1 .. SPDX-License-Identifier: GPL-2.0
9 Original x86-64 was limited by 4-level paging to 256 TiB of virtual address
10 space and 64 TiB of physical address space. We are already bumping into
11 this limit: some vendors offer servers with 64 TiB of memory today.
13 To overcome the limitation upcoming hardware will introduce support for
14 5-level paging. It is a straight-forward extension of the current page
15 table structure adding one more layer of translation.
17 It bumps the limits to 128 PiB of virtual address space and 4 PiB of
18 physical address space. This "ought to be enough for anybody" ©.
20 QEMU 2.9 and later support 5-level paging.
22 Virtual memory layout for 5-level paging is described in
23 Documentation/arch/x86/x86_64/mm.rst
26 Enabling 5-level paging
27 =======================
28 CONFIG_X86_5LEVEL=y enables the feature.
30 Kernel with CONFIG_X86_5LEVEL=y still able to boot on 4-level hardware.
31 In this case additional page table level -- p4d -- will be folded at
34 User-space and large virtual address space
35 ==========================================
36 On x86, 5-level paging enables 56-bit userspace virtual address space.
37 Not all user space is ready to handle wide addresses. It's known that
38 at least some JIT compilers use higher bits in pointers to encode their
39 information. It collides with valid pointers with 5-level paging and
42 To mitigate this, we are not going to allocate virtual address space
43 above 47-bit by default.
45 But userspace can ask for allocation from full address space by
46 specifying hint address (with or without MAP_FIXED) above 47-bits.
48 If hint address set above 47-bit, but MAP_FIXED is not specified, we try
49 to look for unmapped area by specified address. If it's already
50 occupied, we look for unmapped area in *full* address space, rather than
53 A high hint address would only affect the allocation in question, but not
56 Specifying high hint address on older kernel or on machine without 5-level
57 paging support is safe. The hint will be ignored and kernel will fall back
58 to allocation from 47-bit address space.
60 This approach helps to easily make application's memory allocator aware
61 about large address space without manually tracking allocated virtual
64 One important case we need to handle here is interaction with MPX.
65 MPX (without MAWA extension) cannot handle addresses above 47-bit, so we
66 need to make sure that MPX cannot be enabled we already have VMA above
67 the boundary and forbid creating such VMAs once MPX is enabled.