1 // SPDX-License-Identifier: GPL-2.0
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/string.h>
17 #include <linux/stringify.h>
18 #include <linux/zalloc.h>
20 #include <sys/utsname.h>
21 #include <linux/time64.h>
23 #ifdef HAVE_LIBBPF_SUPPORT
24 #include <bpf/libbpf.h>
26 #include <perf/cpumap.h>
27 #include <tools/libc_compat.h> // reallocarray
32 #include "util/evsel_fprintf.h"
35 #include "trace-event.h"
46 #include <api/fs/fs.h>
49 #include "time-utils.h"
51 #include "util/util.h" // perf_exe()
53 #include "bpf-event.h"
54 #include "bpf-utils.h"
57 #include <linux/ctype.h>
58 #include <internal/lib.h>
60 #ifdef HAVE_LIBTRACEEVENT
61 #include <event-parse.h>
66 * must be a numerical value to let the endianness
67 * determine the memory layout. That way we are able
68 * to detect endianness when reading the perf.data file
71 * we check for legacy (PERFFILE) format.
73 static const char *__perf_magic1
= "PERFFILE";
74 static const u64 __perf_magic2
= 0x32454c4946524550ULL
;
75 static const u64 __perf_magic2_sw
= 0x50455246494c4532ULL
;
77 #define PERF_MAGIC __perf_magic2
79 const char perf_version_string
[] = PERF_VERSION
;
81 struct perf_file_attr
{
82 struct perf_event_attr attr
;
83 struct perf_file_section ids
;
86 void perf_header__set_feat(struct perf_header
*header
, int feat
)
88 __set_bit(feat
, header
->adds_features
);
91 void perf_header__clear_feat(struct perf_header
*header
, int feat
)
93 __clear_bit(feat
, header
->adds_features
);
96 bool perf_header__has_feat(const struct perf_header
*header
, int feat
)
98 return test_bit(feat
, header
->adds_features
);
101 static int __do_write_fd(struct feat_fd
*ff
, const void *buf
, size_t size
)
103 ssize_t ret
= writen(ff
->fd
, buf
, size
);
105 if (ret
!= (ssize_t
)size
)
106 return ret
< 0 ? (int)ret
: -1;
110 static int __do_write_buf(struct feat_fd
*ff
, const void *buf
, size_t size
)
112 /* struct perf_event_header::size is u16 */
113 const size_t max_size
= 0xffff - sizeof(struct perf_event_header
);
114 size_t new_size
= ff
->size
;
117 if (size
+ ff
->offset
> max_size
)
120 while (size
> (new_size
- ff
->offset
))
122 new_size
= min(max_size
, new_size
);
124 if (ff
->size
< new_size
) {
125 addr
= realloc(ff
->buf
, new_size
);
132 memcpy(ff
->buf
+ ff
->offset
, buf
, size
);
138 /* Return: 0 if succeeded, -ERR if failed. */
139 int do_write(struct feat_fd
*ff
, const void *buf
, size_t size
)
142 return __do_write_fd(ff
, buf
, size
);
143 return __do_write_buf(ff
, buf
, size
);
146 /* Return: 0 if succeeded, -ERR if failed. */
147 static int do_write_bitmap(struct feat_fd
*ff
, unsigned long *set
, u64 size
)
149 u64
*p
= (u64
*) set
;
152 ret
= do_write(ff
, &size
, sizeof(size
));
156 for (i
= 0; (u64
) i
< BITS_TO_U64(size
); i
++) {
157 ret
= do_write(ff
, p
+ i
, sizeof(*p
));
165 /* Return: 0 if succeeded, -ERR if failed. */
166 int write_padded(struct feat_fd
*ff
, const void *bf
,
167 size_t count
, size_t count_aligned
)
169 static const char zero_buf
[NAME_ALIGN
];
170 int err
= do_write(ff
, bf
, count
);
173 err
= do_write(ff
, zero_buf
, count_aligned
- count
);
178 #define string_size(str) \
179 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
181 /* Return: 0 if succeeded, -ERR if failed. */
182 static int do_write_string(struct feat_fd
*ff
, const char *str
)
187 olen
= strlen(str
) + 1;
188 len
= PERF_ALIGN(olen
, NAME_ALIGN
);
190 /* write len, incl. \0 */
191 ret
= do_write(ff
, &len
, sizeof(len
));
195 return write_padded(ff
, str
, olen
, len
);
198 static int __do_read_fd(struct feat_fd
*ff
, void *addr
, ssize_t size
)
200 ssize_t ret
= readn(ff
->fd
, addr
, size
);
203 return ret
< 0 ? (int)ret
: -1;
207 static int __do_read_buf(struct feat_fd
*ff
, void *addr
, ssize_t size
)
209 if (size
> (ssize_t
)ff
->size
- ff
->offset
)
212 memcpy(addr
, ff
->buf
+ ff
->offset
, size
);
219 static int __do_read(struct feat_fd
*ff
, void *addr
, ssize_t size
)
222 return __do_read_fd(ff
, addr
, size
);
223 return __do_read_buf(ff
, addr
, size
);
226 static int do_read_u32(struct feat_fd
*ff
, u32
*addr
)
230 ret
= __do_read(ff
, addr
, sizeof(*addr
));
234 if (ff
->ph
->needs_swap
)
235 *addr
= bswap_32(*addr
);
239 static int do_read_u64(struct feat_fd
*ff
, u64
*addr
)
243 ret
= __do_read(ff
, addr
, sizeof(*addr
));
247 if (ff
->ph
->needs_swap
)
248 *addr
= bswap_64(*addr
);
252 static char *do_read_string(struct feat_fd
*ff
)
257 if (do_read_u32(ff
, &len
))
264 if (!__do_read(ff
, buf
, len
)) {
266 * strings are padded by zeroes
267 * thus the actual strlen of buf
268 * may be less than len
277 /* Return: 0 if succeeded, -ERR if failed. */
278 static int do_read_bitmap(struct feat_fd
*ff
, unsigned long **pset
, u64
*psize
)
284 ret
= do_read_u64(ff
, &size
);
288 set
= bitmap_zalloc(size
);
294 for (i
= 0; (u64
) i
< BITS_TO_U64(size
); i
++) {
295 ret
= do_read_u64(ff
, p
+ i
);
307 #ifdef HAVE_LIBTRACEEVENT
308 static int write_tracing_data(struct feat_fd
*ff
,
309 struct evlist
*evlist
)
311 if (WARN(ff
->buf
, "Error: calling %s in pipe-mode.\n", __func__
))
314 return read_tracing_data(ff
->fd
, &evlist
->core
.entries
);
318 static int write_build_id(struct feat_fd
*ff
,
319 struct evlist
*evlist __maybe_unused
)
321 struct perf_session
*session
;
324 session
= container_of(ff
->ph
, struct perf_session
, header
);
326 if (!perf_session__read_build_ids(session
, true))
329 if (WARN(ff
->buf
, "Error: calling %s in pipe-mode.\n", __func__
))
332 err
= perf_session__write_buildid_table(session
, ff
);
334 pr_debug("failed to write buildid table\n");
337 perf_session__cache_build_ids(session
);
342 static int write_hostname(struct feat_fd
*ff
,
343 struct evlist
*evlist __maybe_unused
)
352 return do_write_string(ff
, uts
.nodename
);
355 static int write_osrelease(struct feat_fd
*ff
,
356 struct evlist
*evlist __maybe_unused
)
365 return do_write_string(ff
, uts
.release
);
368 static int write_arch(struct feat_fd
*ff
,
369 struct evlist
*evlist __maybe_unused
)
378 return do_write_string(ff
, uts
.machine
);
381 static int write_version(struct feat_fd
*ff
,
382 struct evlist
*evlist __maybe_unused
)
384 return do_write_string(ff
, perf_version_string
);
387 static int __write_cpudesc(struct feat_fd
*ff
, const char *cpuinfo_proc
)
392 const char *search
= cpuinfo_proc
;
399 file
= fopen("/proc/cpuinfo", "r");
403 while (getline(&buf
, &len
, file
) > 0) {
404 ret
= strncmp(buf
, search
, strlen(search
));
416 p
= strchr(buf
, ':');
417 if (p
&& *(p
+1) == ' ' && *(p
+2))
423 /* squash extra space characters (branding string) */
428 char *q
= skip_spaces(r
);
431 while ((*r
++ = *q
++));
435 ret
= do_write_string(ff
, s
);
442 static int write_cpudesc(struct feat_fd
*ff
,
443 struct evlist
*evlist __maybe_unused
)
445 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
446 #define CPUINFO_PROC { "cpu", }
447 #elif defined(__s390__)
448 #define CPUINFO_PROC { "vendor_id", }
449 #elif defined(__sh__)
450 #define CPUINFO_PROC { "cpu type", }
451 #elif defined(__alpha__) || defined(__mips__)
452 #define CPUINFO_PROC { "cpu model", }
453 #elif defined(__arm__)
454 #define CPUINFO_PROC { "model name", "Processor", }
455 #elif defined(__arc__)
456 #define CPUINFO_PROC { "Processor", }
457 #elif defined(__xtensa__)
458 #define CPUINFO_PROC { "core ID", }
459 #elif defined(__loongarch__)
460 #define CPUINFO_PROC { "Model Name", }
462 #define CPUINFO_PROC { "model name", }
464 const char *cpuinfo_procs
[] = CPUINFO_PROC
;
468 for (i
= 0; i
< ARRAY_SIZE(cpuinfo_procs
); i
++) {
470 ret
= __write_cpudesc(ff
, cpuinfo_procs
[i
]);
478 static int write_nrcpus(struct feat_fd
*ff
,
479 struct evlist
*evlist __maybe_unused
)
485 nrc
= cpu__max_present_cpu().cpu
;
487 nr
= sysconf(_SC_NPROCESSORS_ONLN
);
491 nra
= (u32
)(nr
& UINT_MAX
);
493 ret
= do_write(ff
, &nrc
, sizeof(nrc
));
497 return do_write(ff
, &nra
, sizeof(nra
));
500 static int write_event_desc(struct feat_fd
*ff
,
501 struct evlist
*evlist
)
507 nre
= evlist
->core
.nr_entries
;
510 * write number of events
512 ret
= do_write(ff
, &nre
, sizeof(nre
));
517 * size of perf_event_attr struct
519 sz
= (u32
)sizeof(evsel
->core
.attr
);
520 ret
= do_write(ff
, &sz
, sizeof(sz
));
524 evlist__for_each_entry(evlist
, evsel
) {
525 ret
= do_write(ff
, &evsel
->core
.attr
, sz
);
529 * write number of unique id per event
530 * there is one id per instance of an event
532 * copy into an nri to be independent of the
535 nri
= evsel
->core
.ids
;
536 ret
= do_write(ff
, &nri
, sizeof(nri
));
541 * write event string as passed on cmdline
543 ret
= do_write_string(ff
, evsel__name(evsel
));
547 * write unique ids for this event
549 ret
= do_write(ff
, evsel
->core
.id
, evsel
->core
.ids
* sizeof(u64
));
556 static int write_cmdline(struct feat_fd
*ff
,
557 struct evlist
*evlist __maybe_unused
)
559 char pbuf
[MAXPATHLEN
], *buf
;
562 /* actual path to perf binary */
563 buf
= perf_exe(pbuf
, MAXPATHLEN
);
565 /* account for binary path */
566 n
= perf_env
.nr_cmdline
+ 1;
568 ret
= do_write(ff
, &n
, sizeof(n
));
572 ret
= do_write_string(ff
, buf
);
576 for (i
= 0 ; i
< perf_env
.nr_cmdline
; i
++) {
577 ret
= do_write_string(ff
, perf_env
.cmdline_argv
[i
]);
585 static int write_cpu_topology(struct feat_fd
*ff
,
586 struct evlist
*evlist __maybe_unused
)
588 struct cpu_topology
*tp
;
592 tp
= cpu_topology__new();
596 ret
= do_write(ff
, &tp
->package_cpus_lists
, sizeof(tp
->package_cpus_lists
));
600 for (i
= 0; i
< tp
->package_cpus_lists
; i
++) {
601 ret
= do_write_string(ff
, tp
->package_cpus_list
[i
]);
605 ret
= do_write(ff
, &tp
->core_cpus_lists
, sizeof(tp
->core_cpus_lists
));
609 for (i
= 0; i
< tp
->core_cpus_lists
; i
++) {
610 ret
= do_write_string(ff
, tp
->core_cpus_list
[i
]);
615 ret
= perf_env__read_cpu_topology_map(&perf_env
);
619 for (j
= 0; j
< perf_env
.nr_cpus_avail
; j
++) {
620 ret
= do_write(ff
, &perf_env
.cpu
[j
].core_id
,
621 sizeof(perf_env
.cpu
[j
].core_id
));
624 ret
= do_write(ff
, &perf_env
.cpu
[j
].socket_id
,
625 sizeof(perf_env
.cpu
[j
].socket_id
));
630 if (!tp
->die_cpus_lists
)
633 ret
= do_write(ff
, &tp
->die_cpus_lists
, sizeof(tp
->die_cpus_lists
));
637 for (i
= 0; i
< tp
->die_cpus_lists
; i
++) {
638 ret
= do_write_string(ff
, tp
->die_cpus_list
[i
]);
643 for (j
= 0; j
< perf_env
.nr_cpus_avail
; j
++) {
644 ret
= do_write(ff
, &perf_env
.cpu
[j
].die_id
,
645 sizeof(perf_env
.cpu
[j
].die_id
));
651 cpu_topology__delete(tp
);
657 static int write_total_mem(struct feat_fd
*ff
,
658 struct evlist
*evlist __maybe_unused
)
666 fp
= fopen("/proc/meminfo", "r");
670 while (getline(&buf
, &len
, fp
) > 0) {
671 ret
= strncmp(buf
, "MemTotal:", 9);
676 n
= sscanf(buf
, "%*s %"PRIu64
, &mem
);
678 ret
= do_write(ff
, &mem
, sizeof(mem
));
686 static int write_numa_topology(struct feat_fd
*ff
,
687 struct evlist
*evlist __maybe_unused
)
689 struct numa_topology
*tp
;
693 tp
= numa_topology__new();
697 ret
= do_write(ff
, &tp
->nr
, sizeof(u32
));
701 for (i
= 0; i
< tp
->nr
; i
++) {
702 struct numa_topology_node
*n
= &tp
->nodes
[i
];
704 ret
= do_write(ff
, &n
->node
, sizeof(u32
));
708 ret
= do_write(ff
, &n
->mem_total
, sizeof(u64
));
712 ret
= do_write(ff
, &n
->mem_free
, sizeof(u64
));
716 ret
= do_write_string(ff
, n
->cpus
);
724 numa_topology__delete(tp
);
731 * struct pmu_mappings {
740 static int write_pmu_mappings(struct feat_fd
*ff
,
741 struct evlist
*evlist __maybe_unused
)
743 struct perf_pmu
*pmu
= NULL
;
748 * Do a first pass to count number of pmu to avoid lseek so this
749 * works in pipe mode as well.
