1 // SPDX-License-Identifier: GPL-2.0-only
3 * Contains CPU feature definitions
5 * Copyright (C) 2015 ARM Ltd.
7 * A note for the weary kernel hacker: the code here is confusing and hard to
8 * follow! That's partly because it's solving a nasty problem, but also because
9 * there's a little bit of over-abstraction that tends to obscure what's going
10 * on behind a maze of helper functions and macros.
12 * The basic problem is that hardware folks have started gluing together CPUs
13 * with distinct architectural features; in some cases even creating SoCs where
14 * user-visible instructions are available only on a subset of the available
15 * cores. We try to address this by snapshotting the feature registers of the
16 * boot CPU and comparing these with the feature registers of each secondary
17 * CPU when bringing them up. If there is a mismatch, then we update the
18 * snapshot state to indicate the lowest-common denominator of the feature,
19 * known as the "safe" value. This snapshot state can be queried to view the
20 * "sanitised" value of a feature register.
22 * The sanitised register values are used to decide which capabilities we
23 * have in the system. These may be in the form of traditional "hwcaps"
24 * advertised to userspace or internal "cpucaps" which are used to configure
25 * things like alternative patching and static keys. While a feature mismatch
26 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27 * may prevent a CPU from being onlined at all.
29 * Some implementation details worth remembering:
31 * - Mismatched features are *always* sanitised to a "safe" value, which
32 * usually indicates that the feature is not supported.
34 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35 * warning when onlining an offending CPU and the kernel will be tainted
36 * with TAINT_CPU_OUT_OF_SPEC.
38 * - Features marked as FTR_VISIBLE have their sanitised value visible to
39 * userspace. FTR_VISIBLE features in registers that are only visible
40 * to EL0 by trapping *must* have a corresponding HWCAP so that late
41 * onlining of CPUs cannot lead to features disappearing at runtime.
43 * - A "feature" is typically a 4-bit register field. A "capability" is the
44 * high-level description derived from the sanitised field value.
46 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47 * scheme for fields in ID registers") to understand when feature fields
48 * may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
50 * - KVM exposes its own view of the feature registers to guest operating
51 * systems regardless of FTR_VISIBLE. This is typically driven from the
52 * sanitised register values to allow virtual CPUs to be migrated between
53 * arbitrary physical CPUs, but some features not present on the host are
54 * also advertised and emulated. Look at sys_reg_descs[] for the gory
57 * - If the arm64_ftr_bits[] for a register has a missing field, then this
58 * field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59 * This is stronger than FTR_HIDDEN and can be used to hide features from
63 #define pr_fmt(fmt) "CPU features: " fmt
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
80 #include <asm/cpufeature.h>
81 #include <asm/cpu_ops.h>
82 #include <asm/fpsimd.h>
83 #include <asm/hwcap.h>
85 #include <asm/kvm_host.h>
86 #include <asm/mmu_context.h>
88 #include <asm/processor.h>
90 #include <asm/sysreg.h>
91 #include <asm/traps.h>
92 #include <asm/vectors.h>
95 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
96 static DECLARE_BITMAP(elf_hwcap
, MAX_CPU_FEATURES
) __read_mostly
;
99 #define COMPAT_ELF_HWCAP_DEFAULT \
100 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
101 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
102 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
104 unsigned int compat_elf_hwcap __read_mostly
= COMPAT_ELF_HWCAP_DEFAULT
;
105 unsigned int compat_elf_hwcap2 __read_mostly
;
106 unsigned int compat_elf_hwcap3 __read_mostly
;
109 DECLARE_BITMAP(system_cpucaps
, ARM64_NCAPS
);
110 EXPORT_SYMBOL(system_cpucaps
);
111 static struct arm64_cpu_capabilities
const __ro_after_init
*cpucap_ptrs
[ARM64_NCAPS
];
113 DECLARE_BITMAP(boot_cpucaps
, ARM64_NCAPS
);
115 bool arm64_use_ng_mappings
= false;
116 EXPORT_SYMBOL(arm64_use_ng_mappings
);
118 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector
) = vectors
;
121 * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
124 static bool __read_mostly allow_mismatched_32bit_el0
;
127 * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
128 * seen at least one CPU capable of 32-bit EL0.
130 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0
);
133 * Mask of CPUs supporting 32-bit EL0.
134 * Only valid if arm64_mismatched_32bit_el0 is enabled.
136 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly
;
138 void dump_cpu_features(void)
140 /* file-wide pr_fmt adds "CPU features: " prefix */
141 pr_emerg("0x%*pb\n", ARM64_NCAPS
, &system_cpucaps
);
144 #define __ARM64_MAX_POSITIVE(reg, field) \
145 ((reg##_##field##_SIGNED ? \
146 BIT(reg##_##field##_WIDTH - 1) : \
147 BIT(reg##_##field##_WIDTH)) - 1)
149 #define __ARM64_MIN_NEGATIVE(reg, field) BIT(reg##_##field##_WIDTH - 1)
151 #define __ARM64_CPUID_FIELDS(reg, field, min_value, max_value) \
152 .sys_reg = SYS_##reg, \
153 .field_pos = reg##_##field##_SHIFT, \
154 .field_width = reg##_##field##_WIDTH, \
155 .sign = reg##_##field##_SIGNED, \
156 .min_field_value = min_value, \
157 .max_field_value = max_value,
160 * ARM64_CPUID_FIELDS() encodes a field with a range from min_value to
161 * an implicit maximum that depends on the sign-ess of the field.
163 * An unsigned field will be capped at all ones, while a signed field
164 * will be limited to the positive half only.
166 #define ARM64_CPUID_FIELDS(reg, field, min_value) \
167 __ARM64_CPUID_FIELDS(reg, field, \
168 SYS_FIELD_VALUE(reg, field, min_value), \
169 __ARM64_MAX_POSITIVE(reg, field))
172 * ARM64_CPUID_FIELDS_NEG() encodes a field with a range from an
173 * implicit minimal value to max_value. This should be used when
174 * matching a non-implemented property.
176 #define ARM64_CPUID_FIELDS_NEG(reg, field, max_value) \
177 __ARM64_CPUID_FIELDS(reg, field, \
178 __ARM64_MIN_NEGATIVE(reg, field), \
179 SYS_FIELD_VALUE(reg, field, max_value))
181 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
184 .visible = VISIBLE, \
189 .safe_val = SAFE_VAL, \
192 /* Define a feature with unsigned values */
193 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
194 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
196 /* Define a feature with a signed value */
197 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
198 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
200 #define ARM64_FTR_END \
205 static void cpu_enable_cnp(struct arm64_cpu_capabilities
const *cap
);
207 static bool __system_matches_cap(unsigned int n
);
210 * NOTE: Any changes to the visibility of features should be kept in
211 * sync with the documentation of the CPU feature register ABI.
213 static const struct arm64_ftr_bits ftr_id_aa64isar0
[] = {
214 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_EL1_RNDR_SHIFT
, 4, 0),
215 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_EL1_TLB_SHIFT
, 4, 0),
216 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_EL1_TS_SHIFT
, 4, 0),
217 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_EL1_FHM_SHIFT
, 4, 0),
218 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_EL1_DP_SHIFT
, 4, 0),
219 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_EL1_SM4_SHIFT
, 4, 0),
220 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_EL1_SM3_SHIFT
, 4, 0),
221 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_EL1_SHA3_SHIFT
, 4, 0),
222 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_EL1_RDM_SHIFT
, 4, 0),
223 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_EL1_ATOMIC_SHIFT
, 4, 0),
224 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_EL1_CRC32_SHIFT
, 4, 0),
225 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_EL1_SHA2_SHIFT
, 4, 0),
226 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_EL1_SHA1_SHIFT
, 4, 0),
227 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_EL1_AES_SHIFT
, 4, 0),
231 static const struct arm64_ftr_bits ftr_id_aa64isar1
[] = {
232 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_EL1_XS_SHIFT
, 4, 0),
233 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_EL1_I8MM_SHIFT
, 4, 0),
234 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_EL1_DGH_SHIFT
, 4, 0),
235 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_EL1_BF16_SHIFT
, 4, 0),
236 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_EL1_SPECRES_SHIFT
, 4, 0),
237 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_EL1_SB_SHIFT
, 4, 0),
238 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_EL1_FRINTTS_SHIFT
, 4, 0),
239 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH
),
240 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_EL1_GPI_SHIFT
, 4, 0),
241 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH
),
242 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_EL1_GPA_SHIFT
, 4, 0),
243 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_EL1_LRCPC_SHIFT
, 4, 0),
244 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_EL1_FCMA_SHIFT
, 4, 0),
245 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_EL1_JSCVT_SHIFT
, 4, 0),
246 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH
),
247 FTR_STRICT
, FTR_EXACT
, ID_AA64ISAR1_EL1_API_SHIFT
, 4, 0),
248 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH
),
249 FTR_STRICT
, FTR_EXACT
, ID_AA64ISAR1_EL1_APA_SHIFT
, 4, 0),
250 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_EL1_DPB_SHIFT
, 4, 0),
254 static const struct arm64_ftr_bits ftr_id_aa64isar2
[] = {
255 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR2_EL1_LUT_SHIFT
, 4, 0),
256 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR2_EL1_CSSC_SHIFT
, 4, 0),
257 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR2_EL1_RPRFM_SHIFT
, 4, 0),
258 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR2_EL1_CLRBHB_SHIFT
, 4, 0),
259 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR2_EL1_BC_SHIFT
, 4, 0),
260 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR2_EL1_MOPS_SHIFT
, 4, 0),
261 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH
),
262 FTR_STRICT
, FTR_EXACT
, ID_AA64ISAR2_EL1_APA3_SHIFT
, 4, 0),
263 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH
),
264 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR2_EL1_GPA3_SHIFT
, 4, 0),
265 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR2_EL1_RPRES_SHIFT
, 4, 0),
266 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR2_EL1_WFxT_SHIFT
, 4, 0),
270 static const struct arm64_ftr_bits ftr_id_aa64isar3
[] = {
271 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR3_EL1_FAMINMAX_SHIFT
, 4, 0),
275 static const struct arm64_ftr_bits ftr_id_aa64pfr0
[] = {
276 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL1_CSV3_SHIFT
, 4, 0),
277 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL1_CSV2_SHIFT
, 4, 0),
278 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL1_DIT_SHIFT
, 4, 0),
279 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL1_AMU_SHIFT
, 4, 0),
280 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL1_MPAM_SHIFT
, 4, 0),
281 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL1_SEL2_SHIFT
, 4, 0),
282 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
283 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL1_SVE_SHIFT
, 4, 0),
284 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL1_RAS_SHIFT
, 4, 0),
285 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL1_GIC_SHIFT
, 4, 0),
286 S_ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL1_AdvSIMD_SHIFT
, 4, ID_AA64PFR0_EL1_AdvSIMD_NI
),
287 S_ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL1_FP_SHIFT
, 4, ID_AA64PFR0_EL1_FP_NI
),
288 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL1_EL3_SHIFT
, 4, 0),
289 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL1_EL2_SHIFT
, 4, 0),
290 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL1_EL1_SHIFT
, 4, ID_AA64PFR0_EL1_EL1_IMP
),
291 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL1_EL0_SHIFT
, 4, ID_AA64PFR0_EL1_EL0_IMP
),
295 static const struct arm64_ftr_bits ftr_id_aa64pfr1
[] = {
296 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_GCS
),
297 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR1_EL1_GCS_SHIFT
, 4, 0),
298 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME
),
299 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR1_EL1_SME_SHIFT
, 4, 0),
300 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR1_EL1_MPAM_frac_SHIFT
, 4, 0),
301 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR1_EL1_RAS_frac_SHIFT
, 4, 0),
302 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE
),
303 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR1_EL1_MTE_SHIFT
, 4, ID_AA64PFR1_EL1_MTE_NI
),
304 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR1_EL1_SSBS_SHIFT
, 4, ID_AA64PFR1_EL1_SSBS_NI
),
305 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI
),
306 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR1_EL1_BT_SHIFT
, 4, 0),
310 static const struct arm64_ftr_bits ftr_id_aa64pfr2
[] = {
311 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR2_EL1_FPMR_SHIFT
, 4, 0),
315 static const struct arm64_ftr_bits ftr_id_aa64zfr0
[] = {
316 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
317 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_EL1_F64MM_SHIFT
, 4, 0),
318 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
319 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_EL1_F32MM_SHIFT
, 4, 0),
320 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
321 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_EL1_I8MM_SHIFT
, 4, 0),
322 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
323 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_EL1_SM4_SHIFT
, 4, 0),
324 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
325 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_EL1_SHA3_SHIFT
, 4, 0),
326 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
327 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_EL1_B16B16_SHIFT
, 4, 0),
328 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
329 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_EL1_BF16_SHIFT
, 4, 0),
330 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
331 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_EL1_BitPerm_SHIFT
, 4, 0),
332 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
333 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_EL1_AES_SHIFT
, 4, 0),
334 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
335 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_EL1_SVEver_SHIFT
, 4, 0),
339 static const struct arm64_ftr_bits ftr_id_aa64smfr0
[] = {
340 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME
),
341 FTR_STRICT
, FTR_EXACT
, ID_AA64SMFR0_EL1_FA64_SHIFT
, 1, 0),
342 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME
),
343 FTR_STRICT
, FTR_EXACT
, ID_AA64SMFR0_EL1_LUTv2_SHIFT
, 1, 0),
344 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME
),
345 FTR_STRICT
, FTR_EXACT
, ID_AA64SMFR0_EL1_SMEver_SHIFT
, 4, 0),
346 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME
),
347 FTR_STRICT
, FTR_EXACT
, ID_AA64SMFR0_EL1_I16I64_SHIFT
, 4, 0),
348 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME
),
349 FTR_STRICT
, FTR_EXACT
, ID_AA64SMFR0_EL1_F64F64_SHIFT
, 1, 0),
350 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME
),
351 FTR_STRICT
, FTR_EXACT
, ID_AA64SMFR0_EL1_I16I32_SHIFT
, 4, 0),
352 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME
),
353 FTR_STRICT
, FTR_EXACT
, ID_AA64SMFR0_EL1_B16B16_SHIFT
, 1, 0),
354 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME
),
355 FTR_STRICT
, FTR_EXACT
, ID_AA64SMFR0_EL1_F16F16_SHIFT
, 1, 0),
356 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME
),
357 FTR_STRICT
, FTR_EXACT
, ID_AA64SMFR0_EL1_F8F16_SHIFT
, 1, 0),
358 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME
),
359 FTR_STRICT
, FTR_EXACT
, ID_AA64SMFR0_EL1_F8F32_SHIFT
, 1, 0),
360 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME
),
361 FTR_STRICT
, FTR_EXACT
, ID_AA64SMFR0_EL1_I8I32_SHIFT
, 4, 0),
362 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME
),
363 FTR_STRICT
, FTR_EXACT
, ID_AA64SMFR0_EL1_F16F32_SHIFT
, 1, 0),
364 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME
),
365 FTR_STRICT
, FTR_EXACT
, ID_AA64SMFR0_EL1_B16F32_SHIFT
, 1, 0),
366 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME
),
367 FTR_STRICT
, FTR_EXACT
, ID_AA64SMFR0_EL1_BI32I32_SHIFT
, 1, 0),
368 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME
),
369 FTR_STRICT
, FTR_EXACT
, ID_AA64SMFR0_EL1_F32F32_SHIFT
, 1, 0),
370 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME
),
371 FTR_STRICT
, FTR_EXACT
, ID_AA64SMFR0_EL1_SF8FMA_SHIFT
, 1, 0),
372 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME
),
373 FTR_STRICT
, FTR_EXACT
, ID_AA64SMFR0_EL1_SF8DP4_SHIFT
, 1, 0),
374 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME
),
375 FTR_STRICT
, FTR_EXACT
, ID_AA64SMFR0_EL1_SF8DP2_SHIFT
, 1, 0),
379 static const struct arm64_ftr_bits ftr_id_aa64fpfr0
[] = {
380 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_EXACT
, ID_AA64FPFR0_EL1_F8CVT_SHIFT
, 1, 0),
381 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_EXACT
, ID_AA64FPFR0_EL1_F8FMA_SHIFT
, 1, 0),
382 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_EXACT
, ID_AA64FPFR0_EL1_F8DP4_SHIFT
, 1, 0),
383 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_EXACT
, ID_AA64FPFR0_EL1_F8DP2_SHIFT
, 1, 0),
384 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_EXACT
, ID_AA64FPFR0_EL1_F8E4M3_SHIFT
, 1, 0),
385 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_EXACT
, ID_AA64FPFR0_EL1_F8E5M2_SHIFT
, 1, 0),
389 static const struct arm64_ftr_bits ftr_id_aa64mmfr0
[] = {
390 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_EL1_ECV_SHIFT
, 4, 0),
391 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_EL1_FGT_SHIFT
, 4, 0),
392 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_EL1_EXS_SHIFT
, 4, 0),
394 * Page size not being supported at Stage-2 is not fatal. You
395 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
396 * your favourite nesting hypervisor.
398 * There is a small corner case where the hypervisor explicitly
399 * advertises a given granule size at Stage-2 (value 2) on some
400 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
401 * vCPUs. Although this is not forbidden by the architecture, it
402 * indicates that the hypervisor is being silly (or buggy).
404 * We make no effort to cope with this and pretend that if these
405 * fields are inconsistent across vCPUs, then it isn't worth
406 * trying to bring KVM up.
408 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_EXACT
, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT
, 4, 1),
409 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_EXACT
, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT
, 4, 1),
410 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_EXACT
, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT
, 4, 1),
412 * We already refuse to boot CPUs that don't support our configured
413 * page size, so we can only detect mismatches for a page size other
414 * than the one we're currently using. Unfortunately, SoCs like this
415 * exist in the wild so, even though we don't like it, we'll have to go
416 * along with it and treat them as non-strict.
