drm/nouveau: consume the return of large GSP message
[drm/drm-misc.git] / arch / arm64 / kernel / cpufeature.c
blob6ce71f444ed84f9056196bb21bbfac61c9687e30
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Contains CPU feature definitions
5 * Copyright (C) 2015 ARM Ltd.
7 * A note for the weary kernel hacker: the code here is confusing and hard to
8 * follow! That's partly because it's solving a nasty problem, but also because
9 * there's a little bit of over-abstraction that tends to obscure what's going
10 * on behind a maze of helper functions and macros.
12 * The basic problem is that hardware folks have started gluing together CPUs
13 * with distinct architectural features; in some cases even creating SoCs where
14 * user-visible instructions are available only on a subset of the available
15 * cores. We try to address this by snapshotting the feature registers of the
16 * boot CPU and comparing these with the feature registers of each secondary
17 * CPU when bringing them up. If there is a mismatch, then we update the
18 * snapshot state to indicate the lowest-common denominator of the feature,
19 * known as the "safe" value. This snapshot state can be queried to view the
20 * "sanitised" value of a feature register.
22 * The sanitised register values are used to decide which capabilities we
23 * have in the system. These may be in the form of traditional "hwcaps"
24 * advertised to userspace or internal "cpucaps" which are used to configure
25 * things like alternative patching and static keys. While a feature mismatch
26 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27 * may prevent a CPU from being onlined at all.
29 * Some implementation details worth remembering:
31 * - Mismatched features are *always* sanitised to a "safe" value, which
32 * usually indicates that the feature is not supported.
34 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35 * warning when onlining an offending CPU and the kernel will be tainted
36 * with TAINT_CPU_OUT_OF_SPEC.
38 * - Features marked as FTR_VISIBLE have their sanitised value visible to
39 * userspace. FTR_VISIBLE features in registers that are only visible
40 * to EL0 by trapping *must* have a corresponding HWCAP so that late
41 * onlining of CPUs cannot lead to features disappearing at runtime.
43 * - A "feature" is typically a 4-bit register field. A "capability" is the
44 * high-level description derived from the sanitised field value.
46 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47 * scheme for fields in ID registers") to understand when feature fields
48 * may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
50 * - KVM exposes its own view of the feature registers to guest operating
51 * systems regardless of FTR_VISIBLE. This is typically driven from the
52 * sanitised register values to allow virtual CPUs to be migrated between
53 * arbitrary physical CPUs, but some features not present on the host are
54 * also advertised and emulated. Look at sys_reg_descs[] for the gory
55 * details.
57 * - If the arm64_ftr_bits[] for a register has a missing field, then this
58 * field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59 * This is stronger than FTR_HIDDEN and can be used to hide features from
60 * KVM guests.
63 #define pr_fmt(fmt) "CPU features: " fmt
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
74 #include <linux/mm.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
79 #include <asm/cpu.h>
80 #include <asm/cpufeature.h>
81 #include <asm/cpu_ops.h>
82 #include <asm/fpsimd.h>
83 #include <asm/hwcap.h>
84 #include <asm/insn.h>
85 #include <asm/kvm_host.h>
86 #include <asm/mmu_context.h>
87 #include <asm/mte.h>
88 #include <asm/processor.h>
89 #include <asm/smp.h>
90 #include <asm/sysreg.h>
91 #include <asm/traps.h>
92 #include <asm/vectors.h>
93 #include <asm/virt.h>
95 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
96 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
98 #ifdef CONFIG_COMPAT
99 #define COMPAT_ELF_HWCAP_DEFAULT \
100 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
101 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
102 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
103 COMPAT_HWCAP_LPAE)
104 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
105 unsigned int compat_elf_hwcap2 __read_mostly;
106 unsigned int compat_elf_hwcap3 __read_mostly;
107 #endif
109 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
110 EXPORT_SYMBOL(system_cpucaps);
111 static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
113 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
115 bool arm64_use_ng_mappings = false;
116 EXPORT_SYMBOL(arm64_use_ng_mappings);
118 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
121 * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
122 * support it?
124 static bool __read_mostly allow_mismatched_32bit_el0;
127 * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
128 * seen at least one CPU capable of 32-bit EL0.
130 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
133 * Mask of CPUs supporting 32-bit EL0.
134 * Only valid if arm64_mismatched_32bit_el0 is enabled.
136 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
138 void dump_cpu_features(void)
140 /* file-wide pr_fmt adds "CPU features: " prefix */
141 pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
144 #define __ARM64_MAX_POSITIVE(reg, field) \
145 ((reg##_##field##_SIGNED ? \
146 BIT(reg##_##field##_WIDTH - 1) : \
147 BIT(reg##_##field##_WIDTH)) - 1)
149 #define __ARM64_MIN_NEGATIVE(reg, field) BIT(reg##_##field##_WIDTH - 1)
151 #define __ARM64_CPUID_FIELDS(reg, field, min_value, max_value) \
152 .sys_reg = SYS_##reg, \
153 .field_pos = reg##_##field##_SHIFT, \
154 .field_width = reg##_##field##_WIDTH, \
155 .sign = reg##_##field##_SIGNED, \
156 .min_field_value = min_value, \
157 .max_field_value = max_value,
160 * ARM64_CPUID_FIELDS() encodes a field with a range from min_value to
161 * an implicit maximum that depends on the sign-ess of the field.
163 * An unsigned field will be capped at all ones, while a signed field
164 * will be limited to the positive half only.
166 #define ARM64_CPUID_FIELDS(reg, field, min_value) \
167 __ARM64_CPUID_FIELDS(reg, field, \
168 SYS_FIELD_VALUE(reg, field, min_value), \
169 __ARM64_MAX_POSITIVE(reg, field))
172 * ARM64_CPUID_FIELDS_NEG() encodes a field with a range from an
173 * implicit minimal value to max_value. This should be used when
174 * matching a non-implemented property.
176 #define ARM64_CPUID_FIELDS_NEG(reg, field, max_value) \
177 __ARM64_CPUID_FIELDS(reg, field, \
178 __ARM64_MIN_NEGATIVE(reg, field), \
179 SYS_FIELD_VALUE(reg, field, max_value))
181 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
183 .sign = SIGNED, \
184 .visible = VISIBLE, \
185 .strict = STRICT, \
186 .type = TYPE, \
187 .shift = SHIFT, \
188 .width = WIDTH, \
189 .safe_val = SAFE_VAL, \
192 /* Define a feature with unsigned values */
193 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
194 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
196 /* Define a feature with a signed value */
197 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
198 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
200 #define ARM64_FTR_END \
202 .width = 0, \
205 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
207 static bool __system_matches_cap(unsigned int n);
210 * NOTE: Any changes to the visibility of features should be kept in
211 * sync with the documentation of the CPU feature register ABI.
213 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
214 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
215 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
216 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
217 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
218 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
219 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
220 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
221 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
222 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
223 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
224 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
225 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
226 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
227 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
228 ARM64_FTR_END,
231 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
232 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_XS_SHIFT, 4, 0),
233 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
234 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
235 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
236 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
237 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
238 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
239 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
240 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
241 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
242 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
243 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
244 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
245 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
246 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
247 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
248 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
249 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
250 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
251 ARM64_FTR_END,
254 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
255 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_LUT_SHIFT, 4, 0),
256 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
257 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
258 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
259 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
260 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
261 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
262 FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
263 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
264 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
265 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
266 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
267 ARM64_FTR_END,
270 static const struct arm64_ftr_bits ftr_id_aa64isar3[] = {
271 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FAMINMAX_SHIFT, 4, 0),
272 ARM64_FTR_END,
275 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
276 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
277 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
278 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
279 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
280 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
281 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
282 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
283 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
284 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
285 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
286 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
287 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
288 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
289 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
290 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_EL1_IMP),
291 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_EL0_IMP),
292 ARM64_FTR_END,
295 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
296 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_GCS),
297 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_GCS_SHIFT, 4, 0),
298 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
299 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
300 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
301 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
302 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
303 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
304 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
305 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
306 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
307 ARM64_FTR_END,
310 static const struct arm64_ftr_bits ftr_id_aa64pfr2[] = {
311 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_FPMR_SHIFT, 4, 0),
312 ARM64_FTR_END,
315 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
316 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
317 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
318 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
319 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
320 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
321 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
322 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
323 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
324 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
325 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
326 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
327 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
328 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
329 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
330 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
331 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
332 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
333 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
334 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
335 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
336 ARM64_FTR_END,
339 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
340 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
341 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
342 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
343 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_LUTv2_SHIFT, 1, 0),
344 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
345 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
346 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
347 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
348 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
349 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
350 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
351 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
352 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
353 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
354 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
355 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
356 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
357 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F16_SHIFT, 1, 0),
358 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
359 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F32_SHIFT, 1, 0),
360 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
361 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
362 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
363 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
364 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
365 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
366 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
367 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
368 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
369 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
370 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
371 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8FMA_SHIFT, 1, 0),
372 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
373 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP4_SHIFT, 1, 0),
374 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
375 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP2_SHIFT, 1, 0),
376 ARM64_FTR_END,
379 static const struct arm64_ftr_bits ftr_id_aa64fpfr0[] = {
380 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8CVT_SHIFT, 1, 0),
381 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8FMA_SHIFT, 1, 0),
382 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP4_SHIFT, 1, 0),
383 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP2_SHIFT, 1, 0),
384 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E4M3_SHIFT, 1, 0),
385 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E5M2_SHIFT, 1, 0),
386 ARM64_FTR_END,
389 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
390 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
391 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
392 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
394 * Page size not being supported at Stage-2 is not fatal. You
395 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
396 * your favourite nesting hypervisor.
398 * There is a small corner case where the hypervisor explicitly
399 * advertises a given granule size at Stage-2 (value 2) on some
400 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
401 * vCPUs. Although this is not forbidden by the architecture, it
402 * indicates that the hypervisor is being silly (or buggy).
404 * We make no effort to cope with this and pretend that if these
405 * fields are inconsistent across vCPUs, then it isn't worth
406 * trying to bring KVM up.
408 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
409 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
410 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
412 * We already refuse to boot CPUs that don't support our configured
413 * page size, so we can only detect mismatches for a page size other
414 * than the one we're currently using. Unfortunately, SoCs like this
415 * exist in the wild so, even though we don't like it, we'll have to go
416 * along with it and treat them as non-strict.
418 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
419 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
420 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
422 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
423 /* Linux shouldn't care about secure memory */
424 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
425 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
426 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
428 * Differing PARange is fine as long as all peripherals and memory are mapped
429 * within the minimum PARange of all CPUs
431 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
432 ARM64_FTR_END,
435 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
436 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ECBHB_SHIFT, 4, 0),
437 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
438 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
439 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
440 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
441 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
442 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
443 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
444 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
445 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
446 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
447 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
448 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
449 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
450 ARM64_FTR_END,
453 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
454 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
455 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
456 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
457 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
458 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
459 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
460 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
461 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
462 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
463 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
464 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
465 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
466 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
467 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
468 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
469 ARM64_FTR_END,
472 static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
473 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_POE),
474 FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1POE_SHIFT, 4, 0),
475 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
476 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
477 ARM64_FTR_END,
480 static const struct arm64_ftr_bits ftr_id_aa64mmfr4[] = {
481 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_E2H0_SHIFT, 4, 0),
482 ARM64_FTR_END,
485 static const struct arm64_ftr_bits ftr_ctr[] = {
486 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
487 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
488 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
489 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
490 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
491 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
493 * Linux can handle differing I-cache policies. Userspace JITs will
494 * make use of *minLine.
495 * If we have differing I-cache policies, report it as the weakest - VIPT.
497 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT), /* L1Ip */
498 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
499 ARM64_FTR_END,
502 static struct arm64_ftr_override __ro_after_init no_override = { };
504 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
505 .name = "SYS_CTR_EL0",
506 .ftr_bits = ftr_ctr,
507 .override = &no_override,
510 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
511 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
512 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
513 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
514 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
515 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
516 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
517 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
518 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
519 ARM64_FTR_END,
522 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
523 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
524 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
525 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
526 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
527 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
529 * We can instantiate multiple PMU instances with different levels
530 * of support.
