1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/bvec.h>
4 #include <linux/fault-inject-usercopy.h>
6 #include <linux/pagemap.h>
7 #include <linux/highmem.h>
8 #include <linux/slab.h>
9 #include <linux/vmalloc.h>
10 #include <linux/splice.h>
11 #include <linux/compat.h>
12 #include <linux/scatterlist.h>
13 #include <linux/instrumented.h>
14 #include <linux/iov_iter.h>
16 static __always_inline
17 size_t copy_to_user_iter(void __user
*iter_to
, size_t progress
,
18 size_t len
, void *from
, void *priv2
)
20 if (should_fail_usercopy())
22 if (access_ok(iter_to
, len
)) {
24 instrument_copy_to_user(iter_to
, from
, len
);
25 len
= raw_copy_to_user(iter_to
, from
, len
);
30 static __always_inline
31 size_t copy_to_user_iter_nofault(void __user
*iter_to
, size_t progress
,
32 size_t len
, void *from
, void *priv2
)
36 if (should_fail_usercopy())
40 res
= copy_to_user_nofault(iter_to
, from
, len
);
41 return res
< 0 ? len
: res
;
44 static __always_inline
45 size_t copy_from_user_iter(void __user
*iter_from
, size_t progress
,
46 size_t len
, void *to
, void *priv2
)
50 if (should_fail_usercopy())
52 if (access_ok(iter_from
, len
)) {
54 instrument_copy_from_user_before(to
, iter_from
, len
);
55 res
= raw_copy_from_user(to
, iter_from
, len
);
56 instrument_copy_from_user_after(to
, iter_from
, len
, res
);
61 static __always_inline
62 size_t memcpy_to_iter(void *iter_to
, size_t progress
,
63 size_t len
, void *from
, void *priv2
)
65 memcpy(iter_to
, from
+ progress
, len
);
69 static __always_inline
70 size_t memcpy_from_iter(void *iter_from
, size_t progress
,
71 size_t len
, void *to
, void *priv2
)
73 memcpy(to
+ progress
, iter_from
, len
);
78 * fault_in_iov_iter_readable - fault in iov iterator for reading
80 * @size: maximum length
82 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
83 * @size. For each iovec, fault in each page that constitutes the iovec.
85 * Returns the number of bytes not faulted in (like copy_to_user() and
88 * Always returns 0 for non-userspace iterators.
90 size_t fault_in_iov_iter_readable(const struct iov_iter
*i
, size_t size
)
92 if (iter_is_ubuf(i
)) {
93 size_t n
= min(size
, iov_iter_count(i
));
94 n
-= fault_in_readable(i
->ubuf
+ i
->iov_offset
, n
);
96 } else if (iter_is_iovec(i
)) {
97 size_t count
= min(size
, iov_iter_count(i
));
98 const struct iovec
*p
;
102 for (p
= iter_iov(i
), skip
= i
->iov_offset
; count
; p
++, skip
= 0) {
103 size_t len
= min(count
, p
->iov_len
- skip
);
108 ret
= fault_in_readable(p
->iov_base
+ skip
, len
);
117 EXPORT_SYMBOL(fault_in_iov_iter_readable
);
120 * fault_in_iov_iter_writeable - fault in iov iterator for writing
122 * @size: maximum length
124 * Faults in the iterator using get_user_pages(), i.e., without triggering
125 * hardware page faults. This is primarily useful when we already know that
126 * some or all of the pages in @i aren't in memory.
128 * Returns the number of bytes not faulted in, like copy_to_user() and
131 * Always returns 0 for non-user-space iterators.
133 size_t fault_in_iov_iter_writeable(const struct iov_iter
*i
, size_t size
)
135 if (iter_is_ubuf(i
)) {
136 size_t n
= min(size
, iov_iter_count(i
));
137 n
-= fault_in_safe_writeable(i
->ubuf
+ i
->iov_offset
, n
);
139 } else if (iter_is_iovec(i
)) {
140 size_t count
= min(size
, iov_iter_count(i
));
141 const struct iovec
*p
;
145 for (p
= iter_iov(i
), skip
= i
->iov_offset
; count
; p
++, skip
= 0) {
146 size_t len
= min(count
, p
->iov_len
- skip
);
151 ret
= fault_in_safe_writeable(p
->iov_base
+ skip
, len
);
160 EXPORT_SYMBOL(fault_in_iov_iter_writeable
);
162 void iov_iter_init(struct iov_iter
*i
, unsigned int direction
,
163 const struct iovec
*iov
, unsigned long nr_segs
,
166 WARN_ON(direction
& ~(READ
| WRITE
));
167 *i
= (struct iov_iter
) {
168 .iter_type
= ITER_IOVEC
,
170 .data_source
= direction
,
177 EXPORT_SYMBOL(iov_iter_init
);
179 size_t _copy_to_iter(const void *addr
, size_t bytes
, struct iov_iter
*i
)
181 if (WARN_ON_ONCE(i
->data_source
))
183 if (user_backed_iter(i
))
185 return iterate_and_advance(i
, bytes
, (void *)addr
,
186 copy_to_user_iter
, memcpy_to_iter
);
188 EXPORT_SYMBOL(_copy_to_iter
);
190 #ifdef CONFIG_ARCH_HAS_COPY_MC
191 static __always_inline
192 size_t copy_to_user_iter_mc(void __user
*iter_to
, size_t progress
,
193 size_t len
, void *from
, void *priv2
)
195 if (access_ok(iter_to
, len
)) {
197 instrument_copy_to_user(iter_to
, from
, len
);
198 len
= copy_mc_to_user(iter_to
, from
, len
);
203 static __always_inline
204 size_t memcpy_to_iter_mc(void *iter_to
, size_t progress
,
205 size_t len
, void *from
, void *priv2
)
207 return copy_mc_to_kernel(iter_to
, from
+ progress
, len
);
211 * _copy_mc_to_iter - copy to iter with source memory error exception handling
212 * @addr: source kernel address
213 * @bytes: total transfer length
214 * @i: destination iterator
216 * The pmem driver deploys this for the dax operation
217 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
218 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
219 * successfully copied.
221 * The main differences between this and typical _copy_to_iter().
223 * * Typical tail/residue handling after a fault retries the copy
224 * byte-by-byte until the fault happens again. Re-triggering machine
225 * checks is potentially fatal so the implementation uses source
226 * alignment and poison alignment assumptions to avoid re-triggering
227 * hardware exceptions.