418 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_EL1_TGRAN4_SHIFT
, 4, ID_AA64MMFR0_EL1_TGRAN4_NI
),
419 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_EL1_TGRAN64_SHIFT
, 4, ID_AA64MMFR0_EL1_TGRAN64_NI
),
420 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_EL1_TGRAN16_SHIFT
, 4, ID_AA64MMFR0_EL1_TGRAN16_NI
),
422 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT
, 4, 0),
423 /* Linux shouldn't care about secure memory */
424 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_EL1_SNSMEM_SHIFT
, 4, 0),
425 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_EL1_BIGEND_SHIFT
, 4, 0),
426 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT
, 4, 0),
428 * Differing PARange is fine as long as all peripherals and memory are mapped
429 * within the minimum PARange of all CPUs
431 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_EL1_PARANGE_SHIFT
, 4, 0),
435 static const struct arm64_ftr_bits ftr_id_aa64mmfr1
[] = {
436 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_EL1_ECBHB_SHIFT
, 4, 0),
437 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_EL1_TIDCP1_SHIFT
, 4, 0),
438 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_EL1_AFP_SHIFT
, 4, 0),
439 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_EL1_HCX_SHIFT
, 4, 0),
440 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_EL1_ETS_SHIFT
, 4, 0),
441 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_EL1_TWED_SHIFT
, 4, 0),
442 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_EL1_XNX_SHIFT
, 4, 0),
443 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_HIGHER_SAFE
, ID_AA64MMFR1_EL1_SpecSEI_SHIFT
, 4, 0),
444 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_EL1_PAN_SHIFT
, 4, 0),
445 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_EL1_LO_SHIFT
, 4, 0),
446 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_EL1_HPDS_SHIFT
, 4, 0),
447 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_EL1_VH_SHIFT
, 4, 0),
448 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_EL1_VMIDBits_SHIFT
, 4, 0),
449 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_EL1_HAFDBS_SHIFT
, 4, 0),
453 static const struct arm64_ftr_bits ftr_id_aa64mmfr2
[] = {
454 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_EL1_E0PD_SHIFT
, 4, 0),
455 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_EL1_EVT_SHIFT
, 4, 0),
456 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_EL1_BBM_SHIFT
, 4, 0),
457 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_EL1_TTL_SHIFT
, 4, 0),
458 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_EL1_FWB_SHIFT
, 4, 0),
459 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_EL1_IDS_SHIFT
, 4, 0),
460 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_EL1_AT_SHIFT
, 4, 0),
461 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_EL1_ST_SHIFT
, 4, 0),
462 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_EL1_NV_SHIFT
, 4, 0),
463 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_EL1_CCIDX_SHIFT
, 4, 0),
464 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_EL1_VARange_SHIFT
, 4, 0),
465 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_EL1_IESB_SHIFT
, 4, 0),
466 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_EL1_LSM_SHIFT
, 4, 0),
467 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_EL1_UAO_SHIFT
, 4, 0),
468 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_EL1_CnP_SHIFT
, 4, 0),
472 static const struct arm64_ftr_bits ftr_id_aa64mmfr3
[] = {
473 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_POE
),
474 FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR3_EL1_S1POE_SHIFT
, 4, 0),
475 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR3_EL1_S1PIE_SHIFT
, 4, 0),
476 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR3_EL1_TCRX_SHIFT
, 4, 0),
480 static const struct arm64_ftr_bits ftr_id_aa64mmfr4
[] = {
481 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR4_EL1_E2H0_SHIFT
, 4, 0),
485 static const struct arm64_ftr_bits ftr_ctr
[] = {
486 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_EXACT
, 31, 1, 1), /* RES1 */
487 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, CTR_EL0_DIC_SHIFT
, 1, 1),
488 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, CTR_EL0_IDC_SHIFT
, 1, 1),
489 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_HIGHER_OR_ZERO_SAFE
, CTR_EL0_CWG_SHIFT
, 4, 0),
490 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_HIGHER_OR_ZERO_SAFE
, CTR_EL0_ERG_SHIFT
, 4, 0),
491 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, CTR_EL0_DminLine_SHIFT
, 4, 1),
493 * Linux can handle differing I-cache policies. Userspace JITs will
494 * make use of *minLine.
495 * If we have differing I-cache policies, report it as the weakest - VIPT.
497 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_NONSTRICT
, FTR_EXACT
, CTR_EL0_L1Ip_SHIFT
, 2, CTR_EL0_L1Ip_VIPT
), /* L1Ip */
498 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, CTR_EL0_IminLine_SHIFT
, 4, 0),
502 static struct arm64_ftr_override __ro_after_init no_override
= { };
504 struct arm64_ftr_reg arm64_ftr_reg_ctrel0
= {
505 .name
= "SYS_CTR_EL0",
507 .override
= &no_override
,
510 static const struct arm64_ftr_bits ftr_id_mmfr0
[] = {
511 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_MMFR0_EL1_InnerShr_SHIFT
, 4, 0xf),
512 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_MMFR0_EL1_FCSE_SHIFT
, 4, 0),
513 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_MMFR0_EL1_AuxReg_SHIFT
, 4, 0),
514 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_MMFR0_EL1_TCM_SHIFT
, 4, 0),
515 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_MMFR0_EL1_ShareLvl_SHIFT
, 4, 0),
516 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_MMFR0_EL1_OuterShr_SHIFT
, 4, 0xf),
517 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_MMFR0_EL1_PMSA_SHIFT
, 4, 0),
518 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_MMFR0_EL1_VMSA_SHIFT
, 4, 0),
522 static const struct arm64_ftr_bits ftr_id_aa64dfr0
[] = {
523 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_EL1_DoubleLock_SHIFT
, 4, 0),
524 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_EL1_PMSVer_SHIFT
, 4, 0),
525 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT
, 4, 0),
526 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_EL1_WRPs_SHIFT
, 4, 0),
527 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_EL1_BRPs_SHIFT
, 4, 0),
529 * We can instantiate multiple PMU instances with different levels
532 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_EXACT
, ID_AA64DFR0_EL1_PMUVer_SHIFT
, 4, 0),
533 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64DFR0_EL1_DebugVer_SHIFT
, 4, 0x6),
537 static const struct arm64_ftr_bits ftr_mvfr0
[] = {
538 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, MVFR0_EL1_FPRound_SHIFT
, 4, 0),
539 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, MVFR0_EL1_FPShVec_SHIFT
, 4, 0),
540 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, MVFR0_EL1_FPSqrt_SHIFT
, 4, 0),
541 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, MVFR0_EL1_FPDivide_SHIFT
, 4, 0),
542 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, MVFR0_EL1_FPTrap_SHIFT
, 4, 0),
543 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, MVFR0_EL1_FPDP_SHIFT
, 4, 0),
544 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, MVFR0_EL1_FPSP_SHIFT
, 4, 0),
545 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, MVFR0_EL1_SIMDReg_SHIFT
, 4, 0),
549 static const struct arm64_ftr_bits ftr_mvfr1
[] = {
550 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, MVFR1_EL1_SIMDFMAC_SHIFT
, 4, 0),
551 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, MVFR1_EL1_FPHP_SHIFT
, 4, 0),
552 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, MVFR1_EL1_SIMDHP_SHIFT
, 4, 0),
553 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, MVFR1_EL1_SIMDSP_SHIFT
, 4, 0),
554 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, MVFR1_EL1_SIMDInt_SHIFT
, 4, 0),
555 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, MVFR1_EL1_SIMDLS_SHIFT
, 4, 0),
556 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, MVFR1_EL1_FPDNaN_SHIFT
, 4, 0),
557 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, MVFR1_EL1_FPFtZ_SHIFT
, 4, 0),
561 static const struct arm64_ftr_bits ftr_mvfr2
[] = {
562 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, MVFR2_EL1_FPMisc_SHIFT
, 4, 0),
563 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, MVFR2_EL1_SIMDMisc_SHIFT
, 4, 0),
567 static const struct arm64_ftr_bits ftr_dczid
[] = {
568 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_EXACT
, DCZID_EL0_DZP_SHIFT
, 1, 1),
569 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, DCZID_EL0_BS_SHIFT
, 4, 0),
573 static const struct arm64_ftr_bits ftr_gmid
[] = {
574 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, GMID_EL1_BS_SHIFT
, 4, 0),
578 static const struct arm64_ftr_bits ftr_id_isar0
[] = {
579 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR0_EL1_Divide_SHIFT
, 4, 0),
580 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR0_EL1_Debug_SHIFT
, 4, 0),
581 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR0_EL1_Coproc_SHIFT
, 4, 0),
582 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR0_EL1_CmpBranch_SHIFT
, 4, 0),
583 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR0_EL1_BitField_SHIFT
, 4, 0),
584 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR0_EL1_BitCount_SHIFT
, 4, 0),
585 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR0_EL1_Swap_SHIFT
, 4, 0),
589 static const struct arm64_ftr_bits ftr_id_isar5
[] = {
590 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_EL1_RDM_SHIFT
, 4, 0),
591 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_EL1_CRC32_SHIFT
, 4, 0),
592 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_EL1_SHA2_SHIFT
, 4, 0),
593 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_EL1_SHA1_SHIFT
, 4, 0),
594 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_EL1_AES_SHIFT
, 4, 0),
595 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_EL1_SEVL_SHIFT
, 4, 0),
599 static const struct arm64_ftr_bits ftr_id_mmfr4
[] = {
600 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_MMFR4_EL1_EVT_SHIFT
, 4, 0),
601 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_MMFR4_EL1_CCIDX_SHIFT
, 4, 0),
602 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_MMFR4_EL1_LSM_SHIFT
, 4, 0),
603 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_MMFR4_EL1_HPDS_SHIFT
, 4, 0),
604 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_MMFR4_EL1_CnP_SHIFT
, 4, 0),
605 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_MMFR4_EL1_XNX_SHIFT
, 4, 0),
606 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_MMFR4_EL1_AC2_SHIFT
, 4, 0),
609 * SpecSEI = 1 indicates that the PE might generate an SError on an
610 * external abort on speculative read. It is safe to assume that an
611 * SError might be generated than it will not be. Hence it has been
612 * classified as FTR_HIGHER_SAFE.
614 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_HIGHER_SAFE
, ID_MMFR4_EL1_SpecSEI_SHIFT
, 4, 0),
618 static const struct arm64_ftr_bits ftr_id_isar4
[] = {
619 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR4_EL1_SWP_frac_SHIFT
, 4, 0),
620 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR4_EL1_PSR_M_SHIFT
, 4, 0),
621 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR4_EL1_SynchPrim_frac_SHIFT
, 4, 0),
622 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR4_EL1_Barrier_SHIFT
, 4, 0),
623 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR4_EL1_SMC_SHIFT
, 4, 0),
624 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR4_EL1_Writeback_SHIFT
, 4, 0),
625 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR4_EL1_WithShifts_SHIFT
, 4, 0),
626 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR4_EL1_Unpriv_SHIFT
, 4, 0),
630 static const struct arm64_ftr_bits ftr_id_mmfr5
[] = {
631 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_MMFR5_EL1_ETS_SHIFT
, 4, 0),
635 static const struct arm64_ftr_bits ftr_id_isar6
[] = {
636 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR6_EL1_I8MM_SHIFT
, 4, 0),
637 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR6_EL1_BF16_SHIFT
, 4, 0),
638 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR6_EL1_SPECRES_SHIFT
, 4, 0),
639 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR6_EL1_SB_SHIFT
, 4, 0),
640 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR6_EL1_FHM_SHIFT
, 4, 0),
641 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR6_EL1_DP_SHIFT
, 4, 0),
642 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR6_EL1_JSCVT_SHIFT
, 4, 0),
646 static const struct arm64_ftr_bits ftr_id_pfr0
[] = {
647 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_PFR0_EL1_DIT_SHIFT
, 4, 0),
648 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_PFR0_EL1_CSV2_SHIFT
, 4, 0),
649 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_PFR0_EL1_State3_SHIFT
, 4, 0),
650 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_PFR0_EL1_State2_SHIFT
, 4, 0),
651 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_PFR0_EL1_State1_SHIFT
, 4, 0),
652 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_PFR0_EL1_State0_SHIFT
, 4, 0),
656 static const struct arm64_ftr_bits ftr_id_pfr1
[] = {
657 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_PFR1_EL1_GIC_SHIFT
, 4, 0),
658 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_PFR1_EL1_Virt_frac_SHIFT
, 4, 0),
659 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_PFR1_EL1_Sec_frac_SHIFT
, 4, 0),
660 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_PFR1_EL1_GenTimer_SHIFT
, 4, 0),
661 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_PFR1_EL1_Virtualization_SHIFT
, 4, 0),
662 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_PFR1_EL1_MProgMod_SHIFT
, 4, 0),
663 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_PFR1_EL1_Security_SHIFT
, 4, 0),
664 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_PFR1_EL1_ProgMod_SHIFT
, 4, 0),
668 static const struct arm64_ftr_bits ftr_id_pfr2
[] = {
669 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_PFR2_EL1_SSBS_SHIFT
, 4, 0),
670 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_PFR2_EL1_CSV3_SHIFT
, 4, 0),
674 static const struct arm64_ftr_bits ftr_id_dfr0
[] = {
675 /* [31:28] TraceFilt */
676 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_EXACT
, ID_DFR0_EL1_PerfMon_SHIFT
, 4, 0),
677 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_DFR0_EL1_MProfDbg_SHIFT
, 4, 0),
678 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_DFR0_EL1_MMapTrc_SHIFT
, 4, 0),
679 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_DFR0_EL1_CopTrc_SHIFT
, 4, 0),
680 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_DFR0_EL1_MMapDbg_SHIFT
, 4, 0),
681 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_DFR0_EL1_CopSDbg_SHIFT
, 4, 0),
682 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_DFR0_EL1_CopDbg_SHIFT
, 4, 0),
686 static const struct arm64_ftr_bits ftr_id_dfr1
[] = {
687 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_DFR1_EL1_MTPMU_SHIFT
, 4, 0),
691 static const struct arm64_ftr_bits ftr_mpamidr
[] = {
692 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, MPAMIDR_EL1_PMG_MAX_SHIFT
, MPAMIDR_EL1_PMG_MAX_WIDTH
, 0),
693 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, MPAMIDR_EL1_VPMR_MAX_SHIFT
, MPAMIDR_EL1_VPMR_MAX_WIDTH
, 0),
694 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, MPAMIDR_EL1_HAS_HCR_SHIFT
, 1, 0),
695 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, MPAMIDR_EL1_PARTID_MAX_SHIFT
, MPAMIDR_EL1_PARTID_MAX_WIDTH
, 0),
700 * Common ftr bits for a 32bit register with all hidden, strict
701 * attributes, with 4bit feature fields and a default safe value of
702 * 0. Covers the following 32bit registers:
703 * id_isar[1-3], id_mmfr[1-3]
705 static const struct arm64_ftr_bits ftr_generic_32bits
[] = {
706 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 28, 4, 0),
707 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 24, 4, 0),
708 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 20, 4, 0),
709 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 0),
710 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0),
711 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0),
712 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0),
713 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0),
717 /* Table for a single 32bit feature value */
718 static const struct arm64_ftr_bits ftr_single32
[] = {
719 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 0, 32, 0),
723 static const struct arm64_ftr_bits ftr_raz
[] = {
727 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) { \
729 .reg = &(struct arm64_ftr_reg){ \
732 .ftr_bits = &((table)[0]), \
735 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr) \
736 __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
738 #define ARM64_FTR_REG(id, table) \
739 __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
741 struct arm64_ftr_override id_aa64mmfr0_override
;
742 struct arm64_ftr_override id_aa64mmfr1_override
;
743 struct arm64_ftr_override id_aa64mmfr2_override
;
744 struct arm64_ftr_override id_aa64pfr0_override
;
745 struct arm64_ftr_override id_aa64pfr1_override
;
746 struct arm64_ftr_override id_aa64zfr0_override
;
747 struct arm64_ftr_override id_aa64smfr0_override
;
748 struct arm64_ftr_override id_aa64isar1_override
;
749 struct arm64_ftr_override id_aa64isar2_override
;
751 struct arm64_ftr_override arm64_sw_feature_override
;
753 static const struct __ftr_reg_entry
{
755 struct arm64_ftr_reg
*reg
;
756 } arm64_ftr_regs
[] = {
758 /* Op1 = 0, CRn = 0, CRm = 1 */
759 ARM64_FTR_REG(SYS_ID_PFR0_EL1
, ftr_id_pfr0
),
760 ARM64_FTR_REG(SYS_ID_PFR1_EL1
, ftr_id_pfr1
),
761 ARM64_FTR_REG(SYS_ID_DFR0_EL1
, ftr_id_dfr0
),
762 ARM64_FTR_REG(SYS_ID_MMFR0_EL1
, ftr_id_mmfr0
),
763 ARM64_FTR_REG(SYS_ID_MMFR1_EL1
, ftr_generic_32bits
),
764 ARM64_FTR_REG(SYS_ID_MMFR2_EL1
, ftr_generic_32bits
),
765 ARM64_FTR_REG(SYS_ID_MMFR3_EL1
, ftr_generic_32bits
),
767 /* Op1 = 0, CRn = 0, CRm = 2 */
768 ARM64_FTR_REG(SYS_ID_ISAR0_EL1
, ftr_id_isar0
),
769 ARM64_FTR_REG(SYS_ID_ISAR1_EL1
, ftr_generic_32bits
),
770 ARM64_FTR_REG(SYS_ID_ISAR2_EL1
, ftr_generic_32bits
),
771 ARM64_FTR_REG(SYS_ID_ISAR3_EL1
, ftr_generic_32bits
),
772 ARM64_FTR_REG(SYS_ID_ISAR4_EL1
, ftr_id_isar4
),
773 ARM64_FTR_REG(SYS_ID_ISAR5_EL1
, ftr_id_isar5
),
774 ARM64_FTR_REG(SYS_ID_MMFR4_EL1
, ftr_id_mmfr4
),
775 ARM64_FTR_REG(SYS_ID_ISAR6_EL1
, ftr_id_isar6
),
777 /* Op1 = 0, CRn = 0, CRm = 3 */
778 ARM64_FTR_REG(SYS_MVFR0_EL1
, ftr_mvfr0
),
779 ARM64_FTR_REG(SYS_MVFR1_EL1
, ftr_mvfr1
),
780 ARM64_FTR_REG(SYS_MVFR2_EL1
, ftr_mvfr2
),
781 ARM64_FTR_REG(SYS_ID_PFR2_EL1
, ftr_id_pfr2
),
782 ARM64_FTR_REG(SYS_ID_DFR1_EL1
, ftr_id_dfr1
),
783 ARM64_FTR_REG(SYS_ID_MMFR5_EL1
, ftr_id_mmfr5
),
785 /* Op1 = 0, CRn = 0, CRm = 4 */
786 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1
, ftr_id_aa64pfr0
,
787 &id_aa64pfr0_override
),
788 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1
, ftr_id_aa64pfr1
,
789 &id_aa64pfr1_override
),
790 ARM64_FTR_REG(SYS_ID_AA64PFR2_EL1
, ftr_id_aa64pfr2
),
791 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1
, ftr_id_aa64zfr0
,
792 &id_aa64zfr0_override
),
793 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1
, ftr_id_aa64smfr0
,
794 &id_aa64smfr0_override
),
795 ARM64_FTR_REG(SYS_ID_AA64FPFR0_EL1
, ftr_id_aa64fpfr0
),
797 /* Op1 = 0, CRn = 0, CRm = 5 */
798 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1
, ftr_id_aa64dfr0
),
799 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1
, ftr_raz
),
801 /* Op1 = 0, CRn = 0, CRm = 6 */
802 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1
, ftr_id_aa64isar0
),
803 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1
, ftr_id_aa64isar1
,
804 &id_aa64isar1_override
),
805 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1
, ftr_id_aa64isar2
,
806 &id_aa64isar2_override
),
807 ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1
, ftr_id_aa64isar3
),
809 /* Op1 = 0, CRn = 0, CRm = 7 */
810 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR0_EL1
, ftr_id_aa64mmfr0
,
811 &id_aa64mmfr0_override
),
812 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1
, ftr_id_aa64mmfr1
,
813 &id_aa64mmfr1_override
),
814 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR2_EL1
, ftr_id_aa64mmfr2
,
815 &id_aa64mmfr2_override
),
816 ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1
, ftr_id_aa64mmfr3
),
817 ARM64_FTR_REG(SYS_ID_AA64MMFR4_EL1
, ftr_id_aa64mmfr4
),
819 /* Op1 = 0, CRn = 10, CRm = 4 */
820 ARM64_FTR_REG(SYS_MPAMIDR_EL1
, ftr_mpamidr
),
822 /* Op1 = 1, CRn = 0, CRm = 0 */
823 ARM64_FTR_REG(SYS_GMID_EL1
, ftr_gmid
),
825 /* Op1 = 3, CRn = 0, CRm = 0 */
826 { SYS_CTR_EL0
, &arm64_ftr_reg_ctrel0
},
827 ARM64_FTR_REG(SYS_DCZID_EL0
, ftr_dczid
),
829 /* Op1 = 3, CRn = 14, CRm = 0 */
830 ARM64_FTR_REG(SYS_CNTFRQ_EL0
, ftr_single32
),
833 static int search_cmp_ftr_reg(const void *id
, const void *regp
)
835 return (int)(unsigned long)id
- (int)((const struct __ftr_reg_entry
*)regp
)->sys_id
;
839 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
840 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
841 * ascending order of sys_id, we use binary search to find a matching
844 * returns - Upon success, matching ftr_reg entry for id.
