Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / tools / sched_ext / scx_flatcg.bpf.c
blob4e3afcd260bff3fb9a4d23024cb0347dafb602f6
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * A demo sched_ext flattened cgroup hierarchy scheduler. It implements
4 * hierarchical weight-based cgroup CPU control by flattening the cgroup
5 * hierarchy into a single layer by compounding the active weight share at each
6 * level. Consider the following hierarchy with weights in parentheses:
8 * R + A (100) + B (100)
9 * | \ C (100)
10 * \ D (200)
12 * Ignoring the root and threaded cgroups, only B, C and D can contain tasks.
13 * Let's say all three have runnable tasks. The total share that each of these
14 * three cgroups is entitled to can be calculated by compounding its share at
15 * each level.
17 * For example, B is competing against C and in that competition its share is
18 * 100/(100+100) == 1/2. At its parent level, A is competing against D and A's
19 * share in that competition is 100/(200+100) == 1/3. B's eventual share in the
20 * system can be calculated by multiplying the two shares, 1/2 * 1/3 == 1/6. C's
21 * eventual shaer is the same at 1/6. D is only competing at the top level and
22 * its share is 200/(100+200) == 2/3.
24 * So, instead of hierarchically scheduling level-by-level, we can consider it
25 * as B, C and D competing each other with respective share of 1/6, 1/6 and 2/3
26 * and keep updating the eventual shares as the cgroups' runnable states change.
28 * This flattening of hierarchy can bring a substantial performance gain when
29 * the cgroup hierarchy is nested multiple levels. in a simple benchmark using
30 * wrk[8] on apache serving a CGI script calculating sha1sum of a small file, it
31 * outperforms CFS by ~3% with CPU controller disabled and by ~10% with two
32 * apache instances competing with 2:1 weight ratio nested four level deep.
34 * However, the gain comes at the cost of not being able to properly handle
35 * thundering herd of cgroups. For example, if many cgroups which are nested
36 * behind a low priority parent cgroup wake up around the same time, they may be
37 * able to consume more CPU cycles than they are entitled to. In many use cases,
38 * this isn't a real concern especially given the performance gain. Also, there
39 * are ways to mitigate the problem further by e.g. introducing an extra
40 * scheduling layer on cgroup delegation boundaries.
42 * The scheduler first picks the cgroup to run and then schedule the tasks
43 * within by using nested weighted vtime scheduling by default. The
44 * cgroup-internal scheduling can be switched to FIFO with the -f option.
46 #include <scx/common.bpf.h>
47 #include "scx_flatcg.h"
50 * Maximum amount of retries to find a valid cgroup.
52 enum {
53 FALLBACK_DSQ = 0,
54 CGROUP_MAX_RETRIES = 1024,
57 char _license[] SEC("license") = "GPL";
59 const volatile u32 nr_cpus = 32; /* !0 for veristat, set during init */
60 const volatile u64 cgrp_slice_ns = SCX_SLICE_DFL;
61 const volatile bool fifo_sched;
63 u64 cvtime_now;
64 UEI_DEFINE(uei);
66 struct {
67 __uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
68 __type(key, u32);
69 __type(value, u64);
70 __uint(max_entries, FCG_NR_STATS);
71 } stats SEC(".maps");
73 static void stat_inc(enum fcg_stat_idx idx)
75 u32 idx_v = idx;
77 u64 *cnt_p = bpf_map_lookup_elem(&stats, &idx_v);
78 if (cnt_p)
79 (*cnt_p)++;
82 struct fcg_cpu_ctx {
83 u64 cur_cgid;
