2 * xxHash - Extremely Fast Hash algorithm
3 * Copyright (C) 2012-2016, Yann Collet.
5 * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following disclaimer
15 * in the documentation and/or other materials provided with the
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * This program is free software; you can redistribute it and/or modify it under
31 * the terms of the GNU General Public License version 2 as published by the
32 * Free Software Foundation. This program is dual-licensed; you may select
33 * either version 2 of the GNU General Public License ("GPL") or BSD license
36 * You can contact the author at:
37 * - xxHash homepage: https://cyan4973.github.io/xxHash/
38 * - xxHash source repository: https://github.com/Cyan4973/xxHash
41 #include <linux/unaligned.h>
42 #include <linux/errno.h>
43 #include <linux/compiler.h>
44 #include <linux/kernel.h>
45 #include <linux/module.h>
46 #include <linux/string.h>
47 #include <linux/xxhash.h>
49 /*-*************************************
51 **************************************/
52 #define xxh_rotl32(x, r) ((x << r) | (x >> (32 - r)))
53 #define xxh_rotl64(x, r) ((x << r) | (x >> (64 - r)))
55 #ifdef __LITTLE_ENDIAN
56 # define XXH_CPU_LITTLE_ENDIAN 1
58 # define XXH_CPU_LITTLE_ENDIAN 0
61 /*-*************************************
63 **************************************/
64 static const uint32_t PRIME32_1
= 2654435761U;
65 static const uint32_t PRIME32_2
= 2246822519U;
66 static const uint32_t PRIME32_3
= 3266489917U;
67 static const uint32_t PRIME32_4
= 668265263U;
68 static const uint32_t PRIME32_5
= 374761393U;
70 static const uint64_t PRIME64_1
= 11400714785074694791ULL;
71 static const uint64_t PRIME64_2
= 14029467366897019727ULL;
72 static const uint64_t PRIME64_3
= 1609587929392839161ULL;
73 static const uint64_t PRIME64_4
= 9650029242287828579ULL;
74 static const uint64_t PRIME64_5
= 2870177450012600261ULL;
76 /*-**************************
78 ***************************/
79 void xxh32_copy_state(struct xxh32_state
*dst
, const struct xxh32_state
*src
)
81 memcpy(dst
, src
, sizeof(*dst
));
83 EXPORT_SYMBOL(xxh32_copy_state
);
85 void xxh64_copy_state(struct xxh64_state
*dst
, const struct xxh64_state
*src
)
87 memcpy(dst
, src
, sizeof(*dst
));
89 EXPORT_SYMBOL(xxh64_copy_state
);
91 /*-***************************
92 * Simple Hash Functions
93 ****************************/
94 static uint32_t xxh32_round(uint32_t seed
, const uint32_t input
)
96 seed
+= input
* PRIME32_2
;
97 seed
= xxh_rotl32(seed
, 13);
102 uint32_t xxh32(const void *input
, const size_t len
, const uint32_t seed
)
104 const uint8_t *p
= (const uint8_t *)input
;
105 const uint8_t *b_end
= p
+ len
;
109 const uint8_t *const limit
= b_end
- 16;
110 uint32_t v1
= seed
+ PRIME32_1
+ PRIME32_2
;
111 uint32_t v2
= seed
+ PRIME32_2
;
112 uint32_t v3
= seed
+ 0;
113 uint32_t v4
= seed
- PRIME32_1
;
116 v1
= xxh32_round(v1
, get_unaligned_le32(p
));
118 v2
= xxh32_round(v2
, get_unaligned_le32(p
));
120 v3
= xxh32_round(v3
, get_unaligned_le32(p
));
122 v4
= xxh32_round(v4
, get_unaligned_le32(p
));
124 } while (p
<= limit
);
126 h32
= xxh_rotl32(v1
, 1) + xxh_rotl32(v2
, 7) +
127 xxh_rotl32(v3
, 12) + xxh_rotl32(v4
, 18);
129 h32
= seed
+ PRIME32_5
;
132 h32
+= (uint32_t)len
;
134 while (p
+ 4 <= b_end
) {
135 h32
+= get_unaligned_le32(p
) * PRIME32_3
;
136 h32
= xxh_rotl32(h32
, 17) * PRIME32_4
;
141 h32
+= (*p
) * PRIME32_5
;
142 h32
= xxh_rotl32(h32
, 11) * PRIME32_1
;
154 EXPORT_SYMBOL(xxh32
);
156 static uint64_t xxh64_round(uint64_t acc
, const uint64_t input
)
158 acc
+= input
* PRIME64_2
;
159 acc
= xxh_rotl64(acc
, 31);