532 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
533 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
534 ARM64_FTR_END,
537 static const struct arm64_ftr_bits ftr_mvfr0[] = {
538 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
539 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
540 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
541 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
542 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
543 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
544 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
545 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
546 ARM64_FTR_END,
549 static const struct arm64_ftr_bits ftr_mvfr1[] = {
550 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
551 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
552 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
553 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
554 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
555 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
556 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
557 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
558 ARM64_FTR_END,
561 static const struct arm64_ftr_bits ftr_mvfr2[] = {
562 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
563 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
564 ARM64_FTR_END,
567 static const struct arm64_ftr_bits ftr_dczid[] = {
568 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
569 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
570 ARM64_FTR_END,
573 static const struct arm64_ftr_bits ftr_gmid[] = {
574 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
575 ARM64_FTR_END,
578 static const struct arm64_ftr_bits ftr_id_isar0[] = {
579 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
580 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
581 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
582 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
583 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
584 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
585 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
586 ARM64_FTR_END,
589 static const struct arm64_ftr_bits ftr_id_isar5[] = {
590 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
591 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
592 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
593 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
594 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
595 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
596 ARM64_FTR_END,
599 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
600 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
601 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
602 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
603 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
604 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
605 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
606 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
609 * SpecSEI = 1 indicates that the PE might generate an SError on an
610 * external abort on speculative read. It is safe to assume that an
611 * SError might be generated than it will not be. Hence it has been
612 * classified as FTR_HIGHER_SAFE.
614 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
615 ARM64_FTR_END,
618 static const struct arm64_ftr_bits ftr_id_isar4[] = {
619 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
620 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
621 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
622 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
623 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
624 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
625 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
626 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
627 ARM64_FTR_END,
630 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
631 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
632 ARM64_FTR_END,
635 static const struct arm64_ftr_bits ftr_id_isar6[] = {
636 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
637 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
638 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
639 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
640 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
641 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
642 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
643 ARM64_FTR_END,
646 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
647 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
648 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
649 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
650 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
651 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
652 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
653 ARM64_FTR_END,
656 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
657 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
658 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
659 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
660 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
661 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
662 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
663 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
664 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
665 ARM64_FTR_END,
668 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
669 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
670 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
671 ARM64_FTR_END,
674 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
675 /* [31:28] TraceFilt */
676 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
677 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
678 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
679 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
680 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
681 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
682 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
683 ARM64_FTR_END,
686 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
687 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
688 ARM64_FTR_END,
691 static const struct arm64_ftr_bits ftr_mpamidr[] = {
692 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PMG_MAX_SHIFT, MPAMIDR_EL1_PMG_MAX_WIDTH, 0),
693 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_VPMR_MAX_SHIFT, MPAMIDR_EL1_VPMR_MAX_WIDTH, 0),
694 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_HAS_HCR_SHIFT, 1, 0),
695 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PARTID_MAX_SHIFT, MPAMIDR_EL1_PARTID_MAX_WIDTH, 0),
696 ARM64_FTR_END,
700 * Common ftr bits for a 32bit register with all hidden, strict
701 * attributes, with 4bit feature fields and a default safe value of
702 * 0. Covers the following 32bit registers:
703 * id_isar[1-3], id_mmfr[1-3]
705 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
706 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
707 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
708 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
709 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
710 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
711 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
712 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
713 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
714 ARM64_FTR_END,
717 /* Table for a single 32bit feature value */
718 static const struct arm64_ftr_bits ftr_single32[] = {
719 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
720 ARM64_FTR_END,
723 static const struct arm64_ftr_bits ftr_raz[] = {
724 ARM64_FTR_END,
727 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) { \
728 .sys_id = id, \
729 .reg = &(struct arm64_ftr_reg){ \
730 .name = id_str, \
731 .override = (ovr), \
732 .ftr_bits = &((table)[0]), \
735 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr) \
736 __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
738 #define ARM64_FTR_REG(id, table) \
739 __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
741 struct arm64_ftr_override id_aa64mmfr0_override;
742 struct arm64_ftr_override id_aa64mmfr1_override;
743 struct arm64_ftr_override id_aa64mmfr2_override;
744 struct arm64_ftr_override id_aa64pfr0_override;
745 struct arm64_ftr_override id_aa64pfr1_override;
746 struct arm64_ftr_override id_aa64zfr0_override;
747 struct arm64_ftr_override id_aa64smfr0_override;
748 struct arm64_ftr_override id_aa64isar1_override;
749 struct arm64_ftr_override id_aa64isar2_override;
751 struct arm64_ftr_override arm64_sw_feature_override;
753 static const struct __ftr_reg_entry {
754 u32 sys_id;
755 struct arm64_ftr_reg *reg;
756 } arm64_ftr_regs[] = {
758 /* Op1 = 0, CRn = 0, CRm = 1 */
759 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
760 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
761 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
762 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
763 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
764 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
765 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
767 /* Op1 = 0, CRn = 0, CRm = 2 */
768 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
769 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
770 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
771 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
772 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
773 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
774 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
775 ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
777 /* Op1 = 0, CRn = 0, CRm = 3 */
778 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
779 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
780 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
781 ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
782 ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
783 ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
785 /* Op1 = 0, CRn = 0, CRm = 4 */
786 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
787 &id_aa64pfr0_override),
788 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
789 &id_aa64pfr1_override),
790 ARM64_FTR_REG(SYS_ID_AA64PFR2_EL1, ftr_id_aa64pfr2),
791 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
792 &id_aa64zfr0_override),
793 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
794 &id_aa64smfr0_override),
795 ARM64_FTR_REG(SYS_ID_AA64FPFR0_EL1, ftr_id_aa64fpfr0),
797 /* Op1 = 0, CRn = 0, CRm = 5 */
798 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
799 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
801 /* Op1 = 0, CRn = 0, CRm = 6 */
802 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
803 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
804 &id_aa64isar1_override),
805 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
806 &id_aa64isar2_override),
807 ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3),
809 /* Op1 = 0, CRn = 0, CRm = 7 */
810 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0,
811 &id_aa64mmfr0_override),
812 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
813 &id_aa64mmfr1_override),
814 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2,
815 &id_aa64mmfr2_override),
816 ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
817 ARM64_FTR_REG(SYS_ID_AA64MMFR4_EL1, ftr_id_aa64mmfr4),
819 /* Op1 = 0, CRn = 10, CRm = 4 */
820 ARM64_FTR_REG(SYS_MPAMIDR_EL1, ftr_mpamidr),
822 /* Op1 = 1, CRn = 0, CRm = 0 */
823 ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
825 /* Op1 = 3, CRn = 0, CRm = 0 */
826 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
827 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
829 /* Op1 = 3, CRn = 14, CRm = 0 */
830 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
833 static int search_cmp_ftr_reg(const void *id, const void *regp)
835 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
839 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
840 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
841 * ascending order of sys_id, we use binary search to find a matching
842 * entry.
844 * returns - Upon success, matching ftr_reg entry for id.
845 * - NULL on failure. It is upto the caller to decide
846 * the impact of a failure.
848 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
850 const struct __ftr_reg_entry *ret;
852 ret = bsearch((const void *)(unsigned long)sys_id,
853 arm64_ftr_regs,
854 ARRAY_SIZE(arm64_ftr_regs),
855 sizeof(arm64_ftr_regs[0]),
856 search_cmp_ftr_reg);
857 if (ret)
858 return ret->reg;
859 return NULL;
863 * get_arm64_ftr_reg - Looks up a feature register entry using
864 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
866 * returns - Upon success, matching ftr_reg entry for id.
867 * - NULL on failure but with an WARN_ON().
869 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
871 struct arm64_ftr_reg *reg;
873 reg = get_arm64_ftr_reg_nowarn(sys_id);
876 * Requesting a non-existent register search is an error. Warn
877 * and let the caller handle it.
879 WARN_ON(!reg);
880 return reg;
883 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
884 s64 ftr_val)
886 u64 mask = arm64_ftr_mask(ftrp);
888 reg &= ~mask;
889 reg |= (ftr_val << ftrp->shift) & mask;
890 return reg;
893 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
894 s64 cur)
896 s64 ret = 0;
898 switch (ftrp->type) {
899 case FTR_EXACT:
900 ret = ftrp->safe_val;
901 break;
902 case FTR_LOWER_SAFE:
903 ret = min(new, cur);
904 break;
905 case FTR_HIGHER_OR_ZERO_SAFE:
906 if (!cur || !new)
907 break;
908 fallthrough;
909 case FTR_HIGHER_SAFE:
910 ret = max(new, cur);
911 break;
912 default:
913 BUG();
916 return ret;
919 static void __init sort_ftr_regs(void)
921 unsigned int i;
923 for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
924 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
925 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
926 unsigned int j = 0;
929 * Features here must be sorted in descending order with respect
930 * to their shift values and should not overlap with each other.
932 for (; ftr_bits->width != 0; ftr_bits++, j++) {
933 unsigned int width = ftr_reg->ftr_bits[j].width;
934 unsigned int shift = ftr_reg->ftr_bits[j].shift;
935 unsigned int prev_shift;
937 WARN((shift + width) > 64,
938 "%s has invalid feature at shift %d\n",
939 ftr_reg->name, shift);
942 * Skip the first feature. There is nothing to
943 * compare against for now.
945 if (j == 0)
946 continue;
948 prev_shift = ftr_reg->ftr_bits[j - 1].shift;
949 WARN((shift + width) > prev_shift,
950 "%s has feature overlap at shift %d\n",
951 ftr_reg->name, shift);
955 * Skip the first register. There is nothing to
956 * compare against for now.
958 if (i == 0)
959 continue;
961 * Registers here must be sorted in ascending order with respect
962 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
963 * to work correctly.
965 BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
970 * Initialise the CPU feature register from Boot CPU values.
971 * Also initiliases the strict_mask for the register.
972 * Any bits that are not covered by an arm64_ftr_bits entry are considered
973 * RES0 for the system-wide value, and must strictly match.
975 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
977 u64 val = 0;
978 u64 strict_mask = ~0x0ULL;
979 u64 user_mask = 0;
980 u64 valid_mask = 0;
982 const struct arm64_ftr_bits *ftrp;
983 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
985 if (!reg)
986 return;
988 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
989 u64 ftr_mask = arm64_ftr_mask(ftrp);
990 s64 ftr_new = arm64_ftr_value(ftrp, new);
991 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
993 if ((ftr_mask & reg->override->mask) == ftr_mask) {
994 s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
995 char *str = NULL;
997 if (ftr_ovr != tmp) {
998 /* Unsafe, remove the override */
999 reg->override->mask &= ~ftr_mask;
1000 reg->override->val &= ~ftr_mask;
1001 tmp = ftr_ovr;
1002 str = "ignoring override";
1003 } else if (ftr_new != tmp) {
1004 /* Override was valid */
1005 ftr_new = tmp;
1006 str = "forced";
1007 } else if (ftr_ovr == tmp) {
1008 /* Override was the safe value */
1009 str = "already set";
1012 if (str)
1013 pr_warn("%s[%d:%d]: %s to %llx\n",
1014 reg->name,
1015 ftrp->shift + ftrp->width - 1,
1016 ftrp->shift, str,
1017 tmp & (BIT(ftrp->width) - 1));
1018 } else if ((ftr_mask & reg->override->val) == ftr_mask) {
1019 reg->override->val &= ~ftr_mask;
1020 pr_warn("%s[%d:%d]: impossible override, ignored\n",
1021 reg->name,
1022 ftrp->shift + ftrp->width - 1,
1023 ftrp->shift);
1026 val = arm64_ftr_set_value(ftrp, val, ftr_new);
1028 valid_mask |= ftr_mask;
1029 if (!ftrp->strict)
1030 strict_mask &= ~ftr_mask;
1031 if (ftrp->visible)
1032 user_mask |= ftr_mask;
1033 else
1034 reg->user_val = arm64_ftr_set_value(ftrp,
1035 reg->user_val,
1036 ftrp->safe_val);
1039 val &= valid_mask;
1041 reg->sys_val = val;
1042 reg->strict_mask = strict_mask;
1043 reg->user_mask = user_mask;
1046 extern const struct arm64_cpu_capabilities arm64_errata[];
1047 static const struct arm64_cpu_capabilities arm64_features[];
1049 static void __init
1050 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
1052 for (; caps->matches; caps++) {
1053 if (WARN(caps->capability >= ARM64_NCAPS,
1054 "Invalid capability %d\n", caps->capability))
1055 continue;
1056 if (WARN(cpucap_ptrs[caps->capability],
1057 "Duplicate entry for capability %d\n",
1058 caps->capability))
1059 continue;
1060 cpucap_ptrs[caps->capability] = caps;
1064 static void __init init_cpucap_indirect_list(void)
1066 init_cpucap_indirect_list_from_array(arm64_features);
1067 init_cpucap_indirect_list_from_array(arm64_errata);
1070 static void __init setup_boot_cpu_capabilities(void);
1072 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
1074 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
1075 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
1076 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
1077 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
1078 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
1079 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
1080 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
1081 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
1082 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
1083 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
1084 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
1085 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
1086 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
1087 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
1088 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
1089 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
1090 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
1091 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
1092 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1093 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1094 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1097 #ifdef CONFIG_ARM64_PSEUDO_NMI
1098 static bool enable_pseudo_nmi;
1100 static int __init early_enable_pseudo_nmi(char *p)
1102 return kstrtobool(p, &enable_pseudo_nmi);
1104 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1106 static __init void detect_system_supports_pseudo_nmi(void)
1108 struct device_node *np;
1110 if (!enable_pseudo_nmi)
1111 return;
1114 * Detect broken MediaTek firmware that doesn't properly save and
1115 * restore GIC priorities.