845 * - NULL on failure. It is upto the caller to decide
846 * the impact of a failure.
848 static struct arm64_ftr_reg
*get_arm64_ftr_reg_nowarn(u32 sys_id
)
850 const struct __ftr_reg_entry
*ret
;
852 ret
= bsearch((const void *)(unsigned long)sys_id
,
854 ARRAY_SIZE(arm64_ftr_regs
),
855 sizeof(arm64_ftr_regs
[0]),
863 * get_arm64_ftr_reg - Looks up a feature register entry using
864 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
866 * returns - Upon success, matching ftr_reg entry for id.
867 * - NULL on failure but with an WARN_ON().
869 struct arm64_ftr_reg
*get_arm64_ftr_reg(u32 sys_id
)
871 struct arm64_ftr_reg
*reg
;
873 reg
= get_arm64_ftr_reg_nowarn(sys_id
);
876 * Requesting a non-existent register search is an error. Warn
877 * and let the caller handle it.
883 static u64
arm64_ftr_set_value(const struct arm64_ftr_bits
*ftrp
, s64 reg
,
886 u64 mask
= arm64_ftr_mask(ftrp
);
889 reg
|= (ftr_val
<< ftrp
->shift
) & mask
;
893 s64
arm64_ftr_safe_value(const struct arm64_ftr_bits
*ftrp
, s64
new,
898 switch (ftrp
->type
) {
900 ret
= ftrp
->safe_val
;
905 case FTR_HIGHER_OR_ZERO_SAFE
:
909 case FTR_HIGHER_SAFE
:
919 static void __init
sort_ftr_regs(void)
923 for (i
= 0; i
< ARRAY_SIZE(arm64_ftr_regs
); i
++) {
924 const struct arm64_ftr_reg
*ftr_reg
= arm64_ftr_regs
[i
].reg
;
925 const struct arm64_ftr_bits
*ftr_bits
= ftr_reg
->ftr_bits
;
929 * Features here must be sorted in descending order with respect
930 * to their shift values and should not overlap with each other.
932 for (; ftr_bits
->width
!= 0; ftr_bits
++, j
++) {
933 unsigned int width
= ftr_reg
->ftr_bits
[j
].width
;
934 unsigned int shift
= ftr_reg
->ftr_bits
[j
].shift
;
935 unsigned int prev_shift
;
937 WARN((shift
+ width
) > 64,
938 "%s has invalid feature at shift %d\n",
939 ftr_reg
->name
, shift
);
942 * Skip the first feature. There is nothing to
943 * compare against for now.
948 prev_shift
= ftr_reg
->ftr_bits
[j
- 1].shift
;
949 WARN((shift
+ width
) > prev_shift
,
950 "%s has feature overlap at shift %d\n",
951 ftr_reg
->name
, shift
);
955 * Skip the first register. There is nothing to
956 * compare against for now.
961 * Registers here must be sorted in ascending order with respect
962 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
965 BUG_ON(arm64_ftr_regs
[i
].sys_id
<= arm64_ftr_regs
[i
- 1].sys_id
);
970 * Initialise the CPU feature register from Boot CPU values.
971 * Also initiliases the strict_mask for the register.
972 * Any bits that are not covered by an arm64_ftr_bits entry are considered
973 * RES0 for the system-wide value, and must strictly match.
975 static void init_cpu_ftr_reg(u32 sys_reg
, u64
new)
978 u64 strict_mask
= ~0x0ULL
;
982 const struct arm64_ftr_bits
*ftrp
;
983 struct arm64_ftr_reg
*reg
= get_arm64_ftr_reg(sys_reg
);
988 for (ftrp
= reg
->ftr_bits
; ftrp
->width
; ftrp
++) {
989 u64 ftr_mask
= arm64_ftr_mask(ftrp
);
990 s64 ftr_new
= arm64_ftr_value(ftrp
, new);
991 s64 ftr_ovr
= arm64_ftr_value(ftrp
, reg
->override
->val
);
993 if ((ftr_mask
& reg
->override
->mask
) == ftr_mask
) {
994 s64 tmp
= arm64_ftr_safe_value(ftrp
, ftr_ovr
, ftr_new
);
997 if (ftr_ovr
!= tmp
) {
998 /* Unsafe, remove the override */
999 reg
->override
->mask
&= ~ftr_mask
;
1000 reg
->override
->val
&= ~ftr_mask
;
1002 str
= "ignoring override";
1003 } else if (ftr_new
!= tmp
) {
1004 /* Override was valid */
1007 } else if (ftr_ovr
== tmp
) {
1008 /* Override was the safe value */
1009 str
= "already set";
1013 pr_warn("%s[%d:%d]: %s to %llx\n",
1015 ftrp
->shift
+ ftrp
->width
- 1,
1017 tmp
& (BIT(ftrp
->width
) - 1));
1018 } else if ((ftr_mask
& reg
->override
->val
) == ftr_mask
) {
1019 reg
->override
->val
&= ~ftr_mask
;
1020 pr_warn("%s[%d:%d]: impossible override, ignored\n",
1022 ftrp
->shift
+ ftrp
->width
- 1,
1026 val
= arm64_ftr_set_value(ftrp
, val
, ftr_new
);
1028 valid_mask
|= ftr_mask
;
1030 strict_mask
&= ~ftr_mask
;
1032 user_mask
|= ftr_mask
;
1034 reg
->user_val
= arm64_ftr_set_value(ftrp
,
1042 reg
->strict_mask
= strict_mask
;
1043 reg
->user_mask
= user_mask
;
1046 extern const struct arm64_cpu_capabilities arm64_errata
[];
1047 static const struct arm64_cpu_capabilities arm64_features
[];
1050 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities
*caps
)
1052 for (; caps
->matches
; caps
++) {
1053 if (WARN(caps
->capability
>= ARM64_NCAPS
,
1054 "Invalid capability %d\n", caps
->capability
))
1056 if (WARN(cpucap_ptrs
[caps
->capability
],
1057 "Duplicate entry for capability %d\n",
1060 cpucap_ptrs
[caps
->capability
] = caps
;
1064 static void __init
init_cpucap_indirect_list(void)
1066 init_cpucap_indirect_list_from_array(arm64_features
);
1067 init_cpucap_indirect_list_from_array(arm64_errata
);
1070 static void __init
setup_boot_cpu_capabilities(void);
1072 static void init_32bit_cpu_features(struct cpuinfo_32bit
*info
)
1074 init_cpu_ftr_reg(SYS_ID_DFR0_EL1
, info
->reg_id_dfr0
);
1075 init_cpu_ftr_reg(SYS_ID_DFR1_EL1
, info
->reg_id_dfr1
);
1076 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1
, info
->reg_id_isar0
);
1077 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1
, info
->reg_id_isar1
);
1078 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1
, info
->reg_id_isar2
);
1079 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1
, info
->reg_id_isar3
);
1080 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1
, info
->reg_id_isar4
);
1081 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1
, info
->reg_id_isar5
);
1082 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1
, info
->reg_id_isar6
);
1083 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1
, info
->reg_id_mmfr0
);
1084 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1
, info
->reg_id_mmfr1
);
1085 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1
, info
->reg_id_mmfr2
);
1086 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1
, info
->reg_id_mmfr3
);
1087 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1
, info
->reg_id_mmfr4
);
1088 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1
, info
->reg_id_mmfr5
);
1089 init_cpu_ftr_reg(SYS_ID_PFR0_EL1
, info
->reg_id_pfr0
);
1090 init_cpu_ftr_reg(SYS_ID_PFR1_EL1
, info
->reg_id_pfr1
);
1091 init_cpu_ftr_reg(SYS_ID_PFR2_EL1
, info
->reg_id_pfr2
);
1092 init_cpu_ftr_reg(SYS_MVFR0_EL1
, info
->reg_mvfr0
);
1093 init_cpu_ftr_reg(SYS_MVFR1_EL1
, info
->reg_mvfr1
);
1094 init_cpu_ftr_reg(SYS_MVFR2_EL1
, info
->reg_mvfr2
);
1097 #ifdef CONFIG_ARM64_PSEUDO_NMI
1098 static bool enable_pseudo_nmi
;
1100 static int __init
early_enable_pseudo_nmi(char *p
)
1102 return kstrtobool(p
, &enable_pseudo_nmi
);
1104 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi
);
1106 static __init
void detect_system_supports_pseudo_nmi(void)
1108 struct device_node
*np
;
1110 if (!enable_pseudo_nmi
)
1114 * Detect broken MediaTek firmware that doesn't properly save and
1115 * restore GIC priorities.
1117 np
= of_find_compatible_node(NULL
, NULL
, "arm,gic-v3");
1118 if (np
&& of_property_read_bool(np
, "mediatek,broken-save-restore-fw")) {
1119 pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1120 enable_pseudo_nmi
= false;
1124 #else /* CONFIG_ARM64_PSEUDO_NMI */
1125 static inline void detect_system_supports_pseudo_nmi(void) { }
1128 void __init
init_cpu_features(struct cpuinfo_arm64
*info
)
1130 /* Before we start using the tables, make sure it is sorted */
1133 init_cpu_ftr_reg(SYS_CTR_EL0
, info
->reg_ctr
);
1134 init_cpu_ftr_reg(SYS_DCZID_EL0
, info
->reg_dczid
);
1135 init_cpu_ftr_reg(SYS_CNTFRQ_EL0
, info
->reg_cntfrq
);
1136 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1
, info
->reg_id_aa64dfr0
);
1137 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1
, info
->reg_id_aa64dfr1
);
1138 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1
, info
->reg_id_aa64isar0
);
1139 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1
, info
->reg_id_aa64isar1
);
1140 init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1
, info
->reg_id_aa64isar2
);
1141 init_cpu_ftr_reg(SYS_ID_AA64ISAR3_EL1
, info
->reg_id_aa64isar3
);
1142 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1
, info
->reg_id_aa64mmfr0
);
1143 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1
, info
->reg_id_aa64mmfr1
);
1144 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1
, info
->reg_id_aa64mmfr2
);
1145 init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1
, info
->reg_id_aa64mmfr3
);
1146 init_cpu_ftr_reg(SYS_ID_AA64MMFR4_EL1
, info
->reg_id_aa64mmfr4
);
1147 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1
, info
->reg_id_aa64pfr0
);
1148 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1
, info
->reg_id_aa64pfr1
);
1149 init_cpu_ftr_reg(SYS_ID_AA64PFR2_EL1
, info
->reg_id_aa64pfr2
);
1150 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1
, info
->reg_id_aa64zfr0
);
1151 init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1
, info
->reg_id_aa64smfr0
);
1152 init_cpu_ftr_reg(SYS_ID_AA64FPFR0_EL1
, info
->reg_id_aa64fpfr0
);
1154 if (id_aa64pfr0_32bit_el0(info
->reg_id_aa64pfr0
))
1155 init_32bit_cpu_features(&info
->aarch32
);
1157 if (IS_ENABLED(CONFIG_ARM64_SVE
) &&
1158 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
))) {
1159 unsigned long cpacr
= cpacr_save_enable_kernel_sve();
1161 vec_init_vq_map(ARM64_VEC_SVE
);
1163 cpacr_restore(cpacr
);
1166 if (IS_ENABLED(CONFIG_ARM64_SME
) &&
1167 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1
))) {
1168 unsigned long cpacr
= cpacr_save_enable_kernel_sme();
1171 * We mask out SMPS since even if the hardware
1172 * supports priorities the kernel does not at present
1173 * and we block access to them.
1175 info
->reg_smidr
= read_cpuid(SMIDR_EL1
) & ~SMIDR_EL1_SMPS
;
1176 vec_init_vq_map(ARM64_VEC_SME
);
1178 cpacr_restore(cpacr
);
1181 if (id_aa64pfr0_mpam(info
->reg_id_aa64pfr0
))
1182 init_cpu_ftr_reg(SYS_MPAMIDR_EL1
, info
->reg_mpamidr
);
1184 if (id_aa64pfr1_mte(info
->reg_id_aa64pfr1
))
1185 init_cpu_ftr_reg(SYS_GMID_EL1
, info
->reg_gmid
);
1188 static void update_cpu_ftr_reg(struct arm64_ftr_reg
*reg
, u64
new)
1190 const struct arm64_ftr_bits
*ftrp
;
1192 for (ftrp
= reg
->ftr_bits
; ftrp
->width
; ftrp
++) {
1193 s64 ftr_cur
= arm64_ftr_value(ftrp
, reg
->sys_val
);
1194 s64 ftr_new
= arm64_ftr_value(ftrp
, new);
1196 if (ftr_cur
== ftr_new
)
1198 /* Find a safe value */
1199 ftr_new
= arm64_ftr_safe_value(ftrp
, ftr_new
, ftr_cur
);
1200 reg
->sys_val
= arm64_ftr_set_value(ftrp
, reg
->sys_val
, ftr_new
);
1205 static int check_update_ftr_reg(u32 sys_id
, int cpu
, u64 val
, u64 boot
)
1207 struct arm64_ftr_reg
*regp
= get_arm64_ftr_reg(sys_id
);
1212 update_cpu_ftr_reg(regp
, val
);
1213 if ((boot
& regp
->strict_mask
) == (val
& regp
->strict_mask
))
1215 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1216 regp
->name
, boot
, cpu
, val
);
1220 static void relax_cpu_ftr_reg(u32 sys_id
, int field
)
1222 const struct arm64_ftr_bits
*ftrp
;
1223 struct arm64_ftr_reg
*regp
= get_arm64_ftr_reg(sys_id
);
1228 for (ftrp
= regp
->ftr_bits
; ftrp
->width
; ftrp
++) {
1229 if (ftrp
->shift
== field
) {
1230 regp
->strict_mask
&= ~arm64_ftr_mask(ftrp
);
1236 WARN_ON(!ftrp
->width
);
1239 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64
*info
,
1240 struct cpuinfo_arm64
*boot
)
1242 static bool boot_cpu_32bit_regs_overridden
= false;
1244 if (!allow_mismatched_32bit_el0
|| boot_cpu_32bit_regs_overridden
)
1247 if (id_aa64pfr0_32bit_el0(boot
->reg_id_aa64pfr0
))
1250 boot
->aarch32
= info
->aarch32
;
1251 init_32bit_cpu_features(&boot
->aarch32
);
1252 boot_cpu_32bit_regs_overridden
= true;
1255 static int update_32bit_cpu_features(int cpu
, struct cpuinfo_32bit
*info
,
1256 struct cpuinfo_32bit
*boot
)
1259 u64 pfr0
= read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
);
1262 * If we don't have AArch32 at EL1, then relax the strictness of
1263 * EL1-dependent register fields to avoid spurious sanity check fails.
1265 if (!id_aa64pfr0_32bit_el1(pfr0
)) {
1266 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1
, ID_ISAR4_EL1_SMC_SHIFT
);
1267 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1
, ID_PFR1_EL1_Virt_frac_SHIFT
);
1268 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1
, ID_PFR1_EL1_Sec_frac_SHIFT
);
1269 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1
, ID_PFR1_EL1_Virtualization_SHIFT
);
1270 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1
, ID_PFR1_EL1_Security_SHIFT
);
1271 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1
, ID_PFR1_EL1_ProgMod_SHIFT
);
1274 taint
|= check_update_ftr_reg(SYS_ID_DFR0_EL1
, cpu
,
1275 info
->reg_id_dfr0
, boot
->reg_id_dfr0
);
1276 taint
|= check_update_ftr_reg(SYS_ID_DFR1_EL1
, cpu
,
1277 info
->reg_id_dfr1
, boot
->reg_id_dfr1
);
1278 taint
|= check_update_ftr_reg(SYS_ID_ISAR0_EL1
, cpu
,
1279 info
->reg_id_isar0
, boot
->reg_id_isar0
);
1280 taint
|= check_update_ftr_reg(SYS_ID_ISAR1_EL1
, cpu
,
1281 info
->reg_id_isar1
, boot
->reg_id_isar1
);
1282 taint
|= check_update_ftr_reg(SYS_ID_ISAR2_EL1
, cpu
,
1283 info
->reg_id_isar2
, boot
->reg_id_isar2
);
1284 taint
|= check_update_ftr_reg(SYS_ID_ISAR3_EL1
, cpu
,
1285 info
->reg_id_isar3
, boot
->reg_id_isar3
);
1286 taint
|= check_update_ftr_reg(SYS_ID_ISAR4_EL1
, cpu
,
1287 info
->reg_id_isar4
, boot
->reg_id_isar4
);
1288 taint
|= check_update_ftr_reg(SYS_ID_ISAR5_EL1
, cpu
,
1289 info
->reg_id_isar5
, boot
->reg_id_isar5
);
1290 taint
|= check_update_ftr_reg(SYS_ID_ISAR6_EL1
, cpu
,
1291 info
->reg_id_isar6
, boot
->reg_id_isar6
);
1294 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1295 * ACTLR formats could differ across CPUs and therefore would have to
1296 * be trapped for virtualization anyway.
