1 // SPDX-License-Identifier: GPL-2.0
3 * Energy Model of devices
5 * Copyright (c) 2018-2021, Arm ltd.
6 * Written by: Quentin Perret, Arm ltd.
7 * Improvements provided by: Lukasz Luba, Arm ltd.
10 #define pr_fmt(fmt) "energy_model: " fmt
12 #include <linux/cpu.h>
13 #include <linux/cpufreq.h>
14 #include <linux/cpumask.h>
15 #include <linux/debugfs.h>
16 #include <linux/energy_model.h>
17 #include <linux/sched/topology.h>
18 #include <linux/slab.h>
21 * Mutex serializing the registrations of performance domains and letting
22 * callbacks defined by drivers sleep.
24 static DEFINE_MUTEX(em_pd_mutex
);
26 static void em_cpufreq_update_efficiencies(struct device
*dev
,
27 struct em_perf_state
*table
);
28 static void em_check_capacity_update(void);
29 static void em_update_workfn(struct work_struct
*work
);
30 static DECLARE_DELAYED_WORK(em_update_work
, em_update_workfn
);
32 static bool _is_cpu_device(struct device
*dev
)
34 return (dev
->bus
== &cpu_subsys
);
37 #ifdef CONFIG_DEBUG_FS
38 static struct dentry
*rootdir
;
41 struct em_perf_domain
*pd
;
45 #define DEFINE_EM_DBG_SHOW(name, fname) \
46 static int em_debug_##fname##_show(struct seq_file *s, void *unused) \
48 struct em_dbg_info *em_dbg = s->private; \
49 struct em_perf_state *table; \
53 table = em_perf_state_from_pd(em_dbg->pd); \
54 val = table[em_dbg->ps_id].name; \
57 seq_printf(s, "%lu\n", val); \
60 DEFINE_SHOW_ATTRIBUTE(em_debug_##fname)
62 DEFINE_EM_DBG_SHOW(frequency
, frequency
);
63 DEFINE_EM_DBG_SHOW(power
, power
);
64 DEFINE_EM_DBG_SHOW(cost
, cost
);
65 DEFINE_EM_DBG_SHOW(performance
, performance
);
66 DEFINE_EM_DBG_SHOW(flags
, inefficiency
);
68 static void em_debug_create_ps(struct em_perf_domain
*em_pd
,
69 struct em_dbg_info
*em_dbg
, int i
,
72 struct em_perf_state
*table
;
81 table
= em_perf_state_from_pd(em_pd
);
82 freq
= table
[i
].frequency
;
85 snprintf(name
, sizeof(name
), "ps:%lu", freq
);
87 /* Create per-ps directory */
88 d
= debugfs_create_dir(name
, pd
);
89 debugfs_create_file("frequency", 0444, d
, &em_dbg
[i
],
90 &em_debug_frequency_fops
);
91 debugfs_create_file("power", 0444, d
, &em_dbg
[i
],
92 &em_debug_power_fops
);
93 debugfs_create_file("cost", 0444, d
, &em_dbg
[i
],
95 debugfs_create_file("performance", 0444, d
, &em_dbg
[i
],
96 &em_debug_performance_fops
);
97 debugfs_create_file("inefficient", 0444, d
, &em_dbg
[i
],
98 &em_debug_inefficiency_fops
);
101 static int em_debug_cpus_show(struct seq_file
*s
, void *unused
)
103 seq_printf(s
, "%*pbl\n", cpumask_pr_args(to_cpumask(s
->private)));
107 DEFINE_SHOW_ATTRIBUTE(em_debug_cpus
);
109 static int em_debug_flags_show(struct seq_file
*s
, void *unused
)
111 struct em_perf_domain
*pd
= s
->private;
113 seq_printf(s
, "%#lx\n", pd
->flags
);
117 DEFINE_SHOW_ATTRIBUTE(em_debug_flags