1117 np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1118 if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
1119 pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1120 enable_pseudo_nmi = false;
1122 of_node_put(np);
1124 #else /* CONFIG_ARM64_PSEUDO_NMI */
1125 static inline void detect_system_supports_pseudo_nmi(void) { }
1126 #endif
1128 void __init init_cpu_features(struct cpuinfo_arm64 *info)
1130 /* Before we start using the tables, make sure it is sorted */
1131 sort_ftr_regs();
1133 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1134 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1135 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1136 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1137 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1138 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1139 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1140 init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1141 init_cpu_ftr_reg(SYS_ID_AA64ISAR3_EL1, info->reg_id_aa64isar3);
1142 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1143 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1144 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1145 init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1146 init_cpu_ftr_reg(SYS_ID_AA64MMFR4_EL1, info->reg_id_aa64mmfr4);
1147 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1148 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1149 init_cpu_ftr_reg(SYS_ID_AA64PFR2_EL1, info->reg_id_aa64pfr2);
1150 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1151 init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1152 init_cpu_ftr_reg(SYS_ID_AA64FPFR0_EL1, info->reg_id_aa64fpfr0);
1154 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1155 init_32bit_cpu_features(&info->aarch32);
1157 if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1158 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1159 unsigned long cpacr = cpacr_save_enable_kernel_sve();
1161 vec_init_vq_map(ARM64_VEC_SVE);
1163 cpacr_restore(cpacr);
1166 if (IS_ENABLED(CONFIG_ARM64_SME) &&
1167 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1168 unsigned long cpacr = cpacr_save_enable_kernel_sme();
1171 * We mask out SMPS since even if the hardware
1172 * supports priorities the kernel does not at present
1173 * and we block access to them.
1175 info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1176 vec_init_vq_map(ARM64_VEC_SME);
1178 cpacr_restore(cpacr);
1181 if (id_aa64pfr0_mpam(info->reg_id_aa64pfr0))
1182 init_cpu_ftr_reg(SYS_MPAMIDR_EL1, info->reg_mpamidr);
1184 if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1185 init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1188 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1190 const struct arm64_ftr_bits *ftrp;
1192 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1193 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1194 s64 ftr_new = arm64_ftr_value(ftrp, new);
1196 if (ftr_cur == ftr_new)
1197 continue;
1198 /* Find a safe value */
1199 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1200 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1205 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1207 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1209 if (!regp)
1210 return 0;
1212 update_cpu_ftr_reg(regp, val);
1213 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1214 return 0;
1215 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1216 regp->name, boot, cpu, val);
1217 return 1;
1220 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1222 const struct arm64_ftr_bits *ftrp;
1223 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1225 if (!regp)
1226 return;
1228 for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1229 if (ftrp->shift == field) {
1230 regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1231 break;
1235 /* Bogus field? */
1236 WARN_ON(!ftrp->width);
1239 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1240 struct cpuinfo_arm64 *boot)
1242 static bool boot_cpu_32bit_regs_overridden = false;
1244 if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1245 return;
1247 if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1248 return;
1250 boot->aarch32 = info->aarch32;
1251 init_32bit_cpu_features(&boot->aarch32);
1252 boot_cpu_32bit_regs_overridden = true;
1255 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1256 struct cpuinfo_32bit *boot)
1258 int taint = 0;
1259 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1262 * If we don't have AArch32 at EL1, then relax the strictness of
1263 * EL1-dependent register fields to avoid spurious sanity check fails.
1265 if (!id_aa64pfr0_32bit_el1(pfr0)) {
1266 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1267 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1268 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1269 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1270 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1271 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1274 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1275 info->reg_id_dfr0, boot->reg_id_dfr0);
1276 taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1277 info->reg_id_dfr1, boot->reg_id_dfr1);
1278 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1279 info->reg_id_isar0, boot->reg_id_isar0);
1280 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1281 info->reg_id_isar1, boot->reg_id_isar1);
1282 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1283 info->reg_id_isar2, boot->reg_id_isar2);
1284 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1285 info->reg_id_isar3, boot->reg_id_isar3);
1286 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1287 info->reg_id_isar4, boot->reg_id_isar4);
1288 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1289 info->reg_id_isar5, boot->reg_id_isar5);
1290 taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1291 info->reg_id_isar6, boot->reg_id_isar6);
1294 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1295 * ACTLR formats could differ across CPUs and therefore would have to
1296 * be trapped for virtualization anyway.
1298 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1299 info->reg_id_mmfr0, boot->reg_id_mmfr0);
1300 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1301 info->reg_id_mmfr1, boot->reg_id_mmfr1);
1302 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1303 info->reg_id_mmfr2, boot->reg_id_mmfr2);
1304 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1305 info->reg_id_mmfr3, boot->reg_id_mmfr3);
1306 taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1307 info->reg_id_mmfr4, boot->reg_id_mmfr4);
1308 taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1309 info->reg_id_mmfr5, boot->reg_id_mmfr5);
1310 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1311 info->reg_id_pfr0, boot->reg_id_pfr0);
1312 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1313 info->reg_id_pfr1, boot->reg_id_pfr1);
1314 taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1315 info->reg_id_pfr2, boot->reg_id_pfr2);
1316 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1317 info->reg_mvfr0, boot->reg_mvfr0);
1318 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1319 info->reg_mvfr1, boot->reg_mvfr1);
1320 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1321 info->reg_mvfr2, boot->reg_mvfr2);
1323 return taint;
1327 * Update system wide CPU feature registers with the values from a
1328 * non-boot CPU. Also performs SANITY checks to make sure that there
1329 * aren't any insane variations from that of the boot CPU.
1331 void update_cpu_features(int cpu,
1332 struct cpuinfo_arm64 *info,
1333 struct cpuinfo_arm64 *boot)
1335 int taint = 0;
1338 * The kernel can handle differing I-cache policies, but otherwise
1339 * caches should look identical. Userspace JITs will make use of
1340 * *minLine.
1342 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1343 info->reg_ctr, boot->reg_ctr);
1346 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1347 * could result in too much or too little memory being zeroed if a
1348 * process is preempted and migrated between CPUs.
1350 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1351 info->reg_dczid, boot->reg_dczid);
1353 /* If different, timekeeping will be broken (especially with KVM) */
1354 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1355 info->reg_cntfrq, boot->reg_cntfrq);
1358 * The kernel uses self-hosted debug features and expects CPUs to
1359 * support identical debug features. We presently need CTX_CMPs, WRPs,
1360 * and BRPs to be identical.
1361 * ID_AA64DFR1 is currently RES0.
1363 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1364 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1365 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1366 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1368 * Even in big.LITTLE, processors should be identical instruction-set
1369 * wise.
1371 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1372 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1373 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1374 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1375 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1376 info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1377 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR3_EL1, cpu,
1378 info->reg_id_aa64isar3, boot->reg_id_aa64isar3);
1381 * Differing PARange support is fine as long as all peripherals and
1382 * memory are mapped within the minimum PARange of all CPUs.
1383 * Linux should not care about secure memory.
1385 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1386 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1387 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1388 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1389 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1390 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1391 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1392 info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1394 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1395 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1396 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1397 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1398 taint |= check_update_ftr_reg(SYS_ID_AA64PFR2_EL1, cpu,
1399 info->reg_id_aa64pfr2, boot->reg_id_aa64pfr2);
1401 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1402 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1404 taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1405 info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1407 taint |= check_update_ftr_reg(SYS_ID_AA64FPFR0_EL1, cpu,
1408 info->reg_id_aa64fpfr0, boot->reg_id_aa64fpfr0);
1410 /* Probe vector lengths */
1411 if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1412 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1413 if (!system_capabilities_finalized()) {
1414 unsigned long cpacr = cpacr_save_enable_kernel_sve();
1416 vec_update_vq_map(ARM64_VEC_SVE);
1418 cpacr_restore(cpacr);
1422 if (IS_ENABLED(CONFIG_ARM64_SME) &&
1423 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1424 unsigned long cpacr = cpacr_save_enable_kernel_sme();
1427 * We mask out SMPS since even if the hardware
1428 * supports priorities the kernel does not at present
1429 * and we block access to them.
1431 info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1433 /* Probe vector lengths */
1434 if (!system_capabilities_finalized())
1435 vec_update_vq_map(ARM64_VEC_SME);
1437 cpacr_restore(cpacr);
1440 if (id_aa64pfr0_mpam(info->reg_id_aa64pfr0)) {
1441 taint |= check_update_ftr_reg(SYS_MPAMIDR_EL1, cpu,
1442 info->reg_mpamidr, boot->reg_mpamidr);
1446 * The kernel uses the LDGM/STGM instructions and the number of tags
1447 * they read/write depends on the GMID_EL1.BS field. Check that the
1448 * value is the same on all CPUs.
1450 if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1451 id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1452 taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1453 info->reg_gmid, boot->reg_gmid);
1457 * If we don't have AArch32 at all then skip the checks entirely
1458 * as the register values may be UNKNOWN and we're not going to be
1459 * using them for anything.
1461 * This relies on a sanitised view of the AArch64 ID registers
1462 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1464 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1465 lazy_init_32bit_cpu_features(info, boot);
1466 taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1467 &boot->aarch32);
1471 * Mismatched CPU features are a recipe for disaster. Don't even
1472 * pretend to support them.