751 while ((pmu
= perf_pmus__scan(pmu
)))
754 ret
= do_write(ff
, &pmu_num
, sizeof(pmu_num
));
758 while ((pmu
= perf_pmus__scan(pmu
))) {
759 ret
= do_write(ff
, &pmu
->type
, sizeof(pmu
->type
));
763 ret
= do_write_string(ff
, pmu
->name
);
774 * struct group_descs {
776 * struct group_desc {
783 static int write_group_desc(struct feat_fd
*ff
,
784 struct evlist
*evlist
)
786 u32 nr_groups
= evlist__nr_groups(evlist
);
790 ret
= do_write(ff
, &nr_groups
, sizeof(nr_groups
));
794 evlist__for_each_entry(evlist
, evsel
) {
795 if (evsel__is_group_leader(evsel
) && evsel
->core
.nr_members
> 1) {
796 const char *name
= evsel
->group_name
?: "{anon_group}";
797 u32 leader_idx
= evsel
->core
.idx
;
798 u32 nr_members
= evsel
->core
.nr_members
;
800 ret
= do_write_string(ff
, name
);
804 ret
= do_write(ff
, &leader_idx
, sizeof(leader_idx
));
808 ret
= do_write(ff
, &nr_members
, sizeof(nr_members
));
817 * Return the CPU id as a raw string.
819 * Each architecture should provide a more precise id string that
820 * can be use to match the architecture's "mapfile".
822 char * __weak
get_cpuid_str(struct perf_cpu cpu __maybe_unused
)
827 char *get_cpuid_allow_env_override(struct perf_cpu cpu
)
832 cpuid
= getenv("PERF_CPUID");
834 cpuid
= strdup(cpuid
);
836 cpuid
= get_cpuid_str(cpu
);
841 pr_debug("Using CPUID %s\n", cpuid
);
847 /* Return zero when the cpuid from the mapfile.csv matches the
848 * cpuid string generated on this platform.
849 * Otherwise return non-zero.
851 int __weak
strcmp_cpuid_str(const char *mapcpuid
, const char *cpuid
)
854 regmatch_t pmatch
[1];
857 if (regcomp(&re
, mapcpuid
, REG_EXTENDED
) != 0) {
858 /* Warn unable to generate match particular string. */
859 pr_info("Invalid regular expression %s\n", mapcpuid
);
863 match
= !regexec(&re
, cpuid
, 1, pmatch
, 0);
866 size_t match_len
= (pmatch
[0].rm_eo
- pmatch
[0].rm_so
);
868 /* Verify the entire string matched. */
869 if (match_len
== strlen(cpuid
))
876 * default get_cpuid(): nothing gets recorded
877 * actual implementation must be in arch/$(SRCARCH)/util/header.c
879 int __weak
get_cpuid(char *buffer __maybe_unused
, size_t sz __maybe_unused
,
880 struct perf_cpu cpu __maybe_unused
)
882 return ENOSYS
; /* Not implemented */
885 static int write_cpuid(struct feat_fd
*ff
, struct evlist
*evlist
)
887 struct perf_cpu cpu
= perf_cpu_map__min(evlist
->core
.all_cpus
);
891 ret
= get_cpuid(buffer
, sizeof(buffer
), cpu
);
895 return do_write_string(ff
, buffer
);
898 static int write_branch_stack(struct feat_fd
*ff __maybe_unused
,
899 struct evlist
*evlist __maybe_unused
)
904 static int write_auxtrace(struct feat_fd
*ff
,
905 struct evlist
*evlist __maybe_unused
)
907 struct perf_session
*session
;
910 if (WARN(ff
->buf
, "Error: calling %s in pipe-mode.\n", __func__
))
913 session
= container_of(ff
->ph
, struct perf_session
, header
);
915 err
= auxtrace_index__write(ff
->fd
, &session
->auxtrace_index
);
917 pr_err("Failed to write auxtrace index\n");
921 static int write_clockid(struct feat_fd
*ff
,
922 struct evlist
*evlist __maybe_unused
)
924 return do_write(ff
, &ff
->ph
->env
.clock
.clockid_res_ns
,
925 sizeof(ff
->ph
->env
.clock
.clockid_res_ns
));
928 static int write_clock_data(struct feat_fd
*ff
,
929 struct evlist
*evlist __maybe_unused
)
938 ret
= do_write(ff
, &data32
, sizeof(data32
));
943 data32
= ff
->ph
->env
.clock
.clockid
;
945 ret
= do_write(ff
, &data32
, sizeof(data32
));
950 data64
= &ff
->ph
->env
.clock
.tod_ns
;
952 ret
= do_write(ff
, data64
, sizeof(*data64
));
956 /* clockid ref time */
957 data64
= &ff
->ph
->env
.clock
.clockid_ns
;
959 return do_write(ff
, data64
, sizeof(*data64
));
962 static int write_hybrid_topology(struct feat_fd
*ff
,
963 struct evlist
*evlist __maybe_unused
)
965 struct hybrid_topology
*tp
;
969 tp
= hybrid_topology__new();
973 ret
= do_write(ff
, &tp
->nr
, sizeof(u32
));
977 for (i
= 0; i
< tp
->nr
; i
++) {
978 struct hybrid_topology_node
*n
= &tp
->nodes
[i
];
980 ret
= do_write_string(ff
, n
->pmu_name
);
984 ret
= do_write_string(ff
, n
->cpus
);
992 hybrid_topology__delete(tp
);
996 static int write_dir_format(struct feat_fd
*ff
,
997 struct evlist
*evlist __maybe_unused
)
999 struct perf_session
*session
;
1000 struct perf_data
*data
;
1002 session
= container_of(ff
->ph
, struct perf_session
, header
);
1003 data
= session
->data
;
1005 if (WARN_ON(!perf_data__is_dir(data
)))
1008 return do_write(ff
, &data
->dir
.version
, sizeof(data
->dir
.version
));
1011 #ifdef HAVE_LIBBPF_SUPPORT
1012 static int write_bpf_prog_info(struct feat_fd
*ff
,
1013 struct evlist
*evlist __maybe_unused
)
1015 struct perf_env
*env
= &ff
->ph
->env
;
1016 struct rb_root
*root
;
1017 struct rb_node
*next
;
1020 down_read(&env
->bpf_progs
.lock
);
1022 ret
= do_write(ff
, &env
->bpf_progs
.infos_cnt
,
1023 sizeof(env
->bpf_progs
.infos_cnt
));
1027 root
= &env
->bpf_progs
.infos
;
1028 next
= rb_first(root
);
1030 struct bpf_prog_info_node
*node
;
1033 node
= rb_entry(next
, struct bpf_prog_info_node
, rb_node
);
1034 next
= rb_next(&node
->rb_node
);
1035 len
= sizeof(struct perf_bpil
) +
1036 node
->info_linear
->data_len
;
1038 /* before writing to file, translate address to offset */
1039 bpil_addr_to_offs(node
->info_linear
);
1040 ret
= do_write(ff
, node
->info_linear
, len
);
1042 * translate back to address even when do_write() fails,
1043 * so that this function never changes the data.
1045 bpil_offs_to_addr(node
->info_linear
);
1050 up_read(&env
->bpf_progs
.lock
);
1054 static int write_bpf_btf(struct feat_fd
*ff
,
1055 struct evlist
*evlist __maybe_unused
)
1057 struct perf_env
*env
= &ff
->ph
->env
;
1058 struct rb_root
*root
;
1059 struct rb_node
*next
;
1062 down_read(&env
->bpf_progs
.lock
);
1064 ret
= do_write(ff
, &env
->bpf_progs
.btfs_cnt
,
1065 sizeof(env
->bpf_progs
.btfs_cnt
));
1070 root
= &env
->bpf_progs
.btfs
;
1071 next
= rb_first(root
);
1073 struct btf_node
*node
;
1075 node
= rb_entry(next
, struct btf_node
, rb_node
);
1076 next
= rb_next(&node
->rb_node
);
1077 ret
= do_write(ff
, &node
->id
,
1078 sizeof(u32
) * 2 + node
->data_size
);
1083 up_read(&env
->bpf_progs
.lock
);
1086 #endif // HAVE_LIBBPF_SUPPORT
1088 static int cpu_cache_level__sort(const void *a
, const void *b
)
1090 struct cpu_cache_level
*cache_a
= (struct cpu_cache_level
*)a
;
1091 struct cpu_cache_level
*cache_b
= (struct cpu_cache_level
*)b
;
1093 return cache_a
->level
- cache_b
->level
;
1096 static bool cpu_cache_level__cmp(struct cpu_cache_level
*a
, struct cpu_cache_level
*b
)
1098 if (a
->level
!= b
->level
)
1101 if (a
->line_size
!= b
->line_size
)
1104 if (a
->sets
!= b
->sets
)
1107 if (a
->ways
!= b
->ways
)
1110 if (strcmp(a
->type
, b
->type
))
1113 if (strcmp(a
->size
, b
->size
))
1116 if (strcmp(a
->map
, b
->map
))
1122 static int cpu_cache_level__read(struct cpu_cache_level
*cache
, u32 cpu
, u16 level
)
1124 char path
[PATH_MAX
], file
[PATH_MAX
];
1128 scnprintf(path
, PATH_MAX
, "devices/system/cpu/cpu%d/cache/index%d/", cpu
, level
);
1129 scnprintf(file
, PATH_MAX
, "%s/%s", sysfs__mountpoint(), path
);
1131 if (stat(file
, &st
))
1134 scnprintf(file
, PATH_MAX
, "%s/level", path
);
1135 if (sysfs__read_int(file
, (int *) &cache
->level
))
1138 scnprintf(file
, PATH_MAX
, "%s/coherency_line_size", path
);
1139 if (sysfs__read_int(file
, (int *) &cache
->line_size
))
1142 scnprintf(file
, PATH_MAX
, "%s/number_of_sets", path
);
1143 if (sysfs__read_int(file
, (int *) &cache
->sets
))
1146 scnprintf(file
, PATH_MAX
, "%s/ways_of_associativity", path
);
1147 if (sysfs__read_int(file
, (int *) &cache
->ways
))
1150 scnprintf(file
, PATH_MAX
, "%s/type", path
);
1151 if (sysfs__read_str(file
, &cache
->type
, &len
))
1154 cache
->type
[len
] = 0;
1155 cache
->type
= strim(cache
->type
);
1157 scnprintf(file
, PATH_MAX
, "%s/size", path
);
1158 if (sysfs__read_str(file
, &cache
->size
, &len
)) {
1159 zfree(&cache
->type
);
1163 cache
->size
[len
] = 0;
1164 cache
->size
= strim(cache
->size
);
1166 scnprintf(file
, PATH_MAX
, "%s/shared_cpu_list", path
);
1167 if (sysfs__read_str(file
, &cache
->map
, &len
)) {
1168 zfree(&cache
->size
);
1169 zfree(&cache
->type
);
1173 cache
->map
[len
] = 0;
1174 cache
->map
= strim(cache
->map
);
1178 static void cpu_cache_level__fprintf(FILE *out
, struct cpu_cache_level
*c
)
1180 fprintf(out
, "L%d %-15s %8s [%s]\n", c
->level
, c
->type
, c
->size
, c
->map
);
1184 * Build caches levels for a particular CPU from the data in
1185 * /sys/devices/system/cpu/cpu<cpu>/cache/
1186 * The cache level data is stored in caches[] from index at
1189 int build_caches_for_cpu(u32 cpu
, struct cpu_cache_level caches
[], u32
*cntp
)
1193 for (level
= 0; level
< MAX_CACHE_LVL
; level
++) {
1194 struct cpu_cache_level c
;
1198 err
= cpu_cache_level__read(&c
, cpu
, level
);
1205 for (i
= 0; i
< *cntp
; i
++) {
1206 if (cpu_cache_level__cmp(&c
, &caches
[i
]))
1214 cpu_cache_level__free(&c
);
1220 static int build_caches(struct cpu_cache_level caches
[], u32
*cntp
)
1222 u32 nr
, cpu
, cnt
= 0;
1224 nr
= cpu__max_cpu().cpu
;
1226 for (cpu
= 0; cpu
< nr
; cpu
++) {
1227 int ret
= build_caches_for_cpu(cpu
, caches
, &cnt
);
1236 static int write_cache(struct feat_fd
*ff
,
1237 struct evlist
*evlist __maybe_unused
)
1239 u32 max_caches
= cpu__max_cpu().cpu
* MAX_CACHE_LVL
;
1240 struct cpu_cache_level caches
[max_caches
];
1241 u32 cnt
= 0, i
, version
= 1;
1244 ret
= build_caches(caches
, &cnt
);
1248 qsort(&caches
, cnt
, sizeof(struct cpu_cache_level
), cpu_cache_level__sort
);
1250 ret
= do_write(ff
, &version
, sizeof(u32
));
1254 ret
= do_write(ff
, &cnt
, sizeof(u32
));
1258 for (i
= 0; i
< cnt
; i
++) {
1259 struct cpu_cache_level
*c
= &caches
[i
];
1262 ret = do_write(ff, &c->v, sizeof(u32)); \
1273 ret = do_write_string(ff, (const char *) c->v); \
1284 for (i
= 0; i
< cnt
; i
++)
1285 cpu_cache_level__free(&caches
[i
]);
1289 static int write_stat(struct feat_fd
*ff __maybe_unused
,
1290 struct evlist
*evlist __maybe_unused
)
1295 static int write_sample_time(struct feat_fd
*ff
,
1296 struct evlist
*evlist
)
1300 ret
= do_write(ff
, &evlist
->first_sample_time
,
1301 sizeof(evlist
->first_sample_time
));
1305 return do_write(ff
, &evlist
->last_sample_time
,
1306 sizeof(evlist
->last_sample_time
));
1310 static int memory_node__read(struct memory_node
*n
, unsigned long idx
)
1312 unsigned int phys
, size
= 0;
1313 char path
[PATH_MAX
];
1317 #define for_each_memory(mem, dir) \
1318 while ((ent = readdir(dir))) \
1319 if (strcmp(ent->d_name, ".") && \
1320 strcmp(ent->d_name, "..") && \
1321 sscanf(ent->d_name, "memory%u", &mem) == 1)
1323 scnprintf(path
, PATH_MAX
,
1324 "%s/devices/system/node/node%lu",
1325 sysfs__mountpoint(), idx
);
1327 dir
= opendir(path
);
1329 pr_warning("failed: can't open memory sysfs data\n");
1333 for_each_memory(phys
, dir
) {
1334 size
= max(phys
, size
);
1339 n
->set
= bitmap_zalloc(size
);
1350 for_each_memory(phys
, dir
) {
1351 __set_bit(phys
, n
->set
);
1358 static void memory_node__delete_nodes(struct memory_node
*nodesp
, u64 cnt
)
1360 for (u64 i
= 0; i
< cnt
; i
++)
1361 bitmap_free(nodesp
[i
].set
);
1366 static int memory_node__sort(const void *a
, const void *b
)
1368 const struct memory_node
*na
= a
;
1369 const struct memory_node
*nb
= b
;
1371 return na
->node
- nb
->node
;
1374 static int build_mem_topology(struct memory_node
**nodesp
, u64
*cntp
)
1376 char path
[PATH_MAX
];
1380 size_t cnt
= 0, size
= 0;
1381 struct memory_node
*nodes
= NULL
;
1383 scnprintf(path
, PATH_MAX
, "%s/devices/system/node/",
1384 sysfs__mountpoint());
1386 dir
= opendir(path
);
1388 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1393 while (!ret
&& (ent
= readdir(dir
))) {
1397 if (!strcmp(ent
->d_name
, ".") ||
1398 !strcmp(ent
->d_name
, ".."))