1298 taint
|= check_update_ftr_reg(SYS_ID_MMFR0_EL1
, cpu
,
1299 info
->reg_id_mmfr0
, boot
->reg_id_mmfr0
);
1300 taint
|= check_update_ftr_reg(SYS_ID_MMFR1_EL1
, cpu
,
1301 info
->reg_id_mmfr1
, boot
->reg_id_mmfr1
);
1302 taint
|= check_update_ftr_reg(SYS_ID_MMFR2_EL1
, cpu
,
1303 info
->reg_id_mmfr2
, boot
->reg_id_mmfr2
);
1304 taint
|= check_update_ftr_reg(SYS_ID_MMFR3_EL1
, cpu
,
1305 info
->reg_id_mmfr3
, boot
->reg_id_mmfr3
);
1306 taint
|= check_update_ftr_reg(SYS_ID_MMFR4_EL1
, cpu
,
1307 info
->reg_id_mmfr4
, boot
->reg_id_mmfr4
);
1308 taint
|= check_update_ftr_reg(SYS_ID_MMFR5_EL1
, cpu
,
1309 info
->reg_id_mmfr5
, boot
->reg_id_mmfr5
);
1310 taint
|= check_update_ftr_reg(SYS_ID_PFR0_EL1
, cpu
,
1311 info
->reg_id_pfr0
, boot
->reg_id_pfr0
);
1312 taint
|= check_update_ftr_reg(SYS_ID_PFR1_EL1
, cpu
,
1313 info
->reg_id_pfr1
, boot
->reg_id_pfr1
);
1314 taint
|= check_update_ftr_reg(SYS_ID_PFR2_EL1
, cpu
,
1315 info
->reg_id_pfr2
, boot
->reg_id_pfr2
);
1316 taint
|= check_update_ftr_reg(SYS_MVFR0_EL1
, cpu
,
1317 info
->reg_mvfr0
, boot
->reg_mvfr0
);
1318 taint
|= check_update_ftr_reg(SYS_MVFR1_EL1
, cpu
,
1319 info
->reg_mvfr1
, boot
->reg_mvfr1
);
1320 taint
|= check_update_ftr_reg(SYS_MVFR2_EL1
, cpu
,
1321 info
->reg_mvfr2
, boot
->reg_mvfr2
);
1327 * Update system wide CPU feature registers with the values from a
1328 * non-boot CPU. Also performs SANITY checks to make sure that there
1329 * aren't any insane variations from that of the boot CPU.
1331 void update_cpu_features(int cpu
,
1332 struct cpuinfo_arm64
*info
,
1333 struct cpuinfo_arm64
*boot
)
1338 * The kernel can handle differing I-cache policies, but otherwise
1339 * caches should look identical. Userspace JITs will make use of
1342 taint
|= check_update_ftr_reg(SYS_CTR_EL0
, cpu
,
1343 info
->reg_ctr
, boot
->reg_ctr
);
1346 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1347 * could result in too much or too little memory being zeroed if a
1348 * process is preempted and migrated between CPUs.
1350 taint
|= check_update_ftr_reg(SYS_DCZID_EL0
, cpu
,
1351 info
->reg_dczid
, boot
->reg_dczid
);
1353 /* If different, timekeeping will be broken (especially with KVM) */
1354 taint
|= check_update_ftr_reg(SYS_CNTFRQ_EL0
, cpu
,
1355 info
->reg_cntfrq
, boot
->reg_cntfrq
);
1358 * The kernel uses self-hosted debug features and expects CPUs to
1359 * support identical debug features. We presently need CTX_CMPs, WRPs,
1360 * and BRPs to be identical.
1361 * ID_AA64DFR1 is currently RES0.
1363 taint
|= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1
, cpu
,
1364 info
->reg_id_aa64dfr0
, boot
->reg_id_aa64dfr0
);
1365 taint
|= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1
, cpu
,
1366 info
->reg_id_aa64dfr1
, boot
->reg_id_aa64dfr1
);
1368 * Even in big.LITTLE, processors should be identical instruction-set
1371 taint
|= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1
, cpu
,
1372 info
->reg_id_aa64isar0
, boot
->reg_id_aa64isar0
);
1373 taint
|= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1
, cpu
,
1374 info
->reg_id_aa64isar1
, boot
->reg_id_aa64isar1
);
1375 taint
|= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1
, cpu
,
1376 info
->reg_id_aa64isar2
, boot
->reg_id_aa64isar2
);
1377 taint
|= check_update_ftr_reg(SYS_ID_AA64ISAR3_EL1
, cpu
,
1378 info
->reg_id_aa64isar3
, boot
->reg_id_aa64isar3
);
1381 * Differing PARange support is fine as long as all peripherals and
1382 * memory are mapped within the minimum PARange of all CPUs.
1383 * Linux should not care about secure memory.
1385 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1
, cpu
,
1386 info
->reg_id_aa64mmfr0
, boot
->reg_id_aa64mmfr0
);
1387 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1
, cpu
,
1388 info
->reg_id_aa64mmfr1
, boot
->reg_id_aa64mmfr1
);
1389 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1
, cpu
,
1390 info
->reg_id_aa64mmfr2
, boot
->reg_id_aa64mmfr2
);
1391 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1
, cpu
,
1392 info
->reg_id_aa64mmfr3
, boot
->reg_id_aa64mmfr3
);
1394 taint
|= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1
, cpu
,
1395 info
->reg_id_aa64pfr0
, boot
->reg_id_aa64pfr0
);
1396 taint
|= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1
, cpu
,
1397 info
->reg_id_aa64pfr1
, boot
->reg_id_aa64pfr1
);
1398 taint
|= check_update_ftr_reg(SYS_ID_AA64PFR2_EL1
, cpu
,
1399 info
->reg_id_aa64pfr2
, boot
->reg_id_aa64pfr2
);
1401 taint
|= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1
, cpu
,
1402 info
->reg_id_aa64zfr0
, boot
->reg_id_aa64zfr0
);
1404 taint
|= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1
, cpu
,
1405 info
->reg_id_aa64smfr0
, boot
->reg_id_aa64smfr0
);
1407 taint
|= check_update_ftr_reg(SYS_ID_AA64FPFR0_EL1
, cpu
,
1408 info
->reg_id_aa64fpfr0
, boot
->reg_id_aa64fpfr0
);
1410 /* Probe vector lengths */
1411 if (IS_ENABLED(CONFIG_ARM64_SVE
) &&
1412 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
))) {
1413 if (!system_capabilities_finalized()) {
1414 unsigned long cpacr
= cpacr_save_enable_kernel_sve();
1416 vec_update_vq_map(ARM64_VEC_SVE
);
1418 cpacr_restore(cpacr
);
1422 if (IS_ENABLED(CONFIG_ARM64_SME
) &&
1423 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1
))) {
1424 unsigned long cpacr
= cpacr_save_enable_kernel_sme();
1427 * We mask out SMPS since even if the hardware
1428 * supports priorities the kernel does not at present
1429 * and we block access to them.
1431 info
->reg_smidr
= read_cpuid(SMIDR_EL1
) & ~SMIDR_EL1_SMPS
;
1433 /* Probe vector lengths */
1434 if (!system_capabilities_finalized())
1435 vec_update_vq_map(ARM64_VEC_SME
);
1437 cpacr_restore(cpacr
);
1440 if (id_aa64pfr0_mpam(info
->reg_id_aa64pfr0
)) {
1441 taint
|= check_update_ftr_reg(SYS_MPAMIDR_EL1
, cpu
,
1442 info
->reg_mpamidr
, boot
->reg_mpamidr
);
1446 * The kernel uses the LDGM/STGM instructions and the number of tags
1447 * they read/write depends on the GMID_EL1.BS field. Check that the
1448 * value is the same on all CPUs.
1450 if (IS_ENABLED(CONFIG_ARM64_MTE
) &&
1451 id_aa64pfr1_mte(info
->reg_id_aa64pfr1
)) {
1452 taint
|= check_update_ftr_reg(SYS_GMID_EL1
, cpu
,
1453 info
->reg_gmid
, boot
->reg_gmid
);
1457 * If we don't have AArch32 at all then skip the checks entirely
1458 * as the register values may be UNKNOWN and we're not going to be
1459 * using them for anything.
1461 * This relies on a sanitised view of the AArch64 ID registers
1462 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1464 if (id_aa64pfr0_32bit_el0(info
->reg_id_aa64pfr0
)) {
1465 lazy_init_32bit_cpu_features(info
, boot
);
1466 taint
|= update_32bit_cpu_features(cpu
, &info
->aarch32
,
1471 * Mismatched CPU features are a recipe for disaster. Don't even
1472 * pretend to support them.
1475 pr_warn_once("Unsupported CPU feature variation detected.\n");
1476 add_taint(TAINT_CPU_OUT_OF_SPEC
, LOCKDEP_STILL_OK
);
1480 u64
read_sanitised_ftr_reg(u32 id
)
1482 struct arm64_ftr_reg
*regp
= get_arm64_ftr_reg(id
);
1486 return regp
->sys_val
;
1488 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg
);
1490 #define read_sysreg_case(r) \
1491 case r: val = read_sysreg_s(r); break;
1494 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1495 * Read the system register on the current CPU
1497 u64
__read_sysreg_by_encoding(u32 sys_id
)
1499 struct arm64_ftr_reg
*regp
;
1503 read_sysreg_case(SYS_ID_PFR0_EL1
);
1504 read_sysreg_case(SYS_ID_PFR1_EL1
);
1505 read_sysreg_case(SYS_ID_PFR2_EL1
);
1506 read_sysreg_case(SYS_ID_DFR0_EL1
);
1507 read_sysreg_case(SYS_ID_DFR1_EL1
);
1508 read_sysreg_case(SYS_ID_MMFR0_EL1
);
1509 read_sysreg_case(SYS_ID_MMFR1_EL1
);
1510 read_sysreg_case(SYS_ID_MMFR2_EL1
);
1511 read_sysreg_case(SYS_ID_MMFR3_EL1
);
1512 read_sysreg_case(SYS_ID_MMFR4_EL1
);
1513 read_sysreg_case(SYS_ID_MMFR5_EL1
);
1514 read_sysreg_case(SYS_ID_ISAR0_EL1
);
1515 read_sysreg_case(SYS_ID_ISAR1_EL1
);
1516 read_sysreg_case(SYS_ID_ISAR2_EL1
);
1517 read_sysreg_case(SYS_ID_ISAR3_EL1
);
1518 read_sysreg_case(SYS_ID_ISAR4_EL1
);
1519 read_sysreg_case(SYS_ID_ISAR5_EL1
);
1520 read_sysreg_case(SYS_ID_ISAR6_EL1
);
1521 read_sysreg_case(SYS_MVFR0_EL1
);
1522 read_sysreg_case(SYS_MVFR1_EL1
);
1523 read_sysreg_case(SYS_MVFR2_EL1
);
1525 read_sysreg_case(SYS_ID_AA64PFR0_EL1
);
1526 read_sysreg_case(SYS_ID_AA64PFR1_EL1
);
1527 read_sysreg_case(SYS_ID_AA64PFR2_EL1
);
1528 read_sysreg_case(SYS_ID_AA64ZFR0_EL1
);
1529 read_sysreg_case(SYS_ID_AA64SMFR0_EL1
);
1530 read_sysreg_case(SYS_ID_AA64FPFR0_EL1
);
1531 read_sysreg_case(SYS_ID_AA64DFR0_EL1
);
1532 read_sysreg_case(SYS_ID_AA64DFR1_EL1
);
1533 read_sysreg_case(SYS_ID_AA64MMFR0_EL1
);
1534 read_sysreg_case(SYS_ID_AA64MMFR1_EL1
);
1535 read_sysreg_case(SYS_ID_AA64MMFR2_EL1
);
1536 read_sysreg_case(SYS_ID_AA64MMFR3_EL1
);
1537 read_sysreg_case(SYS_ID_AA64MMFR4_EL1
);
1538 read_sysreg_case(SYS_ID_AA64ISAR0_EL1
);
1539 read_sysreg_case(SYS_ID_AA64ISAR1_EL1
);
1540 read_sysreg_case(SYS_ID_AA64ISAR2_EL1
);
1541 read_sysreg_case(SYS_ID_AA64ISAR3_EL1
);
1543 read_sysreg_case(SYS_CNTFRQ_EL0
);
1544 read_sysreg_case(SYS_CTR_EL0
);
1545 read_sysreg_case(SYS_DCZID_EL0
);
1552 regp
= get_arm64_ftr_reg(sys_id
);
1554 val
&= ~regp
->override
->mask
;
1555 val
|= (regp
->override
->val
& regp
->override
->mask
);
1561 #include <linux/irqchip/arm-gic-v3.h>
1564 has_always(const struct arm64_cpu_capabilities
*entry
, int scope
)
1570 feature_matches(u64 reg
, const struct arm64_cpu_capabilities
*entry
)
1575 val
= cpuid_feature_extract_field_width(reg
, entry
->field_pos
,
1579 tmp
= entry
->min_field_value
;
1580 tmp
<<= entry
->field_pos
;
1582 min
= cpuid_feature_extract_field_width(tmp
, entry
->field_pos
,
1586 tmp
= entry
->max_field_value
;
1587 tmp
<<= entry
->field_pos
;
1589 max
= cpuid_feature_extract_field_width(tmp
, entry
->field_pos
,
1593 return val
>= min
&& val
<= max
;
1597 read_scoped_sysreg(const struct arm64_cpu_capabilities
*entry
, int scope
)
1599 WARN_ON(scope
== SCOPE_LOCAL_CPU
&& preemptible());
1600 if (scope
== SCOPE_SYSTEM
)
1601 return read_sanitised_ftr_reg(entry
->sys_reg
);
1603 return __read_sysreg_by_encoding(entry
->sys_reg
);
1607 has_user_cpuid_feature(const struct arm64_cpu_capabilities
*entry
, int scope
)
1610 struct arm64_ftr_reg
*regp
;
1611 u64 val
= read_scoped_sysreg(entry
, scope
);
1613 regp
= get_arm64_ftr_reg(entry
->sys_reg
);
1617 mask
= cpuid_feature_extract_unsigned_field_width(regp
->user_mask
,
1619 entry
->field_width
);
1623 return feature_matches(val
, entry
);
1627 has_cpuid_feature(const struct arm64_cpu_capabilities
*entry
, int scope
)
1629 u64 val
= read_scoped_sysreg(entry
, scope
);
1630 return feature_matches(val
, entry
);
1633 const struct cpumask
*system_32bit_el0_cpumask(void)
1635 if (!system_supports_32bit_el0())
1636 return cpu_none_mask
;
1638 if (static_branch_unlikely(&arm64_mismatched_32bit_el0
))
1639 return cpu_32bit_el0_mask
;
1641 return cpu_possible_mask
;
1644 static int __init
parse_32bit_el0_param(char *str
)
1646 allow_mismatched_32bit_el0
= true;
1649 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param
);
1651 static ssize_t
aarch32_el0_show(struct device
*dev
,
1652 struct device_attribute
*attr
, char *buf
)
1654 const struct cpumask
*mask
= system_32bit_el0_cpumask();
1656 return sysfs_emit(buf
, "%*pbl\n", cpumask_pr_args(mask
));
1658 static const DEVICE_ATTR_RO(aarch32_el0
);
1660 static int __init
aarch32_el0_sysfs_init(void)
1662 struct device
*dev_root
;
1665 if (!allow_mismatched_32bit_el0
)
1668 dev_root
= bus_get_dev_root(&cpu_subsys
);
1670 ret
= device_create_file(dev_root
, &dev_attr_aarch32_el0
);
1671 put_device(dev_root
);
1675 device_initcall(aarch32_el0_sysfs_init
);
1677 static bool has_32bit_el0(const struct arm64_cpu_capabilities
*entry
, int scope
)
1679 if (!has_cpuid_feature(entry
, scope
))
1680 return allow_mismatched_32bit_el0
;
1682 if (scope
== SCOPE_SYSTEM
)
1683 pr_info("detected: 32-bit EL0 Support\n");
1688 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities
*entry
, int scope
)
1692 if (!has_cpuid_feature(entry
, scope
))
1695 has_sre
= gic_enable_sre();
1697 pr_warn_once("%s present but disabled by higher exception level\n",
1703 static bool has_cache_idc(const struct arm64_cpu_capabilities
*entry
,
1708 if (scope
== SCOPE_SYSTEM
)
1709 ctr
= arm64_ftr_reg_ctrel0
.sys_val
;
1711 ctr
= read_cpuid_effective_cachetype();
1713 return ctr
& BIT(CTR_EL0_IDC_SHIFT
);
1716 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities
*__unused
)
1719 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1720 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1721 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1724 if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT
)))
1725 sysreg_clear_set(sctlr_el1
, SCTLR_EL1_UCT
, 0);
1728 static bool has_cache_dic(const struct arm64_cpu_capabilities
*entry
,
1733 if (scope
== SCOPE_SYSTEM
)
1734 ctr
= arm64_ftr_reg_ctrel0
.sys_val
;
1736 ctr
= read_cpuid_cachetype();
1738 return ctr
& BIT(CTR_EL0_DIC_SHIFT
);
1741 static bool __maybe_unused
1742 has_useable_cnp(const struct arm64_cpu_capabilities
*entry
, int scope
)
1745 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1746 * may share TLB entries with a CPU stuck in the crashed
1749 if (is_kdump_kernel())
1752 if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP
))
1755 return has_cpuid_feature(entry
, scope
);
1758 static bool __meltdown_safe
= true;
1759 static int __kpti_forced
; /* 0: not forced, >0: forced on, <0: forced off */
1761 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities
*entry
,
1764 /* List of CPUs that are not vulnerable and don't need KPTI */
1765 static const struct midr_range kpti_safe_list
[] = {
1766 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2
),
1767 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN
),
1768 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53
),
1769 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35
),
1770 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53
),
1771 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55
),
1772 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57
),
1773 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72
),
1774 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73
),
1775 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110
),
1776 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL
),
1777 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD
),
1778 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER
),
1779 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER
),
1780 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER
),
1783 char const *str
= "kpti command line option";
1786 meltdown_safe
= is_midr_in_range_list(read_cpuid_id(), kpti_safe_list
);
1788 /* Defer to CPU feature registers */
1789 if (has_cpuid_feature(entry
, scope
))
1790 meltdown_safe
= true;
1793 __meltdown_safe
= false;
1796 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1797 * ThunderX leads to apparent I-cache corruption of kernel text, which
1798 * ends as well as you might imagine. Don't even try. We cannot rely
1799 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1800 * because cpucap detection order may change. However, since we know
1801 * affected CPUs are always in a homogeneous configuration, it is
1802 * safe to rely on this_cpu_has_cap() here.
1804 if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456
)) {
1805 str
= "ARM64_WORKAROUND_CAVIUM_27456";
1809 /* Useful for KASLR robustness */
1810 if (kaslr_enabled() && kaslr_requires_kpti()) {
1811 if (!__kpti_forced
) {
1817 if (cpu_mitigations_off() && !__kpti_forced
) {
1818 str
= "mitigations=off";
1822 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0
)) {
1823 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1828 if (__kpti_forced
) {
1829 pr_info_once("kernel page table isolation forced %s by %s\n",
1830 __kpti_forced
> 0 ? "ON" : "OFF", str
);
1831 return __kpti_forced
> 0;
1834 return !meltdown_safe
;
1837 static bool has_nv1(const struct arm64_cpu_capabilities
*entry
, int scope
)
1840 * Although the Apple M2 family appears to support NV1, the
1841 * PTW barfs on the nVHE EL2 S1 page table format. Pretend
1842 * that it doesn't support NV1 at all.