229 * * ITER_KVEC and ITER_BVEC can return short copies. Compare to
230 * copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
232 * Return: number of bytes copied (may be %0)
234 size_t _copy_mc_to_iter(const void *addr
, size_t bytes
, struct iov_iter
*i
)
236 if (WARN_ON_ONCE(i
->data_source
))
238 if (user_backed_iter(i
))
240 return iterate_and_advance(i
, bytes
, (void *)addr
,
241 copy_to_user_iter_mc
, memcpy_to_iter_mc
);
243 EXPORT_SYMBOL_GPL(_copy_mc_to_iter
);
244 #endif /* CONFIG_ARCH_HAS_COPY_MC */
246 static __always_inline
247 size_t __copy_from_iter(void *addr
, size_t bytes
, struct iov_iter
*i
)
249 return iterate_and_advance(i
, bytes
, addr
,
250 copy_from_user_iter
, memcpy_from_iter
);
253 size_t _copy_from_iter(void *addr
, size_t bytes
, struct iov_iter
*i
)
255 if (WARN_ON_ONCE(!i
->data_source
))
258 if (user_backed_iter(i
))
260 return __copy_from_iter(addr
, bytes
, i
);
262 EXPORT_SYMBOL(_copy_from_iter
);
264 static __always_inline
265 size_t copy_from_user_iter_nocache(void __user
*iter_from
, size_t progress
,
266 size_t len
, void *to
, void *priv2
)
268 return __copy_from_user_inatomic_nocache(to
+ progress
, iter_from
, len
);
271 size_t _copy_from_iter_nocache(void *addr
, size_t bytes
, struct iov_iter
*i
)
273 if (WARN_ON_ONCE(!i
->data_source
))
276 return iterate_and_advance(i
, bytes
, addr
,
277 copy_from_user_iter_nocache
,
280 EXPORT_SYMBOL(_copy_from_iter_nocache
);
282 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
283 static __always_inline
284 size_t copy_from_user_iter_flushcache(void __user
*iter_from
, size_t progress
,
285 size_t len
, void *to
, void *priv2
)
287 return __copy_from_user_flushcache(to
+ progress
, iter_from
, len
);
290 static __always_inline
291 size_t memcpy_from_iter_flushcache(void *iter_from
, size_t progress
,
292 size_t len
, void *to
, void *priv2
)
294 memcpy_flushcache(to
+ progress
, iter_from
, len
);
299 * _copy_from_iter_flushcache - write destination through cpu cache
300 * @addr: destination kernel address
301 * @bytes: total transfer length
302 * @i: source iterator
304 * The pmem driver arranges for filesystem-dax to use this facility via
305 * dax_copy_from_iter() for ensuring that writes to persistent memory
306 * are flushed through the CPU cache. It is differentiated from
307 * _copy_from_iter_nocache() in that guarantees all data is flushed for
308 * all iterator types. The _copy_from_iter_nocache() only attempts to
309 * bypass the cache for the ITER_IOVEC case, and on some archs may use
310 * instructions that strand dirty-data in the cache.
312 * Return: number of bytes copied (may be %0)
314 size_t _copy_from_iter_flushcache(void *addr
, size_t bytes
, struct iov_iter
*i
)
316 if (WARN_ON_ONCE(!i
->data_source
))
319 return iterate_and_advance(i
, bytes
, addr
,
320 copy_from_user_iter_flushcache
,
321 memcpy_from_iter_flushcache
);
323 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache
);
326 static inline bool page_copy_sane(struct page
*page
, size_t offset
, size_t n
)
329 size_t v
= n
+ offset
;
332 * The general case needs to access the page order in order
333 * to compute the page size.
334 * However, we mostly deal with order-0 pages and thus can
335 * avoid a possible cache line miss for requests that fit all
338 if (n
<= v
&& v
<= PAGE_SIZE
)
341 head
= compound_head(page
);
342 v
+= (page
- head
) << PAGE_SHIFT
;
344 if (WARN_ON(n
> v
|| v
> page_size(head
)))
349 size_t copy_page_to_iter(struct page
*page
, size_t offset
, size_t bytes
,
353 if (!page_copy_sane(page
, offset
, bytes
))
355 if (WARN_ON_ONCE(i
->data_source
))
357 page
+= offset
/ PAGE_SIZE
; // first subpage
360 void *kaddr
= kmap_local_page(page
);
361 size_t n
= min(bytes
, (size_t)PAGE_SIZE
- offset
);
362 n
= _copy_to_iter(kaddr
+ offset
, n
, i
);
369 if (offset
== PAGE_SIZE
) {
376 EXPORT_SYMBOL(copy_page_to_iter
);
378 size_t copy_page_to_iter_nofault(struct page
*page
, unsigned offset
, size_t bytes
,
383 if (!page_copy_sane(page
, offset
, bytes
))
385 if (WARN_ON_ONCE(i
->data_source
))
387 page
+= offset
/ PAGE_SIZE
; // first subpage
390 void *kaddr
= kmap_local_page(page
);
391 size_t n
= min(bytes
, (size_t)PAGE_SIZE
- offset
);
393 n
= iterate_and_advance(i
, n
, kaddr
+ offset
,
394 copy_to_user_iter_nofault
,
402 if (offset
== PAGE_SIZE
) {
409 EXPORT_SYMBOL(copy_page_to_iter_nofault
);
411 size_t copy_page_from_iter(struct page
*page
, size_t offset
, size_t bytes
,
415 if (!page_copy_sane(page
, offset
, bytes
))
417 page
+= offset
/ PAGE_SIZE
; // first subpage
420 void *kaddr
= kmap_local_page(page
);
421 size_t n
= min(bytes
, (size_t)PAGE_SIZE
- offset
);
422 n
= _copy_from_iter(kaddr
+ offset
, n
, i
);
429 if (offset
== PAGE_SIZE
) {
436 EXPORT_SYMBOL(copy_page_from_iter
);
438 static __always_inline
439 size_t zero_to_user_iter(void __user
*iter_to
, size_t progress
,
440 size_t len
, void *priv
, void *priv2
)
442 return clear_user(iter_to
, len
);
445 static __always_inline
446 size_t zero_to_iter(void *iter_to
, size_t progress
,
447 size_t len
, void *priv
, void *priv2
)
449 memset(iter_to
, 0, len
);
453 size_t iov_iter_zero(size_t bytes
, struct iov_iter
*i
)
455 return iterate_and_advance(i
, bytes
, NULL
,
456 zero_to_user_iter
, zero_to_iter
);
458 EXPORT_SYMBOL(iov_iter_zero
);
460 size_t copy_page_from_iter_atomic(struct page
*page
, size_t offset
,
461 size_t bytes
, struct iov_iter
*i
)
463 size_t n
, copied
= 0;
465 if (!page_copy_sane(page
, offset
, bytes
))
467 if (WARN_ON_ONCE(!i
->data_source
))
474 if (PageHighMem(page
)) {
475 page
+= offset
/ PAGE_SIZE
;
477 n
= min_t(size_t, n
