Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / tools / perf / util / mem-events.c
blobbf5090f5220bbdc760b31cee04a97f77a9ce4469
1 // SPDX-License-Identifier: GPL-2.0
2 #include <stddef.h>
3 #include <stdlib.h>
4 #include <string.h>
5 #include <errno.h>
6 #include <sys/types.h>
7 #include <sys/stat.h>
8 #include <unistd.h>
9 #include <api/fs/fs.h>
10 #include <linux/kernel.h>
11 #include "cpumap.h"
12 #include "map_symbol.h"
13 #include "mem-events.h"
14 #include "mem-info.h"
15 #include "debug.h"
16 #include "evsel.h"
17 #include "symbol.h"
18 #include "pmu.h"
19 #include "pmus.h"
21 unsigned int perf_mem_events__loads_ldlat = 30;
23 #define E(t, n, s, l, a) { .tag = t, .name = n, .event_name = s, .ldlat = l, .aux_event = a }
25 struct perf_mem_event perf_mem_events[PERF_MEM_EVENTS__MAX] = {
26 E("ldlat-loads", "%s/mem-loads,ldlat=%u/P", "mem-loads", true, 0),
27 E("ldlat-stores", "%s/mem-stores/P", "mem-stores", false, 0),
28 E(NULL, NULL, NULL, false, 0),
30 #undef E
32 bool perf_mem_record[PERF_MEM_EVENTS__MAX] = { 0 };
34 static char mem_loads_name[100];
35 static char mem_stores_name[100];
37 struct perf_mem_event *perf_pmu__mem_events_ptr(struct perf_pmu *pmu, int i)
39 if (i >= PERF_MEM_EVENTS__MAX || !pmu)
40 return NULL;
42 return &pmu->mem_events[i];
45 static struct perf_pmu *perf_pmus__scan_mem(struct perf_pmu *pmu)
47 while ((pmu = perf_pmus__scan(pmu)) != NULL) {
48 if (pmu->mem_events)
49 return pmu;
51 return NULL;
54 struct perf_pmu *perf_mem_events_find_pmu(void)
57 * The current perf mem doesn't support per-PMU configuration.
58 * The exact same configuration is applied to all the
59 * mem_events supported PMUs.
60 * Return the first mem_events supported PMU.
62 * Notes: The only case which may support multiple mem_events
63 * supported PMUs is Intel hybrid. The exact same mem_events
64 * is shared among the PMUs. Only configure the first PMU
65 * is good enough as well.
67 return perf_pmus__scan_mem(NULL);
70 /**
71 * perf_pmu__mem_events_num_mem_pmus - Get the number of mem PMUs since the given pmu
72 * @pmu: Start pmu. If it's NULL, search the entire PMU list.
74 int perf_pmu__mem_events_num_mem_pmus(struct perf_pmu *pmu)
76 int num = 0;
78 while ((pmu = perf_pmus__scan_mem(pmu)) != NULL)
79 num++;
81 return num;
84 static const char *perf_pmu__mem_events_name(int i, struct perf_pmu *pmu)
86 struct perf_mem_event *e;
88 if (i >= PERF_MEM_EVENTS__MAX || !pmu)
89 return NULL;
91 e = &pmu->mem_events[i];
92 if (!e || !e->name)
93 return NULL;
95 if (i == PERF_MEM_EVENTS__LOAD || i == PERF_MEM_EVENTS__LOAD_STORE) {
96 if (e->ldlat) {
97 if (!e->aux_event) {
98 /* ARM and Most of Intel */
99 scnprintf(mem_loads_name, sizeof(mem_loads_name),
100 e->name, pmu->name,
101 perf_mem_events__loads_ldlat);
102 } else {
103 /* Intel with mem-loads-aux event */
104 scnprintf(mem_loads_name, sizeof(mem_loads_name),
105 e->name, pmu->name, pmu->name,
106 perf_mem_events__loads_ldlat);
108 } else {
109 if (!e->aux_event) {
110 /* AMD and POWER */