);
119 static void em_debug_create_pd(struct device
*dev
)
121 struct em_dbg_info
*em_dbg
;
125 /* Create the directory of the performance domain */
126 d
= debugfs_create_dir(dev_name(dev
), rootdir
);
128 if (_is_cpu_device(dev
))
129 debugfs_create_file("cpus", 0444, d
, dev
->em_pd
->cpus
,
130 &em_debug_cpus_fops
);
132 debugfs_create_file("flags", 0444, d
, dev
->em_pd
,
133 &em_debug_flags_fops
);
135 em_dbg
= devm_kcalloc(dev
, dev
->em_pd
->nr_perf_states
,
136 sizeof(*em_dbg
), GFP_KERNEL
);
140 /* Create a sub-directory for each performance state */
141 for (i
= 0; i
< dev
->em_pd
->nr_perf_states
; i
++)
142 em_debug_create_ps(dev
->em_pd
, em_dbg
, i
, d
);
146 static void em_debug_remove_pd(struct device
*dev
)
148 debugfs_lookup_and_remove(dev_name(dev
), rootdir
);
151 static int __init
em_debug_init(void)
153 /* Create /sys/kernel/debug/energy_model directory */
154 rootdir
= debugfs_create_dir("energy_model", NULL
);
158 fs_initcall(em_debug_init
);
159 #else /* CONFIG_DEBUG_FS */
160 static void em_debug_create_pd(struct device
*dev
) {}
161 static void em_debug_remove_pd(struct device
*dev
) {}
164 static void em_destroy_table_rcu(struct rcu_head
*rp
)
166 struct em_perf_table __rcu
*table
;
168 table
= container_of(rp
, struct em_perf_table
, rcu
);
172 static void em_release_table_kref(struct kref
*kref
)
174 struct em_perf_table __rcu
*table
;
176 /* It was the last owner of this table so we can free */
177 table
= container_of(kref
, struct em_perf_table
, kref
);
179 call_rcu(&table
->rcu
, em_destroy_table_rcu
);
183 * em_table_free() - Handles safe free of the EM table when needed
184 * @table : EM table which is going to be freed
188 void em_table_free(struct em_perf_table __rcu
*table
)
190 kref_put(&table
->kref
, em_release_table_kref
);
194 * em_table_alloc() - Allocate a new EM table
195 * @pd : EM performance domain for which this must be done
197 * Allocate a new EM table and initialize its kref to indicate that it
199 * Returns allocated table or NULL.
201 struct em_perf_table __rcu
*em_table_alloc(struct em_perf_domain
*pd
)
203 struct em_perf_table __rcu
*table
;
206 table_size
= sizeof(struct em_perf_state
) * pd
->nr_perf_states
;
208 table
= kzalloc(sizeof(*table
) + table_size
, GFP_KERNEL
);
212 kref_init(&table
->kref
);
217 static void em_init_performance(struct device
*dev
, struct em_perf_domain
*pd
,
218 struct em_perf_state
*table
, int nr_states
)
223 /* This is needed only for CPUs and EAS skip other devices */
224 if (!_is_cpu_device(dev
))
227 cpu
= cpumask_first(em_span_cpus(pd
));
230 * Calculate the performance value for each frequency with
231 * linear relationship. The final CPU capacity might not be ready at
232 * boot time, but the EM will be updated a bit later with correct one.