1844 static const struct midr_range nv1_ni_list
[] = {
1845 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD
),
1846 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE
),
1847 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO
),
1848 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO
),
1849 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX
),
1850 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX
),
1854 return (__system_matches_cap(ARM64_HAS_NESTED_VIRT
) &&
1855 !(has_cpuid_feature(entry
, scope
) ||
1856 is_midr_in_range_list(read_cpuid_id(), nv1_ni_list
)));
1859 #if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
1860 static bool has_lpa2_at_stage1(u64 mmfr0
)
1864 tgran
= cpuid_feature_extract_unsigned_field(mmfr0
,
1865 ID_AA64MMFR0_EL1_TGRAN_SHIFT
);
1866 return tgran
== ID_AA64MMFR0_EL1_TGRAN_LPA2
;
1869 static bool has_lpa2_at_stage2(u64 mmfr0
)
1873 tgran
= cpuid_feature_extract_unsigned_field(mmfr0
,
1874 ID_AA64MMFR0_EL1_TGRAN_2_SHIFT
);
1875 return tgran
== ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2
;
1878 static bool has_lpa2(const struct arm64_cpu_capabilities
*entry
, int scope
)
1882 mmfr0
= read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1
);
1883 return has_lpa2_at_stage1(mmfr0
) && has_lpa2_at_stage2(mmfr0
);
1886 static bool has_lpa2(const struct arm64_cpu_capabilities
*entry
, int scope
)
1892 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1893 #define KPTI_NG_TEMP_VA (-(1UL << PMD_SHIFT))
1896 void create_kpti_ng_temp_pgd(pgd_t
*pgdir
, phys_addr_t phys
, unsigned long virt
,
1897 phys_addr_t size
, pgprot_t prot
,
1898 phys_addr_t (*pgtable_alloc
)(int), int flags
);
1900 static phys_addr_t __initdata kpti_ng_temp_alloc
;
1902 static phys_addr_t __init
kpti_ng_pgd_alloc(int shift
)
1904 kpti_ng_temp_alloc
-= PAGE_SIZE
;
1905 return kpti_ng_temp_alloc
;
1908 static int __init
__kpti_install_ng_mappings(void *__unused
)
1910 typedef void (kpti_remap_fn
)(int, int, phys_addr_t
, unsigned long);
1911 extern kpti_remap_fn idmap_kpti_install_ng_mappings
;
1912 kpti_remap_fn
*remap_fn
;
1914 int cpu
= smp_processor_id();
1915 int levels
= CONFIG_PGTABLE_LEVELS
;
1916 int order
= order_base_2(levels
);
1917 u64 kpti_ng_temp_pgd_pa
= 0;
1918 pgd_t
*kpti_ng_temp_pgd
;
1921 if (levels
== 5 && !pgtable_l5_enabled())
1923 else if (levels
== 4 && !pgtable_l4_enabled())
1926 remap_fn
= (void *)__pa_symbol(idmap_kpti_install_ng_mappings
);
1929 alloc
= __get_free_pages(GFP_ATOMIC
| __GFP_ZERO
, order
);
1930 kpti_ng_temp_pgd
= (pgd_t
*)(alloc
+ (levels
- 1) * PAGE_SIZE
);
1931 kpti_ng_temp_alloc
= kpti_ng_temp_pgd_pa
= __pa(kpti_ng_temp_pgd
);
1934 // Create a minimal page table hierarchy that permits us to map
1935 // the swapper page tables temporarily as we traverse them.
1937 // The physical pages are laid out as follows:
1939 // +--------+-/-------+-/------ +-/------ +-\\\--------+
1940 // : PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[] :
1941 // +--------+-\-------+-\------ +-\------ +-///--------+
1943 // The first page is mapped into this hierarchy at a PMD_SHIFT
1944 // aligned virtual address, so that we can manipulate the PTE
1945 // level entries while the mapping is active. The first entry
1946 // covers the PTE[] page itself, the remaining entries are free
1947 // to be used as a ad-hoc fixmap.
1949 create_kpti_ng_temp_pgd(kpti_ng_temp_pgd
, __pa(alloc
),
1950 KPTI_NG_TEMP_VA
, PAGE_SIZE
, PAGE_KERNEL
,
1951 kpti_ng_pgd_alloc
, 0);
1954 cpu_install_idmap();
1955 remap_fn(cpu
, num_online_cpus(), kpti_ng_temp_pgd_pa
, KPTI_NG_TEMP_VA
);
1956 cpu_uninstall_idmap();
1959 free_pages(alloc
, order
);
1960 arm64_use_ng_mappings
= true;
1966 static void __init
kpti_install_ng_mappings(void)
1968 /* Check whether KPTI is going to be used */
1969 if (!arm64_kernel_unmapped_at_el0())
1973 * We don't need to rewrite the page-tables if either we've done
1974 * it already or we have KASLR enabled and therefore have not
1975 * created any global mappings at all.
1977 if (arm64_use_ng_mappings
)
1980 stop_machine(__kpti_install_ng_mappings
, NULL
, cpu_online_mask
);
1984 static inline void kpti_install_ng_mappings(void)
1987 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1989 static void cpu_enable_kpti(struct arm64_cpu_capabilities
const *cap
)
1991 if (__this_cpu_read(this_cpu_vector
) == vectors
) {
1992 const char *v
= arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI
);
1994 __this_cpu_write(this_cpu_vector
, v
);
1999 static int __init
parse_kpti(char *str
)
2002 int ret
= kstrtobool(str
, &enabled
);
2007 __kpti_forced
= enabled
? 1 : -1;
2010 early_param("kpti", parse_kpti
);
2012 #ifdef CONFIG_ARM64_HW_AFDBM
2013 static struct cpumask dbm_cpus __read_mostly
;
2015 static inline void __cpu_enable_hw_dbm(void)
2017 u64 tcr
= read_sysreg(tcr_el1
) | TCR_HD
;
2019 write_sysreg(tcr
, tcr_el1
);
2021 local_flush_tlb_all();
2024 static bool cpu_has_broken_dbm(void)
2026 /* List of CPUs which have broken DBM support. */
2027 static const struct midr_range cpus
[] = {
2028 #ifdef CONFIG_ARM64_ERRATUM_1024718
2029 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55
),
2030 /* Kryo4xx Silver (rdpe => r1p0) */
2031 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER
, 0xd, 0xe),
2033 #ifdef CONFIG_ARM64_ERRATUM_2051678
2034 MIDR_REV_RANGE(MIDR_CORTEX_A510
, 0, 0, 2),
2039 return is_midr_in_range_list(read_cpuid_id(), cpus
);
2042 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities
*cap
)
2044 return has_cpuid_feature(cap
, SCOPE_LOCAL_CPU
) &&
2045 !cpu_has_broken_dbm();
2048 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities
const *cap
)
2050 if (cpu_can_use_dbm(cap
)) {
2051 __cpu_enable_hw_dbm();
2052 cpumask_set_cpu(smp_processor_id(), &dbm_cpus
);
2056 static bool has_hw_dbm(const struct arm64_cpu_capabilities
*cap
,
2060 * DBM is a non-conflicting feature. i.e, the kernel can safely
2061 * run a mix of CPUs with and without the feature. So, we
2062 * unconditionally enable the capability to allow any late CPU
2063 * to use the feature. We only enable the control bits on the
2064 * CPU, if it is supported.
2072 #ifdef CONFIG_ARM64_AMU_EXTN
2075 * The "amu_cpus" cpumask only signals that the CPU implementation for the
2076 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
2077 * information regarding all the events that it supports. When a CPU bit is
2078 * set in the cpumask, the user of this feature can only rely on the presence
2079 * of the 4 fixed counters for that CPU. But this does not guarantee that the
2080 * counters are enabled or access to these counters is enabled by code
2081 * executed at higher exception levels (firmware).
2083 static struct cpumask amu_cpus __read_mostly
;
2085 bool cpu_has_amu_feat(int cpu
)
2087 return cpumask_test_cpu(cpu
, &amu_cpus
);
2090 int get_cpu_with_amu_feat(void)
2092 return cpumask_any(&amu_cpus
);
2095 static void cpu_amu_enable(struct arm64_cpu_capabilities
const *cap
)
2097 if (has_cpuid_feature(cap
, SCOPE_LOCAL_CPU
)) {
2098 cpumask_set_cpu(smp_processor_id(), &amu_cpus
);
2100 /* 0 reference values signal broken/disabled counters */
2101 if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168
))
2102 update_freq_counters_refs();
2106 static bool has_amu(const struct arm64_cpu_capabilities
*cap
,
2110 * The AMU extension is a non-conflicting feature: the kernel can
2111 * safely run a mix of CPUs with and without support for the
2112 * activity monitors extension. Therefore, unconditionally enable
2113 * the capability to allow any late CPU to use the feature.
2115 * With this feature unconditionally enabled, the cpu_enable
2116 * function will be called for all CPUs that match the criteria,
2117 * including secondary and hotplugged, marking this feature as
2118 * present on that respective CPU. The enable function will also
2119 * print a detection message.
2125 int get_cpu_with_amu_feat(void)
2131 static bool runs_at_el2(const struct arm64_cpu_capabilities
*entry
, int __unused
)
2133 return is_kernel_in_hyp_mode();
2136 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities
*__unused
)
2139 * Copy register values that aren't redirected by hardware.
2141 * Before code patching, we only set tpidr_el1, all CPUs need to copy
2142 * this value to tpidr_el2 before we patch the code. Once we've done
2143 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2146 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN
))
2147 write_sysreg(read_sysreg(tpidr_el1
), tpidr_el2
);
2150 static bool has_nested_virt_support(const struct arm64_cpu_capabilities
*cap
,
2153 if (kvm_get_mode() != KVM_MODE_NV
)
2156 if (!has_cpuid_feature(cap
, scope
)) {
2157 pr_warn("unavailable: %s\n", cap
->desc
);
2164 static bool hvhe_possible(const struct arm64_cpu_capabilities
*entry
,
2167 return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_HVHE
);
2170 #ifdef CONFIG_ARM64_PAN
2171 static void cpu_enable_pan(const struct arm64_cpu_capabilities
*__unused
)
2174 * We modify PSTATE. This won't work from irq context as the PSTATE
2175 * is discarded once we return from the exception.
2177 WARN_ON_ONCE(in_interrupt());
2179 sysreg_clear_set(sctlr_el1
, SCTLR_EL1_SPAN
, 0);
2182 #endif /* CONFIG_ARM64_PAN */
2184 #ifdef CONFIG_ARM64_RAS_EXTN
2185 static void cpu_clear_disr(const struct arm64_cpu_capabilities
*__unused
)
2187 /* Firmware may have left a deferred SError in this register. */
2188 write_sysreg_s(0, SYS_DISR_EL1
);
2190 #endif /* CONFIG_ARM64_RAS_EXTN */
2192 #ifdef CONFIG_ARM64_PTR_AUTH
2193 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities
*entry
, int scope
)
2195 int boot_val
, sec_val
;
2197 /* We don't expect to be called with SCOPE_SYSTEM */
2198 WARN_ON(scope
== SCOPE_SYSTEM
);
2200 * The ptr-auth feature levels are not intercompatible with lower
2201 * levels. Hence we must match ptr-auth feature level of the secondary
2202 * CPUs with that of the boot CPU. The level of boot cpu is fetched
2203 * from the sanitised register whereas direct register read is done for
2204 * the secondary CPUs.
2205 * The sanitised feature state is guaranteed to match that of the
2206 * boot CPU as a mismatched secondary CPU is parked before it gets
2207 * a chance to update the state, with the capability.
2209 boot_val
= cpuid_feature_extract_field(read_sanitised_ftr_reg(entry
->sys_reg
),
2210 entry
->field_pos
, entry
->sign
);
2211 if (scope
& SCOPE_BOOT_CPU
)
2212 return boot_val
>= entry
->min_field_value
;
2213 /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2214 sec_val
= cpuid_feature_extract_field(__read_sysreg_by_encoding(entry
->sys_reg
),
2215 entry
->field_pos
, entry
->sign
);
2216 return (sec_val
>= entry
->min_field_value
) && (sec_val
== boot_val
);
2219 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities
*entry
,
2222 bool api
= has_address_auth_cpucap(cpucap_ptrs
[ARM64_HAS_ADDRESS_AUTH_IMP_DEF
], scope
);
2223 bool apa
= has_address_auth_cpucap(cpucap_ptrs
[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5
], scope
);
2224 bool apa3
= has_address_auth_cpucap(cpucap_ptrs
[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3
], scope
);
2226 return apa
|| apa3
|| api
;
2229 static bool has_generic_auth(const struct arm64_cpu_capabilities
*entry
,
2232 bool gpi
= __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF
);
2233 bool gpa
= __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5
);
2234 bool gpa3
= __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3
);
2236 return gpa
|| gpa3
|| gpi
;
2238 #endif /* CONFIG_ARM64_PTR_AUTH */
2240 #ifdef CONFIG_ARM64_E0PD
2241 static void cpu_enable_e0pd(struct arm64_cpu_capabilities
const *cap
)
2243 if (this_cpu_has_cap(ARM64_HAS_E0PD
))
2244 sysreg_clear_set(tcr_el1
, 0, TCR_E0PD1
);
2246 #endif /* CONFIG_ARM64_E0PD */
2248 #ifdef CONFIG_ARM64_PSEUDO_NMI
2249 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities
*entry
,
2253 * ARM64_HAS_GIC_CPUIF_SYSREGS has a lower index, and is a boot CPU
2254 * feature, so will be detected earlier.
2256 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING
<= ARM64_HAS_GIC_CPUIF_SYSREGS
);
2257 if (!cpus_have_cap(ARM64_HAS_GIC_CPUIF_SYSREGS
))
2260 return enable_pseudo_nmi
;
2263 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities
*entry
,
2267 * If we're not using priority masking then we won't be poking PMR_EL1,
2268 * and there's no need to relax synchronization of writes to it, and
2269 * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2272 * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2273 * feature, so will be detected earlier.
2275 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC
<= ARM64_HAS_GIC_PRIO_MASKING
);
2276 if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING
))
2280 * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2281 * hint for interrupt distribution, a DSB is not necessary when
2282 * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2284 * Linux itself doesn't use 1:N distribution, so has no need to
2285 * set PMHE. The only reason to have it set is if EL3 requires it
2286 * (and we can't change it).
2288 return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK
) == 0;
2292 #ifdef CONFIG_ARM64_BTI
2293 static void bti_enable(const struct arm64_cpu_capabilities
*__unused
)
2296 * Use of X16/X17 for tail-calls and trampolines that jump to
2297 * function entry points using BR is a requirement for
2298 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2299 * So, be strict and forbid other BRs using other registers to
2300 * jump onto a PACIxSP instruction:
2302 sysreg_clear_set(sctlr_el1
, 0, SCTLR_EL1_BT0
| SCTLR_EL1_BT1
);
2305 #endif /* CONFIG_ARM64_BTI */
2307 #ifdef CONFIG_ARM64_MTE
2308 static void cpu_enable_mte(struct arm64_cpu_capabilities
const *cap
)
2310 sysreg_clear_set(sctlr_el1
, 0, SCTLR_ELx_ATA
| SCTLR_EL1_ATA0
);
2315 * Clear the tags in the zero page. This needs to be done via the
2316 * linear map which has the Tagged attribute.
2318 if (try_page_mte_tagging(ZERO_PAGE(0))) {
2319 mte_clear_page_tags(lm_alias(empty_zero_page
));
2320 set_page_mte_tagged(ZERO_PAGE(0));
2323 kasan_init_hw_tags_cpu();
2325 #endif /* CONFIG_ARM64_MTE */
2327 static void user_feature_fixup(void)
2329 if (cpus_have_cap(ARM64_WORKAROUND_2658417
)) {
2330 struct arm64_ftr_reg
*regp
;
2332 regp
= get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1
);
2334 regp
->user_mask
&= ~ID_AA64ISAR1_EL1_BF16_MASK
;
2337 if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_SSBS
)) {
2338 struct arm64_ftr_reg
*regp
;
2340 regp
= get_arm64_ftr_reg(SYS_ID_AA64PFR1_EL1
);
2342 regp
->user_mask
&= ~ID_AA64PFR1_EL1_SSBS_MASK
;
2346 static void elf_hwcap_fixup(void)
2348 #ifdef CONFIG_COMPAT
2349 if (cpus_have_cap(ARM64_WORKAROUND_1742098
))
2350 compat_elf_hwcap2
&= ~COMPAT_HWCAP2_AES
;
2351 #endif /* CONFIG_COMPAT */
2355 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities
*entry
, int __unused
)
2357 return kvm_get_mode() == KVM_MODE_PROTECTED
;
2359 #endif /* CONFIG_KVM */
2361 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities
*__unused
)
2363 sysreg_clear_set(sctlr_el1
, 0, SCTLR_EL1_TIDCP
);
2366 static void cpu_enable_dit(const struct arm64_cpu_capabilities
*__unused
)
2371 static void cpu_enable_mops(const struct arm64_cpu_capabilities
*__unused
)
2373 sysreg_clear_set(sctlr_el1
, 0, SCTLR_EL1_MSCEn
);
2376 #ifdef CONFIG_ARM64_POE
2377 static void cpu_enable_poe(const struct arm64_cpu_capabilities
*__unused
)
2379 sysreg_clear_set(REG_TCR2_EL1
, 0, TCR2_EL1x_E0POE
);
2380 sysreg_clear_set(CPACR_EL1
, 0, CPACR_ELx_E0POE
);
2384 #ifdef CONFIG_ARM64_GCS
2385 static void cpu_enable_gcs(const struct arm64_cpu_capabilities
*__unused
)
2387 /* GCSPR_EL0 is always readable */
2388 write_sysreg_s(GCSCRE0_EL1_nTR
, SYS_GCSCRE0_EL1
);
2392 /* Internal helper functions to match cpu capability type */
2394 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities
*cap
)
2396 return !!(cap
->type
& ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU
);
2400 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities
*cap
)
2402 return !!(cap
->type
& ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU
);
2406 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities
*cap
)
2408 return !!(cap
->type
& ARM64_CPUCAP_PANIC_ON_CONFLICT
);
2412 test_has_mpam(const struct arm64_cpu_capabilities
*entry
, int scope
)
2414 if (!has_cpuid_feature(entry
, scope
))
2417 /* Check firmware actually enabled MPAM on this cpu. */
2418 return (read_sysreg_s(SYS_MPAM1_EL1
) & MPAM1_EL1_MPAMEN
);
2422 cpu_enable_mpam(const struct arm64_cpu_capabilities
*entry
)
2425 * Access by the kernel (at EL1) should use the reserved PARTID
2426 * which is configured unrestricted. This avoids priority-inversion
2427 * where latency sensitive tasks have to wait for a task that has
2428 * been throttled to release the lock.