111 scnprintf(mem_loads_name, sizeof(mem_loads_name),
112 e->name, pmu->name);
113 } else
114 return NULL;
117 return mem_loads_name;
120 if (i == PERF_MEM_EVENTS__STORE) {
121 scnprintf(mem_stores_name, sizeof(mem_stores_name),
122 e->name, pmu->name);
123 return mem_stores_name;
126 return NULL;
129 bool is_mem_loads_aux_event(struct evsel *leader)
131 struct perf_pmu *pmu = leader->pmu;
132 struct perf_mem_event *e;
134 if (!pmu || !pmu->mem_events)
135 return false;
137 e = &pmu->mem_events[PERF_MEM_EVENTS__LOAD];
138 if (!e->aux_event)
139 return false;
141 return leader->core.attr.config == e->aux_event;
144 int perf_pmu__mem_events_parse(struct perf_pmu *pmu, const char *str)
146 char *tok, *saveptr = NULL;
147 bool found = false;
148 char *buf;
149 int j;
151 /* We need buffer that we know we can write to. */
152 buf = malloc(strlen(str) + 1);
153 if (!buf)
154 return -ENOMEM;
156 strcpy(buf, str);
158 tok = strtok_r((char *)buf, ",", &saveptr);
160 while (tok) {
161 for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
162 struct perf_mem_event *e = perf_pmu__mem_events_ptr(pmu, j);
164 if (!e->tag)
165 continue;
167 if (strstr(e->tag, tok))
168 perf_mem_record[j] = found = true;
171 tok = strtok_r(NULL, ",", &saveptr);
174 free(buf);
176 if (found)
177 return 0;
179 pr_err("failed: event '%s' not found, use '-e list' to get list of available events\n", str);
180 return -1;
183 static bool perf_pmu__mem_events_supported(const char *mnt, struct perf_pmu *pmu,
184 struct perf_mem_event *e)
186 char path[PATH_MAX];
187 struct stat st;
189 if (!e->event_name)
190 return true;
192 scnprintf(path, PATH_MAX, "%s/devices/%s/events/%s", mnt, pmu->name, e->event_name);
194 return !stat(path, &st);
197 static int __perf_pmu__mem_events_init(struct perf_pmu *pmu)
199 const char *mnt = sysfs__mount();
200 bool found = false;
201 int j;
203 if (!mnt)
204 return -ENOENT;
206 for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
207 struct perf_mem_event *e = perf_pmu__mem_events_ptr(pmu, j);
210 * If the event entry isn't valid, skip initialization
211 * and "e->supported" will keep false.
213 if (!e->tag)
214 continue;
216 e->supported |= perf_pmu__mem_events_supported(mnt, pmu, e);
217 if (e->supported)
218 found = true;
221 return found ? 0 : -ENOENT;
224 int perf_pmu__mem_events_init(void)
226 struct perf_pmu *pmu = NULL;
228 while ((pmu = perf_pmus__scan_mem(pmu)) != NULL) {
229 if (__perf_pmu__mem_events_init(pmu))
230 return -ENOENT;
233 return 0;
236 void perf_pmu__mem_events_list(struct perf_pmu *pmu)
238 int j;
240 for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
241 struct perf_mem_event *e = perf_pmu__mem_events_ptr(pmu, j);
243 fprintf(stderr, "%-*s%-*s%s",
244 e->tag ? 13 : 0,
245 e->tag ? : "",
246 e->tag && verbose > 0 ? 25 : 0,
247 e->tag && verbose > 0 ? perf_pmu__mem_events_name(j, pmu) : "",
248 e->supported ? ": available\n" : "");
252 int perf_mem_events__record_args(const char **rec_argv, int *argv_nr)
254 const char *mnt = sysfs__mount();
255 struct perf_pmu *pmu = NULL;