, PAGE_SIZE
- offset
);
480 p
= kmap_atomic(page
) + offset
;
481 n
= __copy_from_iter(p
, n
, i
);
485 } while (PageHighMem(page
) && copied
!= bytes
&& n
> 0);
489 EXPORT_SYMBOL(copy_page_from_iter_atomic
);
491 static void iov_iter_bvec_advance(struct iov_iter
*i
, size_t size
)
493 const struct bio_vec
*bvec
, *end
;
499 size
+= i
->iov_offset
;
501 for (bvec
= i
->bvec
, end
= bvec
+ i
->nr_segs
; bvec
< end
; bvec
++) {
502 if (likely(size
< bvec
->bv_len
))
504 size
-= bvec
->bv_len
;
506 i
->iov_offset
= size
;
507 i
->nr_segs
-= bvec
- i
->bvec
;
511 static void iov_iter_iovec_advance(struct iov_iter
*i
, size_t size
)
513 const struct iovec
*iov
, *end
;
519 size
+= i
->iov_offset
; // from beginning of current segment
520 for (iov
= iter_iov(i
), end
= iov
+ i
->nr_segs
; iov
< end
; iov
++) {
521 if (likely(size
< iov
->iov_len
))
523 size
-= iov
->iov_len
;
525 i
->iov_offset
= size
;
526 i
->nr_segs
-= iov
- iter_iov(i
);
530 static void iov_iter_folioq_advance(struct iov_iter
*i
, size_t size
)
532 const struct folio_queue
*folioq
= i
->folioq
;
533 unsigned int slot
= i
->folioq_slot
;
539 if (slot
>= folioq_nr_slots(folioq
)) {
540 folioq
= folioq
->next
;
544 size
+= i
->iov_offset
; /* From beginning of current segment. */
546 size_t fsize
= folioq_folio_size(folioq
, slot
);
548 if (likely(size
< fsize
))
552 if (slot
>= folioq_nr_slots(folioq
) && folioq
->next
) {
553 folioq
= folioq
->next
;
558 i
->iov_offset
= size
;
559 i
->folioq_slot
= slot
;
563 void iov_iter_advance(struct iov_iter
*i
, size_t size
)
565 if (unlikely(i
->count
< size
))
567 if (likely(iter_is_ubuf(i
)) || unlikely(iov_iter_is_xarray(i
))) {
568 i
->iov_offset
+= size
;
570 } else if (likely(iter_is_iovec(i
) || iov_iter_is_kvec(i
))) {
571 /* iovec and kvec have identical layouts */
572 iov_iter_iovec_advance(i
, size
);
573 } else if (iov_iter_is_bvec(i
)) {
574 iov_iter_bvec_advance(i
, size
);
575 } else if (iov_iter_is_folioq(i
)) {
576 iov_iter_folioq_advance(i
, size
);
577 } else if (iov_iter_is_discard(i
)) {
581 EXPORT_SYMBOL(iov_iter_advance
);
583 static void iov_iter_folioq_revert(struct iov_iter
*i
, size_t unroll
)
585 const struct folio_queue
*folioq
= i
->folioq
;
586 unsigned int slot
= i
->folioq_slot
;
592 folioq
= folioq
->prev
;
593 slot
= folioq_nr_slots(folioq
);
597 fsize
= folioq_folio_size(folioq
, slot
);
598 if (unroll
<= fsize
) {
599 i
->iov_offset
= fsize
- unroll
;
605 i
->folioq_slot
= slot
;
609 void iov_iter_revert(struct iov_iter
*i
, size_t unroll
)
613 if (WARN_ON(unroll
> MAX_RW_COUNT
))
616 if (unlikely(iov_iter_is_discard(i
)))
618 if (unroll
<= i
->iov_offset
) {
619 i
->iov_offset
-= unroll
;
622 unroll
-= i
->iov_offset
;
623 if (iov_iter_is_xarray(i
) || iter_is_ubuf(i
)) {
624 BUG(); /* We should never go beyond the start of the specified
625 * range since we might then be straying into pages that
628 } else if (iov_iter_is_bvec(i
)) {
629 const struct bio_vec
*bvec
= i
->bvec
;
631 size_t n
= (--bvec
)->bv_len
;
635 i
->iov_offset
= n
- unroll
;
640 } else if (iov_iter_is_folioq(i
)) {
642 iov_iter_folioq_revert(i
, unroll
);
643 } else { /* same logics for iovec and kvec */
644 const struct iovec
*iov
= iter_iov(i
);
646 size_t n
= (--iov
)->iov_len
;
650 i
->iov_offset
= n
- unroll
;
657 EXPORT_SYMBOL(iov_iter_revert
);
660 * Return the count of just the current iov_iter segment.
662 size_t iov_iter_single_seg_count(const struct iov_iter
*i
)
664 if (i
->nr_segs
> 1) {
665 if (likely(iter_is_iovec(i
) || iov_iter_is_kvec(i
)))
666 return min(i
->count
, iter_iov(i
)->iov_len
- i
->iov_offset
);
667 if (iov_iter_is_bvec(i
))
668 return min(i
->count
, i
->bvec
->bv_len
- i
->iov_offset
);
670 if (unlikely(iov_iter_is_folioq(i
)))
671 return !i
->count
? 0 :
672 umin(folioq_folio_size(i
->folioq
, i
->folioq_slot
), i
->count
);
675 EXPORT_SYMBOL(iov_iter_single_seg_count
);
677 void iov_iter_kvec(struct iov_iter
*i
, unsigned int direction
,
678 const struct kvec
*kvec
, unsigned long nr_segs
,
681 WARN_ON(direction
& ~(READ
| WRITE
));
682 *i
= (struct iov_iter
){
683 .iter_type
= ITER_KVEC
,
684 .data_source
= direction
,
691 EXPORT_SYMBOL(iov_iter_kvec
);
693 void iov_iter_bvec(struct iov_iter
*i
, unsigned int direction
,
694 const struct bio_vec
*bvec
, unsigned long nr_segs
,
697 WARN_ON(direction
& ~(READ
| WRITE
));
698 *i
= (struct iov_iter
){
699 .iter_type
= ITER_BVEC
,
700 .data_source
= direction
,
707 EXPORT_SYMBOL(iov_iter_bvec
);
710 * iov_iter_folio_queue - Initialise an I/O iterator to use the folios in a folio queue
711 * @i: The iterator to initialise.
712 * @direction: The direction of the transfer.
713 * @folioq: The starting point in the folio queue.
714 * @first_slot: The first slot in the folio queue to use
715 * @offset: The offset into the folio in the first slot to start at
716 * @count: The size of the I/O buffer in bytes.
718 * Set up an I/O iterator to either draw data out of the pages attached to an
719 * inode or to inject data into those pages. The pages *must* be prevented
720 * from evaporation, either by taking a ref on them or locking them by the
723 void iov_iter_folio_queue(struct iov_iter
*i
, unsigned int direction
,
724 const struct folio_queue
*folioq
, unsigned int first_slot
,
725 unsigned int offset
, size_t count
)
727 BUG_ON(direction
& ~1);
728 *i
= (struct iov_iter
) {
729 .iter_type
= ITER_FOLIOQ
,
730 .data_source
= direction
,
732 .folioq_slot
= first_slot
,
734 .iov_offset
= offset
,
737 EXPORT_SYMBOL(iov_iter_folio_queue
);
740 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
741 * @i: The iterator to initialise.