234 fmax
= (u64
) table
[nr_states
- 1].frequency
;
235 max_cap
= (u64
) arch_scale_cpu_capacity(cpu
);
236 for (i
= 0; i
< nr_states
; i
++)
237 table
[i
].performance
= div64_u64(max_cap
* table
[i
].frequency
,
241 static int em_compute_costs(struct device
*dev
, struct em_perf_state
*table
,
242 struct em_data_callback
*cb
, int nr_states
,
245 unsigned long prev_cost
= ULONG_MAX
;
248 /* Compute the cost of each performance state. */
249 for (i
= nr_states
- 1; i
>= 0; i
--) {
250 unsigned long power_res
, cost
;
252 if ((flags
& EM_PERF_DOMAIN_ARTIFICIAL
) && cb
->get_cost
) {
253 ret
= cb
->get_cost(dev
, table
[i
].frequency
, &cost
);
254 if (ret
|| !cost
|| cost
> EM_MAX_POWER
) {
255 dev_err(dev
, "EM: invalid cost %lu %d\n",
260 /* increase resolution of 'cost' precision */
261 power_res
= table
[i
].power
* 10;
262 cost
= power_res
/ table
[i
].performance
;
265 table
[i
].cost
= cost
;
267 if (table
[i
].cost
>= prev_cost
) {
268 table
[i
].flags
= EM_PERF_STATE_INEFFICIENT
;
269 dev_dbg(dev
, "EM: OPP:%lu is inefficient\n",
272 prev_cost
= table
[i
].cost
;
280 * em_dev_compute_costs() - Calculate cost values for new runtime EM table
281 * @dev : Device for which the EM table is to be updated
282 * @table : The new EM table that is going to get the costs calculated
283 * @nr_states : Number of performance states
285 * Calculate the em_perf_state::cost values for new runtime EM table. The
286 * values are used for EAS during task placement. It also calculates and sets
287 * the efficiency flag for each performance state. When the function finish
288 * successfully the EM table is ready to be updated and used by EAS.
290 * Return 0 on success or a proper error in case of failure.
292 int em_dev_compute_costs(struct device
*dev
, struct em_perf_state
*table
,
295 return em_compute_costs(dev
, table
, NULL
, nr_states
, 0);
299 * em_dev_update_perf_domain() - Update runtime EM table for a device
300 * @dev : Device for which the EM is to be updated
301 * @new_table : The new EM table that is going to be used from now
303 * Update EM runtime modifiable table for the @dev using the provided @table.
305 * This function uses a mutex to serialize writers, so it must not be called
306 * from a non-sleeping context.
308 * Return 0 on success or an error code on failure.
310 int em_dev_update_perf_domain(struct device
*dev
,
311 struct em_perf_table __rcu
*new_table
)
313 struct em_perf_table __rcu
*old_table
;
314 struct em_perf_domain
*pd
;
319 /* Serialize update/unregister or concurrent updates */
320 mutex_lock(&em_pd_mutex
);
323 mutex_unlock(&em_pd_mutex
);
328 kref_get(&new_table
->kref
);
330 old_table
= pd
->em_table
;
331 rcu_assign_pointer(pd
->em_table
, new_table
);
333 em_cpufreq_update_efficiencies(dev
, new_table
->state
);
335 em_table_free(old_table
);
337 mutex_unlock(&em_pd_mutex
);
340 EXPORT_SYMBOL_GPL(em_dev_update_perf_domain
);
342 static int em_create_perf_table(struct device
*dev
, struct em_perf_domain
*pd
,
343 struct em_perf_state
*table
,
344 struct em_data_callback
*cb
,
347 unsigned long power
, freq
, prev_freq
= 0;
348 int nr_states
= pd
->nr_perf_states
;
351 /* Build the list of performance states for this performance domain */
352 for (i
= 0, freq
= 0; i
< nr_states
; i
++, freq
++) {
354 * active_power() is a driver callback which ceils 'freq' to
355 * lowest performance state of 'dev' above 'freq' and updates
356 * 'power' and 'freq' accordingly.
358 ret
= cb
->active_power(dev
, &power
, &freq
);
360 dev_err(dev
, "EM: invalid perf. state: %d\n",
366 * We expect the driver callback to increase the frequency for
367 * higher performance states.
369 if (freq
<= prev_freq
) {
370 dev_err(dev
, "EM: non-increasing freq: %lu\n",
376 * The power returned by active_state() is expected to be
377 * positive and be in range.