1474 if (taint) {
1475 pr_warn_once("Unsupported CPU feature variation detected.\n");
1476 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1480 u64 read_sanitised_ftr_reg(u32 id)
1482 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1484 if (!regp)
1485 return 0;
1486 return regp->sys_val;
1488 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1490 #define read_sysreg_case(r) \
1491 case r: val = read_sysreg_s(r); break;
1494 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1495 * Read the system register on the current CPU
1497 u64 __read_sysreg_by_encoding(u32 sys_id)
1499 struct arm64_ftr_reg *regp;
1500 u64 val;
1502 switch (sys_id) {
1503 read_sysreg_case(SYS_ID_PFR0_EL1);
1504 read_sysreg_case(SYS_ID_PFR1_EL1);
1505 read_sysreg_case(SYS_ID_PFR2_EL1);
1506 read_sysreg_case(SYS_ID_DFR0_EL1);
1507 read_sysreg_case(SYS_ID_DFR1_EL1);
1508 read_sysreg_case(SYS_ID_MMFR0_EL1);
1509 read_sysreg_case(SYS_ID_MMFR1_EL1);
1510 read_sysreg_case(SYS_ID_MMFR2_EL1);
1511 read_sysreg_case(SYS_ID_MMFR3_EL1);
1512 read_sysreg_case(SYS_ID_MMFR4_EL1);
1513 read_sysreg_case(SYS_ID_MMFR5_EL1);
1514 read_sysreg_case(SYS_ID_ISAR0_EL1);
1515 read_sysreg_case(SYS_ID_ISAR1_EL1);
1516 read_sysreg_case(SYS_ID_ISAR2_EL1);
1517 read_sysreg_case(SYS_ID_ISAR3_EL1);
1518 read_sysreg_case(SYS_ID_ISAR4_EL1);
1519 read_sysreg_case(SYS_ID_ISAR5_EL1);
1520 read_sysreg_case(SYS_ID_ISAR6_EL1);
1521 read_sysreg_case(SYS_MVFR0_EL1);
1522 read_sysreg_case(SYS_MVFR1_EL1);
1523 read_sysreg_case(SYS_MVFR2_EL1);
1525 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1526 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1527 read_sysreg_case(SYS_ID_AA64PFR2_EL1);
1528 read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1529 read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1530 read_sysreg_case(SYS_ID_AA64FPFR0_EL1);
1531 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1532 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1533 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1534 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1535 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1536 read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1537 read_sysreg_case(SYS_ID_AA64MMFR4_EL1);
1538 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1539 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1540 read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1541 read_sysreg_case(SYS_ID_AA64ISAR3_EL1);
1543 read_sysreg_case(SYS_CNTFRQ_EL0);
1544 read_sysreg_case(SYS_CTR_EL0);
1545 read_sysreg_case(SYS_DCZID_EL0);
1547 default:
1548 BUG();
1549 return 0;
1552 regp = get_arm64_ftr_reg(sys_id);
1553 if (regp) {
1554 val &= ~regp->override->mask;
1555 val |= (regp->override->val & regp->override->mask);
1558 return val;
1561 #include <linux/irqchip/arm-gic-v3.h>
1563 static bool
1564 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1566 return true;
1569 static bool
1570 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1572 int val, min, max;
1573 u64 tmp;
1575 val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1576 entry->field_width,
1577 entry->sign);
1579 tmp = entry->min_field_value;
1580 tmp <<= entry->field_pos;
1582 min = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1583 entry->field_width,
1584 entry->sign);
1586 tmp = entry->max_field_value;
1587 tmp <<= entry->field_pos;
1589 max = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1590 entry->field_width,
1591 entry->sign);
1593 return val >= min && val <= max;
1596 static u64
1597 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1599 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1600 if (scope == SCOPE_SYSTEM)
1601 return read_sanitised_ftr_reg(entry->sys_reg);
1602 else
1603 return __read_sysreg_by_encoding(entry->sys_reg);
1606 static bool
1607 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1609 int mask;
1610 struct arm64_ftr_reg *regp;
1611 u64 val = read_scoped_sysreg(entry, scope);
1613 regp = get_arm64_ftr_reg(entry->sys_reg);
1614 if (!regp)
1615 return false;
1617 mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1618 entry->field_pos,
1619 entry->field_width);
1620 if (!mask)
1621 return false;
1623 return feature_matches(val, entry);
1626 static bool
1627 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1629 u64 val = read_scoped_sysreg(entry, scope);
1630 return feature_matches(val, entry);
1633 const struct cpumask *system_32bit_el0_cpumask(void)
1635 if (!system_supports_32bit_el0())
1636 return cpu_none_mask;
1638 if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1639 return cpu_32bit_el0_mask;
1641 return cpu_possible_mask;
1644 static int __init parse_32bit_el0_param(char *str)
1646 allow_mismatched_32bit_el0 = true;
1647 return 0;
1649 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1651 static ssize_t aarch32_el0_show(struct device *dev,
1652 struct device_attribute *attr, char *buf)
1654 const struct cpumask *mask = system_32bit_el0_cpumask();
1656 return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1658 static const DEVICE_ATTR_RO(aarch32_el0);
1660 static int __init aarch32_el0_sysfs_init(void)
1662 struct device *dev_root;
1663 int ret = 0;
1665 if (!allow_mismatched_32bit_el0)
1666 return 0;
1668 dev_root = bus_get_dev_root(&cpu_subsys);
1669 if (dev_root) {
1670 ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1671 put_device(dev_root);
1673 return ret;
1675 device_initcall(aarch32_el0_sysfs_init);
1677 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1679 if (!has_cpuid_feature(entry, scope))
1680 return allow_mismatched_32bit_el0;
1682 if (scope == SCOPE_SYSTEM)
1683 pr_info("detected: 32-bit EL0 Support\n");
1685 return true;
1688 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1690 bool has_sre;
1692 if (!has_cpuid_feature(entry, scope))
1693 return false;
1695 has_sre = gic_enable_sre();
1696 if (!has_sre)
1697 pr_warn_once("%s present but disabled by higher exception level\n",
1698 entry->desc);
1700 return has_sre;
1703 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1704 int scope)
1706 u64 ctr;
1708 if (scope == SCOPE_SYSTEM)
1709 ctr = arm64_ftr_reg_ctrel0.sys_val;
1710 else
1711 ctr = read_cpuid_effective_cachetype();
1713 return ctr & BIT(CTR_EL0_IDC_SHIFT);
1716 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1719 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1720 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1721 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1722 * value.
1724 if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1725 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1728 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1729 int scope)
1731 u64 ctr;
1733 if (scope == SCOPE_SYSTEM)
1734 ctr = arm64_ftr_reg_ctrel0.sys_val;
1735 else
1736 ctr = read_cpuid_cachetype();
1738 return ctr & BIT(CTR_EL0_DIC_SHIFT);
1741 static bool __maybe_unused
1742 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1745 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1746 * may share TLB entries with a CPU stuck in the crashed
1747 * kernel.
1749 if (is_kdump_kernel())
1750 return false;
1752 if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1753 return false;
1755 return has_cpuid_feature(entry, scope);
1758 static bool __meltdown_safe = true;
1759 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1761 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1762 int scope)
1764 /* List of CPUs that are not vulnerable and don't need KPTI */
1765 static const struct midr_range kpti_safe_list[] = {
1766 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1767 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1768 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1769 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1770 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1771 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1772 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1773 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1774 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1775 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1776 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1777 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1778 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1779 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1780 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1781 { /* sentinel */ }
1783 char const *str = "kpti command line option";
1784 bool meltdown_safe;
1786 meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1788 /* Defer to CPU feature registers */
1789 if (has_cpuid_feature(entry, scope))
1790 meltdown_safe = true;
1792 if (!meltdown_safe)
1793 __meltdown_safe = false;
1796 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1797 * ThunderX leads to apparent I-cache corruption of kernel text, which
1798 * ends as well as you might imagine. Don't even try. We cannot rely
1799 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1800 * because cpucap detection order may change. However, since we know
1801 * affected CPUs are always in a homogeneous configuration, it is
1802 * safe to rely on this_cpu_has_cap() here.
1804 if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1805 str = "ARM64_WORKAROUND_CAVIUM_27456";
1806 __kpti_forced = -1;
1809 /* Useful for KASLR robustness */
1810 if (kaslr_enabled() && kaslr_requires_kpti()) {
1811 if (!__kpti_forced) {
1812 str = "KASLR";
1813 __kpti_forced = 1;
1817 if (cpu_mitigations_off() && !__kpti_forced) {
1818 str = "mitigations=off";
1819 __kpti_forced = -1;
1822 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1823 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1824 return false;
1827 /* Forced? */
1828 if (__kpti_forced) {
1829 pr_info_once("kernel page table isolation forced %s by %s\n",
1830 __kpti_forced > 0 ? "ON" : "OFF", str);
1831 return __kpti_forced > 0;
1834 return !meltdown_safe;
1837 static bool has_nv1(const struct arm64_cpu_capabilities *entry, int scope)
1840 * Although the Apple M2 family appears to support NV1, the
1841 * PTW barfs on the nVHE EL2 S1 page table format. Pretend
1842 * that it doesn't support NV1 at all.
1844 static const struct midr_range nv1_ni_list[] = {
1845 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
1846 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
1847 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
1848 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
1849 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
1850 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
1854 return (__system_matches_cap(ARM64_HAS_NESTED_VIRT) &&
1855 !(has_cpuid_feature(entry, scope) ||
1856 is_midr_in_range_list(read_cpuid_id(), nv1_ni_list)));
1859 #if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
1860 static bool has_lpa2_at_stage1(u64 mmfr0)
1862 unsigned int tgran;
1864 tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1865 ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1866 return tgran == ID_AA64MMFR0_EL1_TGRAN_LPA2;
1869 static bool has_lpa2_at_stage2(u64 mmfr0)
1871 unsigned int tgran;
1873 tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1874 ID_AA64MMFR0_EL1_TGRAN_2_SHIFT);
1875 return tgran == ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2;
1878 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1880 u64 mmfr0;
1882 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1883 return has_lpa2_at_stage1(mmfr0) && has_lpa2_at_stage2(mmfr0);
1885 #else
1886 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1888 return false;
1890 #endif
1892 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1893 #define KPTI_NG_TEMP_VA (-(1UL << PMD_SHIFT))
1895 extern
1896 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1897 phys_addr_t size, pgprot_t prot,
1898 phys_addr_t (*pgtable_alloc)(int), int flags);
1900 static phys_addr_t __initdata kpti_ng_temp_alloc;
1902 static phys_addr_t __init kpti_ng_pgd_alloc(int shift)
1904 kpti_ng_temp_alloc -= PAGE_SIZE;
1905 return kpti_ng_temp_alloc;
1908 static int __init __kpti_install_ng_mappings(void *__unused)
1910 typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1911 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1912 kpti_remap_fn *remap_fn;
1914 int cpu = smp_processor_id();
1915 int levels = CONFIG_PGTABLE_LEVELS;
1916 int order = order_base_2(levels);
1917 u64 kpti_ng_temp_pgd_pa = 0;
1918 pgd_t *kpti_ng_temp_pgd;
1919 u64 alloc = 0;
1921 if (levels == 5 && !pgtable_l5_enabled())
1922 levels = 4;
1923 else if (levels == 4 && !pgtable_l4_enabled())
1924 levels = 3;
1926 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1928 if (!cpu) {
1929 alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1930 kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1931 kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1934 // Create a minimal page table hierarchy that permits us to map
1935 // the swapper page tables temporarily as we traverse them.
1937 // The physical pages are laid out as follows:
1939 // +--------+-/-------+-/------ +-/------ +-\\\--------+
1940 // : PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[] :
1941 // +--------+-\-------+-\------ +-\------ +-///--------+
1942 // ^
1943 // The first page is mapped into this hierarchy at a PMD_SHIFT
1944 // aligned virtual address, so that we can manipulate the PTE
1945 // level entries while the mapping is active. The first entry
1946 // covers the PTE[] page itself, the remaining entries are free
1947 // to be used as a ad-hoc fixmap.
1949 create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
1950 KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1951 kpti_ng_pgd_alloc, 0);
1954 cpu_install_idmap();
1955 remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1956 cpu_uninstall_idmap();
1958 if (!cpu) {
1959 free_pages(alloc, order);
1960 arm64_use_ng_mappings = true;
1963 return 0;
1966 static void __init kpti_install_ng_mappings(void)
1968 /* Check whether KPTI is going to be used */
1969 if (!arm64_kernel_unmapped_at_el0())
1970 return;
1973 * We don't need to rewrite the page-tables if either we've done
1974 * it already or we have KASLR enabled and therefore have not
1975 * created any global mappings at all.
1977 if (arm64_use_ng_mappings)
1978 return;
1980 stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
1983 #else
1984 static inline void kpti_install_ng_mappings(void)
1987 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1989 static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
1991 if (__this_cpu_read(this_cpu_vector) == vectors) {
1992 const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1994 __this_cpu_write(this_cpu_vector, v);
1999 static int __init parse_kpti(char *str)
2001 bool enabled;
2002 int ret = kstrtobool(str, &enabled);
2004 if (ret)
2005 return ret;
2007 __kpti_forced = enabled ? 1 : -1;
2008 return 0;
2010 early_param("kpti", parse_kpti);
2012 #ifdef CONFIG_ARM64_HW_AFDBM
2013 static struct cpumask dbm_cpus __read_mostly;
2015 static inline void __cpu_enable_hw_dbm(void)
2017 u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
2019 write_sysreg(tcr, tcr_el1);
2020 isb();
2021 local_flush_tlb_all();
2024 static bool cpu_has_broken_dbm(void)
2026 /* List of CPUs which have broken DBM support. */
2027 static const struct midr_range cpus[] = {
2028 #ifdef CONFIG_ARM64_ERRATUM_1024718
2029 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
2030 /* Kryo4xx Silver (rdpe => r1p0) */
2031 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
2032 #endif
2033 #ifdef CONFIG_ARM64_ERRATUM_2051678
2034 MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
2035 #endif
2039 return is_midr_in_range_list(read_cpuid_id(), cpus);
2042 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
2044 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
2045 !cpu_has_broken_dbm();
2048 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
2050 if (cpu_can_use_dbm(cap)) {
2051 __cpu_enable_hw_dbm();
2052 cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
2056 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
2057 int __unused)
2060 * DBM is a non-conflicting feature. i.e, the kernel can safely
2061 * run a mix of CPUs with and without the feature. So, we
2062 * unconditionally enable the capability to allow any late CPU
2063 * to use the feature. We only enable the control bits on the
2064 * CPU, if it is supported.