84 u64 cur_at;
87 struct {
88 __uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
89 __type(key, u32);
90 __type(value, struct fcg_cpu_ctx);
91 __uint(max_entries, 1);
92 } cpu_ctx SEC(".maps");
94 struct {
95 __uint(type, BPF_MAP_TYPE_CGRP_STORAGE);
96 __uint(map_flags, BPF_F_NO_PREALLOC);
97 __type(key, int);
98 __type(value, struct fcg_cgrp_ctx);
99 } cgrp_ctx SEC(".maps");
101 struct cgv_node {
102 struct bpf_rb_node rb_node;
103 __u64 cvtime;
104 __u64 cgid;
107 private(CGV_TREE) struct bpf_spin_lock cgv_tree_lock;
108 private(CGV_TREE) struct bpf_rb_root cgv_tree __contains(cgv_node, rb_node);
110 struct cgv_node_stash {
111 struct cgv_node __kptr *node;
114 struct {
115 __uint(type, BPF_MAP_TYPE_HASH);
116 __uint(max_entries, 16384);
117 __type(key, __u64);
118 __type(value, struct cgv_node_stash);
119 } cgv_node_stash SEC(".maps");
121 struct fcg_task_ctx {
122 u64 bypassed_at;
125 struct {
126 __uint(type, BPF_MAP_TYPE_TASK_STORAGE);
127 __uint(map_flags, BPF_F_NO_PREALLOC);
128 __type(key, int);
129 __type(value, struct fcg_task_ctx);
130 } task_ctx SEC(".maps");
132 /* gets inc'd on weight tree changes to expire the cached hweights */
133 u64 hweight_gen = 1;
135 static u64 div_round_up(u64 dividend, u64 divisor)
137 return (dividend + divisor - 1) / divisor;
140 static bool vtime_before(u64 a, u64 b)
142 return (s64)(a - b) < 0;
145 static bool cgv_node_less(struct bpf_rb_node *a, const struct bpf_rb_node *b)
147 struct cgv_node *cgc_a, *cgc_b;
149 cgc_a = container_of(a, struct cgv_node, rb_node);
150 cgc_b = container_of(b, struct cgv_node, rb_node);
152 return cgc_a->cvtime < cgc_b->cvtime;
155 static struct fcg_cpu_ctx *find_cpu_ctx(void)
157 struct fcg_cpu_ctx *cpuc;
158 u32 idx = 0;
160 cpuc = bpf_map_lookup_elem(&cpu_ctx, &idx);
161 if (!cpuc) {
162 scx_bpf_error("cpu_ctx lookup failed");
163 return NULL;
165 return cpuc;
168 static struct fcg_cgrp_ctx *find_cgrp_ctx(struct cgroup *cgrp)
170 struct fcg_cgrp_ctx *cgc;
172 cgc = bpf_cgrp_storage_get(&cgrp_ctx, cgrp, 0, 0);
173 if (!cgc) {
174 scx_bpf_error("cgrp_ctx lookup failed for cgid %llu", cgrp->kn->id);
175 return NULL;
177 return cgc;
180 static struct fcg_cgrp_ctx *find_ancestor_cgrp_ctx(struct cgroup *cgrp, int level)
182 struct fcg_cgrp_ctx *cgc;
184 cgrp = bpf_cgroup_ancestor(cgrp, level);
185 if (!cgrp) {
186 scx_bpf_error("ancestor cgroup lookup failed");
187 return NULL;
190 cgc = find_cgrp_ctx(cgrp);
191 if (!cgc)
192 scx_bpf_error("ancestor cgrp_ctx lookup failed");
193 bpf_cgroup_release(cgrp);
194 return cgc;
197 static void cgrp_refresh_hweight(struct cgroup *cgrp, struct fcg_cgrp_ctx *cgc)
199 int level;
201 if (!cgc->nr_active) {
202 stat_inc(FCG_STAT_HWT_SKIP);
203 return;
206 if (cgc->hweight_gen == hweight_gen) {
207 stat_inc(FCG_STAT_HWT_CACHE);
208 return;
211 stat_inc(FCG_STAT_HWT_UPDATES);
212 bpf_for(level, 0, cgrp->level + 1) {
213 struct fcg_cgrp_ctx *cgc;
214 bool is_active;
216 cgc = find_ancestor_cgrp_ctx(cgrp, level);
217 if (!cgc)
218 break;
220 if (!level) {
221 cgc->hweight = FCG_HWEIGHT_ONE;
222 cgc->hweight_gen = hweight_gen;
223 } else {
224 struct fcg_cgrp_ctx *pcgc;
226 pcgc = find_ancestor_cgrp_ctx(cgrp, level - 1);
227 if (!pcgc)
228 break;
231 * We can be opportunistic here and not grab the
232 * cgv_tree_lock and deal with the occasional races.
233 * However, hweight updates are already cached and
234 * relatively low-frequency. Let's just do the
235 * straightforward thing.