742 * @direction: The direction of the transfer.
743 * @xarray: The xarray to access.
744 * @start: The start file position.
745 * @count: The size of the I/O buffer in bytes.
747 * Set up an I/O iterator to either draw data out of the pages attached to an
748 * inode or to inject data into those pages. The pages *must* be prevented
749 * from evaporation, either by taking a ref on them or locking them by the
752 void iov_iter_xarray(struct iov_iter
*i
, unsigned int direction
,
753 struct xarray
*xarray
, loff_t start
, size_t count
)
755 BUG_ON(direction
& ~1);
756 *i
= (struct iov_iter
) {
757 .iter_type
= ITER_XARRAY
,
758 .data_source
= direction
,
760 .xarray_start
= start
,
765 EXPORT_SYMBOL(iov_iter_xarray
);
768 * iov_iter_discard - Initialise an I/O iterator that discards data
769 * @i: The iterator to initialise.
770 * @direction: The direction of the transfer.
771 * @count: The size of the I/O buffer in bytes.
773 * Set up an I/O iterator that just discards everything that's written to it.
774 * It's only available as a READ iterator.
776 void iov_iter_discard(struct iov_iter
*i
, unsigned int direction
, size_t count
)
778 BUG_ON(direction
!= READ
);
779 *i
= (struct iov_iter
){
780 .iter_type
= ITER_DISCARD
,
781 .data_source
= false,
786 EXPORT_SYMBOL(iov_iter_discard
);
788 static bool iov_iter_aligned_iovec(const struct iov_iter
*i
, unsigned addr_mask
,
791 const struct iovec
*iov
= iter_iov(i
);
792 size_t size
= i
->count
;
793 size_t skip
= i
->iov_offset
;
796 size_t len
= iov
->iov_len
- skip
;
802 if ((unsigned long)(iov
->iov_base
+ skip
) & addr_mask
)
813 static bool iov_iter_aligned_bvec(const struct iov_iter
*i
, unsigned addr_mask
,
816 const struct bio_vec
*bvec
= i
->bvec
;
817 unsigned skip
= i
->iov_offset
;
818 size_t size
= i
->count
;
821 size_t len
= bvec
->bv_len
;
827 if ((unsigned long)(bvec
->bv_offset
+ skip
) & addr_mask
)
839 * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
840 * are aligned to the parameters.
842 * @i: &struct iov_iter to restore
843 * @addr_mask: bit mask to check against the iov element's addresses
844 * @len_mask: bit mask to check against the iov element's lengths
846 * Return: false if any addresses or lengths intersect with the provided masks
848 bool iov_iter_is_aligned(const struct iov_iter
*i
, unsigned addr_mask
,
851 if (likely(iter_is_ubuf(i
))) {
852 if (i
->count
& len_mask
)
854 if ((unsigned long)(i
->ubuf
+ i
->iov_offset
) & addr_mask
)
859 if (likely(iter_is_iovec(i
) || iov_iter_is_kvec(i
)))
860 return iov_iter_aligned_iovec(i
, addr_mask
, len_mask
);
862 if (iov_iter_is_bvec(i
))
863 return iov_iter_aligned_bvec(i
, addr_mask
, len_mask
);
865 /* With both xarray and folioq types, we're dealing with whole folios. */
866 if (iov_iter_is_xarray(i
)) {
867 if (i
->count
& len_mask
)
869 if ((i
->xarray_start
+ i
->iov_offset
) & addr_mask
)
872 if (iov_iter_is_folioq(i
)) {
873 if (i
->count
& len_mask
)
875 if (i
->iov_offset
& addr_mask
)
881 EXPORT_SYMBOL_GPL(iov_iter_is_aligned
);
883 static unsigned long iov_iter_alignment_iovec(const struct iov_iter
*i
)
885 const struct iovec
*iov
= iter_iov(i
);
886 unsigned long res
= 0;
887 size_t size
= i
->count
;
888 size_t skip
= i
->iov_offset
;
891 size_t len
= iov
->iov_len
- skip
;
893 res
|= (unsigned long)iov
->iov_base
+ skip
;
905 static unsigned long iov_iter_alignment_bvec(const struct iov_iter
*i
)
907 const struct bio_vec
*bvec
= i
->bvec
;
909 size_t size
= i
->count
;
910 unsigned skip
= i
->iov_offset
;
913 size_t len
= bvec
->bv_len
- skip
;
914 res
|= (unsigned long)bvec
->bv_offset
+ skip
;
926 unsigned long iov_iter_alignment(const struct iov_iter
*i
)
928 if (likely(iter_is_ubuf(i
))) {
929 size_t size
= i
->count
;
931 return ((unsigned long)i
->ubuf
+ i
->iov_offset
) | size
;
935 /* iovec and kvec have identical layouts */
936 if (likely(iter_is_iovec(i
) || iov_iter_is_kvec(i
)))
937 return iov_iter_alignment_iovec(i
);
939 if (iov_iter_is_bvec(i
))
940 return iov_iter_alignment_bvec(i
);
942 /* With both xarray and folioq types, we're dealing with whole folios. */
943 if (iov_iter_is_folioq(i
))
944 return i
->iov_offset
| i
->count
;
945 if (iov_iter_is_xarray(i
))
946 return (i
->xarray_start
+ i
->iov_offset
) | i
->count
;
950 EXPORT_SYMBOL(iov_iter_alignment
);
952 unsigned long iov_iter_gap_alignment(const struct iov_iter
*i
)
954 unsigned long res
= 0;
956 size_t size
= i
->count
;
962 if (WARN_ON(!iter_is_iovec(i
)))
965 for (k
= 0; k
< i
->nr_segs
; k
++) {
966 const struct iovec
*iov
= iter_iov(i
) + k
;
968 unsigned long base
= (unsigned long)iov
->iov_base
;
969 if (v
) // if not the first one
970 res
|= base
| v
; // this start | previous end
971 v
= base
+ iov
->iov_len
;
972 if (size
<= iov
->iov_len
)
974 size
-= iov
->iov_len
;
979 EXPORT_SYMBOL(iov_iter_gap_alignment
);
981 static int want_pages_array(struct page
***res
, size_t size
,
982 size_t start
, unsigned int maxpages
)
984 unsigned int count
= DIV_ROUND_UP(size
+ start
, PAGE_SIZE
);
986 if (count
> maxpages
)
988 WARN_ON(!count
); // caller should've prevented that
990 *res
