892 unsigned long duration = strtoul(arg, NULL, 0);
1894 if (svg_highlight || svg_highlight_name)
1895 return -1;
1897 if (duration)
1898 svg_highlight = duration;
1899 else
1900 svg_highlight_name = strdup(arg);
1902 return 0;
1905 static int
1906 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1908 char unit = 'n';
1909 u64 *value = opt->value;
1911 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1912 switch (unit) {
1913 case 'm':
1914 *value *= NSEC_PER_MSEC;
1915 break;
1916 case 'u':
1917 *value *= NSEC_PER_USEC;
1918 break;
1919 case 'n':
1920 break;
1921 default:
1922 return -1;
1926 return 0;
1929 int cmd_timechart(int argc, const char **argv)
1931 struct timechart tchart = {
1932 .proc_num = 15,
1933 .min_time = NSEC_PER_MSEC,
1934 .merge_dist = 1000,
1936 const char *output_name = "output.svg";
1937 const struct option timechart_common_options[] = {
1938 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1939 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1940 OPT_END()
1942 const struct option timechart_options[] = {
1943 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1944 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1945 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1946 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1947 "highlight tasks. Pass duration in ns or process name.",
1948 parse_highlight),
1949 OPT_CALLBACK('p', "process", NULL, "process",
1950 "process selector. Pass a pid or process name.",
1951 parse_process),
1952 OPT_CALLBACK(0, "symfs", NULL, "directory",
1953 "Look for files with symbols relative to this directory",
1954 symbol__config_symfs),
1955 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1956 "min. number of tasks to print"),
1957 OPT_BOOLEAN('t', "topology", &tchart.topology,
1958 "sort CPUs according to topology"),
1959 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1960 "skip EAGAIN errors"),
1961 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1962 "all IO faster than min-time will visually appear longer",
1963 parse_time),
1964 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1965 "merge events that are merge-dist us apart",
1966 parse_time),
1967 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1968 OPT_PARENT(timechart_common_options),
1970 const char * const timechart_subcommands[] = { "record", NULL };
1971 const char *timechart_usage[] = {
1972 "perf timechart [<options>] {record}",
1973 NULL
1975 const struct option timechart_record_options[] = {
1976 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1977 "record only IO data"),
1978 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1979 OPT_PARENT(timechart_common_options),
1981 const char * const timechart_record_usage[] = {
1982 "perf timechart record [<options>]",
1983 NULL
1985 int ret;
1987 cpus_cstate_start_times = calloc(MAX_CPUS, sizeof(*cpus_cstate_start_times));
1988 if (!cpus_cstate_start_times)
1989 return -ENOMEM;
1990 cpus_cstate_state = calloc(MAX_CPUS, sizeof(*cpus_cstate_state));
1991 if (!cpus_cstate_state) {
1992 ret = -ENOMEM;
1993 goto out;
1995 cpus_pstate_start_times = calloc(MAX_CPUS, sizeof(*cpus_pstate_start_times));
1996 if (!cpus_pstate_start_times) {
1997 ret = -ENOMEM;
1998 goto out;
2000 cpus_pstate_state = calloc(MAX_CPUS, sizeof(*cpus_pstate_state));
2001 if (!cpus_pstate_state) {
2002 ret = -ENOMEM;
2003 goto out;
2006 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
2007 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
2009 if (tchart.power_only && tchart.tasks_only) {
2010 pr_err("-P and -T options cannot be used at the same time.\n");
2011 ret = -1;
2012 goto out;
2015 if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
2016 argc = parse_options(argc, argv, timechart_record_options,
2017 timechart_record_usage,
2018 PARSE_OPT_STOP_AT_NON_OPTION);
2020 if (tchart.power_only && tchart.tasks_only) {
2021 pr_err("-P and -T options cannot be used at the same time.\n");
2022 ret = -1;
2023 goto out;
2026 if (tchart.io_only)
2027 ret = timechart__io_record(argc, argv);
2028 else
2029 ret = timechart__record(&tchart, argc, argv);
2030 goto out;
2031 } else if (argc)
2032 usage_with_options(timechart_usage, timechart_options);
2034 setup_pager();
2036 ret = __cmd_timechart(&tchart, output_name);
2037 out:
2038 zfree(&cpus_cstate_start_times);
2039 zfree(&cpus_cstate_state);
2040 zfree(&cpus_pstate_start_times);
2041 zfree(&cpus_pstate_state);
2042 return ret;