1401 r
= sscanf(ent
->d_name
, "node%u", &idx
);
1406 struct memory_node
*new_nodes
=
1407 reallocarray(nodes
, cnt
+ 4, sizeof(*nodes
));
1410 pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size
);
1417 ret
= memory_node__read(&nodes
[cnt
], idx
);
1426 qsort(nodes
, cnt
, sizeof(nodes
[0]), memory_node__sort
);
1428 memory_node__delete_nodes(nodes
, cnt
);
1434 * The MEM_TOPOLOGY holds physical memory map for every
1435 * node in system. The format of data is as follows:
1437 * 0 - version | for future changes
1438 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1439 * 16 - count | number of nodes
1441 * For each node we store map of physical indexes for
1444 * 32 - node id | node index
1445 * 40 - size | size of bitmap
1446 * 48 - bitmap | bitmap of memory indexes that belongs to node
1448 static int write_mem_topology(struct feat_fd
*ff __maybe_unused
,
1449 struct evlist
*evlist __maybe_unused
)
1451 struct memory_node
*nodes
= NULL
;
1452 u64 bsize
, version
= 1, i
, nr
= 0;
1455 ret
= sysfs__read_xll("devices/system/memory/block_size_bytes",
1456 (unsigned long long *) &bsize
);
1460 ret
= build_mem_topology(&nodes
, &nr
);
1464 ret
= do_write(ff
, &version
, sizeof(version
));
1468 ret
= do_write(ff
, &bsize
, sizeof(bsize
));
1472 ret
= do_write(ff
, &nr
, sizeof(nr
));
1476 for (i
= 0; i
< nr
; i
++) {
1477 struct memory_node
*n
= &nodes
[i
];
1480 ret = do_write(ff, &n->v, sizeof(n->v)); \
1489 ret
= do_write_bitmap(ff
, n
->set
, n
->size
);
1495 memory_node__delete_nodes(nodes
, nr
);
1499 static int write_compressed(struct feat_fd
*ff __maybe_unused
,
1500 struct evlist
*evlist __maybe_unused
)
1504 ret
= do_write(ff
, &(ff
->ph
->env
.comp_ver
), sizeof(ff
->ph
->env
.comp_ver
));
1508 ret
= do_write(ff
, &(ff
->ph
->env
.comp_type
), sizeof(ff
->ph
->env
.comp_type
));
1512 ret
= do_write(ff
, &(ff
->ph
->env
.comp_level
), sizeof(ff
->ph
->env
.comp_level
));
1516 ret
= do_write(ff
, &(ff
->ph
->env
.comp_ratio
), sizeof(ff
->ph
->env
.comp_ratio
));
1520 return do_write(ff
, &(ff
->ph
->env
.comp_mmap_len
), sizeof(ff
->ph
->env
.comp_mmap_len
));
1523 static int __write_pmu_caps(struct feat_fd
*ff
, struct perf_pmu
*pmu
,
1526 struct perf_pmu_caps
*caps
= NULL
;
1529 ret
= do_write(ff
, &pmu
->nr_caps
, sizeof(pmu
->nr_caps
));
1533 list_for_each_entry(caps
, &pmu
->caps
, list
) {
1534 ret
= do_write_string(ff
, caps
->name
);
1538 ret
= do_write_string(ff
, caps
->value
);
1544 ret
= do_write_string(ff
, pmu
->name
);
1552 static int write_cpu_pmu_caps(struct feat_fd
*ff
,
1553 struct evlist
*evlist __maybe_unused
)
1555 struct perf_pmu
*cpu_pmu
= perf_pmus__find("cpu");
1561 ret
= perf_pmu__caps_parse(cpu_pmu
);
1565 return __write_pmu_caps(ff
, cpu_pmu
, false);
1568 static int write_pmu_caps(struct feat_fd
*ff
,
1569 struct evlist
*evlist __maybe_unused
)
1571 struct perf_pmu
*pmu
= NULL
;
1575 while ((pmu
= perf_pmus__scan(pmu
))) {
1576 if (!strcmp(pmu
->name
, "cpu")) {
1578 * The "cpu" PMU is special and covered by
1579 * HEADER_CPU_PMU_CAPS. Note, core PMUs are
1580 * counted/written here for ARM, s390 and Intel hybrid.
1584 if (perf_pmu__caps_parse(pmu
) <= 0)
1589 ret
= do_write(ff
, &nr_pmu
, sizeof(nr_pmu
));
1597 * Note older perf tools assume core PMUs come first, this is a property
1598 * of perf_pmus__scan.
1601 while ((pmu
= perf_pmus__scan(pmu
))) {
1602 if (!strcmp(pmu
->name
, "cpu")) {
1603 /* Skip as above. */
1606 if (perf_pmu__caps_parse(pmu
) <= 0)
1608 ret
= __write_pmu_caps(ff
, pmu
, true);
1615 static void print_hostname(struct feat_fd
*ff
, FILE *fp
)
1617 fprintf(fp
, "# hostname : %s\n", ff
->ph
->env
.hostname
);
1620 static void print_osrelease(struct feat_fd
*ff
, FILE *fp
)
1622 fprintf(fp
, "# os release : %s\n", ff
->ph
->env
.os_release
);
1625 static void print_arch(struct feat_fd
*ff
, FILE *fp
)
1627 fprintf(fp
, "# arch : %s\n", ff
->ph
->env
.arch
);
1630 static void print_cpudesc(struct feat_fd
*ff
, FILE *fp
)
1632 fprintf(fp
, "# cpudesc : %s\n", ff
->ph
->env
.cpu_desc
);
1635 static void print_nrcpus(struct feat_fd
*ff
, FILE *fp
)
1637 fprintf(fp
, "# nrcpus online : %u\n", ff
->ph
->env
.nr_cpus_online
);
1638 fprintf(fp
, "# nrcpus avail : %u\n", ff
->ph
->env
.nr_cpus_avail
);
1641 static void print_version(struct feat_fd
*ff
, FILE *fp
)
1643 fprintf(fp
, "# perf version : %s\n", ff
->ph
->env
.version
);
1646 static void print_cmdline(struct feat_fd
*ff
, FILE *fp
)
1650 nr
= ff
->ph
->env
.nr_cmdline
;
1652 fprintf(fp
, "# cmdline : ");
1654 for (i
= 0; i
< nr
; i
++) {
1655 char *argv_i
= strdup(ff
->ph
->env
.cmdline_argv
[i
]);
1657 fprintf(fp
, "%s ", ff
->ph
->env
.cmdline_argv
[i
]);
1661 char *quote
= strchr(argv_i
, '\'');
1665 fprintf(fp
, "%s\\\'", argv_i
);
1668 fprintf(fp
, "%s ", argv_i
);
1675 static void print_cpu_topology(struct feat_fd
*ff
, FILE *fp
)
1677 struct perf_header
*ph
= ff
->ph
;
1678 int cpu_nr
= ph
->env
.nr_cpus_avail
;
1682 nr
= ph
->env
.nr_sibling_cores
;
1683 str
= ph
->env
.sibling_cores
;
1685 for (i
= 0; i
< nr
; i
++) {
1686 fprintf(fp
, "# sibling sockets : %s\n", str
);
1687 str
+= strlen(str
) + 1;
1690 if (ph
->env
.nr_sibling_dies
) {
1691 nr
= ph
->env
.nr_sibling_dies
;
1692 str
= ph
->env
.sibling_dies
;
1694 for (i
= 0; i
< nr
; i
++) {
1695 fprintf(fp
, "# sibling dies : %s\n", str
);
1696 str
+= strlen(str
) + 1;
1700 nr
= ph
->env
.nr_sibling_threads
;
1701 str
= ph
->env
.sibling_threads
;
1703 for (i
= 0; i
< nr
; i
++) {
1704 fprintf(fp
, "# sibling threads : %s\n", str
);
1705 str
+= strlen(str
) + 1;
1708 if (ph
->env
.nr_sibling_dies
) {
1709 if (ph
->env
.cpu
!= NULL
) {
1710 for (i
= 0; i
< cpu_nr
; i
++)
1711 fprintf(fp
, "# CPU %d: Core ID %d, "
1712 "Die ID %d, Socket ID %d\n",
1713 i
, ph
->env
.cpu
[i
].core_id
,
1714 ph
->env
.cpu
[i
].die_id
,
1715 ph
->env
.cpu
[i
].socket_id
);
1717 fprintf(fp
, "# Core ID, Die ID and Socket ID "
1718 "information is not available\n");
1720 if (ph
->env
.cpu
!= NULL
) {
1721 for (i
= 0; i
< cpu_nr
; i
++)
1722 fprintf(fp
, "# CPU %d: Core ID %d, "
1724 i
, ph
->env
.cpu
[i
].core_id
,
1725 ph
->env
.cpu
[i
].socket_id
);
1727 fprintf(fp
, "# Core ID and Socket ID "
1728 "information is not available\n");
1732 static void print_clockid(struct feat_fd
*ff
, FILE *fp
)
1734 fprintf(fp
, "# clockid frequency: %"PRIu64
" MHz\n",
1735 ff
->ph
->env
.clock
.clockid_res_ns
* 1000);
1738 static void print_clock_data(struct feat_fd
*ff
, FILE *fp
)
1740 struct timespec clockid_ns
;
1741 char tstr
[64], date
[64];
1742 struct timeval tod_ns
;
1747 if (!ff
->ph
->env
.clock
.enabled
) {
1748 fprintf(fp
, "# reference time disabled\n");
1752 /* Compute TOD time. */
1753 ref
= ff
->ph
->env
.clock
.tod_ns
;
1754 tod_ns
.tv_sec
= ref
/ NSEC_PER_SEC
;
1755 ref
-= tod_ns
.tv_sec
* NSEC_PER_SEC
;
1756 tod_ns
.tv_usec
= ref
/ NSEC_PER_USEC
;
1758 /* Compute clockid time. */
1759 ref
= ff
->ph
->env
.clock
.clockid_ns
;
1760 clockid_ns
.tv_sec
= ref
/ NSEC_PER_SEC
;
1761 ref
-= clockid_ns
.tv_sec
* NSEC_PER_SEC
;
1762 clockid_ns
.tv_nsec
= ref
;
1764 clockid
= ff
->ph
->env
.clock
.clockid
;
1766 if (localtime_r(&tod_ns
.tv_sec
, <ime
) == NULL
)
1767 snprintf(tstr
, sizeof(tstr
), "<error>");
1769 strftime(date
, sizeof(date
), "%F %T", <ime
);
1770 scnprintf(tstr
, sizeof(tstr
), "%s.%06d",
1771 date
, (int) tod_ns
.tv_usec
);
1774 fprintf(fp
, "# clockid: %s (%u)\n", clockid_name(clockid
), clockid
);
1775 fprintf(fp
, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1776 tstr
, (long) tod_ns
.tv_sec
, (int) tod_ns
.tv_usec
,
1777 (long) clockid_ns
.tv_sec
, clockid_ns
.tv_nsec
,
1778 clockid_name(clockid
));
1781 static void print_hybrid_topology(struct feat_fd
*ff
, FILE *fp
)
1784 struct hybrid_node
*n
;
1786 fprintf(fp
, "# hybrid cpu system:\n");
1787 for (i
= 0; i
< ff
->ph
->env
.nr_hybrid_nodes
; i
++) {
1788 n
= &ff
->ph
->env
.hybrid_nodes
[i
];
1789 fprintf(fp
, "# %s cpu list : %s\n", n
->pmu_name
, n
->cpus
);
1793 static void print_dir_format(struct feat_fd
*ff
, FILE *fp
)
1795 struct perf_session
*session
;
1796 struct perf_data
*data
;
1798 session
= container_of(ff
->ph
, struct perf_session
, header
);
1799 data
= session
->data
;
1801 fprintf(fp
, "# directory data version : %"PRIu64
"\n", data
->dir
.version
);
1804 #ifdef HAVE_LIBBPF_SUPPORT
1805 static void print_bpf_prog_info(struct feat_fd
*ff
, FILE *fp
)
1807 struct perf_env
*env
= &ff
->ph
->env
;
1808 struct rb_root
*root
;
1809 struct rb_node
*next
;
1811 down_read(&env
->bpf_progs
.lock
);
1813 root
= &env
->bpf_progs
.infos
;
1814 next
= rb_first(root
);
1817 struct bpf_prog_info_node
*node
;
1819 node
= rb_entry(next
, struct bpf_prog_info_node
, rb_node
);
1820 next
= rb_next(&node
->rb_node
);
1822 __bpf_event__print_bpf_prog_info(&node
->info_linear
->info
,
1826 up_read(&env
->bpf_progs
.lock
);
1829 static void print_bpf_btf(struct feat_fd
*ff
, FILE *fp
)
1831 struct perf_env
*env
= &ff
->ph
->env
;
1832 struct rb_root
*root
;
1833 struct rb_node
*next
;
1835 down_read(&env
->bpf_progs
.lock
);
1837 root
= &env
->bpf_progs
.btfs
;
1838 next
= rb_first(root
);
1841 struct btf_node
*node
;
1843 node
= rb_entry(next
, struct btf_node
, rb_node
);
1844 next
= rb_next(&node
->rb_node
);
1845 fprintf(fp
, "# btf info of id %u\n", node
->id
);
1848 up_read(&env
->bpf_progs
.lock
);
1850 #endif // HAVE_LIBBPF_SUPPORT
1852 static void free_event_desc(struct evsel
*events
)
1854 struct evsel
*evsel
;
1859 for (evsel
= events
; evsel
->core
.attr
.size
; evsel
++) {
1860 zfree(&evsel
->name
);
1861 zfree(&evsel
->core
.id
);
1867 static bool perf_attr_check(struct perf_event_attr
*attr
)
1869 if (attr
->__reserved_1
|| attr
->__reserved_2
|| attr
->__reserved_3
) {
1870 pr_warning("Reserved bits are set unexpectedly. "
1871 "Please update perf tool.\n");
1875 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1)) {
1876 pr_warning("Unknown sample type (0x%llx) is detected. "
1877 "Please update perf tool.\n",
1882 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1)) {
1883 pr_warning("Unknown read format (0x%llx) is detected. "
1884 "Please update perf tool.\n",
1889 if ((attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) &&
1890 (attr
->branch_sample_type
& ~(PERF_SAMPLE_BRANCH_MAX
-1))) {
1891 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1892 "Please update perf tool.\n",
1893 attr
->branch_sample_type
);
1901 static struct evsel
*read_event_desc(struct feat_fd
*ff
)
1903 struct evsel
*evsel
, *events
= NULL
;
1906 u32 nre
, sz
, nr
, i
, j
;
1909 /* number of events */
1910 if (do_read_u32(ff
, &nre
))
1913 if (do_read_u32(ff
, &sz
))
1916 /* buffer to hold on file attr struct */
1921 /* the last event terminates with evsel->core.attr.size == 0: */
1922 events
= calloc(nre
+ 1, sizeof(*events
));
1926 msz
= sizeof(evsel
->core
.attr
);
1930 for (i
= 0, evsel
= events
; i
< nre
; evsel
++, i
++) {
1931 evsel
->core
.idx
= i
;
1934 * must read entire on-file attr struct to
1935 * sync up with layout.
