drm/rockchip: Don't change hdmi reference clock rate
[drm/drm-misc.git] / arch / arm / mm / copypage-xscale.c
blobf1e29d3e81930d127636e8967d03448fc1cebb0e
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/lib/copypage-xscale.S
5 * Copyright (C) 1995-2005 Russell King
7 * This handles the mini data cache, as found on SA11x0 and XScale
8 * processors. When we copy a user page page, we map it in such a way
9 * that accesses to this page will not touch the main data cache, but
10 * will be cached in the mini data cache. This prevents us thrashing
11 * the main data cache on page faults.
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/highmem.h>
16 #include <linux/pagemap.h>
18 #include <asm/tlbflush.h>
19 #include <asm/cacheflush.h>
21 #include "mm.h"
23 #define minicache_pgprot __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | \
24 L_PTE_MT_MINICACHE)
26 static DEFINE_RAW_SPINLOCK(minicache_lock);
29 * XScale mini-dcache optimised copy_user_highpage
31 * We flush the destination cache lines just before we write the data into the
32 * corresponding address. Since the Dcache is read-allocate, this removes the
33 * Dcache aliasing issue. The writes will be forwarded to the write buffer,
34 * and merged as appropriate.
36 static void mc_copy_user_page(void *from, void *to)
38 int tmp;
41 * Strangely enough, best performance is achieved
42 * when prefetching destination as well. (NP)
44 asm volatile ("\
45 .arch xscale \n\
46 pld [%0, #0] \n\
47 pld [%0, #32] \n\
48 pld [%1, #0] \n\
49 pld [%1, #32] \n\
50 1: pld [%0, #64] \n\
51 pld [%0, #96] \n\
52 pld [%1, #64] \n\
53 pld [%1, #96] \n\
54 2: ldrd r2, r3, [%0], #8 \n\
55 ldrd r4, r5, [%0], #8 \n\
56 mov ip, %1 \n\
57 strd r2, r3, [%1], #8 \n\
58 ldrd r2, r3, [%0], #8 \n\
59 strd r4, r5, [%1], #8 \n\
60 ldrd r4, r5, [%0], #8 \n\
61 strd r2, r3, [%1], #8 \n\
62 strd r4, r5, [%1], #8 \n\
63 mcr p15, 0, ip, c7, c10, 1 @ clean D line\n\
64 ldrd r2, r3, [%0], #8 \n\
65 mcr p15, 0, ip, c7, c6, 1 @ invalidate D line\n\
66 ldrd r4, r5, [%0], #8 \n\
67 mov ip, %1 \n\
68 strd r2, r3, [%1], #8 \n\
69 ldrd r2, r3, [%0], #8 \n\
70 strd r4, r5, [%1], #8 \n\
71 ldrd r4, r5, [%0], #8 \n\
72 strd r2, r3, [%1], #8 \n\
73 strd r4, r5, [%1], #8 \n\
74 mcr p15, 0, ip, c7, c10, 1 @ clean D line\n\
75 subs %2, %2, #1 \n\
76 mcr p15, 0, ip, c7, c6, 1 @ invalidate D line\n\
77 bgt 1b \n\
78 beq 2b "
79 : "+&r" (from), "+&r" (to), "=&r" (tmp)
80 : "2" (PAGE_SIZE / 64 - 1)
81 : "r2", "r3", "r4", "r5", "ip");
84 void xscale_mc_copy_user_highpage(struct page *to, struct page *from,
85 unsigned long vaddr, struct vm_area_struct *vma)
87 struct folio *src = page_folio(from);
88 void *kto = kmap_atomic(to);
90 if (!test_and_set_bit(PG_dcache_clean, &src->flags))
91 __flush_dcache_folio(folio_flush_mapping(src), src);
93 raw_spin_lock(&minicache_lock);
95 set_top_pte(COPYPAGE_MINICACHE, mk_pte(from, minicache_pgprot));
97 mc_copy_user_page((void *)COPYPAGE_MINICACHE, kto);
99 raw_spin_unlock(&minicache_lock);
101 kunmap_atomic(kto);
105 * XScale optimised clear_user_page
107 void
108 xscale_mc_clear_user_highpage(struct page *page, unsigned long vaddr)
110 void *ptr, *kaddr = kmap_atomic(page);
111 asm volatile("\
112 .arch xscale \n\
113 mov r1, %2 \n\
114 mov r2, #0 \n\
115 mov r3, #0 \n\
116 1: mov ip, %0 \n\
117 strd r2, r3, [%0], #8 \n\
118 strd r2, r3, [%0], #8 \n\
119 strd r2, r3, [%0], #8 \n\
120 strd r2, r3, [%0], #8 \n\
121 mcr p15, 0, ip, c7, c10, 1 @ clean D line\n\
122 subs r1, r1, #1 \n\
123 mcr p15, 0, ip, c7, c6, 1 @ invalidate D line\n\
124 bne 1b"
125 : "=r" (ptr)
126 : "0" (kaddr), "I" (PAGE_SIZE / 32)
127 : "r1", "r2", "r3", "ip");
128 kunmap_atomic(kaddr);
131 struct cpu_user_fns xscale_mc_user_fns __initdata = {
132 .cpu_clear_user_highpage = xscale_mc_clear_user_highpage,
133 .cpu_copy_user_highpage = xscale_mc_copy_user_highpage,