164 static uint64_t xxh64_merge_round(uint64_t acc
, uint64_t val
)
166 val
= xxh64_round(0, val
);
168 acc
= acc
* PRIME64_1
+ PRIME64_4
;
172 uint64_t xxh64(const void *input
, const size_t len
, const uint64_t seed
)
174 const uint8_t *p
= (const uint8_t *)input
;
175 const uint8_t *const b_end
= p
+ len
;
179 const uint8_t *const limit
= b_end
- 32;
180 uint64_t v1
= seed
+ PRIME64_1
+ PRIME64_2
;
181 uint64_t v2
= seed
+ PRIME64_2
;
182 uint64_t v3
= seed
+ 0;
183 uint64_t v4
= seed
- PRIME64_1
;
186 v1
= xxh64_round(v1
, get_unaligned_le64(p
));
188 v2
= xxh64_round(v2
, get_unaligned_le64(p
));
190 v3
= xxh64_round(v3
, get_unaligned_le64(p
));
192 v4
= xxh64_round(v4
, get_unaligned_le64(p
));
194 } while (p
<= limit
);
196 h64
= xxh_rotl64(v1
, 1) + xxh_rotl64(v2
, 7) +
197 xxh_rotl64(v3
, 12) + xxh_rotl64(v4
, 18);
198 h64
= xxh64_merge_round(h64
, v1
);
199 h64
= xxh64_merge_round(h64
, v2
);
200 h64
= xxh64_merge_round(h64
, v3
);
201 h64
= xxh64_merge_round(h64
, v4
);
204 h64
= seed
+ PRIME64_5
;
207 h64
+= (uint64_t)len
;
209 while (p
+ 8 <= b_end
) {
210 const uint64_t k1
= xxh64_round(0, get_unaligned_le64(p
));
213 h64
= xxh_rotl64(h64
, 27) * PRIME64_1
+ PRIME64_4
;
217 if (p
+ 4 <= b_end
) {
218 h64
^= (uint64_t)(get_unaligned_le32(p
)) * PRIME64_1
;
219 h64
= xxh_rotl64(h64
, 23) * PRIME64_2
+ PRIME64_3
;
224 h64
^= (*p
) * PRIME64_5
;
225 h64
= xxh_rotl64(h64
, 11) * PRIME64_1
;
237 EXPORT_SYMBOL(xxh64
);
239 /*-**************************************************
240 * Advanced Hash Functions
241 ***************************************************/
242 void xxh32_reset(struct xxh32_state
*statePtr
, const uint32_t seed
)
244 /* use a local state for memcpy() to avoid strict-aliasing warnings */
245 struct xxh32_state state
;
247 memset(&state
, 0, sizeof(state
));
248 state
.v1
= seed
+ PRIME32_1
+ PRIME32_2
;
249 state
.v2
= seed
+ PRIME32_2
;
251 state
.v4
= seed
- PRIME32_1
;
252 memcpy(statePtr
, &state
, sizeof(state
));
254 EXPORT_SYMBOL(xxh32_reset
);
256 void xxh64_reset(struct xxh64_state
*statePtr
, const uint64_t seed
)
258 /* use a local state for memcpy() to avoid strict-aliasing warnings */
259 struct xxh64_state state
;
261 memset(&state
, 0, sizeof(state
));
262 state
.v1
= seed
+ PRIME64_1
+ PRIME64_2
;
263 state
.v2
= seed
+ PRIME64_2
;
265 state
.v4
= seed
- PRIME64_1
;
266 memcpy(statePtr
, &state
, sizeof(state
));
268 EXPORT_SYMBOL(xxh64_reset
);
270 int xxh32_update(struct xxh32_state
*state
, const void *input
, const size_t len
)
272 const uint8_t *p
= (const uint8_t *)input
;
273 const uint8_t *const b_end
= p
+ len
;
278 state
->total_len_32
+= (uint32_t)len
;
279 state
->large_len
|= (len
>= 16) | (state
->total_len_32
>= 16);
281 if (state
->memsize
+ len
< 16) { /* fill in tmp buffer */
282 memcpy((uint8_t *)(state
->mem32
) + state
->memsize
, input
, len
);
283 state
->memsize
+= (uint32_t)len
;
287 if (state
->memsize
) { /* some data left from previous update */
288 const uint32_t *p32
= state
->mem32
;
290 memcpy((uint8_t *)(state
->mem32
) + state
->memsize
, input
,
291 16 - state
->memsize
);
293 state
->v1
= xxh32_round(state
->v1
, get_unaligned_le32(p32
));
295 state
->v2
= xxh32_round(state
->v2
, get_unaligned_le32(p32
));
297 state
->v3
= xxh32_round(state
->v3
, get_unaligned_le32(p32
));
299 state
->v4
= xxh32_round(state
->v4
, get_unaligned_le32(p32
));
302 p
+= 16-state
->memsize
;
306 if (p
<= b_end
- 16) {
307 const uint8_t *const limit
= b_end
- 16;
308 uint32_t v1
= state
->v1
;
309 uint32_t v2
= state
->v2
;
310 uint32_t v3
= state
->v3
;
311 uint32_t v4
= state
->v4
;
314 v1