1937 if (__do_read(ff
, buf
, sz
))
1940 if (ff
->ph
->needs_swap
)
1941 perf_event__attr_swap(buf
);
1943 memcpy(&evsel
->core
.attr
, buf
, msz
);
1945 if (!perf_attr_check(&evsel
->core
.attr
))
1948 if (do_read_u32(ff
, &nr
))
1951 if (ff
->ph
->needs_swap
)
1952 evsel
->needs_swap
= true;
1954 evsel
->name
= do_read_string(ff
);
1961 id
= calloc(nr
, sizeof(*id
));
1964 evsel
->core
.ids
= nr
;
1965 evsel
->core
.id
= id
;
1967 for (j
= 0 ; j
< nr
; j
++) {
1968 if (do_read_u64(ff
, id
))
1977 free_event_desc(events
);
1982 static int __desc_attr__fprintf(FILE *fp
, const char *name
, const char *val
,
1983 void *priv __maybe_unused
)
1985 return fprintf(fp
, ", %s = %s", name
, val
);
1988 static void print_event_desc(struct feat_fd
*ff
, FILE *fp
)
1990 struct evsel
*evsel
, *events
;
1995 events
= ff
->events
;
1997 events
= read_event_desc(ff
);
2000 fprintf(fp
, "# event desc: not available or unable to read\n");
2004 for (evsel
= events
; evsel
->core
.attr
.size
; evsel
++) {
2005 fprintf(fp
, "# event : name = %s, ", evsel
->name
);
2007 if (evsel
->core
.ids
) {
2008 fprintf(fp
, ", id = {");
2009 for (j
= 0, id
= evsel
->core
.id
; j
< evsel
->core
.ids
; j
++, id
++) {
2012 fprintf(fp
, " %"PRIu64
, *id
);
2017 perf_event_attr__fprintf(fp
, &evsel
->core
.attr
, __desc_attr__fprintf
, NULL
);
2022 free_event_desc(events
);
2026 static void print_total_mem(struct feat_fd
*ff
, FILE *fp
)
2028 fprintf(fp
, "# total memory : %llu kB\n", ff
->ph
->env
.total_mem
);
2031 static void print_numa_topology(struct feat_fd
*ff
, FILE *fp
)
2034 struct numa_node
*n
;
2036 for (i
= 0; i
< ff
->ph
->env
.nr_numa_nodes
; i
++) {
2037 n
= &ff
->ph
->env
.numa_nodes
[i
];
2039 fprintf(fp
, "# node%u meminfo : total = %"PRIu64
" kB,"
2040 " free = %"PRIu64
" kB\n",
2041 n
->node
, n
->mem_total
, n
->mem_free
);
2043 fprintf(fp
, "# node%u cpu list : ", n
->node
);
2044 cpu_map__fprintf(n
->map
, fp
);
2048 static void print_cpuid(struct feat_fd
*ff
, FILE *fp
)
2050 fprintf(fp
, "# cpuid : %s\n", ff
->ph
->env
.cpuid
);
2053 static void print_branch_stack(struct feat_fd
*ff __maybe_unused
, FILE *fp
)
2055 fprintf(fp
, "# contains samples with branch stack\n");
2058 static void print_auxtrace(struct feat_fd
*ff __maybe_unused
, FILE *fp
)
2060 fprintf(fp
, "# contains AUX area data (e.g. instruction trace)\n");
2063 static void print_stat(struct feat_fd
*ff __maybe_unused
, FILE *fp
)
2065 fprintf(fp
, "# contains stat data\n");
2068 static void print_cache(struct feat_fd
*ff
, FILE *fp __maybe_unused
)
2072 fprintf(fp
, "# CPU cache info:\n");
2073 for (i
= 0; i
< ff
->ph
->env
.caches_cnt
; i
++) {
2075 cpu_cache_level__fprintf(fp
, &ff
->ph
->env
.caches
[i
]);
2079 static void print_compressed(struct feat_fd
*ff
, FILE *fp
)
2081 fprintf(fp
, "# compressed : %s, level = %d, ratio = %d\n",
2082 ff
->ph
->env
.comp_type
== PERF_COMP_ZSTD
? "Zstd" : "Unknown",
2083 ff
->ph
->env
.comp_level
, ff
->ph
->env
.comp_ratio
);
2086 static void __print_pmu_caps(FILE *fp
, int nr_caps
, char **caps
, char *pmu_name
)
2088 const char *delimiter
= "";
2092 fprintf(fp
, "# %s pmu capabilities: not available\n", pmu_name
);
2096 fprintf(fp
, "# %s pmu capabilities: ", pmu_name
);
2097 for (i
= 0; i
< nr_caps
; i
++) {
2098 fprintf(fp
, "%s%s", delimiter
, caps
[i
]);
2105 static void print_cpu_pmu_caps(struct feat_fd
*ff
, FILE *fp
)
2107 __print_pmu_caps(fp
, ff
->ph
->env
.nr_cpu_pmu_caps
,
2108 ff
->ph
->env
.cpu_pmu_caps
, (char *)"cpu");
2111 static void print_pmu_caps(struct feat_fd
*ff
, FILE *fp
)
2113 struct pmu_caps
*pmu_caps
;
2115 for (int i
= 0; i
< ff
->ph
->env
.nr_pmus_with_caps
; i
++) {
2116 pmu_caps
= &ff
->ph
->env
.pmu_caps
[i
];
2117 __print_pmu_caps(fp
, pmu_caps
->nr_caps
, pmu_caps
->caps
,
2118 pmu_caps
->pmu_name
);
2121 if (strcmp(perf_env__arch(&ff
->ph
->env
), "x86") == 0 &&
2122 perf_env__has_pmu_mapping(&ff
->ph
->env
, "ibs_op")) {
2123 char *max_precise
= perf_env__find_pmu_cap(&ff
->ph
->env
, "cpu", "max_precise");
2125 if (max_precise
!= NULL
&& atoi(max_precise
) == 0)
2126 fprintf(fp
, "# AMD systems uses ibs_op// PMU for some precise events, e.g.: cycles:p, see the 'perf list' man page for further details.\n");
2130 static void print_pmu_mappings(struct feat_fd
*ff
, FILE *fp
)
2132 const char *delimiter
= "# pmu mappings: ";
2137 pmu_num
= ff
->ph
->env
.nr_pmu_mappings
;
2139 fprintf(fp
, "# pmu mappings: not available\n");
2143 str
= ff
->ph
->env
.pmu_mappings
;
2146 type
= strtoul(str
, &tmp
, 0);
2151 fprintf(fp
, "%s%s = %" PRIu32
, delimiter
, str
, type
);
2154 str
+= strlen(str
) + 1;
2163 fprintf(fp
, "# pmu mappings: unable to read\n");
2166 static void print_group_desc(struct feat_fd
*ff
, FILE *fp
)
2168 struct perf_session
*session
;
2169 struct evsel
*evsel
;
2172 session
= container_of(ff
->ph
, struct perf_session
, header
);
2174 evlist__for_each_entry(session
->evlist
, evsel
) {
2175 if (evsel__is_group_leader(evsel
) && evsel
->core
.nr_members
> 1) {
2176 fprintf(fp
, "# group: %s{%s", evsel
->group_name
?: "", evsel__name(evsel
));
2178 nr
= evsel
->core
.nr_members
- 1;
2180 fprintf(fp
, ",%s", evsel__name(evsel
));
2188 static void print_sample_time(struct feat_fd
*ff
, FILE *fp
)
2190 struct perf_session
*session
;
2194 session
= container_of(ff
->ph
, struct perf_session
, header
);
2196 timestamp__scnprintf_usec(session
->evlist
->first_sample_time
,
2197 time_buf
, sizeof(time_buf
));
2198 fprintf(fp
, "# time of first sample : %s\n", time_buf
);
2200 timestamp__scnprintf_usec(session
->evlist
->last_sample_time
,
2201 time_buf
, sizeof(time_buf
));
2202 fprintf(fp
, "# time of last sample : %s\n", time_buf
);
2204 d
= (double)(session
->evlist
->last_sample_time
-
2205 session
->evlist
->first_sample_time
) / NSEC_PER_MSEC
;
2207 fprintf(fp
, "# sample duration : %10.3f ms\n", d
);
2210 static void memory_node__fprintf(struct memory_node
*n
,
2211 unsigned long long bsize
, FILE *fp
)
2213 char buf_map
[100], buf_size
[50];
2214 unsigned long long size
;
2216 size
= bsize
* bitmap_weight(n
->set
, n
->size
);
2217 unit_number__scnprintf(buf_size
, 50, size
);
2219 bitmap_scnprintf(n
->set
, n
->size
, buf_map
, 100);
2220 fprintf(fp
, "# %3" PRIu64
" [%s]: %s\n", n
->node
, buf_size
, buf_map
);
2223 static void print_mem_topology(struct feat_fd
*ff
, FILE *fp
)
2225 struct memory_node
*nodes
;
2228 nodes
= ff
->ph
->env
.memory_nodes
;
2229 nr
= ff
->ph
->env
.nr_memory_nodes
;
2231 fprintf(fp
, "# memory nodes (nr %d, block size 0x%llx):\n",
2232 nr
, ff
->ph
->env
.memory_bsize
);
2234 for (i
= 0; i
< nr
; i
++) {
2235 memory_node__fprintf(&nodes
[i
], ff
->ph
->env
.memory_bsize
, fp
);
2239 static int __event_process_build_id(struct perf_record_header_build_id
*bev
,
2241 struct perf_session
*session
)
2244 struct machine
*machine
;
2247 enum dso_space_type dso_space
;
2249 machine
= perf_session__findnew_machine(session
, bev
->pid
);
2253 cpumode
= bev
->header
.misc
& PERF_RECORD_MISC_CPUMODE_MASK
;
2256 case PERF_RECORD_MISC_KERNEL
:
2257 dso_space
= DSO_SPACE__KERNEL
;
2259 case PERF_RECORD_MISC_GUEST_KERNEL
:
2260 dso_space
= DSO_SPACE__KERNEL_GUEST
;
2262 case PERF_RECORD_MISC_USER
:
2263 case PERF_RECORD_MISC_GUEST_USER
:
2264 dso_space
= DSO_SPACE__USER
;
2270 dso
= machine__findnew_dso(machine
, filename
);
2272 char sbuild_id
[SBUILD_ID_SIZE
];
2273 struct build_id bid
;
2274 size_t size
= BUILD_ID_SIZE
;
2276 if (bev
->header
.misc
& PERF_RECORD_MISC_BUILD_ID_SIZE
)
2279 build_id__init(&bid
, bev
->data
, size
);
2280 dso__set_build_id(dso
, &bid
);
2281 dso__set_header_build_id(dso
, true);
2283 if (dso_space
!= DSO_SPACE__USER
) {
2284 struct kmod_path m
= { .name
= NULL
, };
2286 if (!kmod_path__parse_name(&m
, filename
) && m
.kmod
)
2287 dso__set_module_info(dso
, &m
, machine
);
2289 dso__set_kernel(dso
, dso_space
);
2293 build_id__sprintf(dso__bid(dso
), sbuild_id
);
2294 pr_debug("build id event received for %s: %s [%zu]\n",
2295 dso__long_name(dso
), sbuild_id
, size
);
2304 static int perf_header__read_build_ids_abi_quirk(struct perf_header
*header
,
2305 int input
, u64 offset
, u64 size
)
2307 struct perf_session
*session
= container_of(header
, struct perf_session
, header
);
2309 struct perf_event_header header
;
2310 u8 build_id
[PERF_ALIGN(BUILD_ID_SIZE
, sizeof(u64
))];
2313 struct perf_record_header_build_id bev
;
2314 char filename
[PATH_MAX
];
2315 u64 limit
= offset
+ size
;
2317 while (offset
< limit
) {
2320 if (readn(input
, &old_bev
, sizeof(old_bev
)) != sizeof(old_bev
))
2323 if (header
->needs_swap
)
2324 perf_event_header__bswap(&old_bev
.header
);
2326 len
= old_bev
.header
.size
- sizeof(old_bev
);
2327 if (readn(input
, filename
, len
) != len
)
2330 bev
.header
= old_bev
.header
;
2333 * As the pid is the missing value, we need to fill
2334 * it properly. The header.misc value give us nice hint.
2336 bev
.pid
= HOST_KERNEL_ID
;
2337 if (bev
.header
.misc
== PERF_RECORD_MISC_GUEST_USER
||
2338 bev
.header
.misc
== PERF_RECORD_MISC_GUEST_KERNEL
)
2339 bev
.pid
= DEFAULT_GUEST_KERNEL_ID
;
2341 memcpy(bev
.build_id
, old_bev
.build_id
, sizeof(bev
.build_id
));
2342 __event_process_build_id(&bev
, filename
, session
);
2344 offset
+= bev
.header
.size
;
2350 static int perf_header__read_build_ids(struct perf_header
*header
,
2351 int input
, u64 offset
, u64 size
)
2353 struct perf_session
*session
= container_of(header
, struct perf_session
, header
);
2354 struct perf_record_header_build_id bev
;
2355 char filename
[PATH_MAX
];
2356 u64 limit
= offset
+ size
, orig_offset
= offset
;
2359 while (offset
< limit
) {
2362 if (readn(input
, &bev
, sizeof(bev
)) != sizeof(bev
))
2365 if (header
->needs_swap
)
2366 perf_event_header__bswap(&bev
.header
);
2368 len
= bev
.header
.size
- sizeof(bev
);
2369 if (readn(input
, filename
, len
) != len
)
2372 * The a1645ce1 changeset:
2374 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2376 * Added a field to struct perf_record_header_build_id that broke the file
2379 * Since the kernel build-id is the first entry, process the
2380 * table using the old format if the well known
2381 * '[kernel.kallsyms]' string for the kernel build-id has the
2382 * first 4 characters chopped off (where the pid_t sits).