2067 return true;
2070 #endif
2072 #ifdef CONFIG_ARM64_AMU_EXTN
2075 * The "amu_cpus" cpumask only signals that the CPU implementation for the
2076 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
2077 * information regarding all the events that it supports. When a CPU bit is
2078 * set in the cpumask, the user of this feature can only rely on the presence
2079 * of the 4 fixed counters for that CPU. But this does not guarantee that the
2080 * counters are enabled or access to these counters is enabled by code
2081 * executed at higher exception levels (firmware).
2083 static struct cpumask amu_cpus __read_mostly;
2085 bool cpu_has_amu_feat(int cpu)
2087 return cpumask_test_cpu(cpu, &amu_cpus);
2090 int get_cpu_with_amu_feat(void)
2092 return cpumask_any(&amu_cpus);
2095 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
2097 if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
2098 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
2100 /* 0 reference values signal broken/disabled counters */
2101 if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
2102 update_freq_counters_refs();
2106 static bool has_amu(const struct arm64_cpu_capabilities *cap,
2107 int __unused)
2110 * The AMU extension is a non-conflicting feature: the kernel can
2111 * safely run a mix of CPUs with and without support for the
2112 * activity monitors extension. Therefore, unconditionally enable
2113 * the capability to allow any late CPU to use the feature.
2115 * With this feature unconditionally enabled, the cpu_enable
2116 * function will be called for all CPUs that match the criteria,
2117 * including secondary and hotplugged, marking this feature as
2118 * present on that respective CPU. The enable function will also
2119 * print a detection message.
2122 return true;
2124 #else
2125 int get_cpu_with_amu_feat(void)
2127 return nr_cpu_ids;
2129 #endif
2131 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
2133 return is_kernel_in_hyp_mode();
2136 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
2139 * Copy register values that aren't redirected by hardware.
2141 * Before code patching, we only set tpidr_el1, all CPUs need to copy
2142 * this value to tpidr_el2 before we patch the code. Once we've done
2143 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2144 * do anything here.
2146 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
2147 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2150 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2151 int scope)
2153 if (kvm_get_mode() != KVM_MODE_NV)
2154 return false;
2156 if (!has_cpuid_feature(cap, scope)) {
2157 pr_warn("unavailable: %s\n", cap->desc);
2158 return false;
2161 return true;
2164 static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2165 int __unused)
2167 return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_HVHE);
2170 #ifdef CONFIG_ARM64_PAN
2171 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2174 * We modify PSTATE. This won't work from irq context as the PSTATE
2175 * is discarded once we return from the exception.
2177 WARN_ON_ONCE(in_interrupt());
2179 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2180 set_pstate_pan(1);
2182 #endif /* CONFIG_ARM64_PAN */
2184 #ifdef CONFIG_ARM64_RAS_EXTN
2185 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2187 /* Firmware may have left a deferred SError in this register. */
2188 write_sysreg_s(0, SYS_DISR_EL1);
2190 #endif /* CONFIG_ARM64_RAS_EXTN */
2192 #ifdef CONFIG_ARM64_PTR_AUTH
2193 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2195 int boot_val, sec_val;
2197 /* We don't expect to be called with SCOPE_SYSTEM */
2198 WARN_ON(scope == SCOPE_SYSTEM);
2200 * The ptr-auth feature levels are not intercompatible with lower
2201 * levels. Hence we must match ptr-auth feature level of the secondary
2202 * CPUs with that of the boot CPU. The level of boot cpu is fetched
2203 * from the sanitised register whereas direct register read is done for
2204 * the secondary CPUs.
2205 * The sanitised feature state is guaranteed to match that of the
2206 * boot CPU as a mismatched secondary CPU is parked before it gets
2207 * a chance to update the state, with the capability.
2209 boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2210 entry->field_pos, entry->sign);
2211 if (scope & SCOPE_BOOT_CPU)
2212 return boot_val >= entry->min_field_value;
2213 /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2214 sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2215 entry->field_pos, entry->sign);
2216 return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2219 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2220 int scope)
2222 bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2223 bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2224 bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2226 return apa || apa3 || api;
2229 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2230 int __unused)
2232 bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2233 bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2234 bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2236 return gpa || gpa3 || gpi;
2238 #endif /* CONFIG_ARM64_PTR_AUTH */
2240 #ifdef CONFIG_ARM64_E0PD
2241 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2243 if (this_cpu_has_cap(ARM64_HAS_E0PD))
2244 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2246 #endif /* CONFIG_ARM64_E0PD */
2248 #ifdef CONFIG_ARM64_PSEUDO_NMI
2249 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2250 int scope)
2253 * ARM64_HAS_GIC_CPUIF_SYSREGS has a lower index, and is a boot CPU
2254 * feature, so will be detected earlier.
2256 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GIC_CPUIF_SYSREGS);
2257 if (!cpus_have_cap(ARM64_HAS_GIC_CPUIF_SYSREGS))
2258 return false;
2260 return enable_pseudo_nmi;
2263 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2264 int scope)
2267 * If we're not using priority masking then we won't be poking PMR_EL1,
2268 * and there's no need to relax synchronization of writes to it, and
2269 * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2270 * that.
2272 * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2273 * feature, so will be detected earlier.
2275 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2276 if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2277 return false;
2280 * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2281 * hint for interrupt distribution, a DSB is not necessary when
2282 * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2284 * Linux itself doesn't use 1:N distribution, so has no need to
2285 * set PMHE. The only reason to have it set is if EL3 requires it
2286 * (and we can't change it).
2288 return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2290 #endif
2292 #ifdef CONFIG_ARM64_BTI
2293 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2296 * Use of X16/X17 for tail-calls and trampolines that jump to
2297 * function entry points using BR is a requirement for
2298 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2299 * So, be strict and forbid other BRs using other registers to
2300 * jump onto a PACIxSP instruction:
2302 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2303 isb();
2305 #endif /* CONFIG_ARM64_BTI */
2307 #ifdef CONFIG_ARM64_MTE
2308 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2310 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2312 mte_cpu_setup();
2315 * Clear the tags in the zero page. This needs to be done via the
2316 * linear map which has the Tagged attribute.
2318 if (try_page_mte_tagging(ZERO_PAGE(0))) {
2319 mte_clear_page_tags(lm_alias(empty_zero_page));
2320 set_page_mte_tagged(ZERO_PAGE(0));
2323 kasan_init_hw_tags_cpu();
2325 #endif /* CONFIG_ARM64_MTE */
2327 static void user_feature_fixup(void)
2329 if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
2330 struct arm64_ftr_reg *regp;
2332 regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2333 if (regp)
2334 regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
2337 if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_SSBS)) {
2338 struct arm64_ftr_reg *regp;
2340 regp = get_arm64_ftr_reg(SYS_ID_AA64PFR1_EL1);
2341 if (regp)
2342 regp->user_mask &= ~ID_AA64PFR1_EL1_SSBS_MASK;
2346 static void elf_hwcap_fixup(void)
2348 #ifdef CONFIG_COMPAT
2349 if (cpus_have_cap(ARM64_WORKAROUND_1742098))
2350 compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2351 #endif /* CONFIG_COMPAT */
2354 #ifdef CONFIG_KVM
2355 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2357 return kvm_get_mode() == KVM_MODE_PROTECTED;
2359 #endif /* CONFIG_KVM */
2361 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2363 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2366 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2368 set_pstate_dit(1);
2371 static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2373 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2376 #ifdef CONFIG_ARM64_POE
2377 static void cpu_enable_poe(const struct arm64_cpu_capabilities *__unused)
2379 sysreg_clear_set(REG_TCR2_EL1, 0, TCR2_EL1x_E0POE);
2380 sysreg_clear_set(CPACR_EL1, 0, CPACR_ELx_E0POE);
2382 #endif
2384 #ifdef CONFIG_ARM64_GCS
2385 static void cpu_enable_gcs(const struct arm64_cpu_capabilities *__unused)
2387 /* GCSPR_EL0 is always readable */
2388 write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1);
2390 #endif
2392 /* Internal helper functions to match cpu capability type */
2393 static bool
2394 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2396 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2399 static bool
2400 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2402 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2405 static bool
2406 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2408 return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2411 static bool
2412 test_has_mpam(const struct arm64_cpu_capabilities *entry, int scope)
2414 if (!has_cpuid_feature(entry, scope))
2415 return false;
2417 /* Check firmware actually enabled MPAM on this cpu. */
2418 return (read_sysreg_s(SYS_MPAM1_EL1) & MPAM1_EL1_MPAMEN);
2421 static void
2422 cpu_enable_mpam(const struct arm64_cpu_capabilities *entry)
2425 * Access by the kernel (at EL1) should use the reserved PARTID
2426 * which is configured unrestricted. This avoids priority-inversion
2427 * where latency sensitive tasks have to wait for a task that has
2428 * been throttled to release the lock.
2430 write_sysreg_s(0, SYS_MPAM1_EL1);
2433 static bool
2434 test_has_mpam_hcr(const struct arm64_cpu_capabilities *entry, int scope)
2436 u64 idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
2438 return idr & MPAMIDR_EL1_HAS_HCR;
2441 static const struct arm64_cpu_capabilities arm64_features[] = {
2443 .capability = ARM64_ALWAYS_BOOT,
2444 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2445 .matches = has_always,
2448 .capability = ARM64_ALWAYS_SYSTEM,
2449 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2450 .matches = has_always,
2453 .desc = "GIC system register CPU interface",
2454 .capability = ARM64_HAS_GIC_CPUIF_SYSREGS,
2455 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2456 .matches = has_useable_gicv3_cpuif,
2457 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2460 .desc = "Enhanced Counter Virtualization",
2461 .capability = ARM64_HAS_ECV,
2462 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2463 .matches = has_cpuid_feature,
2464 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2467 .desc = "Enhanced Counter Virtualization (CNTPOFF)",
2468 .capability = ARM64_HAS_ECV_CNTPOFF,
2469 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2470 .matches = has_cpuid_feature,
2471 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2473 #ifdef CONFIG_ARM64_PAN
2475 .desc = "Privileged Access Never",
2476 .capability = ARM64_HAS_PAN,
2477 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2478 .matches = has_cpuid_feature,
2479 .cpu_enable = cpu_enable_pan,
2480 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2482 #endif /* CONFIG_ARM64_PAN */
2483 #ifdef CONFIG_ARM64_EPAN
2485 .desc = "Enhanced Privileged Access Never",
2486 .capability = ARM64_HAS_EPAN,
2487 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2488 .matches = has_cpuid_feature,
2489 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2491 #endif /* CONFIG_ARM64_EPAN */
2492 #ifdef CONFIG_ARM64_LSE_ATOMICS
2494 .desc = "LSE atomic instructions",
2495 .capability = ARM64_HAS_LSE_ATOMICS,
2496 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2497 .matches = has_cpuid_feature,
2498 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2500 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2502 .desc = "Virtualization Host Extensions",
2503 .capability = ARM64_HAS_VIRT_HOST_EXTN,
2504 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2505 .matches = runs_at_el2,
2506 .cpu_enable = cpu_copy_el2regs,
2509 .desc = "Nested Virtualization Support",
2510 .capability = ARM64_HAS_NESTED_VIRT,
2511 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2512 .matches = has_nested_virt_support,
2513 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, NV2)
2516 .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2517 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2518 .matches = has_32bit_el0,
2519 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2521 #ifdef CONFIG_KVM
2523 .desc = "32-bit EL1 Support",
2524 .capability = ARM64_HAS_32BIT_EL1,
2525 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2526 .matches = has_cpuid_feature,
2527 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2530 .desc = "Protected KVM",
2531 .capability = ARM64_KVM_PROTECTED_MODE,
2532 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2533 .matches = is_kvm_protected_mode,
2536 .desc = "HCRX_EL2 register",
2537 .capability = ARM64_HAS_HCX,
2538 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2539 .matches = has_cpuid_feature,
2540 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2542 #endif
2544 .desc = "Kernel page table isolation (KPTI)",
2545 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
2546 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2547 .cpu_enable = cpu_enable_kpti,
2548 .matches = unmap_kernel_at_el0,
2550 * The ID feature fields below are used to indicate that
2551 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2552 * more details.