= xxh32_round(v1
, get_unaligned_le32(p
));
316 v2
= xxh32_round(v2
, get_unaligned_le32(p
));
318 v3
= xxh32_round(v3
, get_unaligned_le32(p
));
320 v4
= xxh32_round(v4
, get_unaligned_le32(p
));
322 } while (p
<= limit
);
331 memcpy(state
->mem32
, p
, (size_t)(b_end
-p
));
332 state
->memsize
= (uint32_t)(b_end
-p
);
337 EXPORT_SYMBOL(xxh32_update
);
339 uint32_t xxh32_digest(const struct xxh32_state
*state
)
341 const uint8_t *p
= (const uint8_t *)state
->mem32
;
342 const uint8_t *const b_end
= (const uint8_t *)(state
->mem32
) +
346 if (state
->large_len
) {
347 h32
= xxh_rotl32(state
->v1
, 1) + xxh_rotl32(state
->v2
, 7) +
348 xxh_rotl32(state
->v3
, 12) + xxh_rotl32(state
->v4
, 18);
350 h32
= state
->v3
/* == seed */ + PRIME32_5
;
353 h32
+= state
->total_len_32
;
355 while (p
+ 4 <= b_end
) {
356 h32
+= get_unaligned_le32(p
) * PRIME32_3
;
357 h32
= xxh_rotl32(h32
, 17) * PRIME32_4
;
362 h32
+= (*p
) * PRIME32_5
;
363 h32
= xxh_rotl32(h32
, 11) * PRIME32_1
;
375 EXPORT_SYMBOL(xxh32_digest
);
377 int xxh64_update(struct xxh64_state
*state
, const void *input
, const size_t len
)
379 const uint8_t *p
= (const uint8_t *)input
;
380 const uint8_t *const b_end
= p
+ len
;
385 state
->total_len
+= len
;
387 if (state
->memsize
+ len
< 32) { /* fill in tmp buffer */
388 memcpy(((uint8_t *)state
->mem64
) + state
->memsize
, input
, len
);
389 state
->memsize
+= (uint32_t)len
;
393 if (state
->memsize
) { /* tmp buffer is full */
394 uint64_t *p64
= state
->mem64
;
396 memcpy(((uint8_t *)p64
) + state
->memsize
, input
,
397 32 - state
->memsize
);
399 state
->v1
= xxh64_round(state
->v1
, get_unaligned_le64(p64
));
401 state
->v2
= xxh64_round(state
->v2
, get_unaligned_le64(p64
));
403 state
->v3
= xxh64_round(state
->v3
, get_unaligned_le64(p64
));
405 state
->v4
= xxh64_round(state
->v4
, get_unaligned_le64(p64
));
407 p
+= 32 - state
->memsize
;
411 if (p
+ 32 <= b_end
) {
412 const uint8_t *const limit
= b_end
- 32;
413 uint64_t v1
= state
->v1
;
414 uint64_t v2
= state
->v2
;
415 uint64_t v3
= state
->v3
;
416 uint64_t v4
= state
->v4
;
419 v1
= xxh64_round(v1
, get_unaligned_le64(p
));
421 v2
= xxh64_round(v2
, get_unaligned_le64(p
));
423 v3
= xxh64_round(v3
, get_unaligned_le64(p
));
425 v4
= xxh64_round(v4
, get_unaligned_le64(p
));
427 } while (p
<= limit
);
436 memcpy(state
->mem64
, p
, (size_t)(b_end
-p
));
437 state
->memsize
= (uint32_t)(b_end
- p
);
442 EXPORT_SYMBOL(xxh64_update
);
444 uint64_t xxh64_digest(const struct xxh64_state
*state
)
446 const uint8_t *p
= (const uint8_t *)state
->mem64
;
447 const uint8_t *const b_end
= (const uint8_t *)state
->mem64
+
451 if (state
->total_len
>= 32) {
452 const uint64_t v1
= state
->v1
;
453 const uint64_t v2
= state
->v2
;
454 const uint64_t v3
= state
->v3
;
455 const uint64_t v4
= state
->v4
;
457 h64
= xxh_rotl64(v1
, 1) + xxh_rotl64(v2
, 7) +
458 xxh_rotl64(v3
, 12) + xxh_rotl64(v4
, 18);
459 h64
= xxh64_merge_round(h64
, v1
);
460 h64
= xxh64_merge_round(h64
, v2
);
461 h64
= xxh64_merge_round(h64
, v3
);
462 h64
= xxh64_merge_round(h64
, v4
);
464 h64
= state
->v3
+ PRIME64_5
;
467 h64
+= (uint64_t)state
->total_len
;
469 while (p
+ 8 <= b_end
) {
470 const uint64_t k1
= xxh64_round(0, get_unaligned_le64(p
));
473 h64
= xxh_rotl64(h64
, 27) * PRIME64_1
+ PRIME64_4
;
477 if (p
+ 4 <= b_end
) {
478 h64
^= (uint64_t)(get_unaligned_le32(p
)) * PRIME64_1
;
479 h64
= xxh_rotl64(h64
, 23) * PRIME64_2
+ PRIME64_3
;
484 h64
^= (*p
) * PRIME64_5
;
485 h64
= xxh_rotl64(h64
, 11) * PRIME64_1
;
497 EXPORT_SYMBOL(xxh64_digest
);
499 MODULE_LICENSE("Dual BSD/GPL");
500 MODULE_DESCRIPTION("xxHash");