256 struct perf_mem_event *e;
257 int i = *argv_nr;
258 const char *s;
259 char *copy;
260 struct perf_cpu_map *cpu_map = NULL;
262 while ((pmu = perf_pmus__scan_mem(pmu)) != NULL) {
263 for (int j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
264 e = perf_pmu__mem_events_ptr(pmu, j);
266 if (!perf_mem_record[j])
267 continue;
269 if (!e->supported) {
270 pr_err("failed: event '%s' not supported\n",
271 perf_pmu__mem_events_name(j, pmu));
272 return -1;
275 s = perf_pmu__mem_events_name(j, pmu);
276 if (!s || !perf_pmu__mem_events_supported(mnt, pmu, e))
277 continue;
279 copy = strdup(s);
280 if (!copy)
281 return -1;
283 rec_argv[i++] = "-e";
284 rec_argv[i++] = copy;
286 cpu_map = perf_cpu_map__merge(cpu_map, pmu->cpus);
290 if (cpu_map) {
291 if (!perf_cpu_map__equal(cpu_map, cpu_map__online())) {
292 char buf[200];
294 cpu_map__snprint(cpu_map, buf, sizeof(buf));
295 pr_warning("Memory events are enabled on a subset of CPUs: %s\n", buf);
297 perf_cpu_map__put(cpu_map);
300 *argv_nr = i;
301 return 0;
304 static const char * const tlb_access[] = {
305 "N/A",
306 "HIT",
307 "MISS",
308 "L1",
309 "L2",
310 "Walker",
311 "Fault",
314 int perf_mem__tlb_scnprintf(char *out, size_t sz, const struct mem_info *mem_info)
316 size_t l = 0, i;
317 u64 m = PERF_MEM_TLB_NA;
318 u64 hit, miss;
320 sz -= 1; /* -1 for null termination */
321 out[0] = '\0';
323 if (mem_info)
324 m = mem_info__const_data_src(mem_info)->mem_dtlb;
326 hit = m & PERF_MEM_TLB_HIT;
327 miss = m & PERF_MEM_TLB_MISS;
329 /* already taken care of */
330 m &= ~(PERF_MEM_TLB_HIT|PERF_MEM_TLB_MISS);
332 for (i = 0; m && i < ARRAY_SIZE(tlb_access); i++, m >>= 1) {
333 if (!(m & 0x1))
334 continue;
335 if (l) {
336 strcat(out, " or ");
337 l += 4;
339 l += scnprintf(out + l, sz - l, tlb_access[i]);
341 if (*out == '\0')
342 l += scnprintf(out, sz - l, "N/A");
343 if (hit)
344 l += scnprintf(out + l, sz - l, " hit");
345 if (miss)
346 l += scnprintf(out + l, sz - l, " miss");
348 return l;
351 static const char * const mem_lvl[] = {
352 "N/A",
353 "HIT",
354 "MISS",
355 "L1",
356 "LFB/MAB",
357 "L2",
358 "L3",
359 "Local RAM",
360 "Remote RAM (1 hop)",
361 "Remote RAM (2 hops)",
362 "Remote Cache (1 hop)",
363 "Remote Cache (2 hops)",
364 "I/O",
365 "Uncached",
368 static const char * const mem_lvlnum[] = {
369 [PERF_MEM_LVLNUM_L1] = "L1",
370 [PERF_MEM_LVLNUM_L2] = "L2",
371 [PERF_MEM_LVLNUM_L3] = "L3",
372 [PERF_MEM_LVLNUM_L4] = "L4",
373 [PERF_MEM_LVLNUM_L2_MHB] = "L2 MHB",
374 [PERF_MEM_LVLNUM_MSC] = "Memory-side Cache",
375 [PERF_MEM_LVLNUM_UNC] = "Uncached",
376 [PERF_MEM_LVLNUM_CXL] = "CXL",
377 [PERF_MEM_LVLNUM_IO] = "I/O",
378 [PERF_MEM_LVLNUM_ANY_CACHE] = "Any cache",
379 [PERF_MEM_LVLNUM_LFB] = "LFB/MAB",
380 [PERF_MEM_LVLNUM_RAM] = "RAM",
381 [PERF_MEM_LVLNUM_PMEM] = "PMEM",
382 [PERF_MEM_LVLNUM_NA] = "N/A",
385 static const char * const mem_hops[] = {
386 "N/A",
388 * While printing, 'Remote' will be added to represent
389 * 'Remote core, same node' accesses as remote field need
390 * to be set with mem_hops field.