= kvmalloc_array(count
, sizeof(struct page
*), GFP_KERNEL
);
997 static ssize_t
iter_folioq_get_pages(struct iov_iter
*iter
,
998 struct page
***ppages
, size_t maxsize
,
999 unsigned maxpages
, size_t *_start_offset
)
1001 const struct folio_queue
*folioq
= iter
->folioq
;
1002 struct page
**pages
;
1003 unsigned int slot
= iter
->folioq_slot
;
1004 size_t extracted
= 0, count
= iter
->count
, iov_offset
= iter
->iov_offset
;
1006 if (slot
>= folioq_nr_slots(folioq
)) {
1007 folioq
= folioq
->next
;
1009 if (WARN_ON(iov_offset
!= 0))
1013 maxpages
= want_pages_array(ppages
, maxsize
, iov_offset
& ~PAGE_MASK
, maxpages
);
1016 *_start_offset
= iov_offset
& ~PAGE_MASK
;
1020 struct folio
*folio
= folioq_folio(folioq
, slot
);
1021 size_t offset
= iov_offset
, fsize
= folioq_folio_size(folioq
, slot
);
1022 size_t part
= PAGE_SIZE
- offset
% PAGE_SIZE
;
1024 part
= umin(part
, umin(maxsize
- extracted
, fsize
- offset
));
1029 *pages
= folio_page(folio
, offset
/ PAGE_SIZE
);
1033 if (maxpages
== 0 || extracted
>= maxsize
)
1036 if (iov_offset
>= fsize
) {
1039 if (slot
== folioq_nr_slots(folioq
) && folioq
->next
) {
1040 folioq
= folioq
->next
;
1046 iter
->count
= count
;
1047 iter
->iov_offset
= iov_offset
;
1048 iter
->folioq
= folioq
;
1049 iter
->folioq_slot
= slot
;
1053 static ssize_t
iter_xarray_populate_pages(struct page
**pages
, struct xarray
*xa
,
1054 pgoff_t index
, unsigned int nr_pages
)
1056 XA_STATE(xas
, xa
, index
);
1058 unsigned int ret
= 0;
1061 for (page
= xas_load(&xas
); page
; page
= xas_next(&xas
)) {
1062 if (xas_retry(&xas
, page
))
1065 /* Has the page moved or been split? */
1066 if (unlikely(page
!= xas_reload(&xas
))) {
1071 pages
[ret
] = find_subpage(page
, xas
.xa_index
);
1072 get_page(pages
[ret
]);
1073 if (++ret
== nr_pages
)
1080 static ssize_t
iter_xarray_get_pages(struct iov_iter
*i
,
1081 struct page
***pages
, size_t maxsize
,
1082 unsigned maxpages
, size_t *_start_offset
)
1084 unsigned nr
, offset
, count
;
1088 pos
= i
->xarray_start
+ i
->iov_offset
;
1089 index
= pos
>> PAGE_SHIFT
;
1090 offset
= pos
& ~PAGE_MASK
;
1091 *_start_offset
= offset
;
1093 count
= want_pages_array(pages
, maxsize
, offset
, maxpages
);
1096 nr
= iter_xarray_populate_pages(*pages
, i
->xarray
, index
, count
);
1100 maxsize
= min_t(size_t, nr
* PAGE_SIZE
- offset
, maxsize
);
1101 i
->iov_offset
+= maxsize
;
1102 i
->count
-= maxsize
;
1106 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1107 static unsigned long first_iovec_segment(const struct iov_iter
*i
, size_t *size
)
1112 if (iter_is_ubuf(i
))
1113 return (unsigned long)i
->ubuf
+ i
->iov_offset
;
1115 for (k
= 0, skip
= i
->iov_offset
; k
< i
->nr_segs
; k
++, skip
= 0) {
1116 const struct iovec
*iov
= iter_iov(i
) + k
;
1117 size_t len
= iov
->iov_len
- skip
;
1123 return (unsigned long)iov
->iov_base
+ skip
;
1125 BUG(); // if it had been empty, we wouldn't get called
1128 /* must be done on non-empty ITER_BVEC one */
1129 static struct page
*first_bvec_segment(const struct iov_iter
*i
,
1130 size_t *size
, size_t *start
)
1133 size_t skip
= i
->iov_offset
, len
;
1135 len
= i
->bvec
->bv_len
- skip
;
1138 skip
+= i
->bvec
->bv_offset
;
1139 page
= i
->bvec
->bv_page
+ skip
/ PAGE_SIZE
;
1140 *start
= skip
% PAGE_SIZE
;
1144 static ssize_t
__iov_iter_get_pages_alloc(struct iov_iter
*i
,
1145 struct page
***pages
, size_t maxsize
,
1146 unsigned int maxpages
, size_t *start
)
1148 unsigned int n
, gup_flags
= 0;
1150 if (maxsize
> i
->count
)
1154 if (maxsize
> MAX_RW_COUNT
)
1155 maxsize
= MAX_RW_COUNT
;
1157 if (likely(user_backed_iter(i
))) {
1161 if (iov_iter_rw(i
) != WRITE
)
1162 gup_flags
|= FOLL_WRITE
;
1164 gup_flags
|= FOLL_NOFAULT
;
1166 addr
= first_iovec_segment(i
, &maxsize
);
1167 *start
= addr
% PAGE_SIZE
;
1169 n
= want_pages_array(pages
, maxsize
, *start
, maxpages
);
1172 res
= get_user_pages_fast(addr
, n
, gup_flags
, *pages
);
1173 if (unlikely(res
<= 0))
1175 maxsize
= min_t(size_t, maxsize
, res
* PAGE_SIZE
- *start
);
1176 iov_iter_advance(i
, maxsize
);
1179 if (iov_iter_is_bvec(i
)) {
1183 page
= first_bvec_segment(i
, &maxsize
, start
);
1184 n
= want_pages_array(pages
, maxsize
, *start
, maxpages
);
1188 for (int k
= 0; k
< n
; k
++)
1189 get_page(p
[k
] = page
+ k
);
1190 maxsize
= min_t(size_t, maxsize
, n
* PAGE_SIZE
- *start
);
1191 i
->count
-= maxsize
;
1192 i
->iov_offset
+= maxsize
;
1193 if (i
->iov_offset
== i
->bvec
->bv_len
) {
1200 if (iov_iter_is_folioq(i
))
1201 return iter_folioq_get_pages(i
, pages
, maxsize
, maxpages
, start
);
1202 if (iov_iter_is_xarray(i
))
1203 return iter_xarray_get_pages(i
, pages
, maxsize
, maxpages
, start
);
1207 ssize_t
iov_iter_get_pages2(struct iov_iter
*i
, struct page
**pages
,
1208 size_t maxsize
, unsigned maxpages
, size_t *start
)
1214 return __iov_iter_get_pages_alloc(i
, &pages
, maxsize
, maxpages
, start
);
1216 EXPORT_SYMBOL(iov_iter_get_pages2
);
1218 ssize_t
iov_iter_get_pages_alloc2(struct iov_iter
*i
,
1219 struct page
***pages
, size_t maxsize
, size_t *start
)
1225 len
= __iov_iter_get_pages_alloc(i
, pages
, maxsize
, ~0U, start
);