237 bpf_spin_lock(&cgv_tree_lock);
238 is_active = cgc->nr_active;
239 if (is_active) {
240 cgc->hweight_gen = pcgc->hweight_gen;
241 cgc->hweight =
242 div_round_up(pcgc->hweight * cgc->weight,
243 pcgc->child_weight_sum);
245 bpf_spin_unlock(&cgv_tree_lock);
247 if (!is_active) {
248 stat_inc(FCG_STAT_HWT_RACE);
249 break;
255 static void cgrp_cap_budget(struct cgv_node *cgv_node, struct fcg_cgrp_ctx *cgc)
257 u64 delta, cvtime, max_budget;
260 * A node which is on the rbtree can't be pointed to from elsewhere yet
261 * and thus can't be updated and repositioned. Instead, we collect the
262 * vtime deltas separately and apply it asynchronously here.
264 delta = __sync_fetch_and_sub(&cgc->cvtime_delta, cgc->cvtime_delta);
265 cvtime = cgv_node->cvtime + delta;
268 * Allow a cgroup to carry the maximum budget proportional to its
269 * hweight such that a full-hweight cgroup can immediately take up half
270 * of the CPUs at the most while staying at the front of the rbtree.
272 max_budget = (cgrp_slice_ns * nr_cpus * cgc->hweight) /
273 (2 * FCG_HWEIGHT_ONE);
274 if (vtime_before(cvtime, cvtime_now - max_budget))
275 cvtime = cvtime_now - max_budget;
277 cgv_node->cvtime = cvtime;
280 static void cgrp_enqueued(struct cgroup *cgrp, struct fcg_cgrp_ctx *cgc)
282 struct cgv_node_stash *stash;
283 struct cgv_node *cgv_node;
284 u64 cgid = cgrp->kn->id;
286 /* paired with cmpxchg in try_pick_next_cgroup() */
287 if (__sync_val_compare_and_swap(&cgc->queued, 0, 1)) {
288 stat_inc(FCG_STAT_ENQ_SKIP);
289 return;
292 stash = bpf_map_lookup_elem(&cgv_node_stash, &cgid);
293 if (!stash) {
294 scx_bpf_error("cgv_node lookup failed for cgid %llu", cgid);
295 return;
298 /* NULL if the node is already on the rbtree */
299 cgv_node = bpf_kptr_xchg(&stash->node, NULL);
300 if (!cgv_node) {
301 stat_inc(FCG_STAT_ENQ_RACE);
302 return;
305 bpf_spin_lock(&cgv_tree_lock);
306 cgrp_cap_budget(cgv_node, cgc);
307 bpf_rbtree_add(&cgv_tree, &cgv_node->rb_node, cgv_node_less);
308 bpf_spin_unlock(&cgv_tree_lock);
311 static void set_bypassed_at(struct task_struct *p, struct fcg_task_ctx *taskc)
314 * Tell fcg_stopping() that this bypassed the regular scheduling path
315 * and should be force charged to the cgroup. 0 is used to indicate that
316 * the task isn't bypassing, so if the current runtime is 0, go back by
317 * one nanosecond.
319 taskc->bypassed_at = p->se.sum_exec_runtime ?: (u64)-1;
322 s32 BPF_STRUCT_OPS(fcg_select_cpu, struct task_struct *p, s32 prev_cpu, u64 wake_flags)
324 struct fcg_task_ctx *taskc;
325 bool is_idle = false;
326 s32 cpu;
328 cpu = scx_bpf_select_cpu_dfl(p, prev_cpu, wake_flags, &is_idle);
330 taskc = bpf_task_storage_get(&task_ctx, p, 0, 0);
331 if (!taskc) {
332 scx_bpf_error("task_ctx lookup failed");
333 return cpu;
337 * If select_cpu_dfl() is recommending local enqueue, the target CPU is
338 * idle. Follow it and charge the cgroup later in fcg_stopping() after
339 * the fact.
341 if (is_idle) {
342 set_bypassed_at(p, taskc);
343 stat_inc(FCG_STAT_LOCAL);
344 scx_bpf_dsq_insert(p, SCX_DSQ_LOCAL, SCX_SLICE_DFL, 0);
347 return cpu;
350 void BPF_STRUCT_OPS(fcg_enqueue, struct task_struct *p, u64 enq_flags)
352 struct fcg_task_ctx *taskc;
353 struct cgroup *cgrp;
354 struct fcg_cgrp_ctx *cgc;
356 taskc = bpf_task_storage_get(&task_ctx, p, 0, 0);
357 if (!taskc) {
358 scx_bpf_error("task_ctx lookup failed");
359 return;
363 * Use the direct dispatching and force charging to deal with tasks with
364 * custom affinities so that we don't have to worry about per-cgroup
365 * dq's containing tasks that can't be executed from some CPUs.