2430 write_sysreg_s(0, SYS_MPAM1_EL1
);
2434 test_has_mpam_hcr(const struct arm64_cpu_capabilities
*entry
, int scope
)
2436 u64 idr
= read_sanitised_ftr_reg(SYS_MPAMIDR_EL1
);
2438 return idr
& MPAMIDR_EL1_HAS_HCR
;
2441 static const struct arm64_cpu_capabilities arm64_features
[] = {
2443 .capability
= ARM64_ALWAYS_BOOT
,
2444 .type
= ARM64_CPUCAP_BOOT_CPU_FEATURE
,
2445 .matches
= has_always
,
2448 .capability
= ARM64_ALWAYS_SYSTEM
,
2449 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2450 .matches
= has_always
,
2453 .desc
= "GIC system register CPU interface",
2454 .capability
= ARM64_HAS_GIC_CPUIF_SYSREGS
,
2455 .type
= ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE
,
2456 .matches
= has_useable_gicv3_cpuif
,
2457 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1
, GIC
, IMP
)
2460 .desc
= "Enhanced Counter Virtualization",
2461 .capability
= ARM64_HAS_ECV
,
2462 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2463 .matches
= has_cpuid_feature
,
2464 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1
, ECV
, IMP
)
2467 .desc
= "Enhanced Counter Virtualization (CNTPOFF)",
2468 .capability
= ARM64_HAS_ECV_CNTPOFF
,
2469 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2470 .matches
= has_cpuid_feature
,
2471 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1
, ECV
, CNTPOFF
)
2473 #ifdef CONFIG_ARM64_PAN
2475 .desc
= "Privileged Access Never",
2476 .capability
= ARM64_HAS_PAN
,
2477 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2478 .matches
= has_cpuid_feature
,
2479 .cpu_enable
= cpu_enable_pan
,
2480 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1
, PAN
, IMP
)
2482 #endif /* CONFIG_ARM64_PAN */
2483 #ifdef CONFIG_ARM64_EPAN
2485 .desc
= "Enhanced Privileged Access Never",
2486 .capability
= ARM64_HAS_EPAN
,
2487 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2488 .matches
= has_cpuid_feature
,
2489 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1
, PAN
, PAN3
)
2491 #endif /* CONFIG_ARM64_EPAN */
2492 #ifdef CONFIG_ARM64_LSE_ATOMICS
2494 .desc
= "LSE atomic instructions",
2495 .capability
= ARM64_HAS_LSE_ATOMICS
,
2496 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2497 .matches
= has_cpuid_feature
,
2498 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1
, ATOMIC
, IMP
)
2500 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2502 .desc
= "Virtualization Host Extensions",
2503 .capability
= ARM64_HAS_VIRT_HOST_EXTN
,
2504 .type
= ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE
,
2505 .matches
= runs_at_el2
,
2506 .cpu_enable
= cpu_copy_el2regs
,
2509 .desc
= "Nested Virtualization Support",
2510 .capability
= ARM64_HAS_NESTED_VIRT
,
2511 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2512 .matches
= has_nested_virt_support
,
2513 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1
, NV
, NV2
)
2516 .capability
= ARM64_HAS_32BIT_EL0_DO_NOT_USE
,
2517 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2518 .matches
= has_32bit_el0
,
2519 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1
, EL0
, AARCH32
)
2523 .desc
= "32-bit EL1 Support",
2524 .capability
= ARM64_HAS_32BIT_EL1
,
2525 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2526 .matches
= has_cpuid_feature
,
2527 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1
, EL1
, AARCH32
)
2530 .desc
= "Protected KVM",
2531 .capability
= ARM64_KVM_PROTECTED_MODE
,
2532 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2533 .matches
= is_kvm_protected_mode
,
2536 .desc
= "HCRX_EL2 register",
2537 .capability
= ARM64_HAS_HCX
,
2538 .type
= ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE
,
2539 .matches
= has_cpuid_feature
,
2540 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1
, HCX
, IMP
)
2544 .desc
= "Kernel page table isolation (KPTI)",
2545 .capability
= ARM64_UNMAP_KERNEL_AT_EL0
,
2546 .type
= ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE
,
2547 .cpu_enable
= cpu_enable_kpti
,
2548 .matches
= unmap_kernel_at_el0
,
2550 * The ID feature fields below are used to indicate that
2551 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2554 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1
, CSV3
, IMP
)
2557 .capability
= ARM64_HAS_FPSIMD
,
2558 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2559 .matches
= has_cpuid_feature
,
2560 .cpu_enable
= cpu_enable_fpsimd
,
2561 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1
, FP
, IMP
)
2563 #ifdef CONFIG_ARM64_PMEM
2565 .desc
= "Data cache clean to Point of Persistence",
2566 .capability
= ARM64_HAS_DCPOP
,
2567 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2568 .matches
= has_cpuid_feature
,
2569 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1
, DPB
, IMP
)
2572 .desc
= "Data cache clean to Point of Deep Persistence",
2573 .capability
= ARM64_HAS_DCPODP
,
2574 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2575 .matches
= has_cpuid_feature
,
2576 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1
, DPB
, DPB2
)
2579 #ifdef CONFIG_ARM64_SVE
2581 .desc
= "Scalable Vector Extension",
2582 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2583 .capability
= ARM64_SVE
,
2584 .cpu_enable
= cpu_enable_sve
,
2585 .matches
= has_cpuid_feature
,
2586 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1
, SVE
, IMP
)
2588 #endif /* CONFIG_ARM64_SVE */
2589 #ifdef CONFIG_ARM64_RAS_EXTN
2591 .desc
= "RAS Extension Support",
2592 .capability
= ARM64_HAS_RAS_EXTN
,
2593 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2594 .matches
= has_cpuid_feature
,
2595 .cpu_enable
= cpu_clear_disr
,
2596 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1
, RAS
, IMP
)
2598 #endif /* CONFIG_ARM64_RAS_EXTN */
2599 #ifdef CONFIG_ARM64_AMU_EXTN
2601 .desc
= "Activity Monitors Unit (AMU)",
2602 .capability
= ARM64_HAS_AMU_EXTN
,
2603 .type
= ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE
,
2605 .cpu_enable
= cpu_amu_enable
,
2607 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1
, AMU
, IMP
)
2609 #endif /* CONFIG_ARM64_AMU_EXTN */
2611 .desc
= "Data cache clean to the PoU not required for I/D coherence",
2612 .capability
= ARM64_HAS_CACHE_IDC
,
2613 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2614 .matches
= has_cache_idc
,
2615 .cpu_enable
= cpu_emulate_effective_ctr
,
2618 .desc
= "Instruction cache invalidation not required for I/D coherence",
2619 .capability
= ARM64_HAS_CACHE_DIC
,
2620 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2621 .matches
= has_cache_dic
,
2624 .desc
= "Stage-2 Force Write-Back",
2625 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2626 .capability
= ARM64_HAS_STAGE2_FWB
,
2627 .matches
= has_cpuid_feature
,
2628 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1
, FWB
, IMP
)
2631 .desc
= "ARMv8.4 Translation Table Level",
2632 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2633 .capability
= ARM64_HAS_ARMv8_4_TTL
,
2634 .matches
= has_cpuid_feature
,
2635 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1
, TTL
, IMP
)
2638 .desc
= "TLB range maintenance instructions",
2639 .capability
= ARM64_HAS_TLB_RANGE
,
2640 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2641 .matches
= has_cpuid_feature
,
2642 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1
, TLB
, RANGE
)
2644 #ifdef CONFIG_ARM64_HW_AFDBM
2646 .desc
= "Hardware dirty bit management",
2647 .type
= ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE
,
2648 .capability
= ARM64_HW_DBM
,
2649 .matches
= has_hw_dbm
,
2650 .cpu_enable
= cpu_enable_hw_dbm
,
2652 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1
, HAFDBS
, DBM
)
2655 #ifdef CONFIG_ARM64_HAFT
2657 .desc
= "Hardware managed Access Flag for Table Descriptors",
2659 * Contrary to the page/block access flag, the table access flag
2660 * cannot be emulated in software (no access fault will occur).
2661 * Therefore this should be used only if it's supported system
2664 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2665 .capability
= ARM64_HAFT
,
2666 .matches
= has_cpuid_feature
,
2667 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1
, HAFDBS
, HAFT
)
2671 .desc
= "CRC32 instructions",
2672 .capability
= ARM64_HAS_CRC32
,
2673 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2674 .matches
= has_cpuid_feature
,
2675 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1
, CRC32
, IMP
)
2678 .desc
= "Speculative Store Bypassing Safe (SSBS)",
2679 .capability
= ARM64_SSBS
,
2680 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2681 .matches
= has_cpuid_feature
,
2682 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1
, SSBS
, IMP
)
2684 #ifdef CONFIG_ARM64_CNP
2686 .desc
= "Common not Private translations",
2687 .capability
= ARM64_HAS_CNP
,
2688 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2689 .matches
= has_useable_cnp
,
2690 .cpu_enable
= cpu_enable_cnp
,
2691 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1
, CnP
, IMP
)
2695 .desc
= "Speculation barrier (SB)",
2696 .capability
= ARM64_HAS_SB
,
2697 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2698 .matches
= has_cpuid_feature
,
2699 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1
, SB
, IMP
)
2701 #ifdef CONFIG_ARM64_PTR_AUTH
2703 .desc
= "Address authentication (architected QARMA5 algorithm)",
2704 .capability
= ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5
,
2705 .type
= ARM64_CPUCAP_BOOT_CPU_FEATURE
,
2706 .matches
= has_address_auth_cpucap
,
2707 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1
, APA
, PAuth
)
2710 .desc
= "Address authentication (architected QARMA3 algorithm)",
2711 .capability
= ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3
,
2712 .type
= ARM64_CPUCAP_BOOT_CPU_FEATURE
,
2713 .matches
= has_address_auth_cpucap
,
2714 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1
, APA3
, PAuth
)
2717 .desc
= "Address authentication (IMP DEF algorithm)",
2718 .capability
= ARM64_HAS_ADDRESS_AUTH_IMP_DEF
,
2719 .type
= ARM64_CPUCAP_BOOT_CPU_FEATURE
,
2720 .matches
= has_address_auth_cpucap
,
2721 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1
, API
, PAuth
)
2724 .capability
= ARM64_HAS_ADDRESS_AUTH
,
2725 .type
= ARM64_CPUCAP_BOOT_CPU_FEATURE
,
2726 .matches
= has_address_auth_metacap
,
2729 .desc
= "Generic authentication (architected QARMA5 algorithm)",
2730 .capability
= ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5
,
2731 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2732 .matches
= has_cpuid_feature
,
2733 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1
, GPA
, IMP
)
2736 .desc
= "Generic authentication (architected QARMA3 algorithm)",
2737 .capability
= ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3
,
2738 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2739 .matches
= has_cpuid_feature
,
2740 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1
, GPA3
, IMP
)
2743 .desc
= "Generic authentication (IMP DEF algorithm)",
2744 .capability
= ARM64_HAS_GENERIC_AUTH_IMP_DEF
,
2745 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2746 .matches
= has_cpuid_feature
,
2747 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1
, GPI
, IMP
)
2750 .capability
= ARM64_HAS_GENERIC_AUTH
,
2751 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2752 .matches
= has_generic_auth
,
2754 #endif /* CONFIG_ARM64_PTR_AUTH */
2755 #ifdef CONFIG_ARM64_PSEUDO_NMI
2758 * Depends on having GICv3
2760 .desc
= "IRQ priority masking",
2761 .capability
= ARM64_HAS_GIC_PRIO_MASKING
,
2762 .type
= ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE
,
2763 .matches
= can_use_gic_priorities
,
2767 * Depends on ARM64_HAS_GIC_PRIO_MASKING
2769 .capability
= ARM64_HAS_GIC_PRIO_RELAXED_SYNC
,
2770 .type
= ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE
,
2771 .matches
= has_gic_prio_relaxed_sync
,
2774 #ifdef CONFIG_ARM64_E0PD
2777 .capability
= ARM64_HAS_E0PD
,
2778 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2779 .cpu_enable
= cpu_enable_e0pd
,
2780 .matches
= has_cpuid_feature
,
2781 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1
, E0PD
, IMP
)
2785 .desc
= "Random Number Generator",
2786 .capability
= ARM64_HAS_RNG
,
2787 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2788 .matches
= has_cpuid_feature
,
2789 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1
, RNDR
, IMP
)
2791 #ifdef CONFIG_ARM64_BTI
2793 .desc
= "Branch Target Identification",
2794 .capability
= ARM64_BTI
,
2795 #ifdef CONFIG_ARM64_BTI_KERNEL
2796 .type
= ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE
,
2798 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2800 .matches
= has_cpuid_feature
,
2801 .cpu_enable
= bti_enable
,
2802 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1
, BT
, IMP
)
2805 #ifdef CONFIG_ARM64_MTE
2807 .desc
= "Memory Tagging Extension",
2808 .capability
= ARM64_MTE
,
2809 .type
= ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE
,
2810 .matches
= has_cpuid_feature
,
2811 .cpu_enable
= cpu_enable_mte
,
2812 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1
, MTE
, MTE2
)
2815 .desc
= "Asymmetric MTE Tag Check Fault",
2816 .capability
= ARM64_MTE_ASYMM
,
2817 .type
= ARM64_CPUCAP_BOOT_CPU_FEATURE
,
2818 .matches
= has_cpuid_feature
,
2819 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1
, MTE
, MTE3
)
2821 #endif /* CONFIG_ARM64_MTE */
2823 .desc
= "RCpc load-acquire (LDAPR)",
2824 .capability
= ARM64_HAS_LDAPR
,
2825 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2826 .matches
= has_cpuid_feature
,
2827 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1
, LRCPC
, IMP
)
2830 .desc
= "Fine Grained Traps",
2831 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2832 .capability
= ARM64_HAS_FGT
,
2833 .matches
= has_cpuid_feature
,
2834 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1
, FGT
, IMP
)
2836 #ifdef CONFIG_ARM64_SME
2838 .desc
= "Scalable Matrix Extension",
2839 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2840 .capability
= ARM64_SME
,
2841 .matches
= has_cpuid_feature
,
2842 .cpu_enable
= cpu_enable_sme
,
2843 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1
, SME
, IMP
)
2845 /* FA64 should be sorted after the base SME capability */
2848 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2849 .capability
= ARM64_SME_FA64
,
2850 .matches
= has_cpuid_feature
,
2851 .cpu_enable
= cpu_enable_fa64
,
2852 ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1
, FA64
, IMP
)
2856 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2857 .capability
= ARM64_SME2
,
2858 .matches
= has_cpuid_feature
,
2859 .cpu_enable
= cpu_enable_sme2
,
2860 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1
, SME
, SME2
)
2862 #endif /* CONFIG_ARM64_SME */
2864 .desc
= "WFx with timeout",
2865 .capability
= ARM64_HAS_WFXT
,
2866 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2867 .matches
= has_cpuid_feature
,
2868 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1
, WFxT
, IMP
)
2871 .desc
= "Trap EL0 IMPLEMENTATION DEFINED functionality",
2872 .capability
= ARM64_HAS_TIDCP1
,
2873 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2874 .matches
= has_cpuid_feature
,
2875 .cpu_enable
= cpu_trap_el0_impdef
,
2876 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1
, TIDCP1
, IMP
)
2879 .desc
= "Data independent timing control (DIT)",
2880 .capability
= ARM64_HAS_DIT
,
2881 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2882 .matches
= has_cpuid_feature
,
2883 .cpu_enable
= cpu_enable_dit
,
2884 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1
, DIT
, IMP
)
2887 .desc
= "Memory Copy and Memory Set instructions",
2888 .capability
= ARM64_HAS_MOPS
,
2889 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2890 .matches
= has_cpuid_feature
,
2891 .cpu_enable
= cpu_enable_mops
,
2892 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1
, MOPS
, IMP
)
2895 .capability
= ARM64_HAS_TCR2
,
2896 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2897 .matches
= has_cpuid_feature
,
2898 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1
, TCRX
, IMP
)
2901 .desc
= "Stage-1 Permission Indirection Extension (S1PIE)",
2902 .capability
= ARM64_HAS_S1PIE
,
2903 .type
= ARM64_CPUCAP_BOOT_CPU_FEATURE
,
2904 .matches
= has_cpuid_feature
,
2905 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1
, S1PIE
, IMP
)
2908 .desc
= "VHE for hypervisor only",
2909 .capability
= ARM64_KVM_HVHE
,
2910 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2911 .matches
= hvhe_possible
,
2914 .desc
= "Enhanced Virtualization Traps",
2915 .capability
= ARM64_HAS_EVT
,
2916 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2917 .matches
= has_cpuid_feature
,
2918 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1
, EVT
, IMP
)
2921 .desc
= "52-bit Virtual Addressing for KVM (LPA2)",
2922 .capability
= ARM64_HAS_LPA2
,
2923 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2924 .matches
= has_lpa2
,
2928 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2929 .capability
= ARM64_HAS_FPMR
,
2930 .matches
= has_cpuid_feature
,
2931 .cpu_enable
= cpu_enable_fpmr
,
2932 ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1
, FPMR
, IMP
)