2554 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2557 .capability = ARM64_HAS_FPSIMD,
2558 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2559 .matches = has_cpuid_feature,
2560 .cpu_enable = cpu_enable_fpsimd,
2561 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
2563 #ifdef CONFIG_ARM64_PMEM
2565 .desc = "Data cache clean to Point of Persistence",
2566 .capability = ARM64_HAS_DCPOP,
2567 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2568 .matches = has_cpuid_feature,
2569 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2572 .desc = "Data cache clean to Point of Deep Persistence",
2573 .capability = ARM64_HAS_DCPODP,
2574 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2575 .matches = has_cpuid_feature,
2576 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2578 #endif
2579 #ifdef CONFIG_ARM64_SVE
2581 .desc = "Scalable Vector Extension",
2582 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2583 .capability = ARM64_SVE,
2584 .cpu_enable = cpu_enable_sve,
2585 .matches = has_cpuid_feature,
2586 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2588 #endif /* CONFIG_ARM64_SVE */
2589 #ifdef CONFIG_ARM64_RAS_EXTN
2591 .desc = "RAS Extension Support",
2592 .capability = ARM64_HAS_RAS_EXTN,
2593 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2594 .matches = has_cpuid_feature,
2595 .cpu_enable = cpu_clear_disr,
2596 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2598 #endif /* CONFIG_ARM64_RAS_EXTN */
2599 #ifdef CONFIG_ARM64_AMU_EXTN
2601 .desc = "Activity Monitors Unit (AMU)",
2602 .capability = ARM64_HAS_AMU_EXTN,
2603 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2604 .matches = has_amu,
2605 .cpu_enable = cpu_amu_enable,
2606 .cpus = &amu_cpus,
2607 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2609 #endif /* CONFIG_ARM64_AMU_EXTN */
2611 .desc = "Data cache clean to the PoU not required for I/D coherence",
2612 .capability = ARM64_HAS_CACHE_IDC,
2613 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2614 .matches = has_cache_idc,
2615 .cpu_enable = cpu_emulate_effective_ctr,
2618 .desc = "Instruction cache invalidation not required for I/D coherence",
2619 .capability = ARM64_HAS_CACHE_DIC,
2620 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2621 .matches = has_cache_dic,
2624 .desc = "Stage-2 Force Write-Back",
2625 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2626 .capability = ARM64_HAS_STAGE2_FWB,
2627 .matches = has_cpuid_feature,
2628 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2631 .desc = "ARMv8.4 Translation Table Level",
2632 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2633 .capability = ARM64_HAS_ARMv8_4_TTL,
2634 .matches = has_cpuid_feature,
2635 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2638 .desc = "TLB range maintenance instructions",
2639 .capability = ARM64_HAS_TLB_RANGE,
2640 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2641 .matches = has_cpuid_feature,
2642 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2644 #ifdef CONFIG_ARM64_HW_AFDBM
2646 .desc = "Hardware dirty bit management",
2647 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2648 .capability = ARM64_HW_DBM,
2649 .matches = has_hw_dbm,
2650 .cpu_enable = cpu_enable_hw_dbm,
2651 .cpus = &dbm_cpus,
2652 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2654 #endif
2655 #ifdef CONFIG_ARM64_HAFT
2657 .desc = "Hardware managed Access Flag for Table Descriptors",
2659 * Contrary to the page/block access flag, the table access flag
2660 * cannot be emulated in software (no access fault will occur).
2661 * Therefore this should be used only if it's supported system
2662 * wide.
2664 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2665 .capability = ARM64_HAFT,
2666 .matches = has_cpuid_feature,
2667 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, HAFT)
2669 #endif
2671 .desc = "CRC32 instructions",
2672 .capability = ARM64_HAS_CRC32,
2673 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2674 .matches = has_cpuid_feature,
2675 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2678 .desc = "Speculative Store Bypassing Safe (SSBS)",
2679 .capability = ARM64_SSBS,
2680 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2681 .matches = has_cpuid_feature,
2682 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2684 #ifdef CONFIG_ARM64_CNP
2686 .desc = "Common not Private translations",
2687 .capability = ARM64_HAS_CNP,
2688 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2689 .matches = has_useable_cnp,
2690 .cpu_enable = cpu_enable_cnp,
2691 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2693 #endif
2695 .desc = "Speculation barrier (SB)",
2696 .capability = ARM64_HAS_SB,
2697 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2698 .matches = has_cpuid_feature,
2699 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2701 #ifdef CONFIG_ARM64_PTR_AUTH
2703 .desc = "Address authentication (architected QARMA5 algorithm)",
2704 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2705 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2706 .matches = has_address_auth_cpucap,
2707 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2710 .desc = "Address authentication (architected QARMA3 algorithm)",
2711 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2712 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2713 .matches = has_address_auth_cpucap,
2714 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2717 .desc = "Address authentication (IMP DEF algorithm)",
2718 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2719 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2720 .matches = has_address_auth_cpucap,
2721 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2724 .capability = ARM64_HAS_ADDRESS_AUTH,
2725 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2726 .matches = has_address_auth_metacap,
2729 .desc = "Generic authentication (architected QARMA5 algorithm)",
2730 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2731 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2732 .matches = has_cpuid_feature,
2733 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2736 .desc = "Generic authentication (architected QARMA3 algorithm)",
2737 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2738 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2739 .matches = has_cpuid_feature,
2740 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2743 .desc = "Generic authentication (IMP DEF algorithm)",
2744 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2745 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2746 .matches = has_cpuid_feature,
2747 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2750 .capability = ARM64_HAS_GENERIC_AUTH,
2751 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2752 .matches = has_generic_auth,
2754 #endif /* CONFIG_ARM64_PTR_AUTH */
2755 #ifdef CONFIG_ARM64_PSEUDO_NMI
2758 * Depends on having GICv3
2760 .desc = "IRQ priority masking",
2761 .capability = ARM64_HAS_GIC_PRIO_MASKING,
2762 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2763 .matches = can_use_gic_priorities,
2767 * Depends on ARM64_HAS_GIC_PRIO_MASKING
2769 .capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2770 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2771 .matches = has_gic_prio_relaxed_sync,
2773 #endif
2774 #ifdef CONFIG_ARM64_E0PD
2776 .desc = "E0PD",
2777 .capability = ARM64_HAS_E0PD,
2778 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2779 .cpu_enable = cpu_enable_e0pd,
2780 .matches = has_cpuid_feature,
2781 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2783 #endif
2785 .desc = "Random Number Generator",
2786 .capability = ARM64_HAS_RNG,
2787 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2788 .matches = has_cpuid_feature,
2789 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2791 #ifdef CONFIG_ARM64_BTI
2793 .desc = "Branch Target Identification",
2794 .capability = ARM64_BTI,
2795 #ifdef CONFIG_ARM64_BTI_KERNEL
2796 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2797 #else
2798 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2799 #endif
2800 .matches = has_cpuid_feature,
2801 .cpu_enable = bti_enable,
2802 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2804 #endif
2805 #ifdef CONFIG_ARM64_MTE
2807 .desc = "Memory Tagging Extension",
2808 .capability = ARM64_MTE,
2809 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2810 .matches = has_cpuid_feature,
2811 .cpu_enable = cpu_enable_mte,
2812 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2815 .desc = "Asymmetric MTE Tag Check Fault",
2816 .capability = ARM64_MTE_ASYMM,
2817 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2818 .matches = has_cpuid_feature,
2819 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2821 #endif /* CONFIG_ARM64_MTE */
2823 .desc = "RCpc load-acquire (LDAPR)",
2824 .capability = ARM64_HAS_LDAPR,
2825 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2826 .matches = has_cpuid_feature,
2827 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2830 .desc = "Fine Grained Traps",
2831 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2832 .capability = ARM64_HAS_FGT,
2833 .matches = has_cpuid_feature,
2834 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2836 #ifdef CONFIG_ARM64_SME
2838 .desc = "Scalable Matrix Extension",
2839 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2840 .capability = ARM64_SME,
2841 .matches = has_cpuid_feature,
2842 .cpu_enable = cpu_enable_sme,
2843 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2845 /* FA64 should be sorted after the base SME capability */
2847 .desc = "FA64",
2848 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2849 .capability = ARM64_SME_FA64,
2850 .matches = has_cpuid_feature,
2851 .cpu_enable = cpu_enable_fa64,
2852 ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2855 .desc = "SME2",
2856 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2857 .capability = ARM64_SME2,
2858 .matches = has_cpuid_feature,
2859 .cpu_enable = cpu_enable_sme2,
2860 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2862 #endif /* CONFIG_ARM64_SME */
2864 .desc = "WFx with timeout",
2865 .capability = ARM64_HAS_WFXT,
2866 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2867 .matches = has_cpuid_feature,
2868 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
2871 .desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2872 .capability = ARM64_HAS_TIDCP1,
2873 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2874 .matches = has_cpuid_feature,
2875 .cpu_enable = cpu_trap_el0_impdef,
2876 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
2879 .desc = "Data independent timing control (DIT)",
2880 .capability = ARM64_HAS_DIT,
2881 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2882 .matches = has_cpuid_feature,
2883 .cpu_enable = cpu_enable_dit,
2884 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
2887 .desc = "Memory Copy and Memory Set instructions",
2888 .capability = ARM64_HAS_MOPS,
2889 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2890 .matches = has_cpuid_feature,
2891 .cpu_enable = cpu_enable_mops,
2892 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
2895 .capability = ARM64_HAS_TCR2,
2896 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2897 .matches = has_cpuid_feature,
2898 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
2901 .desc = "Stage-1 Permission Indirection Extension (S1PIE)",
2902 .capability = ARM64_HAS_S1PIE,
2903 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2904 .matches = has_cpuid_feature,
2905 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
2908 .desc = "VHE for hypervisor only",
2909 .capability = ARM64_KVM_HVHE,
2910 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2911 .matches = hvhe_possible,
2914 .desc = "Enhanced Virtualization Traps",
2915 .capability = ARM64_HAS_EVT,
2916 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2917 .matches = has_cpuid_feature,
2918 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
2921 .desc = "52-bit Virtual Addressing for KVM (LPA2)",
2922 .capability = ARM64_HAS_LPA2,
2923 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2924 .matches = has_lpa2,
2927 .desc = "FPMR",
2928 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2929 .capability = ARM64_HAS_FPMR,
2930 .matches = has_cpuid_feature,
2931 .cpu_enable = cpu_enable_fpmr,
2932 ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, FPMR, IMP)
2934 #ifdef CONFIG_ARM64_VA_BITS_52
2936 .capability = ARM64_HAS_VA52,
2937 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2938 .matches = has_cpuid_feature,
2939 #ifdef CONFIG_ARM64_64K_PAGES
2940 .desc = "52-bit Virtual Addressing (LVA)",
2941 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, VARange, 52)
2942 #else
2943 .desc = "52-bit Virtual Addressing (LPA2)",
2944 #ifdef CONFIG_ARM64_4K_PAGES
2945 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN4, 52_BIT)
2946 #else
2947 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN16, 52_BIT)
2948 #endif
2949 #endif
2951 #endif
2953 .desc = "Memory Partitioning And Monitoring",
2954 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2955 .capability = ARM64_MPAM,
2956 .matches = test_has_mpam,
2957 .cpu_enable = cpu_enable_mpam,
2958 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, MPAM, 1)
2961 .desc = "Memory Partitioning And Monitoring Virtualisation",
2962 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2963 .capability = ARM64_MPAM_HCR,
2964 .matches = test_has_mpam_hcr,
2967 .desc = "NV1",
2968 .capability = ARM64_HAS_HCR_NV1,
2969 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2970 .matches = has_nv1,
2971 ARM64_CPUID_FIELDS_NEG(ID_AA64MMFR4_EL1, E2H0, NI_NV1)
2973 #ifdef CONFIG_ARM64_POE
2975 .desc = "Stage-1 Permission Overlay Extension (S1POE)",
2976 .capability = ARM64_HAS_S1POE,
2977 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2978 .matches = has_cpuid_feature,
2979 .cpu_enable = cpu_enable_poe,
2980 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1POE, IMP)
2982 #endif
2983 #ifdef CONFIG_ARM64_GCS
2985 .desc = "Guarded Control Stack (GCS)",
2986 .capability = ARM64_HAS_GCS,
2987 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2988 .cpu_enable = cpu_enable_gcs,
2989 .matches = has_cpuid_feature,
2990 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, GCS, IMP)
2992 #endif
2996 #define HWCAP_CPUID_MATCH(reg, field, min_value) \
2997 .matches = has_user_cpuid_feature, \
2998 ARM64_CPUID_FIELDS(reg, field, min_value)
3000 #define __HWCAP_CAP(name, cap_type, cap) \
3001 .desc = name, \
3002 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
3003 .hwcap_type = cap_type, \
3004 .hwcap = cap, \
3006 #define HWCAP_CAP(reg, field, min_value, cap_type, cap) \
