1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/arch/arm/mm/fault-armv.c
5 * Copyright (C) 1995 Linus Torvalds
6 * Modifications for ARM processor (c) 1995-2002 Russell King
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
11 #include <linux/bitops.h>
12 #include <linux/vmalloc.h>
13 #include <linux/init.h>
14 #include <linux/pagemap.h>
15 #include <linux/gfp.h>
18 #include <asm/cacheflush.h>
19 #include <asm/cachetype.h>
20 #include <asm/tlbflush.h>
24 static pteval_t shared_pte_mask
= L_PTE_MT_BUFFERABLE
;
26 #if __LINUX_ARM_ARCH__ < 6
28 * We take the easy way out of this problem - we make the
29 * PTE uncacheable. However, we leave the write buffer on.
31 * Note that the pte lock held when calling update_mmu_cache must also
32 * guard the pte (somewhere else in the same mm) that we modify here.
33 * Therefore those configurations which might call adjust_pte (those
34 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
36 static int do_adjust_pte(struct vm_area_struct
*vma
, unsigned long address
,
37 unsigned long pfn
, pte_t
*ptep
)
43 * If this page is present, it's actually being shared.
45 ret
= pte_present(entry
);
48 * If this page isn't present, or is already setup to
49 * fault (ie, is old), we can safely ignore any issues.
51 if (ret
&& (pte_val(entry
) & L_PTE_MT_MASK
) != shared_pte_mask
) {
52 flush_cache_page(vma
, address
, pfn
);
53 outer_flush_range((pfn
<< PAGE_SHIFT
),
54 (pfn
<< PAGE_SHIFT
) + PAGE_SIZE
);
55 pte_val(entry
) &= ~L_PTE_MT_MASK
;
56 pte_val(entry
) |= shared_pte_mask
;
57 set_pte_at(vma
->vm_mm
, address
, ptep
, entry
);
58 flush_tlb_page(vma
, address
);
64 static int adjust_pte(struct vm_area_struct
*vma
, unsigned long address
,
65 unsigned long pfn
, struct vm_fault
*vmf
)
76 pgd
= pgd_offset(vma
->vm_mm
, address
);
77 if (pgd_none_or_clear_bad(pgd
))
80 p4d
= p4d_offset(pgd
, address
);
81 if (p4d_none_or_clear_bad(p4d
))
84 pud
= pud_offset(p4d
, address
);
85 if (pud_none_or_clear_bad(pud
))
88 pmd
= pmd_offset(pud
, address
);
89 if (pmd_none_or_clear_bad(pmd
))
94 * This is called while another page table is mapped, so we
95 * must use the nested version. This also means we need to
96 * open-code the spin-locking.
98 pte
= pte_offset_map_rw_nolock(vma
->vm_mm
, pmd
, address
, &pmdval
, &ptl
);
103 * If we are using split PTE locks, then we need to take the page
104 * lock here. Otherwise we are using shared mm->page_table_lock
105 * which is already locked, thus cannot take it.
107 if (ptl
!= vmf
->ptl
) {
108 spin_lock_nested(ptl
, SINGLE_DEPTH_NESTING
);
109 if (unlikely(!pmd_same(pmdval
, pmdp_get_lockless(pmd
)))) {
110 pte_unmap_unlock(pte
, ptl
);
115 ret
= do_adjust_pte(vma
, address
, pfn
, pte
);
125 make_coherent(struct address_space
*mapping
, struct vm_area_struct
*vma
,
126 unsigned long addr
, pte_t
*ptep
, unsigned long pfn
,
127 struct vm_fault
*vmf
)
129 struct mm_struct
*mm
= vma
->vm_mm
;
130 struct vm_area_struct
*mpnt
;
131 unsigned long offset
;
135 pgoff
= vma
->vm_pgoff
+ ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
138 * If we have any shared mappings that are in the same mm
139 * space, then we need to handle them specially to maintain
142 flush_dcache_mmap_lock(mapping
);
143 vma_interval_tree_foreach(mpnt
, &mapping
->i_mmap
, pgoff
, pgoff
) {
145 * If this VMA is not in our MM, we can ignore it.
146 * Note that we intentionally mask out the VMA
147 * that we are fixing up.
149 if (mpnt
->vm_mm
!= mm
|| mpnt
== vma
)
151 if (!(mpnt
->vm_flags
& VM_MAYSHARE
))
153 offset
= (pgoff
- mpnt
->vm_pgoff
) << PAGE_SHIFT
;
154 aliases
+= adjust_pte(mpnt
, mpnt
->vm_start
+ offset
, pfn
, vmf
);
156 flush_dcache_mmap_unlock(mapping
);
158 do_adjust_pte(vma
, addr
, pfn
, ptep
);
162 * Take care of architecture specific things when placing a new PTE into
163 * a page table, or changing an existing PTE. Basically, there are two
164 * things that we need to take care of:
166 * 1. If PG_dcache_clean is not set for the page, we need to ensure
167 * that any cache entries for the kernels virtual memory
168 * range are written back to the page.
169 * 2. If we have multiple shared mappings of the same space in
170 * an object, we need to deal with the cache aliasing issues.
172 * Note that the pte lock will be held.
174 void update_mmu_cache_range(struct vm_fault
*vmf
, struct vm_area_struct
*vma
,
175 unsigned long addr
, pte_t
*ptep
, unsigned int nr
)
177 unsigned long pfn
= pte_pfn(*ptep
);
178 struct address_space
*mapping
;
185 * The zero page is never written to, so never has any dirty
186 * cache lines, and therefore never needs to be flushed.
188 if (is_zero_pfn(pfn
))
191 folio
= page_folio(pfn_to_page(pfn
));
192 mapping
= folio_flush_mapping(folio
);
193 if (!test_and_set_bit(PG_dcache_clean
, &folio
->flags
))
194 __flush_dcache_folio(mapping
, folio
);
197 make_coherent(mapping
, vma
, addr
, ptep
, pfn
, vmf
);
198 else if (vma
->vm_flags
& VM_EXEC
)
199 __flush_icache_all();
202 #endif /* __LINUX_ARM_ARCH__ < 6 */
205 * Check whether the write buffer has physical address aliasing
206 * issues. If it has, we need to avoid them for the case where
207 * we have several shared mappings of the same object in user
210 static int __init
check_writebuffer(unsigned long *p1
, unsigned long *p2
)
212 register unsigned long zero
= 0, one
= 1, val
;
226 void __init
check_writebuffer_bugs(void)
232 pr_info("CPU: Testing write buffer coherency: ");
234 page
= alloc_page(GFP_KERNEL
);
236 unsigned long *p1
, *p2
;
237 pgprot_t prot
= __pgprot_modify(PAGE_KERNEL
,
238 L_PTE_MT_MASK
, L_PTE_MT_BUFFERABLE
);
240 p1
= vmap(&page
, 1, VM_IOREMAP
, prot
);
241 p2
= vmap(&page
, 1, VM_IOREMAP
, prot
);
244 v
= check_writebuffer(p1
, p2
);
245 reason
= "enabling work-around";
247 reason
= "unable to map memory\n";
254 reason
= "unable to grab page\n";
258 pr_cont("failed, %s\n", reason
);
259 shared_pte_mask
= L_PTE_MT_UNCACHED
;