2934 #ifdef CONFIG_ARM64_VA_BITS_52
2936 .capability
= ARM64_HAS_VA52
,
2937 .type
= ARM64_CPUCAP_BOOT_CPU_FEATURE
,
2938 .matches
= has_cpuid_feature
,
2939 #ifdef CONFIG_ARM64_64K_PAGES
2940 .desc
= "52-bit Virtual Addressing (LVA)",
2941 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1
, VARange
, 52)
2943 .desc
= "52-bit Virtual Addressing (LPA2)",
2944 #ifdef CONFIG_ARM64_4K_PAGES
2945 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1
, TGRAN4
, 52_BIT
)
2947 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1
, TGRAN16
, 52_BIT
)
2953 .desc
= "Memory Partitioning And Monitoring",
2954 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2955 .capability
= ARM64_MPAM
,
2956 .matches
= test_has_mpam
,
2957 .cpu_enable
= cpu_enable_mpam
,
2958 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1
, MPAM
, 1)
2961 .desc
= "Memory Partitioning And Monitoring Virtualisation",
2962 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2963 .capability
= ARM64_MPAM_HCR
,
2964 .matches
= test_has_mpam_hcr
,
2968 .capability
= ARM64_HAS_HCR_NV1
,
2969 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2971 ARM64_CPUID_FIELDS_NEG(ID_AA64MMFR4_EL1
, E2H0
, NI_NV1
)
2973 #ifdef CONFIG_ARM64_POE
2975 .desc
= "Stage-1 Permission Overlay Extension (S1POE)",
2976 .capability
= ARM64_HAS_S1POE
,
2977 .type
= ARM64_CPUCAP_BOOT_CPU_FEATURE
,
2978 .matches
= has_cpuid_feature
,
2979 .cpu_enable
= cpu_enable_poe
,
2980 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1
, S1POE
, IMP
)
2983 #ifdef CONFIG_ARM64_GCS
2985 .desc
= "Guarded Control Stack (GCS)",
2986 .capability
= ARM64_HAS_GCS
,
2987 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
2988 .cpu_enable
= cpu_enable_gcs
,
2989 .matches
= has_cpuid_feature
,
2990 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1
, GCS
, IMP
)
2996 #define HWCAP_CPUID_MATCH(reg, field, min_value) \
2997 .matches = has_user_cpuid_feature, \
2998 ARM64_CPUID_FIELDS(reg, field, min_value)
3000 #define __HWCAP_CAP(name, cap_type, cap) \
3002 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
3003 .hwcap_type = cap_type, \
3006 #define HWCAP_CAP(reg, field, min_value, cap_type, cap) \
3008 __HWCAP_CAP(#cap, cap_type, cap) \
3009 HWCAP_CPUID_MATCH(reg, field, min_value) \
3012 #define HWCAP_MULTI_CAP(list, cap_type, cap) \
3014 __HWCAP_CAP(#cap, cap_type, cap) \
3015 .matches = cpucap_multi_entry_cap_matches, \
3016 .match_list = list, \
3019 #define HWCAP_CAP_MATCH(match, cap_type, cap) \
3021 __HWCAP_CAP(#cap, cap_type, cap) \
3025 #ifdef CONFIG_ARM64_PTR_AUTH
3026 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches
[] = {
3028 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1
, APA
, PAuth
)
3031 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1
, APA3
, PAuth
)
3034 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1
, API
, PAuth
)
3039 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches
[] = {
3041 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1
, GPA
, IMP
)
3044 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1
, GPA3
, IMP
)
3047 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1
, GPI
, IMP
)
3053 static const struct arm64_cpu_capabilities arm64_elf_hwcaps
[] = {
3054 HWCAP_CAP(ID_AA64ISAR0_EL1
, AES
, PMULL
, CAP_HWCAP
, KERNEL_HWCAP_PMULL
),
3055 HWCAP_CAP(ID_AA64ISAR0_EL1
, AES
, AES
, CAP_HWCAP
, KERNEL_HWCAP_AES
),
3056 HWCAP_CAP(ID_AA64ISAR0_EL1
, SHA1
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SHA1
),
3057 HWCAP_CAP(ID_AA64ISAR0_EL1
, SHA2
, SHA256
, CAP_HWCAP
, KERNEL_HWCAP_SHA2
),
3058 HWCAP_CAP(ID_AA64ISAR0_EL1
, SHA2
, SHA512
, CAP_HWCAP
, KERNEL_HWCAP_SHA512
),
3059 HWCAP_CAP(ID_AA64ISAR0_EL1
, CRC32
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_CRC32
),
3060 HWCAP_CAP(ID_AA64ISAR0_EL1
, ATOMIC
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_ATOMICS
),
3061 HWCAP_CAP(ID_AA64ISAR0_EL1
, ATOMIC
, FEAT_LSE128
, CAP_HWCAP
, KERNEL_HWCAP_LSE128
),
3062 HWCAP_CAP(ID_AA64ISAR0_EL1
, RDM
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_ASIMDRDM
),
3063 HWCAP_CAP(ID_AA64ISAR0_EL1
, SHA3
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SHA3
),
3064 HWCAP_CAP(ID_AA64ISAR0_EL1
, SM3
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SM3
),
3065 HWCAP_CAP(ID_AA64ISAR0_EL1
, SM4
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SM4
),
3066 HWCAP_CAP(ID_AA64ISAR0_EL1
, DP
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_ASIMDDP
),
3067 HWCAP_CAP(ID_AA64ISAR0_EL1
, FHM
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_ASIMDFHM
),
3068 HWCAP_CAP(ID_AA64ISAR0_EL1
, TS
, FLAGM
, CAP_HWCAP
, KERNEL_HWCAP_FLAGM
),
3069 HWCAP_CAP(ID_AA64ISAR0_EL1
, TS
, FLAGM2
, CAP_HWCAP
, KERNEL_HWCAP_FLAGM2
),
3070 HWCAP_CAP(ID_AA64ISAR0_EL1
, RNDR
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_RNG
),
3071 HWCAP_CAP(ID_AA64PFR0_EL1
, FP
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_FP
),
3072 HWCAP_CAP(ID_AA64PFR0_EL1
, FP
, FP16
, CAP_HWCAP
, KERNEL_HWCAP_FPHP
),
3073 HWCAP_CAP(ID_AA64PFR0_EL1
, AdvSIMD
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_ASIMD
),
3074 HWCAP_CAP(ID_AA64PFR0_EL1
, AdvSIMD
, FP16
, CAP_HWCAP
, KERNEL_HWCAP_ASIMDHP
),
3075 HWCAP_CAP(ID_AA64PFR0_EL1
, DIT
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_DIT
),
3076 HWCAP_CAP(ID_AA64PFR2_EL1
, FPMR
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_FPMR
),
3077 HWCAP_CAP(ID_AA64ISAR1_EL1
, DPB
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_DCPOP
),
3078 HWCAP_CAP(ID_AA64ISAR1_EL1
, DPB
, DPB2
, CAP_HWCAP
, KERNEL_HWCAP_DCPODP
),
3079 HWCAP_CAP(ID_AA64ISAR1_EL1
, JSCVT
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_JSCVT
),
3080 HWCAP_CAP(ID_AA64ISAR1_EL1
, FCMA
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_FCMA
),
3081 HWCAP_CAP(ID_AA64ISAR1_EL1
, LRCPC
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_LRCPC
),
3082 HWCAP_CAP(ID_AA64ISAR1_EL1
, LRCPC
, LRCPC2
, CAP_HWCAP
, KERNEL_HWCAP_ILRCPC
),
3083 HWCAP_CAP(ID_AA64ISAR1_EL1
, LRCPC
, LRCPC3
, CAP_HWCAP
, KERNEL_HWCAP_LRCPC3
),
3084 HWCAP_CAP(ID_AA64ISAR1_EL1
, FRINTTS
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_FRINT
),
3085 HWCAP_CAP(ID_AA64ISAR1_EL1
, SB
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SB
),
3086 HWCAP_CAP(ID_AA64ISAR1_EL1
, BF16
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_BF16
),
3087 HWCAP_CAP(ID_AA64ISAR1_EL1
, BF16
, EBF16
, CAP_HWCAP
, KERNEL_HWCAP_EBF16
),
3088 HWCAP_CAP(ID_AA64ISAR1_EL1
, DGH
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_DGH
),
3089 HWCAP_CAP(ID_AA64ISAR1_EL1
, I8MM
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_I8MM
),
3090 HWCAP_CAP(ID_AA64ISAR2_EL1
, LUT
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_LUT
),
3091 HWCAP_CAP(ID_AA64ISAR3_EL1
, FAMINMAX
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_FAMINMAX
),
3092 HWCAP_CAP(ID_AA64MMFR2_EL1
, AT
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_USCAT
),
3093 #ifdef CONFIG_ARM64_SVE
3094 HWCAP_CAP(ID_AA64PFR0_EL1
, SVE
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SVE
),
3095 HWCAP_CAP(ID_AA64ZFR0_EL1
, SVEver
, SVE2p1
, CAP_HWCAP
, KERNEL_HWCAP_SVE2P1
),
3096 HWCAP_CAP(ID_AA64ZFR0_EL1
, SVEver
, SVE2
, CAP_HWCAP
, KERNEL_HWCAP_SVE2
),
3097 HWCAP_CAP(ID_AA64ZFR0_EL1
, AES
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SVEAES
),
3098 HWCAP_CAP(ID_AA64ZFR0_EL1
, AES
, PMULL128
, CAP_HWCAP
, KERNEL_HWCAP_SVEPMULL
),
3099 HWCAP_CAP(ID_AA64ZFR0_EL1
, BitPerm
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SVEBITPERM
),
3100 HWCAP_CAP(ID_AA64ZFR0_EL1
, B16B16
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SVE_B16B16
),
3101 HWCAP_CAP(ID_AA64ZFR0_EL1
, BF16
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SVEBF16
),
3102 HWCAP_CAP(ID_AA64ZFR0_EL1
, BF16
, EBF16
, CAP_HWCAP
, KERNEL_HWCAP_SVE_EBF16
),
3103 HWCAP_CAP(ID_AA64ZFR0_EL1
, SHA3
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SVESHA3
),
3104 HWCAP_CAP(ID_AA64ZFR0_EL1
, SM4
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SVESM4
),
3105 HWCAP_CAP(ID_AA64ZFR0_EL1
, I8MM
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SVEI8MM
),
3106 HWCAP_CAP(ID_AA64ZFR0_EL1
, F32MM
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SVEF32MM
),
3107 HWCAP_CAP(ID_AA64ZFR0_EL1
, F64MM
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SVEF64MM
),
3109 #ifdef CONFIG_ARM64_GCS
3110 HWCAP_CAP(ID_AA64PFR1_EL1
, GCS
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_GCS
),
3112 HWCAP_CAP(ID_AA64PFR1_EL1
, SSBS
, SSBS2
, CAP_HWCAP
, KERNEL_HWCAP_SSBS
),
3113 #ifdef CONFIG_ARM64_BTI
3114 HWCAP_CAP(ID_AA64PFR1_EL1
, BT
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_BTI
),
3116 #ifdef CONFIG_ARM64_PTR_AUTH
3117 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches
, CAP_HWCAP
, KERNEL_HWCAP_PACA
),
3118 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches
, CAP_HWCAP
, KERNEL_HWCAP_PACG
),
3120 #ifdef CONFIG_ARM64_MTE
3121 HWCAP_CAP(ID_AA64PFR1_EL1
, MTE
, MTE2
, CAP_HWCAP
, KERNEL_HWCAP_MTE
),
3122 HWCAP_CAP(ID_AA64PFR1_EL1
, MTE
, MTE3
, CAP_HWCAP
, KERNEL_HWCAP_MTE3
),
3123 #endif /* CONFIG_ARM64_MTE */
3124 HWCAP_CAP(ID_AA64MMFR0_EL1
, ECV
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_ECV
),
3125 HWCAP_CAP(ID_AA64MMFR1_EL1
, AFP
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_AFP
),
3126 HWCAP_CAP(ID_AA64ISAR2_EL1
, CSSC
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_CSSC
),
3127 HWCAP_CAP(ID_AA64ISAR2_EL1
, RPRFM
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_RPRFM
),
3128 HWCAP_CAP(ID_AA64ISAR2_EL1
, RPRES
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_RPRES
),
3129 HWCAP_CAP(ID_AA64ISAR2_EL1
, WFxT
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_WFXT
),
3130 HWCAP_CAP(ID_AA64ISAR2_EL1
, MOPS
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_MOPS
),
3131 HWCAP_CAP(ID_AA64ISAR2_EL1
, BC
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_HBC
),
3132 #ifdef CONFIG_ARM64_SME
3133 HWCAP_CAP(ID_AA64PFR1_EL1
, SME
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SME
),
3134 HWCAP_CAP(ID_AA64SMFR0_EL1
, FA64
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SME_FA64
),
3135 HWCAP_CAP(ID_AA64SMFR0_EL1
, LUTv2
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SME_LUTV2
),
3136 HWCAP_CAP(ID_AA64SMFR0_EL1
, SMEver
, SME2p1
, CAP_HWCAP
, KERNEL_HWCAP_SME2P1
),
3137 HWCAP_CAP(ID_AA64SMFR0_EL1
, SMEver
, SME2
, CAP_HWCAP
, KERNEL_HWCAP_SME2
),
3138 HWCAP_CAP(ID_AA64SMFR0_EL1
, I16I64
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SME_I16I64
),
3139 HWCAP_CAP(ID_AA64SMFR0_EL1
, F64F64
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SME_F64F64
),
3140 HWCAP_CAP(ID_AA64SMFR0_EL1
, I16I32
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SME_I16I32
),
3141 HWCAP_CAP(ID_AA64SMFR0_EL1
, B16B16
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SME_B16B16
),
3142 HWCAP_CAP(ID_AA64SMFR0_EL1
, F16F16
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SME_F16F16
),
3143 HWCAP_CAP(ID_AA64SMFR0_EL1
, F8F16
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SME_F8F16
),
3144 HWCAP_CAP(ID_AA64SMFR0_EL1
, F8F32
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SME_F8F32
),
3145 HWCAP_CAP(ID_AA64SMFR0_EL1
, I8I32
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SME_I8I32
),
3146 HWCAP_CAP(ID_AA64SMFR0_EL1
, F16F32
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SME_F16F32
),
3147 HWCAP_CAP(ID_AA64SMFR0_EL1
, B16F32
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SME_B16F32
),
3148 HWCAP_CAP(ID_AA64SMFR0_EL1
, BI32I32
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SME_BI32I32
),
3149 HWCAP_CAP(ID_AA64SMFR0_EL1
, F32F32
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SME_F32F32
),
3150 HWCAP_CAP(ID_AA64SMFR0_EL1
, SF8FMA
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SME_SF8FMA
),
3151 HWCAP_CAP(ID_AA64SMFR0_EL1
, SF8DP4
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SME_SF8DP4
),
3152 HWCAP_CAP(ID_AA64SMFR0_EL1
, SF8DP2
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_SME_SF8DP2
),
3153 #endif /* CONFIG_ARM64_SME */
3154 HWCAP_CAP(ID_AA64FPFR0_EL1
, F8CVT
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_F8CVT
),
3155 HWCAP_CAP(ID_AA64FPFR0_EL1
, F8FMA
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_F8FMA
),
3156 HWCAP_CAP(ID_AA64FPFR0_EL1
, F8DP4
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_F8DP4
),
3157 HWCAP_CAP(ID_AA64FPFR0_EL1
, F8DP2
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_F8DP2
),
3158 HWCAP_CAP(ID_AA64FPFR0_EL1
, F8E4M3
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_F8E4M3
),
3159 HWCAP_CAP(ID_AA64FPFR0_EL1
, F8E5M2
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_F8E5M2
),
3160 #ifdef CONFIG_ARM64_POE
3161 HWCAP_CAP(ID_AA64MMFR3_EL1
, S1POE
, IMP
, CAP_HWCAP
, KERNEL_HWCAP_POE
),
3166 #ifdef CONFIG_COMPAT
3167 static bool compat_has_neon(const struct arm64_cpu_capabilities
*cap
, int scope
)
3170 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
3171 * in line with that of arm32 as in vfp_init(). We make sure that the
3172 * check is future proof, by making sure value is non-zero.
3176 WARN_ON(scope
== SCOPE_LOCAL_CPU
&& preemptible());
3177 if (scope
== SCOPE_SYSTEM
)
3178 mvfr1
= read_sanitised_ftr_reg(SYS_MVFR1_EL1
);
3180 mvfr1
= read_sysreg_s(SYS_MVFR1_EL1
);
3182 return cpuid_feature_extract_unsigned_field(mvfr1
, MVFR1_EL1_SIMDSP_SHIFT
) &&
3183 cpuid_feature_extract_unsigned_field(mvfr1
, MVFR1_EL1_SIMDInt_SHIFT
) &&
3184 cpuid_feature_extract_unsigned_field(mvfr1
, MVFR1_EL1_SIMDLS_SHIFT
);
3188 static const struct arm64_cpu_capabilities compat_elf_hwcaps
[] = {
3189 #ifdef CONFIG_COMPAT
3190 HWCAP_CAP_MATCH(compat_has_neon
, CAP_COMPAT_HWCAP
, COMPAT_HWCAP_NEON
),
3191 HWCAP_CAP(MVFR1_EL1
, SIMDFMAC
, IMP
, CAP_COMPAT_HWCAP
, COMPAT_HWCAP_VFPv4
),
3192 /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
3193 HWCAP_CAP(MVFR0_EL1
, FPDP
, VFPv3
, CAP_COMPAT_HWCAP
, COMPAT_HWCAP_VFP
),
3194 HWCAP_CAP(MVFR0_EL1
, FPDP
, VFPv3
, CAP_COMPAT_HWCAP
, COMPAT_HWCAP_VFPv3
),
3195 HWCAP_CAP(MVFR1_EL1
, FPHP
, FP16
, CAP_COMPAT_HWCAP
, COMPAT_HWCAP_FPHP
),
3196 HWCAP_CAP(MVFR1_EL1
, SIMDHP
, SIMDHP_FLOAT
, CAP_COMPAT_HWCAP
, COMPAT_HWCAP_ASIMDHP
),
3197 HWCAP_CAP(ID_ISAR5_EL1
, AES
, VMULL
, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_PMULL
),
3198 HWCAP_CAP(ID_ISAR5_EL1
, AES
, IMP
, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_AES
),
3199 HWCAP_CAP(ID_ISAR5_EL1
, SHA1
, IMP
, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_SHA1
),
3200 HWCAP_CAP(ID_ISAR5_EL1
, SHA2
, IMP
, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_SHA2
),
3201 HWCAP_CAP(ID_ISAR5_EL1
, CRC32
, IMP
, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_CRC32
),
3202 HWCAP_CAP(ID_ISAR6_EL1
, DP
, IMP
, CAP_COMPAT_HWCAP
, COMPAT_HWCAP_ASIMDDP
),
3203 HWCAP_CAP(ID_ISAR6_EL1
, FHM
, IMP
, CAP_COMPAT_HWCAP
, COMPAT_HWCAP_ASIMDFHM
),
3204 HWCAP_CAP(ID_ISAR6_EL1
, SB
, IMP
, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_SB
),
3205 HWCAP_CAP(ID_ISAR6_EL1
, BF16
, IMP
, CAP_COMPAT_HWCAP
, COMPAT_HWCAP_ASIMDBF16
),
3206 HWCAP_CAP(ID_ISAR6_EL1
, I8MM
, IMP
, CAP_COMPAT_HWCAP
, COMPAT_HWCAP_I8MM
),
3207 HWCAP_CAP(ID_PFR2_EL1
, SSBS
, IMP
, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_SSBS
),
3212 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities
*cap
)
3214 switch (cap
->hwcap_type
) {
3216 cpu_set_feature(cap
->hwcap
);
3218 #ifdef CONFIG_COMPAT
3219 case CAP_COMPAT_HWCAP
:
3220 compat_elf_hwcap
|= (u32
)cap
->hwcap
;
3222 case CAP_COMPAT_HWCAP2
:
3223 compat_elf_hwcap2
|= (u32
)cap
->hwcap
;
3232 /* Check if we have a particular HWCAP enabled */
3233 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities
*cap
)
3237 switch (cap
->hwcap_type
) {
3239 rc
= cpu_have_feature(cap
->hwcap
);
3241 #ifdef CONFIG_COMPAT
3242 case CAP_COMPAT_HWCAP
:
3243 rc
= (compat_elf_hwcap
& (u32
)cap
->hwcap
) != 0;
3245 case CAP_COMPAT_HWCAP2
:
3246 rc
= (compat_elf_hwcap2
& (u32
)cap
->hwcap
) != 0;
3257 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities
*hwcaps
)
3259 /* We support emulation of accesses to CPU ID feature registers */
3260 cpu_set_named_feature(CPUID
);
3261 for (; hwcaps
->matches
; hwcaps
++)
3262 if (hwcaps
->matches(hwcaps
, cpucap_default_scope(hwcaps
)))
3263 cap_set_elf_hwcap(hwcaps
);
3266 static void update_cpu_capabilities(u16 scope_mask
)
3269 const struct arm64_cpu_capabilities
*caps
;
3271 scope_mask
&= ARM64_CPUCAP_SCOPE_MASK
;
3272 for (i
= 0; i
< ARM64_NCAPS
; i
++) {
3273 caps
= cpucap_ptrs
[i
];
3274 if (!caps
|| !(caps
->type
& scope_mask
) ||
3275 cpus_have_cap(caps
->capability
) ||
3276 !caps
->matches(caps
, cpucap_default_scope(caps
)))
3279 if (caps
->desc
&& !caps
->cpus
)
3280 pr_info("detected: %s\n", caps
->desc
);
3282 __set_bit(caps
->capability
, system_cpucaps
);
3284 if ((scope_mask
& SCOPE_BOOT_CPU
) && (caps
->type
& SCOPE_BOOT_CPU
))
3285 set_bit(caps
->capability
, boot_cpucaps
);
3290 * Enable all the available capabilities on this CPU. The capabilities
3291 * with BOOT_CPU scope are handled separately and hence skipped here.