3008 __HWCAP_CAP(#cap, cap_type, cap) \
3009 HWCAP_CPUID_MATCH(reg, field, min_value) \
3012 #define HWCAP_MULTI_CAP(list, cap_type, cap) \
3014 __HWCAP_CAP(#cap, cap_type, cap) \
3015 .matches = cpucap_multi_entry_cap_matches, \
3016 .match_list = list, \
3019 #define HWCAP_CAP_MATCH(match, cap_type, cap) \
3021 __HWCAP_CAP(#cap, cap_type, cap) \
3022 .matches = match, \
3025 #ifdef CONFIG_ARM64_PTR_AUTH
3026 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
3028 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
3031 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
3034 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
3039 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
3041 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
3044 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
3047 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
3051 #endif
3053 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
3054 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
3055 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
3056 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
3057 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
3058 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
3059 HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
3060 HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
3061 HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
3062 HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
3063 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
3064 HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
3065 HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
3066 HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
3067 HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
3068 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
3069 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
3070 HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
3071 HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
3072 HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
3073 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
3074 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
3075 HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
3076 HWCAP_CAP(ID_AA64PFR2_EL1, FPMR, IMP, CAP_HWCAP, KERNEL_HWCAP_FPMR),
3077 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
3078 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
3079 HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
3080 HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
3081 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
3082 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
3083 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
3084 HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
3085 HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
3086 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
3087 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
3088 HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
3089 HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
3090 HWCAP_CAP(ID_AA64ISAR2_EL1, LUT, IMP, CAP_HWCAP, KERNEL_HWCAP_LUT),
3091 HWCAP_CAP(ID_AA64ISAR3_EL1, FAMINMAX, IMP, CAP_HWCAP, KERNEL_HWCAP_FAMINMAX),
3092 HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
3093 #ifdef CONFIG_ARM64_SVE
3094 HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
3095 HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
3096 HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
3097 HWCAP_CAP(ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
3098 HWCAP_CAP(ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
3099 HWCAP_CAP(ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
3100 HWCAP_CAP(ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
3101 HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
3102 HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
3103 HWCAP_CAP(ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
3104 HWCAP_CAP(ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
3105 HWCAP_CAP(ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
3106 HWCAP_CAP(ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
3107 HWCAP_CAP(ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
3108 #endif
3109 #ifdef CONFIG_ARM64_GCS
3110 HWCAP_CAP(ID_AA64PFR1_EL1, GCS, IMP, CAP_HWCAP, KERNEL_HWCAP_GCS),
3111 #endif
3112 HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
3113 #ifdef CONFIG_ARM64_BTI
3114 HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
3115 #endif
3116 #ifdef CONFIG_ARM64_PTR_AUTH
3117 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
3118 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
3119 #endif
3120 #ifdef CONFIG_ARM64_MTE
3121 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
3122 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
3123 #endif /* CONFIG_ARM64_MTE */
3124 HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
3125 HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
3126 HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
3127 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
3128 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
3129 HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
3130 HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
3131 HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
3132 #ifdef CONFIG_ARM64_SME
3133 HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
3134 HWCAP_CAP(ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
3135 HWCAP_CAP(ID_AA64SMFR0_EL1, LUTv2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_LUTV2),
3136 HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
3137 HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
3138 HWCAP_CAP(ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
3139 HWCAP_CAP(ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
3140 HWCAP_CAP(ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
3141 HWCAP_CAP(ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
3142 HWCAP_CAP(ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
3143 HWCAP_CAP(ID_AA64SMFR0_EL1, F8F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F16),
3144 HWCAP_CAP(ID_AA64SMFR0_EL1, F8F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F32),
3145 HWCAP_CAP(ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
3146 HWCAP_CAP(ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
3147 HWCAP_CAP(ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
3148 HWCAP_CAP(ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
3149 HWCAP_CAP(ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
3150 HWCAP_CAP(ID_AA64SMFR0_EL1, SF8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8FMA),
3151 HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP4),
3152 HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP2),
3153 #endif /* CONFIG_ARM64_SME */
3154 HWCAP_CAP(ID_AA64FPFR0_EL1, F8CVT, IMP, CAP_HWCAP, KERNEL_HWCAP_F8CVT),
3155 HWCAP_CAP(ID_AA64FPFR0_EL1, F8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_F8FMA),
3156 HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP4),
3157 HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP2),
3158 HWCAP_CAP(ID_AA64FPFR0_EL1, F8E4M3, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E4M3),
3159 HWCAP_CAP(ID_AA64FPFR0_EL1, F8E5M2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E5M2),
3160 #ifdef CONFIG_ARM64_POE
3161 HWCAP_CAP(ID_AA64MMFR3_EL1, S1POE, IMP, CAP_HWCAP, KERNEL_HWCAP_POE),
3162 #endif
3166 #ifdef CONFIG_COMPAT
3167 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
3170 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
3171 * in line with that of arm32 as in vfp_init(). We make sure that the
3172 * check is future proof, by making sure value is non-zero.
3174 u32 mvfr1;
3176 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
3177 if (scope == SCOPE_SYSTEM)
3178 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
3179 else
3180 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
3182 return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
3183 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
3184 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
3186 #endif
3188 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
3189 #ifdef CONFIG_COMPAT
3190 HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
3191 HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
3192 /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
3193 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
3194 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
3195 HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
3196 HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
3197 HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
3198 HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
3199 HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
3200 HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
3201 HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
3202 HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
3203 HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
3204 HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
3205 HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
3206 HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
3207 HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
3208 #endif
3212 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3214 switch (cap->hwcap_type) {
3215 case CAP_HWCAP:
3216 cpu_set_feature(cap->hwcap);
3217 break;
3218 #ifdef CONFIG_COMPAT
3219 case CAP_COMPAT_HWCAP:
3220 compat_elf_hwcap |= (u32)cap->hwcap;
3221 break;
3222 case CAP_COMPAT_HWCAP2:
3223 compat_elf_hwcap2 |= (u32)cap->hwcap;
3224 break;
3225 #endif
3226 default:
3227 WARN_ON(1);
3228 break;
3232 /* Check if we have a particular HWCAP enabled */
3233 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3235 bool rc;
3237 switch (cap->hwcap_type) {
3238 case CAP_HWCAP:
3239 rc = cpu_have_feature(cap->hwcap);
3240 break;
3241 #ifdef CONFIG_COMPAT
3242 case CAP_COMPAT_HWCAP:
3243 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
3244 break;
3245 case CAP_COMPAT_HWCAP2:
3246 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
3247 break;
3248 #endif
3249 default:
3250 WARN_ON(1);
3251 rc = false;
3254 return rc;
3257 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
3259 /* We support emulation of accesses to CPU ID feature registers */
3260 cpu_set_named_feature(CPUID);
3261 for (; hwcaps->matches; hwcaps++)
3262 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
3263 cap_set_elf_hwcap(hwcaps);
3266 static void update_cpu_capabilities(u16 scope_mask)
3268 int i;
3269 const struct arm64_cpu_capabilities *caps;
3271 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3272 for (i = 0; i < ARM64_NCAPS; i++) {
3273 caps = cpucap_ptrs[i];
3274 if (!caps || !(caps->type & scope_mask) ||
3275 cpus_have_cap(caps->capability) ||
3276 !caps->matches(caps, cpucap_default_scope(caps)))
3277 continue;
3279 if (caps->desc && !caps->cpus)
3280 pr_info("detected: %s\n", caps->desc);
3282 __set_bit(caps->capability, system_cpucaps);
3284 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
3285 set_bit(caps->capability, boot_cpucaps);
3290 * Enable all the available capabilities on this CPU. The capabilities
3291 * with BOOT_CPU scope are handled separately and hence skipped here.
3293 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3295 int i;
3296 u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3298 for_each_available_cap(i) {
3299 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3301 if (WARN_ON(!cap))
3302 continue;
3304 if (!(cap->type & non_boot_scope))
3305 continue;
3307 if (cap->cpu_enable)
3308 cap->cpu_enable(cap);
3310 return 0;
3314 * Run through the enabled capabilities and enable() it on all active
3315 * CPUs
3317 static void __init enable_cpu_capabilities(u16 scope_mask)
3319 int i;
3320 const struct arm64_cpu_capabilities *caps;
3321 bool boot_scope;
3323 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3324 boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3326 for (i = 0; i < ARM64_NCAPS; i++) {
3327 caps = cpucap_ptrs[i];
3328 if (!caps || !(caps->type & scope_mask) ||
3329 !cpus_have_cap(caps->capability))
3330 continue;
3332 if (boot_scope && caps->cpu_enable)
3334 * Capabilities with SCOPE_BOOT_CPU scope are finalised
3335 * before any secondary CPU boots. Thus, each secondary
3336 * will enable the capability as appropriate via
3337 * check_local_cpu_capabilities(). The only exception is
3338 * the boot CPU, for which the capability must be
3339 * enabled here. This approach avoids costly
3340 * stop_machine() calls for this case.
3342 caps->cpu_enable(caps);
3346 * For all non-boot scope capabilities, use stop_machine()
3347 * as it schedules the work allowing us to modify PSTATE,
3348 * instead of on_each_cpu() which uses an IPI, giving us a
3349 * PSTATE that disappears when we return.
3351 if (!boot_scope)
3352 stop_machine(cpu_enable_non_boot_scope_capabilities,
3353 NULL, cpu_online_mask);
3357 * Run through the list of capabilities to check for conflicts.
3358 * If the system has already detected a capability, take necessary
3359 * action on this CPU.
3361 static void verify_local_cpu_caps(u16 scope_mask)
3363 int i;
3364 bool cpu_has_cap, system_has_cap;
3365 const struct arm64_cpu_capabilities *caps;
3367 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3369 for (i = 0; i < ARM64_NCAPS; i++) {
3370 caps = cpucap_ptrs[i];
3371 if (!caps || !(caps->type & scope_mask))
3372 continue;
3374 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3375 system_has_cap = cpus_have_cap(caps->capability);
3377 if (system_has_cap) {
3379 * Check if the new CPU misses an advertised feature,
3380 * which is not safe to miss.
3382 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3383 break;
3385 * We have to issue cpu_enable() irrespective of
3386 * whether the CPU has it or not, as it is enabeld
3387 * system wide. It is upto the call back to take
3388 * appropriate action on this CPU.
3390 if (caps->cpu_enable)
3391 caps->cpu_enable(caps);
3392 } else {
3394 * Check if the CPU has this capability if it isn't
3395 * safe to have when the system doesn't.
3397 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3398 break;
3402 if (i < ARM64_NCAPS) {
3403 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3404 smp_processor_id(), caps->capability,
3405 caps->desc, system_has_cap, cpu_has_cap);
3407 if (cpucap_panic_on_conflict(caps))
3408 cpu_panic_kernel();
3409 else
3410 cpu_die_early();
3415 * Check for CPU features that are used in early boot
3416 * based on the Boot CPU value.