392 "core, same node",
393 "node, same socket",
394 "socket, same board",
395 "board",
398 static int perf_mem__op_scnprintf(char *out, size_t sz, const struct mem_info *mem_info)
400 u64 op = PERF_MEM_LOCK_NA;
401 int l;
403 if (mem_info)
404 op = mem_info__const_data_src(mem_info)->mem_op;
406 if (op & PERF_MEM_OP_NA)
407 l = scnprintf(out, sz, "N/A");
408 else if (op & PERF_MEM_OP_LOAD)
409 l = scnprintf(out, sz, "LOAD");
410 else if (op & PERF_MEM_OP_STORE)
411 l = scnprintf(out, sz, "STORE");
412 else if (op & PERF_MEM_OP_PFETCH)
413 l = scnprintf(out, sz, "PFETCH");
414 else if (op & PERF_MEM_OP_EXEC)
415 l = scnprintf(out, sz, "EXEC");
416 else
417 l = scnprintf(out, sz, "No");
419 return l;
422 int perf_mem__lvl_scnprintf(char *out, size_t sz, const struct mem_info *mem_info)
424 union perf_mem_data_src data_src;
425 int printed = 0;
426 size_t l = 0;
427 size_t i;
428 int lvl;
429 char hit_miss[5] = {0};
431 sz -= 1; /* -1 for null termination */
432 out[0] = '\0';
434 if (!mem_info)
435 goto na;
437 data_src = *mem_info__const_data_src(mem_info);
439 if (data_src.mem_lvl & PERF_MEM_LVL_HIT)
440 memcpy(hit_miss, "hit", 3);
441 else if (data_src.mem_lvl & PERF_MEM_LVL_MISS)
442 memcpy(hit_miss, "miss", 4);
444 lvl = data_src.mem_lvl_num;
445 if (lvl && lvl != PERF_MEM_LVLNUM_NA) {
446 if (data_src.mem_remote) {
447 strcat(out, "Remote ");
448 l += 7;
451 if (data_src.mem_hops)
452 l += scnprintf(out + l, sz - l, "%s ", mem_hops[data_src.mem_hops]);
454 if (mem_lvlnum[lvl])
455 l += scnprintf(out + l, sz - l, mem_lvlnum[lvl]);
456 else
457 l += scnprintf(out + l, sz - l, "Unknown level %d", lvl);
459 l += scnprintf(out + l, sz - l, " %s", hit_miss);
460 return l;
463 lvl = data_src.mem_lvl;
464 if (!lvl)
465 goto na;
467 lvl &= ~(PERF_MEM_LVL_NA | PERF_MEM_LVL_HIT | PERF_MEM_LVL_MISS);
468 if (!lvl)
469 goto na;
471 for (i = 0; lvl && i < ARRAY_SIZE(mem_lvl); i++, lvl >>= 1) {
472 if (!(lvl & 0x1))
473 continue;
474 if (printed++) {
475 strcat(out, " or ");
476 l += 4;
478 l += scnprintf(out + l, sz - l, mem_lvl[i]);
481 if (printed) {
482 l += scnprintf(out + l, sz - l, " %s", hit_miss);
483 return l;
487 strcat(out, "N/A");
488 return 3;
491 static const char * const snoop_access[] = {
492 "N/A",
493 "None",
494 "Hit",
495 "Miss",
496 "HitM",
499 static const char * const snoopx_access[] = {
500 "Fwd",
501 "Peer",
504 int perf_mem__snp_scnprintf(char *out, size_t sz, const struct mem_info *mem_info)
506 size_t i, l = 0;
507 u64 m = PERF_MEM_SNOOP_NA;
509 sz -= 1; /* -1 for null termination */
510 out[0] = '\0';
512 if (mem_info)
513 m = mem_info__const_data_src(mem_info)->mem_snoop;
515 for (i = 0; m && i < ARRAY_SIZE(snoop_access); i++, m >>= 1) {
516 if (!(m & 0x1))
517 continue;
518 if (l) {
519 strcat(out, " or ");
520 l += 4;