367 if (p->nr_cpus_allowed != nr_cpus) {
368 set_bypassed_at(p, taskc);
371 * The global dq is deprioritized as we don't want to let tasks
372 * to boost themselves by constraining its cpumask. The
373 * deprioritization is rather severe, so let's not apply that to
374 * per-cpu kernel threads. This is ham-fisted. We probably wanna
375 * implement per-cgroup fallback dq's instead so that we have
376 * more control over when tasks with custom cpumask get issued.
378 if (p->nr_cpus_allowed == 1 && (p->flags & PF_KTHREAD)) {
379 stat_inc(FCG_STAT_LOCAL);
380 scx_bpf_dsq_insert(p, SCX_DSQ_LOCAL, SCX_SLICE_DFL,
381 enq_flags);
382 } else {
383 stat_inc(FCG_STAT_GLOBAL);
384 scx_bpf_dsq_insert(p, FALLBACK_DSQ, SCX_SLICE_DFL,
385 enq_flags);
387 return;
390 cgrp = __COMPAT_scx_bpf_task_cgroup(p);
391 cgc = find_cgrp_ctx(cgrp);
392 if (!cgc)
393 goto out_release;
395 if (fifo_sched) {
396 scx_bpf_dsq_insert(p, cgrp->kn->id, SCX_SLICE_DFL, enq_flags);
397 } else {
398 u64 tvtime = p->scx.dsq_vtime;
401 * Limit the amount of budget that an idling task can accumulate
402 * to one slice.
404 if (vtime_before(tvtime, cgc->tvtime_now - SCX_SLICE_DFL))
405 tvtime = cgc->tvtime_now - SCX_SLICE_DFL;
407 scx_bpf_dsq_insert_vtime(p, cgrp->kn->id, SCX_SLICE_DFL,
408 tvtime, enq_flags);
411 cgrp_enqueued(cgrp, cgc);
412 out_release:
413 bpf_cgroup_release(cgrp);
417 * Walk the cgroup tree to update the active weight sums as tasks wake up and
418 * sleep. The weight sums are used as the base when calculating the proportion a
419 * given cgroup or task is entitled to at each level.
421 static void update_active_weight_sums(struct cgroup *cgrp, bool runnable)
423 struct fcg_cgrp_ctx *cgc;
424 bool updated = false;
425 int idx;
427 cgc = find_cgrp_ctx(cgrp);
428 if (!cgc)
429 return;
432 * In most cases, a hot cgroup would have multiple threads going to
433 * sleep and waking up while the whole cgroup stays active. In leaf
434 * cgroups, ->nr_runnable which is updated with __sync operations gates
435 * ->nr_active updates, so that we don't have to grab the cgv_tree_lock
436 * repeatedly for a busy cgroup which is staying active.
438 if (runnable) {
439 if (__sync_fetch_and_add(&cgc->nr_runnable, 1))
440 return;
441 stat_inc(FCG_STAT_ACT);
442 } else {
443 if (__sync_sub_and_fetch(&cgc->nr_runnable, 1))
444 return;
445 stat_inc(FCG_STAT_DEACT);
449 * If @cgrp is becoming runnable, its hweight should be refreshed after
450 * it's added to the weight tree so that enqueue has the up-to-date
451 * value. If @cgrp is becoming quiescent, the hweight should be
452 * refreshed before it's removed from the weight tree so that the usage
453 * charging which happens afterwards has access to the latest value.
455 if (!runnable)
456 cgrp_refresh_hweight(cgrp, cgc);
458 /* propagate upwards */
459 bpf_for(idx, 0, cgrp->level) {
460 int level = cgrp->level - idx;
461 struct fcg_cgrp_ctx *cgc, *pcgc = NULL;
462 bool propagate = false;
464 cgc = find_ancestor_cgrp_ctx(cgrp, level);
465 if (!cgc)
466 break;
467 if (level) {
468 pcgc = find_ancestor_cgrp_ctx(cgrp, level - 1);
469 if (!pcgc)
470 break;
474 * We need the propagation protected by a lock to synchronize
475 * against weight changes. There's no reason to drop the lock at
476 * each level but bpf_spin_lock() doesn't want any function
477 * calls while locked.