379 if (!power
|| power
> EM_MAX_POWER
) {
380 dev_err(dev
, "EM: invalid power: %lu\n",
385 table
[i
].power
= power
;
386 table
[i
].frequency
= prev_freq
= freq
;
389 em_init_performance(dev
, pd
, table
, nr_states
);
391 ret
= em_compute_costs(dev
, table
, cb
, nr_states
, flags
);
398 static int em_create_pd(struct device
*dev
, int nr_states
,
399 struct em_data_callback
*cb
, cpumask_t
*cpus
,
402 struct em_perf_table __rcu
*em_table
;
403 struct em_perf_domain
*pd
;
404 struct device
*cpu_dev
;
405 int cpu
, ret
, num_cpus
;
407 if (_is_cpu_device(dev
)) {
408 num_cpus
= cpumask_weight(cpus
);
410 /* Prevent max possible energy calculation to not overflow */
411 if (num_cpus
> EM_MAX_NUM_CPUS
) {
412 dev_err(dev
, "EM: too many CPUs, overflow possible\n");
416 pd
= kzalloc(sizeof(*pd
) + cpumask_size(), GFP_KERNEL
);
420 cpumask_copy(em_span_cpus(pd
), cpus
);
422 pd
= kzalloc(sizeof(*pd
), GFP_KERNEL
);
427 pd
->nr_perf_states
= nr_states
;
429 em_table
= em_table_alloc(pd
);
433 ret
= em_create_perf_table(dev
, pd
, em_table
->state
, cb
, flags
);
437 rcu_assign_pointer(pd
->em_table
, em_table
);
439 if (_is_cpu_device(dev
))
440 for_each_cpu(cpu
, cpus
) {
441 cpu_dev
= get_cpu_device(cpu
);
457 em_cpufreq_update_efficiencies(struct device
*dev
, struct em_perf_state
*table
)
459 struct em_perf_domain
*pd
= dev
->em_pd
;
460 struct cpufreq_policy
*policy
;
464 if (!_is_cpu_device(dev
))
467 /* Try to get a CPU which is active and in this PD */
468 cpu
= cpumask_first_and(em_span_cpus(pd
), cpu_active_mask
);
469 if (cpu
>= nr_cpu_ids
) {
470 dev_warn(dev
, "EM: No online CPU for CPUFreq policy\n");
474 policy
= cpufreq_cpu_get(cpu
);
476 dev_warn(dev
, "EM: Access to CPUFreq policy failed\n");
480 for (i
= 0; i
< pd
->nr_perf_states
; i
++) {
481 if (!(table
[i
].flags
& EM_PERF_STATE_INEFFICIENT
))
484 if (!cpufreq_table_set_inefficient(policy
, table
[i
].frequency
))
488 cpufreq_cpu_put(policy
);
494 * Efficiencies have been installed in CPUFreq, inefficient frequencies
495 * will be skipped. The EM can do the same.
497 pd
->flags
|= EM_PERF_DOMAIN_SKIP_INEFFICIENCIES
;
501 * em_pd_get() - Return the performance domain for a device
502 * @dev : Device to find the performance domain for
504 * Returns the performance domain to which @dev belongs, or NULL if it doesn't
507 struct em_perf_domain
*em_pd_get(struct device
*dev
)
509 if (IS_ERR_OR_NULL(dev
))
514 EXPORT_SYMBOL_GPL(em_pd_get
);
517 * em_cpu_get() - Return the performance domain for a CPU
518 * @cpu : CPU to find the performance domain for
520 * Returns the performance domain to which @cpu belongs, or NULL if it doesn't
523 struct em_perf_domain
*em_cpu_get(int cpu
)
525 struct device
*cpu_dev
;
527 cpu_dev
= get_cpu_device(cpu
);
531 return em_pd_get(cpu_dev
);
533 EXPORT_SYMBOL_GPL(em_cpu_get
);
536 * em_dev_register_perf_domain() - Register the Energy Model (EM) for a device
537 * @dev : Device for which the EM is to register
538 * @nr_states : Number of performance states to register
539 * @cb : Callback functions providing the data of the Energy Model
540 * @cpus : Pointer to cpumask_t, which in case of a CPU device is
541 * obligatory. It can be taken from i.e. 'policy->cpus'. For other
542 * type of devices this should be set to NULL.
543 * @microwatts : Flag indicating that the power values are in micro-Watts or
544 * in some other scale. It must be set properly.
546 * Create Energy Model tables for a performance domain using the callbacks
549 * The @microwatts is important to set with correct value. Some kernel
550 * sub-systems might rely on this flag and check if all devices in the EM are
551 * using the same scale.