1232 EXPORT_SYMBOL(iov_iter_get_pages_alloc2
);
1234 static int iov_npages(const struct iov_iter
*i
, int maxpages
)
1236 size_t skip
= i
->iov_offset
, size
= i
->count
;
1237 const struct iovec
*p
;
1240 for (p
= iter_iov(i
); size
; skip
= 0, p
++) {
1241 unsigned offs
= offset_in_page(p
->iov_base
+ skip
);
1242 size_t len
= min(p
->iov_len
- skip
, size
);
1246 npages
+= DIV_ROUND_UP(offs
+ len
, PAGE_SIZE
);
1247 if (unlikely(npages
> maxpages
))
1254 static int bvec_npages(const struct iov_iter
*i
, int maxpages
)
1256 size_t skip
= i
->iov_offset
, size
= i
->count
;
1257 const struct bio_vec
*p
;
1260 for (p
= i
->bvec
; size
; skip
= 0, p
++) {
1261 unsigned offs
= (p
->bv_offset
+ skip
) % PAGE_SIZE
;
1262 size_t len
= min(p
->bv_len
- skip
, size
);
1265 npages
+= DIV_ROUND_UP(offs
+ len
, PAGE_SIZE
);
1266 if (unlikely(npages
> maxpages
))
1272 int iov_iter_npages(const struct iov_iter
*i
, int maxpages
)
1274 if (unlikely(!i
->count
))
1276 if (likely(iter_is_ubuf(i
))) {
1277 unsigned offs
= offset_in_page(i
->ubuf
+ i
->iov_offset
);
1278 int npages
= DIV_ROUND_UP(offs
+ i
->count
, PAGE_SIZE
);
1279 return min(npages
, maxpages
);
1281 /* iovec and kvec have identical layouts */
1282 if (likely(iter_is_iovec(i
) || iov_iter_is_kvec(i
)))
1283 return iov_npages(i
, maxpages
);
1284 if (iov_iter_is_bvec(i
))
1285 return bvec_npages(i
, maxpages
);
1286 if (iov_iter_is_folioq(i
)) {
1287 unsigned offset
= i
->iov_offset
% PAGE_SIZE
;
1288 int npages
= DIV_ROUND_UP(offset
+ i
->count
, PAGE_SIZE
);
1289 return min(npages
, maxpages
);
1291 if (iov_iter_is_xarray(i
)) {
1292 unsigned offset
= (i
->xarray_start
+ i
->iov_offset
) % PAGE_SIZE
;
1293 int npages
= DIV_ROUND_UP(offset
+ i
->count
, PAGE_SIZE
);
1294 return min(npages
, maxpages
);
1298 EXPORT_SYMBOL(iov_iter_npages
);
1300 const void *dup_iter(struct iov_iter
*new, struct iov_iter
*old
, gfp_t flags
)
1303 if (iov_iter_is_bvec(new))
1304 return new->bvec
= kmemdup(new->bvec
,
1305 new->nr_segs
* sizeof(struct bio_vec
),
1307 else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1308 /* iovec and kvec have identical layout */
1309 return new->__iov
= kmemdup(new->__iov
,
1310 new->nr_segs
* sizeof(struct iovec
),
1314 EXPORT_SYMBOL(dup_iter
);
1316 static __noclone
int copy_compat_iovec_from_user(struct iovec
*iov
,
1317 const struct iovec __user
*uvec
, u32 nr_segs
)
1319 const struct compat_iovec __user
*uiov
=
1320 (const struct compat_iovec __user
*)uvec
;
1324 if (!user_access_begin(uiov
, nr_segs
* sizeof(*uiov
)))
1327 for (i
= 0; i
< nr_segs
; i
++) {
1331 unsafe_get_user(len
, &uiov
[i
].iov_len
, uaccess_end
);
1332 unsafe_get_user(buf
, &uiov
[i
].iov_base
, uaccess_end
);
1334 /* check for compat_size_t not fitting in compat_ssize_t .. */
1339 iov
[i
].iov_base
= compat_ptr(buf
);
1340 iov
[i
].iov_len
= len
;
1349 static __noclone
int copy_iovec_from_user(struct iovec
*iov
,
1350 const struct iovec __user
*uiov
, unsigned long nr_segs
)
1354 if (!user_access_begin(uiov
, nr_segs
* sizeof(*uiov
)))
1361 unsafe_get_user(len
, &uiov
->iov_len
, uaccess_end
);
1362 unsafe_get_user(buf
, &uiov
->iov_base
, uaccess_end
);
1364 /* check for size_t not fitting in ssize_t .. */
1365 if (unlikely(len
< 0)) {
1369 iov
->iov_base
= buf
;
1373 } while (--nr_segs
);
1381 struct iovec
*iovec_from_user(const struct iovec __user
*uvec
,
1382 unsigned long nr_segs
, unsigned long fast_segs
,
1383 struct iovec
*fast_iov
, bool compat
)
1385 struct iovec
*iov
= fast_iov
;
1389 * SuS says "The readv() function *may* fail if the iovcnt argument was
1390 * less than or equal to 0, or greater than {IOV_MAX}. Linux has
1391 * traditionally returned zero for zero segments, so...
1395 if (nr_segs
> UIO_MAXIOV
)
1396 return ERR_PTR(-EINVAL
);
1397 if (nr_segs
> fast_segs
) {
1398 iov
= kmalloc_array(nr_segs
, sizeof(struct iovec
), GFP_KERNEL
);
1400 return ERR_PTR(-ENOMEM
);
1403 if (unlikely(compat
))
1404 ret
= copy_compat_iovec_from_user(iov
, uvec
, nr_segs
);
1406 ret
= copy_iovec_from_user(iov
, uvec
, nr_segs
);
1408 if (iov
!= fast_iov
)
1410 return ERR_PTR(ret
);
1417 * Single segment iovec supplied by the user, import it as ITER_UBUF.
1419 static ssize_t
__import_iovec_ubuf(int type
, const struct iovec __user
*uvec
,
1420 struct iovec
**iovp
, struct iov_iter
*i
,
1423 struct iovec
*iov
= *iovp
;
1427 ret
= copy_compat_iovec_from_user(iov
, uvec
, 1);
1429 ret
= copy_iovec_from_user(iov
, uvec
, 1);
1433 ret
= import_ubuf(type
, iov
->iov_base
, iov
->iov_len
, i
);
1440 ssize_t
__import_iovec(int type
, const struct iovec __user
*uvec
,
1441 unsigned nr_segs
, unsigned fast_segs
, struct iovec
**iovp
,
1442 struct iov_iter
*i
, bool compat
)
1444 ssize_t total_len
= 0;
1449 return __import_iovec_ubuf(type
, uvec
, iovp
, i
, compat
);
1451 iov
= iovec_from_user(uvec
, nr_segs
, fast_segs
, *iovp
, compat
);
1454 return PTR_ERR(iov
);
1458 * According to the Single Unix Specification we should return EINVAL if
1459 * an element length is < 0 when cast to ssize_t or if the total length
1460 * would overflow the ssize_t return value of the system call.