2384 if (memcmp(filename
, "nel.kallsyms]", 13) == 0) {
2385 if (lseek(input
, orig_offset
, SEEK_SET
) == (off_t
)-1)
2387 return perf_header__read_build_ids_abi_quirk(header
, input
, offset
, size
);
2390 __event_process_build_id(&bev
, filename
, session
);
2392 offset
+= bev
.header
.size
;
2399 /* Macro for features that simply need to read and store a string. */
2400 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2401 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2403 free(ff->ph->env.__feat_env); \
2404 ff->ph->env.__feat_env = do_read_string(ff); \
2405 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2408 FEAT_PROCESS_STR_FUN(hostname
, hostname
);
2409 FEAT_PROCESS_STR_FUN(osrelease
, os_release
);
2410 FEAT_PROCESS_STR_FUN(version
, version
);
2411 FEAT_PROCESS_STR_FUN(arch
, arch
);
2412 FEAT_PROCESS_STR_FUN(cpudesc
, cpu_desc
);
2413 FEAT_PROCESS_STR_FUN(cpuid
, cpuid
);
2415 #ifdef HAVE_LIBTRACEEVENT
2416 static int process_tracing_data(struct feat_fd
*ff
, void *data
)
2418 ssize_t ret
= trace_report(ff
->fd
, data
, false);
2420 return ret
< 0 ? -1 : 0;
2424 static int process_build_id(struct feat_fd
*ff
, void *data __maybe_unused
)
2426 if (perf_header__read_build_ids(ff
->ph
, ff
->fd
, ff
->offset
, ff
->size
))
2427 pr_debug("Failed to read buildids, continuing...\n");
2431 static int process_nrcpus(struct feat_fd
*ff
, void *data __maybe_unused
)
2434 u32 nr_cpus_avail
, nr_cpus_online
;
2436 ret
= do_read_u32(ff
, &nr_cpus_avail
);
2440 ret
= do_read_u32(ff
, &nr_cpus_online
);
2443 ff
->ph
->env
.nr_cpus_avail
= (int)nr_cpus_avail
;
2444 ff
->ph
->env
.nr_cpus_online
= (int)nr_cpus_online
;
2448 static int process_total_mem(struct feat_fd
*ff
, void *data __maybe_unused
)
2453 ret
= do_read_u64(ff
, &total_mem
);
2456 ff
->ph
->env
.total_mem
= (unsigned long long)total_mem
;
2460 static struct evsel
*evlist__find_by_index(struct evlist
*evlist
, int idx
)
2462 struct evsel
*evsel
;
2464 evlist__for_each_entry(evlist
, evsel
) {
2465 if (evsel
->core
.idx
== idx
)
2472 static void evlist__set_event_name(struct evlist
*evlist
, struct evsel
*event
)
2474 struct evsel
*evsel
;
2479 evsel
= evlist__find_by_index(evlist
, event
->core
.idx
);
2486 evsel
->name
= strdup(event
->name
);
2490 process_event_desc(struct feat_fd
*ff
, void *data __maybe_unused
)
2492 struct perf_session
*session
;
2493 struct evsel
*evsel
, *events
= read_event_desc(ff
);
2498 session
= container_of(ff
->ph
, struct perf_session
, header
);
2500 if (session
->data
->is_pipe
) {
2501 /* Save events for reading later by print_event_desc,
2502 * since they can't be read again in pipe mode. */
2503 ff
->events
= events
;
2506 for (evsel
= events
; evsel
->core
.attr
.size
; evsel
++)
2507 evlist__set_event_name(session
->evlist
, evsel
);
2509 if (!session
->data
->is_pipe
)
2510 free_event_desc(events
);
2515 static int process_cmdline(struct feat_fd
*ff
, void *data __maybe_unused
)
2517 char *str
, *cmdline
= NULL
, **argv
= NULL
;
2520 if (do_read_u32(ff
, &nr
))
2523 ff
->ph
->env
.nr_cmdline
= nr
;
2525 cmdline
= zalloc(ff
->size
+ nr
+ 1);
2529 argv
= zalloc(sizeof(char *) * (nr
+ 1));
2533 for (i
= 0; i
< nr
; i
++) {
2534 str
= do_read_string(ff
);
2538 argv
[i
] = cmdline
+ len
;
2539 memcpy(argv
[i
], str
, strlen(str
) + 1);
2540 len
+= strlen(str
) + 1;
2543 ff
->ph
->env
.cmdline
= cmdline
;
2544 ff
->ph
->env
.cmdline_argv
= (const char **) argv
;
2553 static int process_cpu_topology(struct feat_fd
*ff
, void *data __maybe_unused
)
2558 int cpu_nr
= ff
->ph
->env
.nr_cpus_avail
;
2560 struct perf_header
*ph
= ff
->ph
;
2561 bool do_core_id_test
= true;
2563 ph
->env
.cpu
= calloc(cpu_nr
, sizeof(*ph
->env
.cpu
));
2567 if (do_read_u32(ff
, &nr
))
2570 ph
->env
.nr_sibling_cores
= nr
;
2571 size
+= sizeof(u32
);
2572 if (strbuf_init(&sb
, 128) < 0)
2575 for (i
= 0; i
< nr
; i
++) {
2576 str
= do_read_string(ff
);
2580 /* include a NULL character at the end */
2581 if (strbuf_add(&sb
, str
, strlen(str
) + 1) < 0)
2583 size
+= string_size(str
);
2586 ph
->env
.sibling_cores
= strbuf_detach(&sb
, NULL
);
2588 if (do_read_u32(ff
, &nr
))
2591 ph
->env
.nr_sibling_threads
= nr
;
2592 size
+= sizeof(u32
);
2594 for (i
= 0; i
< nr
; i
++) {
2595 str
= do_read_string(ff
);
2599 /* include a NULL character at the end */
2600 if (strbuf_add(&sb
, str
, strlen(str
) + 1) < 0)
2602 size
+= string_size(str
);
2605 ph
->env
.sibling_threads
= strbuf_detach(&sb
, NULL
);
2608 * The header may be from old perf,
2609 * which doesn't include core id and socket id information.
2611 if (ff
->size
<= size
) {
2612 zfree(&ph
->env
.cpu
);
2616 /* On s390 the socket_id number is not related to the numbers of cpus.
2617 * The socket_id number might be higher than the numbers of cpus.
2618 * This depends on the configuration.
2619 * AArch64 is the same.
2621 if (ph
->env
.arch
&& (!strncmp(ph
->env
.arch
, "s390", 4)
2622 || !strncmp(ph
->env
.arch
, "aarch64", 7)))
2623 do_core_id_test
= false;
2625 for (i
= 0; i
< (u32
)cpu_nr
; i
++) {
2626 if (do_read_u32(ff
, &nr
))
2629 ph
->env
.cpu
[i
].core_id
= nr
;
2630 size
+= sizeof(u32
);
2632 if (do_read_u32(ff
, &nr
))
2635 if (do_core_id_test
&& nr
!= (u32
)-1 && nr
> (u32
)cpu_nr
) {
2636 pr_debug("socket_id number is too big."
2637 "You may need to upgrade the perf tool.\n");
2641 ph
->env
.cpu
[i
].socket_id
= nr
;
2642 size
+= sizeof(u32
);
2646 * The header may be from old perf,
2647 * which doesn't include die information.
2649 if (ff
->size
<= size
)
2652 if (do_read_u32(ff
, &nr
))
2655 ph
->env
.nr_sibling_dies
= nr
;
2656 size
+= sizeof(u32
);
2658 for (i
= 0; i
< nr
; i
++) {
2659 str
= do_read_string(ff
);
2663 /* include a NULL character at the end */
2664 if (strbuf_add(&sb
, str
, strlen(str
) + 1) < 0)
2666 size
+= string_size(str
);
2669 ph
->env
.sibling_dies
= strbuf_detach(&sb
, NULL
);
2671 for (i
= 0; i
< (u32
)cpu_nr
; i
++) {
2672 if (do_read_u32(ff
, &nr
))
2675 ph
->env
.cpu
[i
].die_id
= nr
;
2681 strbuf_release(&sb
);
2684 zfree(&ph
->env
.cpu
);
2688 static int process_numa_topology(struct feat_fd
*ff
, void *data __maybe_unused
)
2690 struct numa_node
*nodes
, *n
;
2695 if (do_read_u32(ff
, &nr
))
2698 nodes
= zalloc(sizeof(*nodes
) * nr
);
2702 for (i
= 0; i
< nr
; i
++) {
2706 if (do_read_u32(ff
, &n
->node
))
2709 if (do_read_u64(ff
, &n
->mem_total
))
2712 if (do_read_u64(ff
, &n
->mem_free
))
2715 str
= do_read_string(ff
);
2719 n
->map
= perf_cpu_map__new(str
);
2724 ff
->ph
->env
.nr_numa_nodes
= nr
;
2725 ff
->ph
->env
.numa_nodes
= nodes
;
2733 static int process_pmu_mappings(struct feat_fd
*ff
, void *data __maybe_unused
)
2740 if (do_read_u32(ff
, &pmu_num
))
2744 pr_debug("pmu mappings not available\n");
2748 ff
->ph
->env
.nr_pmu_mappings
= pmu_num
;
2749 if (strbuf_init(&sb
, 128) < 0)
2753 if (do_read_u32(ff
, &type
))
2756 name
= do_read_string(ff
);
2760 if (strbuf_addf(&sb
, "%u:%s", type
, name
) < 0)
2762 /* include a NULL character at the end */
2763 if (strbuf_add(&sb
, "", 1) < 0)
2766 if (!strcmp(name
, "msr"))
2767 ff
->ph
->env
.msr_pmu_type
= type
;
2772 ff
->ph
->env
.pmu_mappings
= strbuf_detach(&sb
, NULL
);
2776 strbuf_release(&sb
);
2780 static int process_group_desc(struct feat_fd
*ff
, void *data __maybe_unused
)
2783 u32 i
, nr
, nr_groups
;
2784 struct perf_session
*session
;
2785 struct evsel
*evsel
, *leader
= NULL
;
2792 if (do_read_u32(ff
, &nr_groups
))
2795 ff
->ph
->env
.nr_groups
= nr_groups
;
2797 pr_debug("group desc not available\n");
2801 desc
= calloc(nr_groups
, sizeof(*desc
));
2805 for (i
= 0; i
< nr_groups
; i
++) {
2806 desc
[i
].name
= do_read_string(ff
);
2810 if (do_read_u32(ff
, &desc
[i
].leader_idx
))
2813 if (do_read_u32(ff
, &desc
[i
].nr_members
))
2818 * Rebuild group relationship based on the group_desc
2820 session
= container_of(ff
->ph
, struct perf_session
, header
);
2823 evlist__for_each_entry(session
->evlist
, evsel
) {
2824 if (i
< nr_groups
&& evsel
->core
.idx
== (int) desc
[i
].leader_idx
) {
2825 evsel__set_leader(evsel
, evsel
);
2826 /* {anon_group} is a dummy name */
2827 if (strcmp(desc
[i
].name
, "{anon_group}")) {
2828 evsel
->group_name
= desc
[i
].name
;
2829 desc
[i
].name
= NULL
;
2831 evsel
->core
.nr_members
= desc
[i
].nr_members
;
2833 if (i
>= nr_groups
|| nr
> 0) {
2834 pr_debug("invalid group desc\n");
2839 nr
= evsel
->core
.nr_members
- 1;
2842 /* This is a group member */
2843 evsel__set_leader(evsel
, leader
);
2849 if (i
!= nr_groups
|| nr
!= 0) {
2850 pr_debug("invalid group desc\n");
2856 for (i
= 0; i
< nr_groups
; i
++)
2857 zfree(&desc
[i
].name
);
2863 static int process_auxtrace(struct feat_fd
*ff
, void *data __maybe_unused
)
2865 struct perf_session
*session
;
2868 session
= container_of(ff
->ph
, struct perf_session
, header
);
2870 err
= auxtrace_index__process(ff
->fd
, ff
->size
, session
,
2871 ff
->ph
->needs_swap
);
2873 pr_err("Failed to process auxtrace index\n");
2877 static int process_cache(struct feat_fd
*ff
, void *data __maybe_unused
)
2879 struct cpu_cache_level
*caches
;
2880 u32 cnt
, i
, version
;
2882 if (do_read_u32(ff
, &version
))
2888 if (do_read_u32(ff
, &cnt
))
2891 caches
= zalloc(sizeof(*caches
) * cnt
);
2895 for (i
= 0; i
< cnt
; i
++) {
2896 struct cpu_cache_level
*c
= &caches
[i
];
2899 if (do_read_u32(ff, &c->v)) \
2900 goto out_free_caches; \
2909 c->v = do_read_string(ff); \
2911 goto out_free_caches; \
2919 ff
->ph
->env
.caches
= caches
;
2920 ff
->ph
->env
.caches_cnt
= cnt
;
2923 for (i
= 0; i
< cnt
; i
++) {
2924 free(caches
[i
].type
);
2925 free(caches
[i
].size
);
2926 free(caches
[i
].map
);
2932 static int process_sample_time(struct feat_fd
*ff
, void *data __maybe_unused
)
2934 struct perf_session
*session
;
2935 u64 first_sample_time
, last_sample_time
;
2938 session
= container_of(ff
->ph
, struct perf_session
, header
);
2940 ret
= do_read_u64(ff
, &first_sample_time
);
2944 ret
= do_read_u64(ff
, &last_sample_time
);
2948 session
->evlist
->first_sample_time
= first_sample_time
;
2949 session
->evlist
->last_sample_time
= last_sample_time
;
2953 static int process_mem_topology(struct feat_fd
*ff
,
2954 void *data __maybe_unused
)
2956 struct memory_node
*nodes
;
2957 u64 version
, i
, nr
, bsize
;
2960 if (do_read_u64(ff
, &version
))
2966 if (do_read_u64(ff
, &bsize
))
2969 if (do_read_u64(ff
, &nr
))
2972 nodes
= zalloc(sizeof(*nodes
) * nr
);
2976 for (i
= 0; i
< nr
; i
++) {
2977 struct memory_node n
;
2980 if (do_read_u64(ff, &n.v)) \
2988 if (do_read_bitmap(ff
, &n
.set
, &n
.size
))
2994 ff
->ph
->env
.memory_bsize
= bsize
;
2995 ff
->ph
->env
.memory_nodes
= nodes
;
2996 ff
->ph
->env
.nr_memory_nodes
= nr
;
3005 static int process_clockid(struct feat_fd
*ff
,
3006 void *data __maybe_unused
)
3008 if (do_read_u64(ff
, &ff
->ph
->env
.clock
.clockid_res_ns
))
3014 static int process_clock_data(struct feat_fd
*ff
,
3015 void *_data __maybe_unused
)
3021 if (do_read_u32(ff
, &data32
))
3028 if (do_read_u32(ff
, &data32
))
3031 ff
->ph
->env
.clock
.clockid
= data32
;
3034 if (do_read_u64(ff
, &data64
))
3037 ff
->ph
->env
.clock
.tod_ns
= data64
;
3039 /* clockid ref time */
3040 if (do_read_u64(ff
, &data64
))
3043 ff
->ph
->env
.clock
.clockid_ns
= data64
;
3044 ff
->ph
->env
.clock
.enabled
= true;
3048 static int process_hybrid_topology(struct feat_fd
*ff
,
3049 void *data __maybe_unused
)
3051 struct hybrid_node
*nodes
, *n
;
3055 if (do_read_u32(ff
, &nr
))
3058 nodes
= zalloc(sizeof(*nodes
) * nr
);
3062 for (i
= 0; i
< nr
; i
++) {
3065 n
->pmu_name
= do_read_string(ff
);
3069 n
->cpus
= do_read_string(ff
);
3074 ff
->ph
->env
.nr_hybrid_nodes
= nr
;
3075 ff
->ph
->env
.hybrid_nodes
= nodes
;
3079 for (i
= 0; i
< nr
; i
++) {
3080 free(nodes
[i
].pmu_name
);
3081 free(nodes
[i
].cpus
);
3088 static int process_dir_format(struct feat_fd
*ff
,
3089 void *_data __maybe_unused
)
3091 struct perf_session
*session
;
3092 struct perf_data
*data
;
3094 session
= container_of(ff
->ph