479 bpf_spin_lock(&cgv_tree_lock);
481 if (runnable) {
482 if (!cgc->nr_active++) {
483 updated = true;
484 if (pcgc) {
485 propagate = true;
486 pcgc->child_weight_sum += cgc->weight;
489 } else {
490 if (!--cgc->nr_active) {
491 updated = true;
492 if (pcgc) {
493 propagate = true;
494 pcgc->child_weight_sum -= cgc->weight;
499 bpf_spin_unlock(&cgv_tree_lock);
501 if (!propagate)
502 break;
505 if (updated)
506 __sync_fetch_and_add(&hweight_gen, 1);
508 if (runnable)
509 cgrp_refresh_hweight(cgrp, cgc);
512 void BPF_STRUCT_OPS(fcg_runnable, struct task_struct *p, u64 enq_flags)
514 struct cgroup *cgrp;
516 cgrp = __COMPAT_scx_bpf_task_cgroup(p);
517 update_active_weight_sums(cgrp, true);
518 bpf_cgroup_release(cgrp);
521 void BPF_STRUCT_OPS(fcg_running, struct task_struct *p)
523 struct cgroup *cgrp;
524 struct fcg_cgrp_ctx *cgc;
526 if (fifo_sched)
527 return;
529 cgrp = __COMPAT_scx_bpf_task_cgroup(p);
530 cgc = find_cgrp_ctx(cgrp);
531 if (cgc) {
533 * @cgc->tvtime_now always progresses forward as tasks start
534 * executing. The test and update can be performed concurrently
535 * from multiple CPUs and thus racy. Any error should be
536 * contained and temporary. Let's just live with it.
538 if (vtime_before(cgc->tvtime_now, p->scx.dsq_vtime))
539 cgc->tvtime_now = p->scx.dsq_vtime;
541 bpf_cgroup_release(cgrp);
544 void BPF_STRUCT_OPS(fcg_stopping, struct task_struct *p, bool runnable)
546 struct fcg_task_ctx *taskc;
547 struct cgroup *cgrp;
548 struct fcg_cgrp_ctx *cgc;
551 * Scale the execution time by the inverse of the weight and charge.
553 * Note that the default yield implementation yields by setting
554 * @p->scx.slice to zero and the following would treat the yielding task
555 * as if it has consumed all its slice. If this penalizes yielding tasks
556 * too much, determine the execution time by taking explicit timestamps
557 * instead of depending on @p->scx.slice.
559 if (!fifo_sched)
560 p->scx.dsq_vtime +=
561 (SCX_SLICE_DFL - p->scx.slice) * 100 / p->scx.weight;
563 taskc = bpf_task_storage_get(&task_ctx, p, 0, 0);
564 if (!taskc) {
565 scx_bpf_error("task_ctx lookup failed");
566 return;
569 if (!taskc->bypassed_at)
570 return;
572 cgrp = __COMPAT_scx_bpf_task_cgroup(p);
573 cgc = find_cgrp_ctx(cgrp);
574 if (cgc) {
575 __sync_fetch_and_add(&cgc->cvtime_delta,
576 p->se.sum_exec_runtime - taskc->bypassed_at);
577 taskc->bypassed_at = 0;
579 bpf_cgroup_release(cgrp);
582 void BPF_STRUCT_OPS(fcg_quiescent, struct task_struct *p, u64 deq_flags)
584 struct cgroup *cgrp;
586 cgrp = __COMPAT_scx_bpf_task_cgroup(p);
587 update_active_weight_sums(cgrp, false);
588 bpf_cgroup_release(cgrp);
591 void BPF_STRUCT_OPS(fcg_cgroup_set_weight, struct cgroup *cgrp, u32 weight)
593 struct fcg_cgrp_ctx *cgc, *pcgc = NULL;
595 cgc = find_cgrp_ctx(cgrp);
596 if (!cgc)
597 return;
599 if (cgrp->level) {
600 pcgc = find_ancestor_cgrp_ctx(cgrp, cgrp->level - 1);
601 if (!pcgc)
602 return;
605 bpf_spin_lock(&cgv_tree_lock);
606 if (pcgc && cgc->nr_active)
607 pcgc->child_weight_sum += (s64)weight - cgc->weight;
608 cgc->weight = weight;
609 bpf_spin_unlock(&cgv_tree_lock);
612 static bool try_pick_next_cgroup(u64 *cgidp)
614 struct bpf_rb_node *rb_node;
615 struct cgv_node_stash *stash;
616 struct cgv_node *cgv_node;
617 struct fcg_cgrp_ctx *cgc;
618 struct cgroup *cgrp;
619 u64 cgid;
621 /* pop the front cgroup and wind cvtime_now accordingly */
622 bpf_spin_lock(&cgv_tree_lock);
624 rb_node = bpf_rbtree_first(&cgv_tree);
625 if (!rb_node) {
626 bpf_spin_unlock(&cgv_tree_lock);
627 stat_inc(FCG_STAT_PNC_NO_CGRP);
628 *cgidp = 0;
629 return true;
632 rb_node = bpf_rbtree_remove(&cgv_tree, rb_node);
633 bpf_spin_unlock(&cgv_tree_lock);
635 if (!rb_node) {
637 * This should never happen. bpf_rbtree_first() was called
638 * above while the tree lock was held, so the node should
639 * always be present.