3293 static int cpu_enable_non_boot_scope_capabilities(void *__unused
)
3296 u16 non_boot_scope
= SCOPE_ALL
& ~SCOPE_BOOT_CPU
;
3298 for_each_available_cap(i
) {
3299 const struct arm64_cpu_capabilities
*cap
= cpucap_ptrs
[i
];
3304 if (!(cap
->type
& non_boot_scope
))
3307 if (cap
->cpu_enable
)
3308 cap
->cpu_enable(cap
);
3314 * Run through the enabled capabilities and enable() it on all active
3317 static void __init
enable_cpu_capabilities(u16 scope_mask
)
3320 const struct arm64_cpu_capabilities
*caps
;
3323 scope_mask
&= ARM64_CPUCAP_SCOPE_MASK
;
3324 boot_scope
= !!(scope_mask
& SCOPE_BOOT_CPU
);
3326 for (i
= 0; i
< ARM64_NCAPS
; i
++) {
3327 caps
= cpucap_ptrs
[i
];
3328 if (!caps
|| !(caps
->type
& scope_mask
) ||
3329 !cpus_have_cap(caps
->capability
))
3332 if (boot_scope
&& caps
->cpu_enable
)
3334 * Capabilities with SCOPE_BOOT_CPU scope are finalised
3335 * before any secondary CPU boots. Thus, each secondary
3336 * will enable the capability as appropriate via
3337 * check_local_cpu_capabilities(). The only exception is
3338 * the boot CPU, for which the capability must be
3339 * enabled here. This approach avoids costly
3340 * stop_machine() calls for this case.
3342 caps
->cpu_enable(caps
);
3346 * For all non-boot scope capabilities, use stop_machine()
3347 * as it schedules the work allowing us to modify PSTATE,
3348 * instead of on_each_cpu() which uses an IPI, giving us a
3349 * PSTATE that disappears when we return.
3352 stop_machine(cpu_enable_non_boot_scope_capabilities
,
3353 NULL
, cpu_online_mask
);
3357 * Run through the list of capabilities to check for conflicts.
3358 * If the system has already detected a capability, take necessary
3359 * action on this CPU.
3361 static void verify_local_cpu_caps(u16 scope_mask
)
3364 bool cpu_has_cap
, system_has_cap
;
3365 const struct arm64_cpu_capabilities
*caps
;
3367 scope_mask
&= ARM64_CPUCAP_SCOPE_MASK
;
3369 for (i
= 0; i
< ARM64_NCAPS
; i
++) {
3370 caps
= cpucap_ptrs
[i
];
3371 if (!caps
|| !(caps
->type
& scope_mask
))
3374 cpu_has_cap
= caps
->matches(caps
, SCOPE_LOCAL_CPU
);
3375 system_has_cap
= cpus_have_cap(caps
->capability
);
3377 if (system_has_cap
) {
3379 * Check if the new CPU misses an advertised feature,
3380 * which is not safe to miss.
3382 if (!cpu_has_cap
&& !cpucap_late_cpu_optional(caps
))
3385 * We have to issue cpu_enable() irrespective of
3386 * whether the CPU has it or not, as it is enabeld
3387 * system wide. It is upto the call back to take
3388 * appropriate action on this CPU.
3390 if (caps
->cpu_enable
)
3391 caps
->cpu_enable(caps
);
3394 * Check if the CPU has this capability if it isn't
3395 * safe to have when the system doesn't.
3397 if (cpu_has_cap
&& !cpucap_late_cpu_permitted(caps
))
3402 if (i
< ARM64_NCAPS
) {
3403 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3404 smp_processor_id(), caps
->capability
,
3405 caps
->desc
, system_has_cap
, cpu_has_cap
);
3407 if (cpucap_panic_on_conflict(caps
))
3415 * Check for CPU features that are used in early boot
3416 * based on the Boot CPU value.
3418 static void check_early_cpu_features(void)
3420 verify_cpu_asid_bits();
3422 verify_local_cpu_caps(SCOPE_BOOT_CPU
);
3426 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities
*caps
)
3429 for (; caps
->matches
; caps
++)
3430 if (cpus_have_elf_hwcap(caps
) && !caps
->matches(caps
, SCOPE_LOCAL_CPU
)) {
3431 pr_crit("CPU%d: missing HWCAP: %s\n",
3432 smp_processor_id(), caps
->desc
);
3437 static void verify_local_elf_hwcaps(void)
3439 __verify_local_elf_hwcaps(arm64_elf_hwcaps
);
3441 if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1
)))
3442 __verify_local_elf_hwcaps(compat_elf_hwcaps
);
3445 static void verify_sve_features(void)
3447 unsigned long cpacr
= cpacr_save_enable_kernel_sve();
3449 if (vec_verify_vq_map(ARM64_VEC_SVE
)) {
3450 pr_crit("CPU%d: SVE: vector length support mismatch\n",
3451 smp_processor_id());
3455 cpacr_restore(cpacr
);
3458 static void verify_sme_features(void)
3460 unsigned long cpacr
= cpacr_save_enable_kernel_sme();
3462 if (vec_verify_vq_map(ARM64_VEC_SME
)) {
3463 pr_crit("CPU%d: SME: vector length support mismatch\n",
3464 smp_processor_id());
3468 cpacr_restore(cpacr
);
3471 static void verify_hyp_capabilities(void)
3473 u64 safe_mmfr1
, mmfr0
, mmfr1
;
3474 int parange
, ipa_max
;
3475 unsigned int safe_vmid_bits
, vmid_bits
;
3477 if (!IS_ENABLED(CONFIG_KVM
))
3480 safe_mmfr1
= read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1
);
3481 mmfr0
= read_cpuid(ID_AA64MMFR0_EL1
);
3482 mmfr1
= read_cpuid(ID_AA64MMFR1_EL1
);
3484 /* Verify VMID bits */
3485 safe_vmid_bits
= get_vmid_bits(safe_mmfr1
);
3486 vmid_bits
= get_vmid_bits(mmfr1
);
3487 if (vmid_bits
< safe_vmid_bits
) {
3488 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3492 /* Verify IPA range */
3493 parange
= cpuid_feature_extract_unsigned_field(mmfr0
,
3494 ID_AA64MMFR0_EL1_PARANGE_SHIFT
);
3495 ipa_max
= id_aa64mmfr0_parange_to_phys_shift(parange
);
3496 if (ipa_max
< get_kvm_ipa_limit()) {
3497 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3502 static void verify_mpam_capabilities(void)
3504 u64 cpu_idr
= read_cpuid(ID_AA64PFR0_EL1
);
3505 u64 sys_idr
= read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
);
3506 u16 cpu_partid_max
, cpu_pmg_max
, sys_partid_max
, sys_pmg_max
;
3508 if (FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK
, cpu_idr
) !=
3509 FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK
, sys_idr
)) {
3510 pr_crit("CPU%d: MPAM version mismatch\n", smp_processor_id());
3514 cpu_idr
= read_cpuid(MPAMIDR_EL1
);
3515 sys_idr
= read_sanitised_ftr_reg(SYS_MPAMIDR_EL1
);
3516 if (FIELD_GET(MPAMIDR_EL1_HAS_HCR
, cpu_idr
) !=
3517 FIELD_GET(MPAMIDR_EL1_HAS_HCR
, sys_idr
)) {
3518 pr_crit("CPU%d: Missing MPAM HCR\n", smp_processor_id());
3522 cpu_partid_max
= FIELD_GET(MPAMIDR_EL1_PARTID_MAX
, cpu_idr
);
3523 cpu_pmg_max
= FIELD_GET(MPAMIDR_EL1_PMG_MAX
, cpu_idr
);
3524 sys_partid_max
= FIELD_GET(MPAMIDR_EL1_PARTID_MAX
, sys_idr
);
3525 sys_pmg_max
= FIELD_GET(MPAMIDR_EL1_PMG_MAX
, sys_idr
);
3526 if (cpu_partid_max
< sys_partid_max
|| cpu_pmg_max
< sys_pmg_max
) {
3527 pr_crit("CPU%d: MPAM PARTID/PMG max values are mismatched\n", smp_processor_id());
3533 * Run through the enabled system capabilities and enable() it on this CPU.
3534 * The capabilities were decided based on the available CPUs at the boot time.
3535 * Any new CPU should match the system wide status of the capability. If the
3536 * new CPU doesn't have a capability which the system now has enabled, we
3537 * cannot do anything to fix it up and could cause unexpected failures. So
3540 static void verify_local_cpu_capabilities(void)
3543 * The capabilities with SCOPE_BOOT_CPU are checked from
3544 * check_early_cpu_features(), as they need to be verified
3545 * on all secondary CPUs.
3547 verify_local_cpu_caps(SCOPE_ALL
& ~SCOPE_BOOT_CPU
);
3548 verify_local_elf_hwcaps();
3550 if (system_supports_sve())
3551 verify_sve_features();
3553 if (system_supports_sme())
3554 verify_sme_features();
3556 if (is_hyp_mode_available())
3557 verify_hyp_capabilities();
3559 if (system_supports_mpam())
3560 verify_mpam_capabilities();
3563 void check_local_cpu_capabilities(void)
3566 * All secondary CPUs should conform to the early CPU features
3567 * in use by the kernel based on boot CPU.
3569 check_early_cpu_features();
3572 * If we haven't finalised the system capabilities, this CPU gets
3573 * a chance to update the errata work arounds and local features.
3574 * Otherwise, this CPU should verify that it has all the system
3575 * advertised capabilities.
3577 if (!system_capabilities_finalized())
3578 update_cpu_capabilities(SCOPE_LOCAL_CPU
);
3580 verify_local_cpu_capabilities();
3583 bool this_cpu_has_cap(unsigned int n
)
3585 if (!WARN_ON(preemptible()) && n
< ARM64_NCAPS
) {
3586 const struct arm64_cpu_capabilities
*cap
= cpucap_ptrs
[n
];
3589 return cap
->matches(cap
, SCOPE_LOCAL_CPU
);
3594 EXPORT_SYMBOL_GPL(this_cpu_has_cap
);
3597 * This helper function is used in a narrow window when,
3598 * - The system wide safe registers are set with all the SMP CPUs and,
3599 * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3601 static bool __maybe_unused
__system_matches_cap(unsigned int n
)
3603 if (n
< ARM64_NCAPS
) {
3604 const struct arm64_cpu_capabilities
*cap
= cpucap_ptrs
[n
];
3607 return cap
->matches(cap
, SCOPE_SYSTEM
);
3612 void cpu_set_feature(unsigned int num
)
3614 set_bit(num
, elf_hwcap
);
3617 bool cpu_have_feature(unsigned int num
)
3619 return test_bit(num
, elf_hwcap
);
3621 EXPORT_SYMBOL_GPL(cpu_have_feature
);
3623 unsigned long cpu_get_elf_hwcap(void)
3626 * We currently only populate the first 32 bits of AT_HWCAP. Please
3627 * note that for userspace compatibility we guarantee that bits 62
3628 * and 63 will always be returned as 0.
3630 return elf_hwcap
[0];
3633 unsigned long cpu_get_elf_hwcap2(void)
3635 return elf_hwcap
[1];
3638 unsigned long cpu_get_elf_hwcap3(void)
3640 return elf_hwcap
[2];
3643 static void __init
setup_boot_cpu_capabilities(void)
3646 * The boot CPU's feature register values have been recorded. Detect
3647 * boot cpucaps and local cpucaps for the boot CPU, then enable and
3648 * patch alternatives for the available boot cpucaps.
3650 update_cpu_capabilities(SCOPE_BOOT_CPU
| SCOPE_LOCAL_CPU
);
3651 enable_cpu_capabilities(SCOPE_BOOT_CPU
);
3652 apply_boot_alternatives();
3655 void __init
setup_boot_cpu_features(void)
3658 * Initialize the indirect array of CPU capabilities pointers before we
3659 * handle the boot CPU.
3661 init_cpucap_indirect_list();
3664 * Detect broken pseudo-NMI. Must be called _before_ the call to
3665 * setup_boot_cpu_capabilities() since it interacts with
3666 * can_use_gic_priorities().
3668 detect_system_supports_pseudo_nmi();
3670 setup_boot_cpu_capabilities();
3673 static void __init
setup_system_capabilities(void)
3676 * The system-wide safe feature register values have been finalized.
3677 * Detect, enable, and patch alternatives for the available system
3680 update_cpu_capabilities(SCOPE_SYSTEM
);
3681 enable_cpu_capabilities(SCOPE_ALL
& ~SCOPE_BOOT_CPU
);
3682 apply_alternatives_all();
3685 * Log any cpucaps with a cpumask as these aren't logged by
3686 * update_cpu_capabilities().
3688 for (int i
= 0; i
< ARM64_NCAPS
; i
++) {
3689 const struct arm64_cpu_capabilities
*caps
= cpucap_ptrs
[i
];
3691 if (caps
&& caps
->cpus
&& caps
->desc
&&
3692 cpumask_any(caps
->cpus
) < nr_cpu_ids
)
3693 pr_info("detected: %s on CPU%*pbl\n",
3694 caps
->desc
, cpumask_pr_args(caps
->cpus
));
3698 * TTBR0 PAN doesn't have its own cpucap, so log it manually.
3700 if (system_uses_ttbr0_pan())
3701 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3704 void __init
setup_system_features(void)
3706 setup_system_capabilities();
3708 kpti_install_ng_mappings();
3714 * Check for sane CTR_EL0.CWG value.
3716 if (!cache_type_cwg())
3717 pr_warn("No Cache Writeback Granule information, assuming %d\n",
3721 void __init
setup_user_features(void)
3723 user_feature_fixup();
3725 setup_elf_hwcaps(arm64_elf_hwcaps
);
3727 if (system_supports_32bit_el0()) {
3728 setup_elf_hwcaps(compat_elf_hwcaps
);
3732 minsigstksz_setup();
3735 static int enable_mismatched_32bit_el0(unsigned int cpu
)
3738 * The first 32-bit-capable CPU we detected and so can no longer
3739 * be offlined by userspace. -1 indicates we haven't yet onlined
3740 * a 32-bit-capable CPU.
3742 static int lucky_winner
= -1;
3744 struct cpuinfo_arm64
*info
= &per_cpu(cpu_data
, cpu
);
3745 bool cpu_32bit
= id_aa64pfr0_32bit_el0(info
->reg_id_aa64pfr0
);
3748 cpumask_set_cpu(cpu
, cpu_32bit_el0_mask
);
3749 static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0
);
3752 if (cpumask_test_cpu(0, cpu_32bit_el0_mask
) == cpu_32bit
)
3755 if (lucky_winner
>= 0)
3759 * We've detected a mismatch. We need to keep one of our CPUs with
3760 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3761 * every CPU in the system for a 32-bit task.
3763 lucky_winner
= cpu_32bit
? cpu
: cpumask_any_and(cpu_32bit_el0_mask
,
3765 get_cpu_device(lucky_winner
)->offline_disabled
= true;
3766 setup_elf_hwcaps(compat_elf_hwcaps
);
3768 pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3773 static int __init
init_32bit_el0_mask(void)
3775 if (!allow_mismatched_32bit_el0
)
3778 if (!zalloc_cpumask_var(&cpu_32bit_el0_mask
, GFP_KERNEL
))
3781 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN
,
3782 "arm64/mismatched_32bit_el0:online",
3783 enable_mismatched_32bit_el0
, NULL
);
3785 subsys_initcall_sync(init_32bit_el0_mask
);
3787 static void __maybe_unused
cpu_enable_cnp(struct arm64_cpu_capabilities
const *cap
)
3789 cpu_enable_swapper_cnp();
3793 * We emulate only the following system register space.
3794 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3795 * See Table C5-6 System instruction encodings for System register accesses,
3796 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3798 static inline bool __attribute_const__
is_emulated(u32 id
)
3800 return (sys_reg_Op0(id
) == 0x3 &&
3801 sys_reg_CRn(id
) == 0x0 &&
3802 sys_reg_Op1(id
) == 0x0 &&
3803 (sys_reg_CRm(id
) == 0 ||
3804 ((sys_reg_CRm(id
) >= 2) && (sys_reg_CRm(id
) <= 7))));
3808 * With CRm == 0, reg should be one of :
3809 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3811 static inline int emulate_id_reg(u32 id
, u64
*valp
)
3815 *valp
= read_cpuid_id();
3818 *valp
= SYS_MPIDR_SAFE_VAL
;
3820 case SYS_REVIDR_EL1
:
3821 /* IMPLEMENTATION DEFINED values are emulated with 0 */
3831 static int emulate_sys_reg(u32 id
, u64
*valp
)
3833 struct arm64_ftr_reg
*regp
;
3835 if (!is_emulated(id
))
3838 if (sys_reg_CRm(id
) == 0)
3839 return emulate_id_reg(id
, valp
);
3841 regp
= get_arm64_ftr_reg_nowarn(id
);
3843 *valp
= arm64_ftr_reg_user_value(regp
);
3846 * The untracked registers are either IMPLEMENTATION DEFINED
3847 * (e.g, ID_AFR0_EL1) or reserved RAZ.
3853 int do_emulate_mrs(struct pt_regs
*regs
, u32 sys_reg
, u32 rt
)
3858 rc
= emulate_sys_reg(sys_reg
, &val
);
3860 pt_regs_write_reg(regs
, rt
, val
);
3861 arm64_skip_faulting_instruction(regs
, AARCH64_INSN_SIZE
);
3866 bool try_emulate_mrs(struct pt_regs
*regs
, u32 insn
)
3870 if (compat_user_mode(regs
) || !aarch64_insn_is_mrs(insn
))
3874 * sys_reg values are defined as used in mrs/msr instruction.
3875 * shift the imm value to get the encoding.
3877 sys_reg
= (u32
)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16
, insn
) << 5;
3878 rt
= aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT
, insn
);
3879 return do_emulate_mrs(regs
, sys_reg
, rt
) == 0;
3882 enum mitigation_state
arm64_get_meltdown_state(void)
3884 if (__meltdown_safe
)
3885 return SPECTRE_UNAFFECTED
;
3887 if (arm64_kernel_unmapped_at_el0())
3888 return SPECTRE_MITIGATED
;
3890 return SPECTRE_VULNERABLE
;
3893 ssize_t
cpu_show_meltdown(struct device
*dev
, struct device_attribute
*attr
,
3896 switch (arm64_get_meltdown_state()) {
3897 case SPECTRE_UNAFFECTED
:
3898 return sprintf(buf
, "Not affected\n");
3900 case SPECTRE_MITIGATED
:
3901 return sprintf(buf
, "Mitigation: PTI\n");
3904 return sprintf(buf
, "Vulnerable\n");