, struct perf_session
, header
);
3095 data
= session
->data
;
3097 if (WARN_ON(!perf_data__is_dir(data
)))
3100 return do_read_u64(ff
, &data
->dir
.version
);
3103 #ifdef HAVE_LIBBPF_SUPPORT
3104 static int process_bpf_prog_info(struct feat_fd
*ff
, void *data __maybe_unused
)
3106 struct bpf_prog_info_node
*info_node
;
3107 struct perf_env
*env
= &ff
->ph
->env
;
3108 struct perf_bpil
*info_linear
;
3112 if (ff
->ph
->needs_swap
) {
3113 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3117 if (do_read_u32(ff
, &count
))
3120 down_write(&env
->bpf_progs
.lock
);
3122 for (i
= 0; i
< count
; ++i
) {
3123 u32 info_len
, data_len
;
3127 if (do_read_u32(ff
, &info_len
))
3129 if (do_read_u32(ff
, &data_len
))
3132 if (info_len
> sizeof(struct bpf_prog_info
)) {
3133 pr_warning("detected invalid bpf_prog_info\n");
3137 info_linear
= malloc(sizeof(struct perf_bpil
) +
3141 info_linear
->info_len
= sizeof(struct bpf_prog_info
);
3142 info_linear
->data_len
= data_len
;
3143 if (do_read_u64(ff
, (u64
*)(&info_linear
->arrays
)))
3145 if (__do_read(ff
, &info_linear
->info
, info_len
))
3147 if (info_len
< sizeof(struct bpf_prog_info
))
3148 memset(((void *)(&info_linear
->info
)) + info_len
, 0,
3149 sizeof(struct bpf_prog_info
) - info_len
);
3151 if (__do_read(ff
, info_linear
->data
, data_len
))
3154 info_node
= malloc(sizeof(struct bpf_prog_info_node
));
3158 /* after reading from file, translate offset to address */
3159 bpil_offs_to_addr(info_linear
);
3160 info_node
->info_linear
= info_linear
;
3161 __perf_env__insert_bpf_prog_info(env
, info_node
);
3164 up_write(&env
->bpf_progs
.lock
);
3169 up_write(&env
->bpf_progs
.lock
);
3173 static int process_bpf_btf(struct feat_fd
*ff
, void *data __maybe_unused
)
3175 struct perf_env
*env
= &ff
->ph
->env
;
3176 struct btf_node
*node
= NULL
;
3180 if (ff
->ph
->needs_swap
) {
3181 pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3185 if (do_read_u32(ff
, &count
))
3188 down_write(&env
->bpf_progs
.lock
);
3190 for (i
= 0; i
< count
; ++i
) {
3193 if (do_read_u32(ff
, &id
))
3195 if (do_read_u32(ff
, &data_size
))
3198 node
= malloc(sizeof(struct btf_node
) + data_size
);
3203 node
->data_size
= data_size
;
3205 if (__do_read(ff
, node
->data
, data_size
))
3208 __perf_env__insert_btf(env
, node
);
3214 up_write(&env
->bpf_progs
.lock
);
3218 #endif // HAVE_LIBBPF_SUPPORT
3220 static int process_compressed(struct feat_fd
*ff
,
3221 void *data __maybe_unused
)
3223 if (do_read_u32(ff
, &(ff
->ph
->env
.comp_ver
)))
3226 if (do_read_u32(ff
, &(ff
->ph
->env
.comp_type
)))
3229 if (do_read_u32(ff
, &(ff
->ph
->env
.comp_level
)))
3232 if (do_read_u32(ff
, &(ff
->ph
->env
.comp_ratio
)))
3235 if (do_read_u32(ff
, &(ff
->ph
->env
.comp_mmap_len
)))
3241 static int __process_pmu_caps(struct feat_fd
*ff
, int *nr_caps
,
3242 char ***caps
, unsigned int *max_branches
,
3243 unsigned int *br_cntr_nr
,
3244 unsigned int *br_cntr_width
)
3246 char *name
, *value
, *ptr
;
3252 if (do_read_u32(ff
, &nr_pmu_caps
))
3258 *caps
= zalloc(sizeof(char *) * nr_pmu_caps
);
3262 for (i
= 0; i
< nr_pmu_caps
; i
++) {
3263 name
= do_read_string(ff
);
3267 value
= do_read_string(ff
);
3271 if (asprintf(&ptr
, "%s=%s", name
, value
) < 0)
3276 if (!strcmp(name
, "branches"))
3277 *max_branches
= atoi(value
);
3279 if (!strcmp(name
, "branch_counter_nr"))
3280 *br_cntr_nr
= atoi(value
);
3282 if (!strcmp(name
, "branch_counter_width"))
3283 *br_cntr_width
= atoi(value
);
3288 *nr_caps
= nr_pmu_caps
;
3297 free((*caps
)[i
- 1]);
3304 static int process_cpu_pmu_caps(struct feat_fd
*ff
,
3305 void *data __maybe_unused
)
3307 int ret
= __process_pmu_caps(ff
, &ff
->ph
->env
.nr_cpu_pmu_caps
,
3308 &ff
->ph
->env
.cpu_pmu_caps
,
3309 &ff
->ph
->env
.max_branches
,
3310 &ff
->ph
->env
.br_cntr_nr
,
3311 &ff
->ph
->env
.br_cntr_width
);
3313 if (!ret
&& !ff
->ph
->env
.cpu_pmu_caps
)
3314 pr_debug("cpu pmu capabilities not available\n");
3318 static int process_pmu_caps(struct feat_fd
*ff
, void *data __maybe_unused
)
3320 struct pmu_caps
*pmu_caps
;
3325 if (do_read_u32(ff
, &nr_pmu
))
3329 pr_debug("pmu capabilities not available\n");
3333 pmu_caps
= zalloc(sizeof(*pmu_caps
) * nr_pmu
);
3337 for (i
= 0; i
< nr_pmu
; i
++) {
3338 ret
= __process_pmu_caps(ff
, &pmu_caps
[i
].nr_caps
,
3340 &pmu_caps
[i
].max_branches
,
3341 &pmu_caps
[i
].br_cntr_nr
,
3342 &pmu_caps
[i
].br_cntr_width
);
3346 pmu_caps
[i
].pmu_name
= do_read_string(ff
);
3347 if (!pmu_caps
[i
].pmu_name
) {
3351 if (!pmu_caps
[i
].nr_caps
) {
3352 pr_debug("%s pmu capabilities not available\n",
3353 pmu_caps
[i
].pmu_name
);
3357 ff
->ph
->env
.nr_pmus_with_caps
= nr_pmu
;
3358 ff
->ph
->env
.pmu_caps
= pmu_caps
;
3362 for (i
= 0; i
< nr_pmu
; i
++) {
3363 for (j
= 0; j
< pmu_caps
[i
].nr_caps
; j
++)
3364 free(pmu_caps
[i
].caps
[j
]);
3365 free(pmu_caps
[i
].caps
);
3366 free(pmu_caps
[i
].pmu_name
);
3373 #define FEAT_OPR(n, func, __full_only) \
3375 .name = __stringify(n), \
3376 .write = write_##func, \
3377 .print = print_##func, \
3378 .full_only = __full_only, \
3379 .process = process_##func, \
3380 .synthesize = true \
3383 #define FEAT_OPN(n, func, __full_only) \
3385 .name = __stringify(n), \
3386 .write = write_##func, \
3387 .print = print_##func, \
3388 .full_only = __full_only, \
3389 .process = process_##func \
3392 /* feature_ops not implemented: */
3393 #define print_tracing_data NULL
3394 #define print_build_id NULL
3396 #define process_branch_stack NULL
3397 #define process_stat NULL
3399 // Only used in util/synthetic-events.c
3400 const struct perf_header_feature_ops feat_ops
[HEADER_LAST_FEATURE
];
3402 const struct perf_header_feature_ops feat_ops
[HEADER_LAST_FEATURE
] = {
3403 #ifdef HAVE_LIBTRACEEVENT
3404 FEAT_OPN(TRACING_DATA
, tracing_data
, false),
3406 FEAT_OPN(BUILD_ID
, build_id
, false),
3407 FEAT_OPR(HOSTNAME
, hostname
, false),
3408 FEAT_OPR(OSRELEASE
, osrelease
, false),
3409 FEAT_OPR(VERSION
, version
, false),
3410 FEAT_OPR(ARCH
, arch
, false),
3411 FEAT_OPR(NRCPUS
, nrcpus
, false),
3412 FEAT_OPR(CPUDESC
, cpudesc
, false),
3413 FEAT_OPR(CPUID
, cpuid
, false),
3414 FEAT_OPR(TOTAL_MEM
, total_mem
, false),
3415 FEAT_OPR(EVENT_DESC
, event_desc
, false),
3416 FEAT_OPR(CMDLINE
, cmdline
, false),
3417 FEAT_OPR(CPU_TOPOLOGY
, cpu_topology
, true),
3418 FEAT_OPR(NUMA_TOPOLOGY
, numa_topology
, true),
3419 FEAT_OPN(BRANCH_STACK
, branch_stack
, false),
3420 FEAT_OPR(PMU_MAPPINGS
, pmu_mappings
, false),
3421 FEAT_OPR(GROUP_DESC
, group_desc
, false),
3422 FEAT_OPN(AUXTRACE
, auxtrace
, false),
3423 FEAT_OPN(STAT
, stat
, false),
3424 FEAT_OPN(CACHE
, cache
, true),
3425 FEAT_OPR(SAMPLE_TIME
, sample_time
, false),
3426 FEAT_OPR(MEM_TOPOLOGY
, mem_topology
, true),
3427 FEAT_OPR(CLOCKID
, clockid
, false),
3428 FEAT_OPN(DIR_FORMAT
, dir_format
, false),
3429 #ifdef HAVE_LIBBPF_SUPPORT
3430 FEAT_OPR(BPF_PROG_INFO
, bpf_prog_info
, false),
3431 FEAT_OPR(BPF_BTF
, bpf_btf
, false),
3433 FEAT_OPR(COMPRESSED
, compressed
, false),
3434 FEAT_OPR(CPU_PMU_CAPS
, cpu_pmu_caps
, false),
3435 FEAT_OPR(CLOCK_DATA
, clock_data
, false),
3436 FEAT_OPN(HYBRID_TOPOLOGY
, hybrid_topology
, true),
3437 FEAT_OPR(PMU_CAPS
, pmu_caps
, false),
3440 struct header_print_data
{
3442 bool full
; /* extended list of headers */
3445 static int perf_file_section__fprintf_info(struct perf_file_section
*section
,
3446 struct perf_header
*ph
,
3447 int feat
, int fd
, void *data
)
3449 struct header_print_data
*hd
= data
;
3452 if (lseek(fd
, section
->offset
, SEEK_SET
) == (off_t
)-1) {
3453 pr_debug("Failed to lseek to %" PRIu64
" offset for feature "
3454 "%d, continuing...\n", section
->offset
, feat
);
3457 if (feat
>= HEADER_LAST_FEATURE
) {
3458 pr_warning("unknown feature %d\n", feat
);
3461 if (!feat_ops
[feat
].print
)
3464 ff
= (struct feat_fd
) {
3469 if (!feat_ops
[feat
].full_only
|| hd
->full
)
3470 feat_ops
[feat
].print(&ff
, hd
->fp
);
3472 fprintf(hd
->fp
, "# %s info available, use -I to display\n",
3473 feat_ops
[feat
].name
);
3478 int perf_header__fprintf_info(struct perf_session
*session
, FILE *fp
, bool full
)
3480 struct header_print_data hd
;
3481 struct perf_header
*header
= &session
->header
;
3482 int fd
= perf_data__fd(session
->data
);
3490 ret
= fstat(fd
, &st
);
3494 stctime
= st
.st_mtime
;
3495 fprintf(fp
, "# captured on : %s", ctime(&stctime
));
3497 fprintf(fp
, "# header version : %u\n", header
->version
);
3498 fprintf(fp
, "# data offset : %" PRIu64
"\n", header
->data_offset
);
3499 fprintf(fp
, "# data size : %" PRIu64
"\n", header
->data_size
);
3500 fprintf(fp
, "# feat offset : %" PRIu64
"\n", header
->feat_offset
);
3502 perf_header__process_sections(header
, fd
, &hd
,
3503 perf_file_section__fprintf_info
);
3505 if (session
->data
->is_pipe
)
3508 fprintf(fp
, "# missing features: ");
3509 for_each_clear_bit(bit
, header
->adds_features
, HEADER_LAST_FEATURE
) {
3511 fprintf(fp
, "%s ", feat_ops
[bit
].name
);
3519 struct feat_writer fw
;
3523 static int feat_writer_cb(struct feat_writer
*fw
, void *buf
, size_t sz
)
3525 struct header_fw
*h
= container_of(fw
, struct header_fw
, fw
);
3527 return do_write(h
->ff
, buf
, sz
);
3530 static int do_write_feat(struct feat_fd
*ff
, int type
,
3531 struct perf_file_section
**p
,
3532 struct evlist
*evlist
,
3533 struct feat_copier
*fc
)
3538 if (perf_header__has_feat(ff
->ph
, type
)) {
3539 if (!feat_ops
[type
].write
)
3542 if (WARN(ff
->buf
, "Error: calling %s in pipe-mode.\n", __func__
))
3545 (*p
)->offset
= lseek(ff
->fd
, 0, SEEK_CUR
);
3548 * Hook to let perf inject copy features sections from the input
3551 if (fc
&& fc
->copy
) {
3552 struct header_fw h
= {
3553 .fw
.write
= feat_writer_cb
,
3557 /* ->copy() returns 0 if the feature was not copied */
3558 err
= fc
->copy(fc
, type
, &h
.fw
);
3563 err
= feat_ops
[type
].write(ff
, evlist
);
3565 pr_debug("failed to write feature %s\n", feat_ops
[type
].name
);
3567 /* undo anything written */
3568 lseek(ff
->fd
, (*p
)->offset
, SEEK_SET
);
3572 (*p
)->size
= lseek(ff
->fd
, 0, SEEK_CUR
) - (*p
)->offset
;
3578 static int perf_header__adds_write(struct perf_header
*header
,
3579 struct evlist
*evlist
, int fd
,
3580 struct feat_copier
*fc
)
3583 struct feat_fd ff
= {
3587 struct perf_file_section
*feat_sec
, *p
;
3593 nr_sections
= bitmap_weight(header
->adds_features
, HEADER_FEAT_BITS
);
3597 feat_sec
= p
= calloc(nr_sections
, sizeof(*feat_sec
));
3598 if (feat_sec
== NULL
)
3601 sec_size
= sizeof(*feat_sec
) * nr_sections
;
3603 sec_start
= header
->feat_offset
;
3604 lseek(fd
, sec_start
+ sec_size
, SEEK_SET
);
3606 for_each_set_bit(feat
, header
->adds_features
, HEADER_FEAT_BITS
) {
3607 if (do_write_feat(&ff
, feat
, &p
, evlist
, fc
))
3608 perf_header__clear_feat(header
, feat
);
3611 lseek(fd
, sec_start
, SEEK_SET
);
3613 * may write more than needed due to dropped feature, but
3614 * this is okay, reader will skip the missing entries
3616 err
= do_write(&ff
, feat_sec
, sec_size
);
3618 pr_debug("failed to write feature section\n");
3619 free(ff
.buf
); /* TODO: added to silence clang-tidy. */
3624 int perf_header__write_pipe(int fd
)
3626 struct perf_pipe_file_header f_header
;
3627 struct feat_fd ff
= {
3632 f_header
= (struct perf_pipe_file_header
){
3633 .magic
= PERF_MAGIC
,
3634 .size
= sizeof(f_header
),
3637 err
= do_write(&ff
, &f_header
, sizeof(f_header
));
3639 pr_debug("failed to write perf pipe header\n");
3646 static int perf_session__do_write_header(struct perf_session
*session
,
3647 struct evlist
*evlist
,
3648 int fd
, bool at_exit
,
3649 struct feat_copier
*fc
,
3650 bool write_attrs_after_data
)
3652 struct perf_file_header f_header
;
3653 struct perf_header
*header
= &session
->header
;
3654 struct evsel
*evsel
;
3655 struct feat_fd ff
= {
3658 u64 attr_offset
= sizeof(f_header
), attr_size
= 0;
3661 if (write_attrs_after_data
&& at_exit
) {
3663 * Write features at the end of the file first so that
3664 * attributes may come after them.