522 l += scnprintf(out + l, sz - l, snoop_access[i]);
525 m = 0;
526 if (mem_info)
527 m = mem_info__const_data_src(mem_info)->mem_snoopx;
529 for (i = 0; m && i < ARRAY_SIZE(snoopx_access); i++, m >>= 1) {
530 if (!(m & 0x1))
531 continue;
533 if (l) {
534 strcat(out, " or ");
535 l += 4;
537 l += scnprintf(out + l, sz - l, snoopx_access[i]);
540 if (*out == '\0')
541 l += scnprintf(out, sz - l, "N/A");
543 return l;
546 int perf_mem__lck_scnprintf(char *out, size_t sz, const struct mem_info *mem_info)
548 u64 mask = PERF_MEM_LOCK_NA;
549 int l;
551 if (mem_info)
552 mask = mem_info__const_data_src(mem_info)->mem_lock;
554 if (mask & PERF_MEM_LOCK_NA)
555 l = scnprintf(out, sz, "N/A");
556 else if (mask & PERF_MEM_LOCK_LOCKED)
557 l = scnprintf(out, sz, "Yes");
558 else
559 l = scnprintf(out, sz, "No");
561 return l;
564 int perf_mem__blk_scnprintf(char *out, size_t sz, const struct mem_info *mem_info)
566 size_t l = 0;
567 u64 mask = PERF_MEM_BLK_NA;
569 sz -= 1; /* -1 for null termination */
570 out[0] = '\0';
572 if (mem_info)
573 mask = mem_info__const_data_src(mem_info)->mem_blk;
575 if (!mask || (mask & PERF_MEM_BLK_NA)) {
576 l += scnprintf(out + l, sz - l, " N/A");
577 return l;
579 if (mask & PERF_MEM_BLK_DATA)
580 l += scnprintf(out + l, sz - l, " Data");
581 if (mask & PERF_MEM_BLK_ADDR)
582 l += scnprintf(out + l, sz - l, " Addr");
584 return l;
587 int perf_script__meminfo_scnprintf(char *out, size_t sz, const struct mem_info *mem_info)
589 int i = 0;
591 i += scnprintf(out, sz, "|OP ");
592 i += perf_mem__op_scnprintf(out + i, sz - i, mem_info);
593 i += scnprintf(out + i, sz - i, "|LVL ");
594 i += perf_mem__lvl_scnprintf(out + i, sz, mem_info);
595 i += scnprintf(out + i, sz - i, "|SNP ");
596 i += perf_mem__snp_scnprintf(out + i, sz - i, mem_info);
597 i += scnprintf(out + i, sz - i, "|TLB ");
598 i += perf_mem__tlb_scnprintf(out + i, sz - i, mem_info);
599 i += scnprintf(out + i, sz - i, "|LCK ");
600 i += perf_mem__lck_scnprintf(out + i, sz - i, mem_info);
601 i += scnprintf(out + i, sz - i, "|BLK ");
602 i += perf_mem__blk_scnprintf(out + i, sz - i, mem_info);
604 return i;
607 int c2c_decode_stats(struct c2c_stats *stats, struct mem_info *mi)
609 union perf_mem_data_src *data_src = mem_info__data_src(mi);
610 u64 daddr = mem_info__daddr(mi)->addr;
611 u64 op = data_src->mem_op;
612 u64 lvl = data_src->mem_lvl;
613 u64 snoop = data_src->mem_snoop;
614 u64 snoopx = data_src->mem_snoopx;
615 u64 lock = data_src->mem_lock;
616 u64 blk = data_src->mem_blk;
618 * Skylake might report unknown remote level via this
619 * bit, consider it when evaluating remote HITMs.
621 * Incase of power, remote field can also be used to denote cache
622 * accesses from the another core of same node. Hence, setting
623 * mrem only when HOPS is zero along with set remote field.