641 scx_bpf_error("node could not be removed");
642 return true;
645 cgv_node = container_of(rb_node, struct cgv_node, rb_node);
646 cgid = cgv_node->cgid;
648 if (vtime_before(cvtime_now, cgv_node->cvtime))
649 cvtime_now = cgv_node->cvtime;
652 * If lookup fails, the cgroup's gone. Free and move on. See
653 * fcg_cgroup_exit().
655 cgrp = bpf_cgroup_from_id(cgid);
656 if (!cgrp) {
657 stat_inc(FCG_STAT_PNC_GONE);
658 goto out_free;
661 cgc = bpf_cgrp_storage_get(&cgrp_ctx, cgrp, 0, 0);
662 if (!cgc) {
663 bpf_cgroup_release(cgrp);
664 stat_inc(FCG_STAT_PNC_GONE);
665 goto out_free;
668 if (!scx_bpf_dsq_move_to_local(cgid)) {
669 bpf_cgroup_release(cgrp);
670 stat_inc(FCG_STAT_PNC_EMPTY);
671 goto out_stash;
675 * Successfully consumed from the cgroup. This will be our current
676 * cgroup for the new slice. Refresh its hweight.
678 cgrp_refresh_hweight(cgrp, cgc);
680 bpf_cgroup_release(cgrp);
683 * As the cgroup may have more tasks, add it back to the rbtree. Note
684 * that here we charge the full slice upfront and then exact later
685 * according to the actual consumption. This prevents lowpri thundering
686 * herd from saturating the machine.
688 bpf_spin_lock(&cgv_tree_lock);
689 cgv_node->cvtime += cgrp_slice_ns * FCG_HWEIGHT_ONE / (cgc->hweight ?: 1);
690 cgrp_cap_budget(cgv_node, cgc);
691 bpf_rbtree_add(&cgv_tree, &cgv_node->rb_node, cgv_node_less);
692 bpf_spin_unlock(&cgv_tree_lock);
694 *cgidp = cgid;
695 stat_inc(FCG_STAT_PNC_NEXT);
696 return true;
698 out_stash:
699 stash = bpf_map_lookup_elem(&cgv_node_stash, &cgid);
700 if (!stash) {
701 stat_inc(FCG_STAT_PNC_GONE);
702 goto out_free;
706 * Paired with cmpxchg in cgrp_enqueued(). If they see the following
707 * transition, they'll enqueue the cgroup. If they are earlier, we'll
708 * see their task in the dq below and requeue the cgroup.