3666 if (!header
->data_offset
&& header
->data_size
) {
3667 pr_err("File contains data but offset unknown\n");
3671 header
->feat_offset
= header
->data_offset
+ header
->data_size
;
3672 err
= perf_header__adds_write(header
, evlist
, fd
, fc
);
3675 attr_offset
= lseek(fd
, 0, SEEK_CUR
);
3677 lseek(fd
, attr_offset
, SEEK_SET
);
3680 evlist__for_each_entry(session
->evlist
, evsel
) {
3681 evsel
->id_offset
= attr_offset
;
3682 /* Avoid writing at the end of the file until the session is exiting. */
3683 if (!write_attrs_after_data
|| at_exit
) {
3684 err
= do_write(&ff
, evsel
->core
.id
, evsel
->core
.ids
* sizeof(u64
));
3686 pr_debug("failed to write perf header\n");
3690 attr_offset
+= evsel
->core
.ids
* sizeof(u64
);
3693 evlist__for_each_entry(evlist
, evsel
) {
3694 if (evsel
->core
.attr
.size
< sizeof(evsel
->core
.attr
)) {
3696 * We are likely in "perf inject" and have read
3697 * from an older file. Update attr size so that
3698 * reader gets the right offset to the ids.
3700 evsel
->core
.attr
.size
= sizeof(evsel
->core
.attr
);
3702 /* Avoid writing at the end of the file until the session is exiting. */
3703 if (!write_attrs_after_data
|| at_exit
) {
3704 struct perf_file_attr f_attr
= {
3705 .attr
= evsel
->core
.attr
,
3707 .offset
= evsel
->id_offset
,
3708 .size
= evsel
->core
.ids
* sizeof(u64
),
3711 err
= do_write(&ff
, &f_attr
, sizeof(f_attr
));
3713 pr_debug("failed to write perf header attribute\n");
3717 attr_size
+= sizeof(struct perf_file_attr
);
3720 if (!header
->data_offset
) {
3721 if (write_attrs_after_data
)
3722 header
->data_offset
= sizeof(f_header
);
3724 header
->data_offset
= attr_offset
+ attr_size
;
3726 header
->feat_offset
= header
->data_offset
+ header
->data_size
;
3728 if (!write_attrs_after_data
&& at_exit
) {
3729 /* Write features now feat_offset is known. */
3730 err
= perf_header__adds_write(header
, evlist
, fd
, fc
);
3735 f_header
= (struct perf_file_header
){
3736 .magic
= PERF_MAGIC
,
3737 .size
= sizeof(f_header
),
3738 .attr_size
= sizeof(struct perf_file_attr
),
3740 .offset
= attr_offset
,
3744 .offset
= header
->data_offset
,
3745 .size
= header
->data_size
,
3747 /* event_types is ignored, store zeros */
3750 memcpy(&f_header
.adds_features
, &header
->adds_features
, sizeof(header
->adds_features
));
3752 lseek(fd
, 0, SEEK_SET
);
3753 err
= do_write(&ff
, &f_header
, sizeof(f_header
));
3755 pr_debug("failed to write perf header\n");
3758 lseek(fd
, 0, SEEK_END
);
3766 int perf_session__write_header(struct perf_session
*session
,
3767 struct evlist
*evlist
,
3768 int fd
, bool at_exit
)
3770 return perf_session__do_write_header(session
, evlist
, fd
, at_exit
, /*fc=*/NULL
,
3771 /*write_attrs_after_data=*/false);
3774 size_t perf_session__data_offset(const struct evlist
*evlist
)
3776 struct evsel
*evsel
;
3779 data_offset
= sizeof(struct perf_file_header
);
3780 evlist__for_each_entry(evlist
, evsel
) {
3781 data_offset
+= evsel
->core
.ids
* sizeof(u64
);
3783 data_offset
+= evlist
->core
.nr_entries
* sizeof(struct perf_file_attr
);
3788 int perf_session__inject_header(struct perf_session
*session
,
3789 struct evlist
*evlist
,
3791 struct feat_copier
*fc
,
3792 bool write_attrs_after_data
)
3794 return perf_session__do_write_header(session
, evlist
, fd
, true, fc
,
3795 write_attrs_after_data
);
3798 static int perf_header__getbuffer64(struct perf_header
*header
,
3799 int fd
, void *buf
, size_t size
)
3801 if (readn(fd
, buf
, size
) <= 0)
3804 if (header
->needs_swap
)
3805 mem_bswap_64(buf
, size
);
3810 int perf_header__process_sections(struct perf_header
*header
, int fd
,
3812 int (*process
)(struct perf_file_section
*section
,
3813 struct perf_header
*ph
,
3814 int feat
, int fd
, void *data
))
3816 struct perf_file_section
*feat_sec
, *sec
;
3822 nr_sections
= bitmap_weight(header
->adds_features
, HEADER_FEAT_BITS
);
3826 feat_sec
= sec
= calloc(nr_sections
, sizeof(*feat_sec
));
3830 sec_size
= sizeof(*feat_sec
) * nr_sections
;
3832 lseek(fd
, header
->feat_offset
, SEEK_SET
);
3834 err
= perf_header__getbuffer64(header
, fd
, feat_sec
, sec_size
);
3838 for_each_set_bit(feat
, header
->adds_features
, HEADER_LAST_FEATURE
) {
3839 err
= process(sec
++, header
, feat
, fd
, data
);
3849 static const int attr_file_abi_sizes
[] = {
3850 [0] = PERF_ATTR_SIZE_VER0
,
3851 [1] = PERF_ATTR_SIZE_VER1
,
3852 [2] = PERF_ATTR_SIZE_VER2
,
3853 [3] = PERF_ATTR_SIZE_VER3
,
3854 [4] = PERF_ATTR_SIZE_VER4
,
3859 * In the legacy file format, the magic number is not used to encode endianness.
3860 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3861 * on ABI revisions, we need to try all combinations for all endianness to
3862 * detect the endianness.
3864 static int try_all_file_abis(uint64_t hdr_sz
, struct perf_header
*ph
)
3866 uint64_t ref_size
, attr_size
;
3869 for (i
= 0 ; attr_file_abi_sizes
[i
]; i
++) {
3870 ref_size
= attr_file_abi_sizes
[i
]
3871 + sizeof(struct perf_file_section
);
3872 if (hdr_sz
!= ref_size
) {
3873 attr_size
= bswap_64(hdr_sz
);
3874 if (attr_size
!= ref_size
)
3877 ph
->needs_swap
= true;
3879 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3884 /* could not determine endianness */
3888 #define PERF_PIPE_HDR_VER0 16
3890 static const size_t attr_pipe_abi_sizes
[] = {
3891 [0] = PERF_PIPE_HDR_VER0
,
3896 * In the legacy pipe format, there is an implicit assumption that endianness
3897 * between host recording the samples, and host parsing the samples is the
3898 * same. This is not always the case given that the pipe output may always be
3899 * redirected into a file and analyzed on a different machine with possibly a
3900 * different endianness and perf_event ABI revisions in the perf tool itself.
3902 static int try_all_pipe_abis(uint64_t hdr_sz
, struct perf_header
*ph
)
3907 for (i
= 0 ; attr_pipe_abi_sizes
[i
]; i
++) {
3908 if (hdr_sz
!= attr_pipe_abi_sizes
[i
]) {
3909 attr_size
= bswap_64(hdr_sz
);
3910 if (attr_size
!= hdr_sz
)
3913 ph
->needs_swap
= true;
3915 pr_debug("Pipe ABI%d perf.data file detected\n", i
);
3921 bool is_perf_magic(u64 magic
)
3923 if (!memcmp(&magic
, __perf_magic1
, sizeof(magic
))
3924 || magic
== __perf_magic2
3925 || magic
== __perf_magic2_sw
)
3931 static int check_magic_endian(u64 magic
, uint64_t hdr_sz
,
3932 bool is_pipe
, struct perf_header
*ph
)
3936 /* check for legacy format */
3937 ret
= memcmp(&magic
, __perf_magic1
, sizeof(magic
));
3939 ph
->version
= PERF_HEADER_VERSION_1
;
3940 pr_debug("legacy perf.data format\n");
3942 return try_all_pipe_abis(hdr_sz
, ph
);
3944 return try_all_file_abis(hdr_sz
, ph
);
3947 * the new magic number serves two purposes:
3948 * - unique number to identify actual perf.data files
3949 * - encode endianness of file
3951 ph
->version
= PERF_HEADER_VERSION_2
;
3953 /* check magic number with one endianness */
3954 if (magic
== __perf_magic2
)
3957 /* check magic number with opposite endianness */
3958 if (magic
!= __perf_magic2_sw
)
3961 ph
->needs_swap
= true;
3966 int perf_file_header__read(struct perf_file_header
*header
,
3967 struct perf_header
*ph
, int fd
)
3971 lseek(fd
, 0, SEEK_SET
);
3973 ret
= readn(fd
, header
, sizeof(*header
));
3977 if (check_magic_endian(header
->magic
,
3978 header
->attr_size
, false, ph
) < 0) {
3979 pr_debug("magic/endian check failed\n");
3983 if (ph
->needs_swap
) {
3984 mem_bswap_64(header
, offsetof(struct perf_file_header
,
3988 if (header
->size
> header
->attrs
.offset
) {
3989 pr_err("Perf file header corrupt: header overlaps attrs\n");
3993 if (header
->size
> header
->data
.offset
) {
3994 pr_err("Perf file header corrupt: header overlaps data\n");
3998 if ((header
->attrs
.offset
<= header
->data
.offset
&&
3999 header
->attrs
.offset
+ header
->attrs
.size
> header
->data
.offset
) ||
4000 (header
->attrs
.offset
> header
->data
.offset
&&
4001 header
->data
.offset
+ header
->data
.size
> header
->attrs
.offset
)) {
4002 pr_err("Perf file header corrupt: Attributes and data overlap\n");
4006 if (header
->size
!= sizeof(*header
)) {
4007 /* Support the previous format */
4008 if (header
->size
== offsetof(typeof(*header
), adds_features
))
4009 bitmap_zero(header
->adds_features
, HEADER_FEAT_BITS
);
4012 } else if (ph
->needs_swap
) {
4014 * feature bitmap is declared as an array of unsigned longs --
4015 * not good since its size can differ between the host that
4016 * generated the data file and the host analyzing the file.
4018 * We need to handle endianness, but we don't know the size of
4019 * the unsigned long where the file was generated. Take a best
4020 * guess at determining it: try 64-bit swap first (ie., file
4021 * created on a 64-bit host), and check if the hostname feature
4022 * bit is set (this feature bit is forced on as of fbe96f2).
4023 * If the bit is not, undo the 64-bit swap and try a 32-bit
4024 * swap. If the hostname bit is still not set (e.g., older data
4025 * file), punt and fallback to the original behavior --
4026 * clearing all feature bits and setting buildid.