625 bool mrem = (data_src->mem_remote && !data_src->mem_hops);
626 int err = 0;
628 #define HITM_INC(__f) \
629 do { \
630 stats->__f++; \
631 stats->tot_hitm++; \
632 } while (0)
634 #define PEER_INC(__f) \
635 do { \
636 stats->__f++; \
637 stats->tot_peer++; \
638 } while (0)
640 #define P(a, b) PERF_MEM_##a##_##b
642 stats->nr_entries++;
644 if (lock & P(LOCK, LOCKED)) stats->locks++;
646 if (blk & P(BLK, DATA)) stats->blk_data++;
647 if (blk & P(BLK, ADDR)) stats->blk_addr++;
649 if (op & P(OP, LOAD)) {
650 /* load */
651 stats->load++;
653 if (!daddr) {
654 stats->ld_noadrs++;
655 return -1;
658 if (lvl & P(LVL, HIT)) {
659 if (lvl & P(LVL, UNC)) stats->ld_uncache++;
660 if (lvl & P(LVL, IO)) stats->ld_io++;
661 if (lvl & P(LVL, LFB)) stats->ld_fbhit++;
662 if (lvl & P(LVL, L1 )) stats->ld_l1hit++;
663 if (lvl & P(LVL, L2)) {
664 stats->ld_l2hit++;
666 if (snoopx & P(SNOOPX, PEER))
667 PEER_INC(lcl_peer);
669 if (lvl & P(LVL, L3 )) {
670 if (snoop & P(SNOOP, HITM))
671 HITM_INC(lcl_hitm);
672 else
673 stats->ld_llchit++;
675 if (snoopx & P(SNOOPX, PEER))
676 PEER_INC(lcl_peer);
679 if (lvl & P(LVL, LOC_RAM)) {
680 stats->lcl_dram++;
681 if (snoop & P(SNOOP, HIT))
682 stats->ld_shared++;
683 else
684 stats->ld_excl++;
687 if ((lvl & P(LVL, REM_RAM1)) ||
688 (lvl & P(LVL, REM_RAM2)) ||
689 mrem) {
690 stats->rmt_dram++;
691 if (snoop & P(SNOOP, HIT))
692 stats->ld_shared++;
693 else
694 stats->ld_excl++;
698 if ((lvl & P(LVL, REM_CCE1)) ||
699 (lvl & P(LVL, REM_CCE2)) ||
700 mrem) {
701 if (snoop & P(SNOOP, HIT)) {
702 stats->rmt_hit++;
703 } else if (snoop & P(SNOOP, HITM)) {
704 HITM_INC(rmt_hitm);
705 } else if (snoopx & P(SNOOPX, PEER)) {
706 stats->rmt_hit++;
707 PEER_INC(rmt_peer);
711 if ((lvl & P(LVL, MISS)))
712 stats->ld_miss++;
714 } else if (op & P(OP, STORE)) {
715 /* store */
716 stats->store++;
718 if (!daddr) {
719 stats->st_noadrs++;
720 return -1;
723 if (lvl & P(LVL, HIT)) {
724 if (lvl & P(LVL, UNC)) stats->st_uncache++;
725 if (lvl & P(LVL, L1 )) stats->st_l1hit++;
727 if (lvl & P(LVL, MISS))
728 if (lvl & P(LVL, L1)) stats->st_l1miss++;
729 if (lvl & P(LVL, NA))
730 stats->st_na++;
731 } else {
732 /* unparsable data_src? */
733 stats->noparse++;
734 return -1;
737 if (!mem_info__daddr(mi)->ms.map || !mem_info__iaddr(mi)->ms.map) {
738 stats->nomap++;
739 return -1;
742 #undef P
743 #undef HITM_INC
744 return err;
747 void c2c_add_stats(struct c2c_stats *stats, struct c2c_stats *add)
749 stats->nr_entries += add->nr_entries;
751 stats->locks += add->locks;
752 stats->store += add->store;
753 stats->st_uncache += add->st_uncache;
754 stats->st_noadrs += add->st_noadrs;
755 stats->st_l1hit += add->st_l1hit;
756 stats->st_l1miss += add->st_l1miss;
757 stats->st_na += add->st_na;
758 stats->load += add->load;
759 stats->ld_excl += add->ld_excl;
760 stats->ld_shared += add->ld_shared;
761 stats->ld_uncache += add->ld_uncache;
762 stats->ld_io += add->ld_io;
763 stats->ld_miss += add->ld_miss;
764 stats->ld_noadrs += add->ld_noadrs;
765 stats->ld_fbhit += add->ld_fbhit;
766 stats->ld_l1hit += add->ld_l1hit;
767 stats->ld_l2hit += add->ld_l2hit;
768 stats->ld_llchit += add->ld_llchit;
769 stats->lcl_hitm += add->lcl_hitm;
770 stats->rmt_hitm += add->rmt_hitm;
771 stats->tot_hitm += add->tot_hitm;
772 stats->lcl_peer += add->lcl_peer;
773 stats->rmt_peer += add->rmt_peer;
774 stats->tot_peer += add->tot_peer;
775 stats->rmt_hit += add->rmt_hit;
776 stats->lcl_dram += add->lcl_dram;
777 stats->rmt_dram += add->rmt_dram;
778 stats->blk_data += add->blk_data;
779 stats->blk_addr += add->blk_addr;
780 stats->nomap += add->nomap;
781 stats->noparse += add->noparse;