553 * If multiple clients register the same performance domain, all but the first
554 * registration will be ignored.
556 * Return 0 on success
558 int em_dev_register_perf_domain(struct device
*dev
, unsigned int nr_states
,
559 struct em_data_callback
*cb
, cpumask_t
*cpus
,
562 unsigned long cap
, prev_cap
= 0;
563 unsigned long flags
= 0;
566 if (!dev
|| !nr_states
|| !cb
)
570 * Use a mutex to serialize the registration of performance domains and
571 * let the driver-defined callback functions sleep.
573 mutex_lock(&em_pd_mutex
);
580 if (_is_cpu_device(dev
)) {
582 dev_err(dev
, "EM: invalid CPU mask\n");
587 for_each_cpu(cpu
, cpus
) {
588 if (em_cpu_get(cpu
)) {
589 dev_err(dev
, "EM: exists for CPU%d\n", cpu
);
594 * All CPUs of a domain must have the same
595 * micro-architecture since they all share the same
598 cap
= arch_scale_cpu_capacity(cpu
);
599 if (prev_cap
&& prev_cap
!= cap
) {
600 dev_err(dev
, "EM: CPUs of %*pbl must have the same capacity\n",
601 cpumask_pr_args(cpus
));
611 flags
|= EM_PERF_DOMAIN_MICROWATTS
;
612 else if (cb
->get_cost
)
613 flags
|= EM_PERF_DOMAIN_ARTIFICIAL
;
616 * EM only supports uW (exception is artificial EM).
617 * Therefore, check and force the drivers to provide
620 if (!microwatts
&& !(flags
& EM_PERF_DOMAIN_ARTIFICIAL
)) {
621 dev_err(dev
, "EM: only supports uW power values\n");
626 ret
= em_create_pd(dev
, nr_states
, cb
, cpus
, flags
);
630 dev
->em_pd
->flags
|= flags
;
632 em_cpufreq_update_efficiencies(dev
, dev
->em_pd
->em_table
->state
);
634 em_debug_create_pd(dev
);
635 dev_info(dev
, "EM: created perf domain\n");
638 mutex_unlock(&em_pd_mutex
);
640 if (_is_cpu_device(dev
))
641 em_check_capacity_update();
645 EXPORT_SYMBOL_GPL(em_dev_register_perf_domain
);
648 * em_dev_unregister_perf_domain() - Unregister Energy Model (EM) for a device
649 * @dev : Device for which the EM is registered
651 * Unregister the EM for the specified @dev (but not a CPU device).
653 void em_dev_unregister_perf_domain(struct device
*dev
)
655 if (IS_ERR_OR_NULL(dev
) || !dev
->em_pd
)
658 if (_is_cpu_device(dev
))
662 * The mutex separates all register/unregister requests and protects
663 * from potential clean-up/setup issues in the debugfs directories.
664 * The debugfs directory name is the same as device's name.
666 mutex_lock(&em_pd_mutex
);
667 em_debug_remove_pd(dev
);
669 em_table_free(dev
->em_pd
->em_table
);
673 mutex_unlock(&em_pd_mutex
);
675 EXPORT_SYMBOL_GPL(em_dev_unregister_perf_domain
);
677 static struct em_perf_table __rcu
*em_table_dup(struct em_perf_domain
*pd
)
679 struct em_perf_table __rcu
*em_table
;
680 struct em_perf_state
*ps
, *new_ps
;
683 em_table
= em_table_alloc(pd
);
687 new_ps
= em_table
->state
;
690 ps
= em_perf_state_from_pd(pd
);
691 /* Initialize data based on old table */
692 ps_size
= sizeof(struct em_perf_state
) * pd
->nr_perf_states
;
693 memcpy(new_ps
, ps
, ps_size
);
700 static int em_recalc_and_update(struct device
*dev
, struct em_perf_domain
*pd
,
701 struct em_perf_table __rcu
*em_table
)
705 ret
= em_compute_costs(dev
, em_table
->state
, NULL
, pd
->nr_perf_states
,
710 ret
= em_dev_update_perf_domain(dev
, em_table
);
715 * This is one-time-update, so give up the ownership in this updater.
