drm/nouveau: consume the return of large GSP message
[drm/drm-misc.git] / arch / arm / mm / fault-armv.c
blob2bec87c3327d23dd39b6400a46fa1f5cccd812a7
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/mm/fault-armv.c
5 * Copyright (C) 1995 Linus Torvalds
6 * Modifications for ARM processor (c) 1995-2002 Russell King
7 */
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/mm.h>
11 #include <linux/bitops.h>
12 #include <linux/vmalloc.h>
13 #include <linux/init.h>
14 #include <linux/pagemap.h>
15 #include <linux/gfp.h>
17 #include <asm/bugs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/cachetype.h>
20 #include <asm/tlbflush.h>
22 #include "mm.h"
24 static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
26 #if __LINUX_ARM_ARCH__ < 6
28 * We take the easy way out of this problem - we make the
29 * PTE uncacheable. However, we leave the write buffer on.
31 * Note that the pte lock held when calling update_mmu_cache must also
32 * guard the pte (somewhere else in the same mm) that we modify here.
33 * Therefore those configurations which might call adjust_pte (those
34 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
36 static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
37 unsigned long pfn, pte_t *ptep)
39 pte_t entry = *ptep;
40 int ret;
43 * If this page is present, it's actually being shared.
45 ret = pte_present(entry);
48 * If this page isn't present, or is already setup to
49 * fault (ie, is old), we can safely ignore any issues.
51 if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
52 flush_cache_page(vma, address, pfn);
53 outer_flush_range((pfn << PAGE_SHIFT),
54 (pfn << PAGE_SHIFT) + PAGE_SIZE);
55 pte_val(entry) &= ~L_PTE_MT_MASK;
56 pte_val(entry) |= shared_pte_mask;
57 set_pte_at(vma->vm_mm, address, ptep, entry);
58 flush_tlb_page(vma, address);
61 return ret;
64 static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
65 unsigned long pfn, struct vm_fault *vmf)
67 spinlock_t *ptl;
68 pgd_t *pgd;
69 p4d_t *p4d;
70 pud_t *pud;
71 pmd_t *pmd;
72 pte_t *pte;
73 pmd_t pmdval;
74 int ret;
76 pgd = pgd_offset(vma->vm_mm, address);
77 if (pgd_none_or_clear_bad(pgd))
78 return 0;
80 p4d = p4d_offset(pgd, address);
81 if (p4d_none_or_clear_bad(p4d))
82 return 0;
84 pud = pud_offset(p4d, address);
85 if (pud_none_or_clear_bad(pud))
86 return 0;
88 pmd = pmd_offset(pud, address);
89 if (pmd_none_or_clear_bad(pmd))
90 return 0;
92 again:
94 * This is called while another page table is mapped, so we
95 * must use the nested version. This also means we need to
96 * open-code the spin-locking.
98 pte = pte_offset_map_rw_nolock(vma->vm_mm, pmd, address, &pmdval, &ptl);
99 if (!pte)
100 return 0;
103 * If we are using split PTE locks, then we need to take the page
104 * lock here. Otherwise we are using shared mm->page_table_lock
105 * which is already locked, thus cannot take it.
107 if (ptl != vmf->ptl) {
108 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
109 if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
110 pte_unmap_unlock(pte, ptl);
111 goto again;
115 ret = do_adjust_pte(vma, address, pfn, pte);
117 if (ptl != vmf->ptl)
118 spin_unlock(ptl);
119 pte_unmap(pte);
121 return ret;
124 static void
125 make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
126 unsigned long addr, pte_t *ptep, unsigned long pfn,
127 struct vm_fault *vmf)
129 struct mm_struct *mm = vma->vm_mm;
130 struct vm_area_struct *mpnt;
131 unsigned long offset;
132 pgoff_t pgoff;
133 int aliases = 0;
135 pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
138 * If we have any shared mappings that are in the same mm
139 * space, then we need to handle them specially to maintain
140 * cache coherency.
142 flush_dcache_mmap_lock(mapping);
143 vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
145 * If this VMA is not in our MM, we can ignore it.
146 * Note that we intentionally mask out the VMA
147 * that we are fixing up.
149 if (mpnt->vm_mm != mm || mpnt == vma)
150 continue;
151 if (!(mpnt->vm_flags & VM_MAYSHARE))
152 continue;
153 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
154 aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn, vmf);
156 flush_dcache_mmap_unlock(mapping);
157 if (aliases)
158 do_adjust_pte(vma, addr, pfn, ptep);
162 * Take care of architecture specific things when placing a new PTE into
163 * a page table, or changing an existing PTE. Basically, there are two
164 * things that we need to take care of:
166 * 1. If PG_dcache_clean is not set for the page, we need to ensure
167 * that any cache entries for the kernels virtual memory
168 * range are written back to the page.
169 * 2. If we have multiple shared mappings of the same space in
170 * an object, we need to deal with the cache aliasing issues.
172 * Note that the pte lock will be held.
174 void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma,
175 unsigned long addr, pte_t *ptep, unsigned int nr)
177 unsigned long pfn = pte_pfn(*ptep);
178 struct address_space *mapping;
179 struct folio *folio;
181 if (!pfn_valid(pfn))
182 return;
185 * The zero page is never written to, so never has any dirty
186 * cache lines, and therefore never needs to be flushed.
188 if (is_zero_pfn(pfn))
189 return;
191 folio = page_folio(pfn_to_page(pfn));
192 mapping = folio_flush_mapping(folio);
193 if (!test_and_set_bit(PG_dcache_clean, &folio->flags))
194 __flush_dcache_folio(mapping, folio);
195 if (mapping) {
196 if (cache_is_vivt())
197 make_coherent(mapping, vma, addr, ptep, pfn, vmf);
198 else if (vma->vm_flags & VM_EXEC)
199 __flush_icache_all();
202 #endif /* __LINUX_ARM_ARCH__ < 6 */
205 * Check whether the write buffer has physical address aliasing
206 * issues. If it has, we need to avoid them for the case where
207 * we have several shared mappings of the same object in user
208 * space.
210 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
212 register unsigned long zero = 0, one = 1, val;
214 local_irq_disable();
215 mb();
216 *p1 = one;
217 mb();
218 *p2 = zero;
219 mb();
220 val = *p1;
221 mb();
222 local_irq_enable();
223 return val != zero;
226 void __init check_writebuffer_bugs(void)
228 struct page *page;
229 const char *reason;
230 unsigned long v = 1;
232 pr_info("CPU: Testing write buffer coherency: ");
234 page = alloc_page(GFP_KERNEL);
235 if (page) {
236 unsigned long *p1, *p2;
237 pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
238 L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
240 p1 = vmap(&page, 1, VM_IOREMAP, prot);
241 p2 = vmap(&page, 1, VM_IOREMAP, prot);
243 if (p1 && p2) {
244 v = check_writebuffer(p1, p2);
245 reason = "enabling work-around";
246 } else {
247 reason = "unable to map memory\n";
250 vunmap(p1);
251 vunmap(p2);
252 put_page(page);
253 } else {
254 reason = "unable to grab page\n";
257 if (v) {
258 pr_cont("failed, %s\n", reason);
259 shared_pte_mask = L_PTE_MT_UNCACHED;
260 } else {
261 pr_cont("ok\n");