3418 static void check_early_cpu_features(void)
3420 verify_cpu_asid_bits();
3422 verify_local_cpu_caps(SCOPE_BOOT_CPU);
3425 static void
3426 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3429 for (; caps->matches; caps++)
3430 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3431 pr_crit("CPU%d: missing HWCAP: %s\n",
3432 smp_processor_id(), caps->desc);
3433 cpu_die_early();
3437 static void verify_local_elf_hwcaps(void)
3439 __verify_local_elf_hwcaps(arm64_elf_hwcaps);
3441 if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3442 __verify_local_elf_hwcaps(compat_elf_hwcaps);
3445 static void verify_sve_features(void)
3447 unsigned long cpacr = cpacr_save_enable_kernel_sve();
3449 if (vec_verify_vq_map(ARM64_VEC_SVE)) {
3450 pr_crit("CPU%d: SVE: vector length support mismatch\n",
3451 smp_processor_id());
3452 cpu_die_early();
3455 cpacr_restore(cpacr);
3458 static void verify_sme_features(void)
3460 unsigned long cpacr = cpacr_save_enable_kernel_sme();
3462 if (vec_verify_vq_map(ARM64_VEC_SME)) {
3463 pr_crit("CPU%d: SME: vector length support mismatch\n",
3464 smp_processor_id());
3465 cpu_die_early();
3468 cpacr_restore(cpacr);
3471 static void verify_hyp_capabilities(void)
3473 u64 safe_mmfr1, mmfr0, mmfr1;
3474 int parange, ipa_max;
3475 unsigned int safe_vmid_bits, vmid_bits;
3477 if (!IS_ENABLED(CONFIG_KVM))
3478 return;
3480 safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3481 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
3482 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3484 /* Verify VMID bits */
3485 safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3486 vmid_bits = get_vmid_bits(mmfr1);
3487 if (vmid_bits < safe_vmid_bits) {
3488 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3489 cpu_die_early();
3492 /* Verify IPA range */
3493 parange = cpuid_feature_extract_unsigned_field(mmfr0,
3494 ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3495 ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3496 if (ipa_max < get_kvm_ipa_limit()) {
3497 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3498 cpu_die_early();
3502 static void verify_mpam_capabilities(void)
3504 u64 cpu_idr = read_cpuid(ID_AA64PFR0_EL1);
3505 u64 sys_idr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
3506 u16 cpu_partid_max, cpu_pmg_max, sys_partid_max, sys_pmg_max;
3508 if (FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, cpu_idr) !=
3509 FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, sys_idr)) {
3510 pr_crit("CPU%d: MPAM version mismatch\n", smp_processor_id());
3511 cpu_die_early();
3514 cpu_idr = read_cpuid(MPAMIDR_EL1);
3515 sys_idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
3516 if (FIELD_GET(MPAMIDR_EL1_HAS_HCR, cpu_idr) !=
3517 FIELD_GET(MPAMIDR_EL1_HAS_HCR, sys_idr)) {
3518 pr_crit("CPU%d: Missing MPAM HCR\n", smp_processor_id());
3519 cpu_die_early();
3522 cpu_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, cpu_idr);
3523 cpu_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, cpu_idr);
3524 sys_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, sys_idr);
3525 sys_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, sys_idr);
3526 if (cpu_partid_max < sys_partid_max || cpu_pmg_max < sys_pmg_max) {
3527 pr_crit("CPU%d: MPAM PARTID/PMG max values are mismatched\n", smp_processor_id());
3528 cpu_die_early();
3533 * Run through the enabled system capabilities and enable() it on this CPU.
3534 * The capabilities were decided based on the available CPUs at the boot time.
3535 * Any new CPU should match the system wide status of the capability. If the
3536 * new CPU doesn't have a capability which the system now has enabled, we
3537 * cannot do anything to fix it up and could cause unexpected failures. So
3538 * we park the CPU.
3540 static void verify_local_cpu_capabilities(void)
3543 * The capabilities with SCOPE_BOOT_CPU are checked from
3544 * check_early_cpu_features(), as they need to be verified
3545 * on all secondary CPUs.
3547 verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3548 verify_local_elf_hwcaps();
3550 if (system_supports_sve())
3551 verify_sve_features();
3553 if (system_supports_sme())
3554 verify_sme_features();
3556 if (is_hyp_mode_available())
3557 verify_hyp_capabilities();
3559 if (system_supports_mpam())
3560 verify_mpam_capabilities();
3563 void check_local_cpu_capabilities(void)
3566 * All secondary CPUs should conform to the early CPU features
3567 * in use by the kernel based on boot CPU.
3569 check_early_cpu_features();
3572 * If we haven't finalised the system capabilities, this CPU gets
3573 * a chance to update the errata work arounds and local features.
3574 * Otherwise, this CPU should verify that it has all the system
3575 * advertised capabilities.
3577 if (!system_capabilities_finalized())
3578 update_cpu_capabilities(SCOPE_LOCAL_CPU);
3579 else
3580 verify_local_cpu_capabilities();
3583 bool this_cpu_has_cap(unsigned int n)
3585 if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3586 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3588 if (cap)
3589 return cap->matches(cap, SCOPE_LOCAL_CPU);
3592 return false;
3594 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3597 * This helper function is used in a narrow window when,
3598 * - The system wide safe registers are set with all the SMP CPUs and,
3599 * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3601 static bool __maybe_unused __system_matches_cap(unsigned int n)
3603 if (n < ARM64_NCAPS) {
3604 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3606 if (cap)
3607 return cap->matches(cap, SCOPE_SYSTEM);
3609 return false;
3612 void cpu_set_feature(unsigned int num)
3614 set_bit(num, elf_hwcap);
3617 bool cpu_have_feature(unsigned int num)
3619 return test_bit(num, elf_hwcap);
3621 EXPORT_SYMBOL_GPL(cpu_have_feature);
3623 unsigned long cpu_get_elf_hwcap(void)
3626 * We currently only populate the first 32 bits of AT_HWCAP. Please
3627 * note that for userspace compatibility we guarantee that bits 62
3628 * and 63 will always be returned as 0.
3630 return elf_hwcap[0];
3633 unsigned long cpu_get_elf_hwcap2(void)
3635 return elf_hwcap[1];
3638 unsigned long cpu_get_elf_hwcap3(void)
3640 return elf_hwcap[2];
3643 static void __init setup_boot_cpu_capabilities(void)
3646 * The boot CPU's feature register values have been recorded. Detect
3647 * boot cpucaps and local cpucaps for the boot CPU, then enable and
3648 * patch alternatives for the available boot cpucaps.
3650 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3651 enable_cpu_capabilities(SCOPE_BOOT_CPU);
3652 apply_boot_alternatives();
3655 void __init setup_boot_cpu_features(void)
3658 * Initialize the indirect array of CPU capabilities pointers before we
3659 * handle the boot CPU.
3661 init_cpucap_indirect_list();
3664 * Detect broken pseudo-NMI. Must be called _before_ the call to
3665 * setup_boot_cpu_capabilities() since it interacts with
3666 * can_use_gic_priorities().
3668 detect_system_supports_pseudo_nmi();
3670 setup_boot_cpu_capabilities();
3673 static void __init setup_system_capabilities(void)
3676 * The system-wide safe feature register values have been finalized.
3677 * Detect, enable, and patch alternatives for the available system
3678 * cpucaps.
3680 update_cpu_capabilities(SCOPE_SYSTEM);
3681 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3682 apply_alternatives_all();
3685 * Log any cpucaps with a cpumask as these aren't logged by
3686 * update_cpu_capabilities().
3688 for (int i = 0; i < ARM64_NCAPS; i++) {
3689 const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
3691 if (caps && caps->cpus && caps->desc &&
3692 cpumask_any(caps->cpus) < nr_cpu_ids)
3693 pr_info("detected: %s on CPU%*pbl\n",
3694 caps->desc, cpumask_pr_args(caps->cpus));
3698 * TTBR0 PAN doesn't have its own cpucap, so log it manually.
3700 if (system_uses_ttbr0_pan())
3701 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3704 void __init setup_system_features(void)
3706 setup_system_capabilities();
3708 kpti_install_ng_mappings();
3710 sve_setup();
3711 sme_setup();
3714 * Check for sane CTR_EL0.CWG value.
3716 if (!cache_type_cwg())
3717 pr_warn("No Cache Writeback Granule information, assuming %d\n",
3718 ARCH_DMA_MINALIGN);
3721 void __init setup_user_features(void)
3723 user_feature_fixup();
3725 setup_elf_hwcaps(arm64_elf_hwcaps);
3727 if (system_supports_32bit_el0()) {
3728 setup_elf_hwcaps(compat_elf_hwcaps);
3729 elf_hwcap_fixup();
3732 minsigstksz_setup();
3735 static int enable_mismatched_32bit_el0(unsigned int cpu)
3738 * The first 32-bit-capable CPU we detected and so can no longer
3739 * be offlined by userspace. -1 indicates we haven't yet onlined
3740 * a 32-bit-capable CPU.
3742 static int lucky_winner = -1;
3744 struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3745 bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3747 if (cpu_32bit) {
3748 cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3749 static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3752 if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3753 return 0;
3755 if (lucky_winner >= 0)
3756 return 0;
3759 * We've detected a mismatch. We need to keep one of our CPUs with
3760 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3761 * every CPU in the system for a 32-bit task.
3763 lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3764 cpu_active_mask);
3765 get_cpu_device(lucky_winner)->offline_disabled = true;
3766 setup_elf_hwcaps(compat_elf_hwcaps);
3767 elf_hwcap_fixup();
3768 pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3769 cpu, lucky_winner);
3770 return 0;
3773 static int __init init_32bit_el0_mask(void)
3775 if (!allow_mismatched_32bit_el0)
3776 return 0;
3778 if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3779 return -ENOMEM;
3781 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3782 "arm64/mismatched_32bit_el0:online",
3783 enable_mismatched_32bit_el0, NULL);
3785 subsys_initcall_sync(init_32bit_el0_mask);
3787 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3789 cpu_enable_swapper_cnp();
3793 * We emulate only the following system register space.
3794 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3795 * See Table C5-6 System instruction encodings for System register accesses,
3796 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3798 static inline bool __attribute_const__ is_emulated(u32 id)
3800 return (sys_reg_Op0(id) == 0x3 &&
3801 sys_reg_CRn(id) == 0x0 &&
3802 sys_reg_Op1(id) == 0x0 &&
3803 (sys_reg_CRm(id) == 0 ||
3804 ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
3808 * With CRm == 0, reg should be one of :
3809 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3811 static inline int emulate_id_reg(u32 id, u64 *valp)
3813 switch (id) {
3814 case SYS_MIDR_EL1:
3815 *valp = read_cpuid_id();
3816 break;
3817 case SYS_MPIDR_EL1:
3818 *valp = SYS_MPIDR_SAFE_VAL;
3819 break;
3820 case SYS_REVIDR_EL1:
3821 /* IMPLEMENTATION DEFINED values are emulated with 0 */
3822 *valp = 0;
3823 break;
3824 default:
3825 return -EINVAL;
3828 return 0;
3831 static int emulate_sys_reg(u32 id, u64 *valp)
3833 struct arm64_ftr_reg *regp;
3835 if (!is_emulated(id))
3836 return -EINVAL;
3838 if (sys_reg_CRm(id) == 0)
3839 return emulate_id_reg(id, valp);
3841 regp = get_arm64_ftr_reg_nowarn(id);
3842 if (regp)
3843 *valp = arm64_ftr_reg_user_value(regp);
3844 else
3846 * The untracked registers are either IMPLEMENTATION DEFINED
3847 * (e.g, ID_AFR0_EL1) or reserved RAZ.
3849 *valp = 0;
3850 return 0;
3853 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3855 int rc;
3856 u64 val;
3858 rc = emulate_sys_reg(sys_reg, &val);
3859 if (!rc) {
3860 pt_regs_write_reg(regs, rt, val);
3861 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3863 return rc;
3866 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
3868 u32 sys_reg, rt;
3870 if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
3871 return false;
3874 * sys_reg values are defined as used in mrs/msr instruction.
3875 * shift the imm value to get the encoding.
3877 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3878 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3879 return do_emulate_mrs(regs, sys_reg, rt) == 0;
3882 enum mitigation_state arm64_get_meltdown_state(void)
3884 if (__meltdown_safe)
3885 return SPECTRE_UNAFFECTED;
3887 if (arm64_kernel_unmapped_at_el0())
3888 return SPECTRE_MITIGATED;
3890 return SPECTRE_VULNERABLE;
3893 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3894 char *buf)
3896 switch (arm64_get_meltdown_state()) {
3897 case SPECTRE_UNAFFECTED:
3898 return sprintf(buf, "Not affected\n");
3900 case SPECTRE_MITIGATED:
3901 return sprintf(buf, "Mitigation: PTI\n");
3903 default:
3904 return sprintf(buf, "Vulnerable\n");