710 __sync_val_compare_and_swap(&cgc->queued, 1, 0);
712 if (scx_bpf_dsq_nr_queued(cgid)) {
713 bpf_spin_lock(&cgv_tree_lock);
714 bpf_rbtree_add(&cgv_tree, &cgv_node->rb_node, cgv_node_less);
715 bpf_spin_unlock(&cgv_tree_lock);
716 stat_inc(FCG_STAT_PNC_RACE);
717 } else {
718 cgv_node = bpf_kptr_xchg(&stash->node, cgv_node);
719 if (cgv_node) {
720 scx_bpf_error("unexpected !NULL cgv_node stash");
721 goto out_free;
725 return false;
727 out_free:
728 bpf_obj_drop(cgv_node);
729 return false;
732 void BPF_STRUCT_OPS(fcg_dispatch, s32 cpu, struct task_struct *prev)
734 struct fcg_cpu_ctx *cpuc;
735 struct fcg_cgrp_ctx *cgc;
736 struct cgroup *cgrp;
737 u64 now = bpf_ktime_get_ns();
738 bool picked_next = false;
740 cpuc = find_cpu_ctx();
741 if (!cpuc)
742 return;
744 if (!cpuc->cur_cgid)
745 goto pick_next_cgroup;
747 if (vtime_before(now, cpuc->cur_at + cgrp_slice_ns)) {
748 if (scx_bpf_dsq_move_to_local(cpuc->cur_cgid)) {
749 stat_inc(FCG_STAT_CNS_KEEP);
750 return;
752 stat_inc(FCG_STAT_CNS_EMPTY);
753 } else {
754 stat_inc(FCG_STAT_CNS_EXPIRE);
758 * The current cgroup is expiring. It was already charged a full slice.
759 * Calculate the actual usage and accumulate the delta.
761 cgrp = bpf_cgroup_from_id(cpuc->cur_cgid);
762 if (!cgrp) {
763 stat_inc(FCG_STAT_CNS_GONE);
764 goto pick_next_cgroup;
767 cgc = bpf_cgrp_storage_get(&cgrp_ctx, cgrp, 0, 0);
768 if (cgc) {
770 * We want to update the vtime delta and then look for the next
771 * cgroup to execute but the latter needs to be done in a loop
772 * and we can't keep the lock held. Oh well...
774 bpf_spin_lock(&cgv_tree_lock);
775 __sync_fetch_and_add(&cgc->cvtime_delta,
776 (cpuc->cur_at + cgrp_slice_ns - now) *
777 FCG_HWEIGHT_ONE / (cgc->hweight ?: 1));
778 bpf_spin_unlock(&cgv_tree_lock);
779 } else {
780 stat_inc(FCG_STAT_CNS_GONE);
783 bpf_cgroup_release(cgrp);
785 pick_next_cgroup:
786 cpuc->cur_at = now;
788 if (scx_bpf_dsq_move_to_local(FALLBACK_DSQ)) {
789 cpuc->cur_cgid = 0;
790 return;
793 bpf_repeat(CGROUP_MAX_RETRIES) {
794 if (try_pick_next_cgroup(&cpuc->cur_cgid)) {
795 picked_next = true;
796 break;
801 * This only happens if try_pick_next_cgroup() races against enqueue
802 * path for more than CGROUP_MAX_RETRIES times, which is extremely
803 * unlikely and likely indicates an underlying bug. There shouldn't be
804 * any stall risk as the race is against enqueue.
806 if (!picked_next)
807 stat_inc(FCG_STAT_PNC_FAIL);
810 s32 BPF_STRUCT_OPS(fcg_init_task, struct task_struct *p,
811 struct scx_init_task_args *args)
813 struct fcg_task_ctx *taskc;
814 struct fcg_cgrp_ctx *cgc;
817 * @p is new. Let's ensure that its task_ctx is available. We can sleep
818 * in this function and the following will automatically use GFP_KERNEL.
820 taskc = bpf_task_storage_get(&task_ctx, p, 0,
821 BPF_LOCAL_STORAGE_GET_F_CREATE);
822 if (!taskc)
823 return -ENOMEM;
825 taskc->bypassed_at = 0;
827 if (!(cgc = find_cgrp_ctx(args->cgroup)))
828 return -ENOENT;
830 p->scx.dsq_vtime = cgc->tvtime_now;
832 return 0;
835 int BPF_STRUCT_OPS_SLEEPABLE(fcg_cgroup_init, struct cgroup *cgrp,
836 struct scx_cgroup_init_args *args)
838 struct fcg_cgrp_ctx *cgc;
839 struct cgv_node *cgv_node;
840 struct cgv_node_stash empty_stash = {}, *stash;
841 u64 cgid = cgrp->kn->id;
842 int ret;
845 * Technically incorrect as cgroup ID is full 64bit while dsq ID is
846 * 63bit. Should not be a problem in practice and easy to spot in the
847 * unlikely case that it breaks.