1462 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1465 for (seg
= 0; seg
< nr_segs
; seg
++) {
1466 ssize_t len
= (ssize_t
)iov
[seg
].iov_len
;
1468 if (!access_ok(iov
[seg
].iov_base
, len
)) {
1475 if (len
> MAX_RW_COUNT
- total_len
) {
1476 len
= MAX_RW_COUNT
- total_len
;
1477 iov
[seg
].iov_len
= len
;
1482 iov_iter_init(i
, type
, iov
, nr_segs
, total_len
);
1491 * import_iovec() - Copy an array of &struct iovec from userspace
1492 * into the kernel, check that it is valid, and initialize a new
1493 * &struct iov_iter iterator to access it.
1495 * @type: One of %READ or %WRITE.
1496 * @uvec: Pointer to the userspace array.
1497 * @nr_segs: Number of elements in userspace array.
1498 * @fast_segs: Number of elements in @iov.
1499 * @iovp: (input and output parameter) Pointer to pointer to (usually small
1500 * on-stack) kernel array.
1501 * @i: Pointer to iterator that will be initialized on success.
1503 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1504 * then this function places %NULL in *@iov on return. Otherwise, a new
1505 * array will be allocated and the result placed in *@iov. This means that
1506 * the caller may call kfree() on *@iov regardless of whether the small
1507 * on-stack array was used or not (and regardless of whether this function
1508 * returns an error or not).
1510 * Return: Negative error code on error, bytes imported on success
1512 ssize_t
import_iovec(int type
, const struct iovec __user
*uvec
,
1513 unsigned nr_segs
, unsigned fast_segs
,
1514 struct iovec
**iovp
, struct iov_iter
*i
)
1516 return __import_iovec(type
, uvec
, nr_segs
, fast_segs
, iovp
, i
,
1517 in_compat_syscall());
1519 EXPORT_SYMBOL(import_iovec
);
1521 int import_ubuf(int rw
, void __user
*buf
, size_t len
, struct iov_iter
*i
)
1523 if (len
> MAX_RW_COUNT
)
1525 if (unlikely(!access_ok(buf
, len
)))
1528 iov_iter_ubuf(i
, rw
, buf
, len
);
1531 EXPORT_SYMBOL_GPL(import_ubuf
);
1534 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1535 * iov_iter_save_state() was called.
1537 * @i: &struct iov_iter to restore
1538 * @state: state to restore from
1540 * Used after iov_iter_save_state() to bring restore @i, if operations may
1543 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1545 void iov_iter_restore(struct iov_iter
*i
, struct iov_iter_state
*state
)
1547 if (WARN_ON_ONCE(!iov_iter_is_bvec(i
) && !iter_is_iovec(i
) &&
1548 !iter_is_ubuf(i
)) && !iov_iter_is_kvec(i
))
1550 i
->iov_offset
= state
->iov_offset
;
1551 i
->count
= state
->count
;
1552 if (iter_is_ubuf(i
))
1555 * For the *vec iters, nr_segs + iov is constant - if we increment
1556 * the vec, then we also decrement the nr_segs count. Hence we don't
1557 * need to track both of these, just one is enough and we can deduct
1558 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1559 * size, so we can just increment the iov pointer as they are unionzed.
1560 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1561 * not. Be safe and handle it separately.
1563 BUILD_BUG_ON(sizeof(struct iovec
) != sizeof(struct kvec
));
1564 if (iov_iter_is_bvec(i
))
1565 i
->bvec
-= state
->nr_segs
- i
->nr_segs
;
1567 i
->__iov
-= state
->nr_segs
- i
->nr_segs
;
1568 i
->nr_segs
= state
->nr_segs
;
1572 * Extract a list of contiguous pages from an ITER_FOLIOQ iterator. This does
1573 * not get references on the pages, nor does it get a pin on them.
1575 static ssize_t
iov_iter_extract_folioq_pages(struct iov_iter
*i
,
1576 struct page
***pages
, size_t maxsize
,
1577 unsigned int maxpages
,
1578 iov_iter_extraction_t extraction_flags
,
1581 const struct folio_queue
*folioq
= i
->folioq
;
1583 unsigned int nr
= 0;
1584 size_t extracted
= 0, offset
, slot
= i
->folioq_slot
;
1586 if (slot
>= folioq_nr_slots(folioq
)) {
1587 folioq
= folioq
->next
;
1589 if (WARN_ON(i
->iov_offset
!= 0))
1593 offset
= i
->iov_offset
& ~PAGE_MASK
;
1596 maxpages
= want_pages_array(pages
, maxsize
, offset
, maxpages
);
1602 struct folio
*folio
= folioq_folio(folioq
, slot
);
1603 size_t offset
= i
->iov_offset
, fsize
= folioq_folio_size(folioq
, slot
);
1604 size_t part
= PAGE_SIZE
- offset
% PAGE_SIZE
;
1606 if (offset
< fsize
) {
1607 part
= umin(part
, umin(maxsize
- extracted
, fsize
- offset
));
1609 i
->iov_offset
+= part
;
1612 p
[nr
++] = folio_page(folio
, offset
/ PAGE_SIZE
);
1615 if (nr
>= maxpages
|| extracted
>= maxsize
)
1618 if (i
->iov_offset
>= fsize
) {
1621 if (slot
== folioq_nr_slots(folioq
) && folioq
->next
) {
1622 folioq
= folioq
->next
;
1629 i
->folioq_slot
= slot
;
1634 * Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not
1635 * get references on the pages, nor does it get a pin on them.
1637 static ssize_t
iov_iter_extract_xarray_pages(struct iov_iter
*i
,
1638 struct page
***pages
, size_t maxsize
,
1639 unsigned int maxpages
,
1640 iov_iter_extraction_t extraction_flags
,
1643 struct page
*page
, **p
;
1644 unsigned int nr
= 0, offset
;
1645 loff_t pos
= i
->xarray_start
+ i
->iov_offset
;
1646 pgoff_t index
= pos
>> PAGE_SHIFT
;
1647 XA_STATE(xas
, i
->xarray
, index
);
1649 offset
= pos
& ~PAGE_MASK
;
1652 maxpages
= want_pages_array(pages
, maxsize
, offset
, maxpages
);
1658 for (page
= xas_load(&xas
); page
; page
= xas_next(&xas
)) {
1659 if (xas_retry(&xas
, page
))
1662 /* Has the page moved or been split? */
1663 if (unlikely(page
!= xas_reload(&xas
))) {
1668 p
[nr
++] = find_subpage(page
, xas
.xa_index
);
1674 maxsize
= min_t(size_t, nr
* PAGE_SIZE
- offset
, maxsize
);
1675 iov_iter_advance(i
, maxsize
);
1680 * Extract a list of contiguous pages from an ITER_BVEC iterator. This does
1681 * not get references on the pages, nor does it get a pin on them.