4028 mem_bswap_64(&header
->adds_features
,
4029 BITS_TO_U64(HEADER_FEAT_BITS
));
4031 if (!test_bit(HEADER_HOSTNAME
, header
->adds_features
)) {
4033 mem_bswap_64(&header
->adds_features
,
4034 BITS_TO_U64(HEADER_FEAT_BITS
));
4037 mem_bswap_32(&header
->adds_features
,
4038 BITS_TO_U32(HEADER_FEAT_BITS
));
4041 if (!test_bit(HEADER_HOSTNAME
, header
->adds_features
)) {
4042 bitmap_zero(header
->adds_features
, HEADER_FEAT_BITS
);
4043 __set_bit(HEADER_BUILD_ID
, header
->adds_features
);
4047 memcpy(&ph
->adds_features
, &header
->adds_features
,
4048 sizeof(ph
->adds_features
));
4050 ph
->data_offset
= header
->data
.offset
;
4051 ph
->data_size
= header
->data
.size
;
4052 ph
->feat_offset
= header
->data
.offset
+ header
->data
.size
;
4056 static int perf_file_section__process(struct perf_file_section
*section
,
4057 struct perf_header
*ph
,
4058 int feat
, int fd
, void *data
)
4060 struct feat_fd fdd
= {
4063 .size
= section
->size
,
4064 .offset
= section
->offset
,
4067 if (lseek(fd
, section
->offset
, SEEK_SET
) == (off_t
)-1) {
4068 pr_debug("Failed to lseek to %" PRIu64
" offset for feature "
4069 "%d, continuing...\n", section
->offset
, feat
);
4073 if (feat
>= HEADER_LAST_FEATURE
) {
4074 pr_debug("unknown feature %d, continuing...\n", feat
);
4078 if (!feat_ops
[feat
].process
)
4081 return feat_ops
[feat
].process(&fdd
, data
);
4084 static int perf_file_header__read_pipe(struct perf_pipe_file_header
*header
,
4085 struct perf_header
*ph
,
4086 struct perf_data
*data
)
4090 ret
= perf_data__read(data
, header
, sizeof(*header
));
4094 if (check_magic_endian(header
->magic
, header
->size
, true, ph
) < 0) {
4095 pr_debug("endian/magic failed\n");
4100 header
->size
= bswap_64(header
->size
);
4105 static int perf_header__read_pipe(struct perf_session
*session
)
4107 struct perf_header
*header
= &session
->header
;
4108 struct perf_pipe_file_header f_header
;
4110 if (perf_file_header__read_pipe(&f_header
, header
, session
->data
) < 0) {
4111 pr_debug("incompatible file format\n");
4115 return f_header
.size
== sizeof(f_header
) ? 0 : -1;
4118 static int read_attr(int fd
, struct perf_header
*ph
,
4119 struct perf_file_attr
*f_attr
)
4121 struct perf_event_attr
*attr
= &f_attr
->attr
;
4123 size_t our_sz
= sizeof(f_attr
->attr
);
4126 memset(f_attr
, 0, sizeof(*f_attr
));
4128 /* read minimal guaranteed structure */
4129 ret
= readn(fd
, attr
, PERF_ATTR_SIZE_VER0
);
4131 pr_debug("cannot read %d bytes of header attr\n",
4132 PERF_ATTR_SIZE_VER0
);
4136 /* on file perf_event_attr size */
4144 sz
= PERF_ATTR_SIZE_VER0
;
4145 } else if (sz
> our_sz
) {
4146 pr_debug("file uses a more recent and unsupported ABI"
4147 " (%zu bytes extra)\n", sz
- our_sz
);
4150 /* what we have not yet read and that we know about */
4151 left
= sz
- PERF_ATTR_SIZE_VER0
;
4154 ptr
+= PERF_ATTR_SIZE_VER0
;
4156 ret
= readn(fd
, ptr
, left
);
4158 /* read perf_file_section, ids are read in caller */
4159 ret
= readn(fd
, &f_attr
->ids
, sizeof(f_attr
->ids
));
4161 return ret
<= 0 ? -1 : 0;
4164 #ifdef HAVE_LIBTRACEEVENT
4165 static int evsel__prepare_tracepoint_event(struct evsel
*evsel
, struct tep_handle
*pevent
)
4167 struct tep_event
*event
;
4170 /* already prepared */
4171 if (evsel
->tp_format
)
4174 if (pevent
== NULL
) {
4175 pr_debug("broken or missing trace data\n");
4179 event
= tep_find_event(pevent
, evsel
->core
.attr
.config
);
4180 if (event
== NULL
) {
4181 pr_debug("cannot find event format for %d\n", (int)evsel
->core
.attr
.config
);
4186 snprintf(bf
, sizeof(bf
), "%s:%s", event
->system
, event
->name
);
4187 evsel
->name
= strdup(bf
);
4188 if (evsel
->name
== NULL
)
4192 evsel
->tp_format
= event
;
4196 static int evlist__prepare_tracepoint_events(struct evlist
*evlist
, struct tep_handle
*pevent
)
4200 evlist__for_each_entry(evlist
, pos
) {
4201 if (pos
->core
.attr
.type
== PERF_TYPE_TRACEPOINT
&&
4202 evsel__prepare_tracepoint_event(pos
, pevent
))
4210 int perf_session__read_header(struct perf_session
*session
)
4212 struct perf_data
*data
= session
->data
;
4213 struct perf_header
*header
= &session
->header
;
4214 struct perf_file_header f_header
;
4215 struct perf_file_attr f_attr
;
4217 int nr_attrs
, nr_ids
, i
, j
, err
;
4218 int fd
= perf_data__fd(data
);
4220 session
->evlist
= evlist__new();
4221 if (session
->evlist
== NULL
)
4224 session
->evlist
->env
= &header
->env
;
4225 session
->machines
.host
.env
= &header
->env
;
4228 * We can read 'pipe' data event from regular file,
4229 * check for the pipe header regardless of source.
4231 err
= perf_header__read_pipe(session
);
4232 if (!err
|| perf_data__is_pipe(data
)) {
4233 data
->is_pipe
= true;
4237 if (perf_file_header__read(&f_header
, header
, fd
) < 0)
4240 if (header
->needs_swap
&& data
->in_place_update
) {
4241 pr_err("In-place update not supported when byte-swapping is required\n");
4246 * Sanity check that perf.data was written cleanly; data size is
4247 * initialized to 0 and updated only if the on_exit function is run.
4248 * If data size is still 0 then the file contains only partial
4249 * information. Just warn user and process it as much as it can.
4251 if (f_header
.data
.size
== 0) {
4252 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4253 "Was the 'perf record' command properly terminated?\n",
4257 if (f_header
.attr_size
== 0) {
4258 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4259 "Was the 'perf record' command properly terminated?\n",
4264 nr_attrs
= f_header
.attrs
.size
/ f_header
.attr_size
;
4265 lseek(fd
, f_header
.attrs
.offset
, SEEK_SET
);
4267 for (i
= 0; i
< nr_attrs
; i
++) {
4268 struct evsel
*evsel
;
4271 if (read_attr(fd
, header
, &f_attr
) < 0)
4274 if (header
->needs_swap
) {
4275 f_attr
.ids
.size
= bswap_64(f_attr
.ids
.size
);
4276 f_attr
.ids
.offset
= bswap_64(f_attr
.ids
.offset
);
4277 perf_event__attr_swap(&f_attr
.attr
);
4280 tmp
= lseek(fd
, 0, SEEK_CUR
);
4281 evsel
= evsel__new(&f_attr
.attr
);
4284 goto out_delete_evlist
;
4286 evsel
->needs_swap
= header
->needs_swap
;
4288 * Do it before so that if perf_evsel__alloc_id fails, this
4289 * entry gets purged too at evlist__delete().
4291 evlist__add(session
->evlist
, evsel
);
4293 nr_ids
= f_attr
.ids
.size
/ sizeof(u64
);
4295 * We don't have the cpu and thread maps on the header, so
4296 * for allocating the perf_sample_id table we fake 1 cpu and
4297 * hattr->ids threads.
4299 if (perf_evsel__alloc_id(&evsel
->core
, 1, nr_ids
))
4300 goto out_delete_evlist
;
4302 lseek(fd
, f_attr
.ids
.offset
, SEEK_SET
);
4304 for (j
= 0; j
< nr_ids
; j
++) {
4305 if (perf_header__getbuffer64(header
, fd
, &f_id
, sizeof(f_id
)))
4308 perf_evlist__id_add(&session
->evlist
->core
, &evsel
->core
, 0, j
, f_id
);
4311 lseek(fd
, tmp
, SEEK_SET
);
4314 #ifdef HAVE_LIBTRACEEVENT
4315 perf_header__process_sections(header
, fd
, &session
->tevent
,
4316 perf_file_section__process
);
4318 if (evlist__prepare_tracepoint_events(session
->evlist
, session
->tevent
.pevent
))
4319 goto out_delete_evlist
;
4321 perf_header__process_sections(header
, fd
, NULL
, perf_file_section__process
);
4329 evlist__delete(session
->evlist
);
4330 session
->evlist
= NULL
;
4334 int perf_event__process_feature(struct perf_session
*session
,
4335 union perf_event
*event
)
4337 const struct perf_tool
*tool
= session
->tool
;
4338 struct feat_fd ff
= { .fd
= 0 };
4339 struct perf_record_header_feature
*fe
= (struct perf_record_header_feature
*)event
;
4340 int type
= fe
->header
.type
;
4341 u64 feat
= fe
->feat_id
;
4344 if (type
< 0 || type
>= PERF_RECORD_HEADER_MAX
) {
4345 pr_warning("invalid record type %d in pipe-mode\n", type
);
4348 if (feat
== HEADER_RESERVED
|| feat
>= HEADER_LAST_FEATURE
) {
4349 pr_warning("invalid record type %d in pipe-mode\n", type
);
4353 if (!feat_ops
[feat
].process
)
4356 ff
.buf
= (void *)fe
->data
;
4357 ff
.size
= event
->header
.size
- sizeof(*fe
);
4358 ff
.ph
= &session
->header
;
4360 if (feat_ops
[feat
].process(&ff
, NULL
)) {
4365 if (!feat_ops
[feat
].print
|| !tool
->show_feat_hdr
)
4368 if (!feat_ops
[feat
].full_only
||
4369 tool
->show_feat_hdr
>= SHOW_FEAT_HEADER_FULL_INFO
) {
4370 feat_ops
[feat
].print(&ff
, stdout
);
4372 fprintf(stdout
, "# %s info available, use -I to display\n",
4373 feat_ops
[feat
].name
);
4376 free_event_desc(ff
.events
);
4380 size_t perf_event__fprintf_event_update(union perf_event
*event
, FILE *fp
)
4382 struct perf_record_event_update
*ev
= &event
->event_update
;
4383 struct perf_cpu_map
*map
;
4386 ret
= fprintf(fp
, "\n... id: %" PRI_lu64
"\n", ev
->id
);
4389 case PERF_EVENT_UPDATE__SCALE
:
4390 ret
+= fprintf(fp
, "... scale: %f\n", ev
->scale
.scale
);
4392 case PERF_EVENT_UPDATE__UNIT
:
4393 ret
+= fprintf(fp
, "... unit: %s\n", ev
->unit
);
4395 case PERF_EVENT_UPDATE__NAME
:
4396 ret
+= fprintf(fp
, "... name: %s\n", ev
->name
);
4398 case PERF_EVENT_UPDATE__CPUS
:
4399 ret
+= fprintf(fp
, "... ");
4401 map
= cpu_map__new_data(&ev
->cpus
.cpus
);
4403 ret
+= cpu_map__fprintf(map
, fp
);
4404 perf_cpu_map__put(map
);
4406 ret
+= fprintf(fp
, "failed to get cpus\n");
4409 ret
+= fprintf(fp
, "... unknown type\n");
4416 int perf_event__process_attr(const struct perf_tool
*tool __maybe_unused
,
4417 union perf_event
*event
,
4418 struct evlist
**pevlist
)
4422 struct evsel
*evsel
;
4423 struct evlist
*evlist
= *pevlist
;
4425 if (evlist
== NULL
) {
4426 *pevlist
= evlist
= evlist__new();
4431 evsel
= evsel__new(&event
->attr
.attr
);
4435 evlist__add(evlist
, evsel
);
4437 n_ids
= event
->header
.size
- sizeof(event
->header
) - event
->attr
.attr
.size
;
4438 n_ids
= n_ids
/ sizeof(u64
);
4440 * We don't have the cpu and thread maps on the header, so
4441 * for allocating the perf_sample_id table we fake 1 cpu and
4442 * hattr->ids threads.
4444 if (perf_evsel__alloc_id(&evsel
->core
, 1, n_ids
))
4447 ids
= perf_record_header_attr_id(event
);
4448 for (i
= 0; i
< n_ids
; i
++) {
4449 perf_evlist__id_add(&evlist
->core
, &evsel
->core
, 0, i
, ids
[i
]);
4455 int perf_event__process_event_update(const struct perf_tool
*tool __maybe_unused
,
4456 union perf_event
*event
,
4457 struct evlist
**pevlist
)
4459 struct perf_record_event_update
*ev
= &event
->event_update
;
4460 struct evlist
*evlist
;
4461 struct evsel
*evsel
;
4462 struct perf_cpu_map
*map
;
4465 perf_event__fprintf_event_update(event
, stdout
);
4467 if (!pevlist
|| *pevlist
== NULL
)
4472 evsel
= evlist__id2evsel(evlist
, ev
->id
);
4477 case PERF_EVENT_UPDATE__UNIT
:
4478 free((char *)evsel
->unit
);
4479 evsel
->unit
= strdup(ev
->unit
);
4481 case PERF_EVENT_UPDATE__NAME
:
4483 evsel
->name
= strdup(ev
->name
);
4485 case PERF_EVENT_UPDATE__SCALE
:
4486 evsel
->scale
= ev
->scale
.scale
;
4488 case PERF_EVENT_UPDATE__CPUS
:
4489 map
= cpu_map__new_data(&ev
->cpus
.cpus
);
4491 perf_cpu_map__put(evsel
->core
.own_cpus
);
4492 evsel
->core
.own_cpus
= map
;
4494 pr_err("failed to get event_update cpus\n");
4502 #ifdef HAVE_LIBTRACEEVENT
4503 int perf_event__process_tracing_data(struct perf_session
*session
,
4504 union perf_event
*event
)
4506 ssize_t size_read
, padding
, size
= event
->tracing_data
.size
;
4507 int fd
= perf_data__fd(session
->data
);
4511 * The pipe fd is already in proper place and in any case
4512 * we can't move it, and we'd screw the case where we read
4513 * 'pipe' data from regular file. The trace_report reads
4514 * data from 'fd' so we need to set it directly behind the
4515 * event, where the tracing data starts.
4517 if (!perf_data__is_pipe(session
->data
)) {
4518 off_t offset
= lseek(fd
, 0, SEEK_CUR
);
4520 /* setup for reading amidst mmap */
4521 lseek(fd
, offset
+ sizeof(struct perf_record_header_tracing_data
),
4525 size_read
= trace_report(fd
, &session
->tevent
, session
->trace_event_repipe
);
4526 padding
= PERF_ALIGN(size_read
, sizeof(u64
)) - size_read
;
4528 if (readn(fd
, buf
, padding
) < 0) {
4529 pr_err("%s: reading input file", __func__
);
4532 if (session
->trace_event_repipe
) {
4533 int retw
= write(STDOUT_FILENO
, buf
, padding
);
4534 if (retw
<= 0 || retw
!= padding
) {
4535 pr_err("%s: repiping tracing data padding", __func__
);
4540 if (size_read
+ padding
!= size
) {
4541 pr_err("%s: tracing data size mismatch", __func__
);
4545 evlist__prepare_tracepoint_events(session
->evlist
, session
->tevent
.pevent
);
4547 return size_read
+ padding
;
4551 int perf_event__process_build_id(struct perf_session
*session
,
4552 union perf_event
*event
)
4554 __event_process_build_id(&event
->build_id
,
4555 event
->build_id
.filename
,