716 * The EM framework has incremented the usage counter and from now
717 * will keep the reference (then free the memory when needed).
720 em_table_free(em_table
);
725 * Adjustment of CPU performance values after boot, when all CPUs capacites
726 * are correctly calculated.
728 static void em_adjust_new_capacity(struct device
*dev
,
729 struct em_perf_domain
*pd
,
732 struct em_perf_table __rcu
*em_table
;
734 em_table
= em_table_dup(pd
);
736 dev_warn(dev
, "EM: allocation failed\n");
740 em_init_performance(dev
, pd
, em_table
->state
, pd
->nr_perf_states
);
742 em_recalc_and_update(dev
, pd
, em_table
);
745 static void em_check_capacity_update(void)
747 cpumask_var_t cpu_done_mask
;
748 struct em_perf_state
*table
;
749 struct em_perf_domain
*pd
;
750 unsigned long cpu_capacity
;
753 if (!zalloc_cpumask_var(&cpu_done_mask
, GFP_KERNEL
)) {
754 pr_warn("no free memory\n");
758 /* Check if CPUs capacity has changed than update EM */
759 for_each_possible_cpu(cpu
) {
760 struct cpufreq_policy
*policy
;
761 unsigned long em_max_perf
;
764 if (cpumask_test_cpu(cpu
, cpu_done_mask
))
767 policy
= cpufreq_cpu_get(cpu
);
769 pr_debug("Accessing cpu%d policy failed\n", cpu
);
770 schedule_delayed_work(&em_update_work
,
771 msecs_to_jiffies(1000));
774 cpufreq_cpu_put(policy
);
776 pd
= em_cpu_get(cpu
);
777 if (!pd
|| em_is_artificial(pd
))
780 cpumask_or(cpu_done_mask
, cpu_done_mask
,
783 cpu_capacity
= arch_scale_cpu_capacity(cpu
);
786 table
= em_perf_state_from_pd(pd
);
787 em_max_perf
= table
[pd
->nr_perf_states
- 1].performance
;
791 * Check if the CPU capacity has been adjusted during boot
792 * and trigger the update for new performance values.
794 if (em_max_perf
== cpu_capacity
)
797 pr_debug("updating cpu%d cpu_cap=%lu old capacity=%lu\n",
798 cpu
, cpu_capacity
, em_max_perf
);
800 dev
= get_cpu_device(cpu
);
801 em_adjust_new_capacity(dev
, pd
, cpu_capacity
);
804 free_cpumask_var(cpu_done_mask
);
807 static void em_update_workfn(struct work_struct
*work
)
809 em_check_capacity_update();
813 * em_dev_update_chip_binning() - Update Energy Model after the new voltage
814 * information is present in the OPPs.
815 * @dev : Device for which the Energy Model has to be updated.
817 * This function allows to update easily the EM with new values available in
818 * the OPP framework and DT. It can be used after the chip has been properly
819 * verified by device drivers and the voltages adjusted for the 'chip binning'.
821 int em_dev_update_chip_binning(struct device
*dev
)
823 struct em_perf_table __rcu
*em_table
;
824 struct em_perf_domain
*pd
;
827 if (IS_ERR_OR_NULL(dev
))
832 dev_warn(dev
, "Couldn't find Energy Model\n");
836 em_table
= em_table_dup(pd
);
838 dev_warn(dev
, "EM: allocation failed\n");
842 /* Update power values which might change due to new voltage in OPPs */
843 for (i
= 0; i
< pd
->nr_perf_states
; i
++) {
844 unsigned long freq
= em_table
->state
[i
].frequency
;
847 ret
= dev_pm_opp_calc_power(dev
, &power
, &freq
);
849 em_table_free(em_table
);
853 em_table
->state
[i
].power
= power
;
856 return em_recalc_and_update(dev
, pd
, em_table
);
858 EXPORT_SYMBOL_GPL(em_dev_update_chip_binning
);