849 ret = scx_bpf_create_dsq(cgid, -1);
850 if (ret)
851 return ret;
853 cgc = bpf_cgrp_storage_get(&cgrp_ctx, cgrp, 0,
854 BPF_LOCAL_STORAGE_GET_F_CREATE);
855 if (!cgc) {
856 ret = -ENOMEM;
857 goto err_destroy_dsq;
860 cgc->weight = args->weight;
861 cgc->hweight = FCG_HWEIGHT_ONE;
863 ret = bpf_map_update_elem(&cgv_node_stash, &cgid, &empty_stash,
864 BPF_NOEXIST);
865 if (ret) {
866 if (ret != -ENOMEM)
867 scx_bpf_error("unexpected stash creation error (%d)",
868 ret);
869 goto err_destroy_dsq;
872 stash = bpf_map_lookup_elem(&cgv_node_stash, &cgid);
873 if (!stash) {
874 scx_bpf_error("unexpected cgv_node stash lookup failure");
875 ret = -ENOENT;
876 goto err_destroy_dsq;
879 cgv_node = bpf_obj_new(struct cgv_node);
880 if (!cgv_node) {
881 ret = -ENOMEM;
882 goto err_del_cgv_node;
885 cgv_node->cgid = cgid;
886 cgv_node->cvtime = cvtime_now;
888 cgv_node = bpf_kptr_xchg(&stash->node, cgv_node);
889 if (cgv_node) {
890 scx_bpf_error("unexpected !NULL cgv_node stash");
891 ret = -EBUSY;
892 goto err_drop;
895 return 0;
897 err_drop:
898 bpf_obj_drop(cgv_node);
899 err_del_cgv_node:
900 bpf_map_delete_elem(&cgv_node_stash, &cgid);
901 err_destroy_dsq:
902 scx_bpf_destroy_dsq(cgid);
903 return ret;
906 void BPF_STRUCT_OPS(fcg_cgroup_exit, struct cgroup *cgrp)
908 u64 cgid = cgrp->kn->id;
911 * For now, there's no way find and remove the cgv_node if it's on the
912 * cgv_tree. Let's drain them in the dispatch path as they get popped
913 * off the front of the tree.
915 bpf_map_delete_elem(&cgv_node_stash, &cgid);
916 scx_bpf_destroy_dsq(cgid);
919 void BPF_STRUCT_OPS(fcg_cgroup_move, struct task_struct *p,
920 struct cgroup *from, struct cgroup *to)
922 struct fcg_cgrp_ctx *from_cgc, *to_cgc;
923 s64 vtime_delta;
925 /* find_cgrp_ctx() triggers scx_ops_error() on lookup failures */
926 if (!(from_cgc = find_cgrp_ctx(from)) || !(to_cgc = find_cgrp_ctx(to)))
927 return;
929 vtime_delta = p->scx.dsq_vtime - from_cgc->tvtime_now;
930 p->scx.dsq_vtime = to_cgc->tvtime_now + vtime_delta;
933 s32 BPF_STRUCT_OPS_SLEEPABLE(fcg_init)
935 return scx_bpf_create_dsq(FALLBACK_DSQ, -1);
938 void BPF_STRUCT_OPS(fcg_exit, struct scx_exit_info *ei)
940 UEI_RECORD(uei, ei);
943 SCX_OPS_DEFINE(flatcg_ops,
944 .select_cpu = (void *)fcg_select_cpu,
945 .enqueue = (void *)fcg_enqueue,
946 .dispatch = (void *)fcg_dispatch,
947 .runnable = (void *)fcg_runnable,
948 .running = (void *)fcg_running,
949 .stopping = (void *)fcg_stopping,
950 .quiescent = (void *)fcg_quiescent,
951 .init_task = (void *)fcg_init_task,
952 .cgroup_set_weight = (void *)fcg_cgroup_set_weight,
953 .cgroup_init = (void *)fcg_cgroup_init,
954 .cgroup_exit = (void *)fcg_cgroup_exit,
955 .cgroup_move = (void *)fcg_cgroup_move,
956 .init = (void *)fcg_init,
957 .exit = (void *)fcg_exit,
958 .flags = SCX_OPS_HAS_CGROUP_WEIGHT | SCX_OPS_ENQ_EXITING,
959 .name = "flatcg");