1683 static ssize_t
iov_iter_extract_bvec_pages(struct iov_iter
*i
,
1684 struct page
***pages
, size_t maxsize
,
1685 unsigned int maxpages
,
1686 iov_iter_extraction_t extraction_flags
,
1689 struct page
**p
, *page
;
1690 size_t skip
= i
->iov_offset
, offset
, size
;
1694 if (i
->nr_segs
== 0)
1696 size
= min(maxsize
, i
->bvec
->bv_len
- skip
);
1705 skip
+= i
->bvec
->bv_offset
;
1706 page
= i
->bvec
->bv_page
+ skip
/ PAGE_SIZE
;
1707 offset
= skip
% PAGE_SIZE
;
1710 maxpages
= want_pages_array(pages
, size
, offset
, maxpages
);
1714 for (k
= 0; k
< maxpages
; k
++)
1717 size
= min_t(size_t, size
, maxpages
* PAGE_SIZE
- offset
);
1718 iov_iter_advance(i
, size
);
1723 * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
1724 * This does not get references on the pages, nor does it get a pin on them.
1726 static ssize_t
iov_iter_extract_kvec_pages(struct iov_iter
*i
,
1727 struct page
***pages
, size_t maxsize
,
1728 unsigned int maxpages
,
1729 iov_iter_extraction_t extraction_flags
,
1732 struct page
**p
, *page
;
1734 size_t skip
= i
->iov_offset
, offset
, len
, size
;
1738 if (i
->nr_segs
== 0)
1740 size
= min(maxsize
, i
->kvec
->iov_len
- skip
);
1749 kaddr
= i
->kvec
->iov_base
+ skip
;
1750 offset
= (unsigned long)kaddr
& ~PAGE_MASK
;
1753 maxpages
= want_pages_array(pages
, size
, offset
, maxpages
);
1759 len
= offset
+ size
;
1760 for (k
= 0; k
< maxpages
; k
++) {
1761 size_t seg
= min_t(size_t, len
, PAGE_SIZE
);
1763 if (is_vmalloc_or_module_addr(kaddr
))
1764 page
= vmalloc_to_page(kaddr
);
1766 page
= virt_to_page(kaddr
);
1773 size
= min_t(size_t, size
, maxpages
* PAGE_SIZE
- offset
);
1774 iov_iter_advance(i
, size
);
1779 * Extract a list of contiguous pages from a user iterator and get a pin on
1780 * each of them. This should only be used if the iterator is user-backed
1783 * It does not get refs on the pages, but the pages must be unpinned by the
1784 * caller once the transfer is complete.
1786 * This is safe to be used where background IO/DMA *is* going to be modifying
1787 * the buffer; using a pin rather than a ref makes forces fork() to give the
1788 * child a copy of the page.
1790 static ssize_t
iov_iter_extract_user_pages(struct iov_iter
*i
,
1791 struct page
***pages
,
1793 unsigned int maxpages
,
1794 iov_iter_extraction_t extraction_flags
,
1798 unsigned int gup_flags
= 0;
1802 if (i
->data_source
== ITER_DEST
)
1803 gup_flags
|= FOLL_WRITE
;
1804 if (extraction_flags
& ITER_ALLOW_P2PDMA
)
1805 gup_flags
|= FOLL_PCI_P2PDMA
;
1807 gup_flags
|= FOLL_NOFAULT
;
1809 addr
= first_iovec_segment(i
, &maxsize
);
1810 *offset0
= offset
= addr
% PAGE_SIZE
;
1812 maxpages
= want_pages_array(pages
, maxsize
, offset
, maxpages
);
1815 res
= pin_user_pages_fast(addr
, maxpages
, gup_flags
, *pages
);
1816 if (unlikely(res
<= 0))
1818 maxsize
= min_t(size_t, maxsize
, res
* PAGE_SIZE
- offset
);
1819 iov_iter_advance(i
, maxsize
);
1824 * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
1825 * @i: The iterator to extract from
1826 * @pages: Where to return the list of pages
1827 * @maxsize: The maximum amount of iterator to extract
1828 * @maxpages: The maximum size of the list of pages
1829 * @extraction_flags: Flags to qualify request
1830 * @offset0: Where to return the starting offset into (*@pages)[0]
1832 * Extract a list of contiguous pages from the current point of the iterator,
1833 * advancing the iterator. The maximum number of pages and the maximum amount
1834 * of page contents can be set.
1836 * If *@pages is NULL, a page list will be allocated to the required size and
1837 * *@pages will be set to its base. If *@pages is not NULL, it will be assumed
1838 * that the caller allocated a page list at least @maxpages in size and this
1839 * will be filled in.
1841 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1842 * be allowed on the pages extracted.
1844 * The iov_iter_extract_will_pin() function can be used to query how cleanup
1845 * should be performed.
1847 * Extra refs or pins on the pages may be obtained as follows:
1849 * (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
1850 * added to the pages, but refs will not be taken.
1851 * iov_iter_extract_will_pin() will return true.
1853 * (*) If the iterator is ITER_KVEC, ITER_BVEC, ITER_FOLIOQ or ITER_XARRAY, the
1854 * pages are merely listed; no extra refs or pins are obtained.
1855 * iov_iter_extract_will_pin() will return 0.
1859 * (*) Use with ITER_DISCARD is not supported as that has no content.
1861 * On success, the function sets *@pages to the new pagelist, if allocated, and
1862 * sets *offset0 to the offset into the first page.
1864 * It may also return -ENOMEM and -EFAULT.
1866 ssize_t
iov_iter_extract_pages(struct iov_iter
*i
,
1867 struct page
***pages
,
1869 unsigned int maxpages
,
1870 iov_iter_extraction_t extraction_flags
,
1873 maxsize
= min_t(size_t, min_t(size_t, maxsize
, i
->count
), MAX_RW_COUNT
);
1877 if (likely(user_backed_iter(i
)))
1878 return iov_iter_extract_user_pages(i
, pages
, maxsize
,
1879 maxpages
, extraction_flags
,
1881 if (iov_iter_is_kvec(i
))
1882 return iov_iter_extract_kvec_pages(i
, pages
, maxsize
,
1883 maxpages
, extraction_flags
,
1885 if (iov_iter_is_bvec(i
))
1886 return iov_iter_extract_bvec_pages(i
, pages
, maxsize
,
1887 maxpages
, extraction_flags
,
1889 if (iov_iter_is_folioq(i
))
1890 return iov_iter_extract_folioq_pages(i
, pages
, maxsize
,
1891 maxpages
, extraction_flags
,
1893 if (iov_iter_is_xarray(i
))
1894 return iov_iter_extract_xarray_pages(i
, pages
, maxsize
,
1895 maxpages
, extraction_flags
,
1899 EXPORT_SYMBOL_GPL(iov_iter_extract_pages
);