1 // SPDX-License-Identifier: GPL-2.0-only
3 * Based on arch/arm/kernel/process.c
5 * Original Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7 * Copyright (C) 2012 ARM Ltd.
9 #include <linux/compat.h>
10 #include <linux/efi.h>
11 #include <linux/elf.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/mman.h>
20 #include <linux/nospec.h>
21 #include <linux/stddef.h>
22 #include <linux/sysctl.h>
23 #include <linux/unistd.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
32 #include <linux/tick.h>
33 #include <linux/utsname.h>
34 #include <linux/uaccess.h>
35 #include <linux/random.h>
36 #include <linux/hw_breakpoint.h>
37 #include <linux/personality.h>
38 #include <linux/notifier.h>
39 #include <trace/events/power.h>
40 #include <linux/percpu.h>
41 #include <linux/thread_info.h>
42 #include <linux/prctl.h>
43 #include <linux/stacktrace.h>
45 #include <asm/alternative.h>
46 #include <asm/arch_timer.h>
47 #include <asm/compat.h>
48 #include <asm/cpufeature.h>
49 #include <asm/cacheflush.h>
51 #include <asm/fpsimd.h>
53 #include <asm/mmu_context.h>
55 #include <asm/processor.h>
56 #include <asm/pointer_auth.h>
57 #include <asm/stacktrace.h>
58 #include <asm/switch_to.h>
59 #include <asm/system_misc.h>
61 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
62 #include <linux/stackprotector.h>
63 unsigned long __stack_chk_guard __ro_after_init
;
64 EXPORT_SYMBOL(__stack_chk_guard
);
68 * Function pointers to optional machine specific functions
70 void (*pm_power_off
)(void);
71 EXPORT_SYMBOL_GPL(pm_power_off
);
73 #ifdef CONFIG_HOTPLUG_CPU
74 void __noreturn
arch_cpu_idle_dead(void)
81 * Called by kexec, immediately prior to machine_kexec().
83 * This must completely disable all secondary CPUs; simply causing those CPUs
84 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
85 * kexec'd kernel to use any and all RAM as it sees fit, without having to
86 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
87 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
89 void machine_shutdown(void)
91 smp_shutdown_nonboot_cpus(reboot_cpu
);
95 * Halting simply requires that the secondary CPUs stop performing any
96 * activity (executing tasks, handling interrupts). smp_send_stop()
99 void machine_halt(void)
107 * Power-off simply requires that the secondary CPUs stop performing any
108 * activity (executing tasks, handling interrupts). smp_send_stop()
109 * achieves this. When the system power is turned off, it will take all CPUs
112 void machine_power_off(void)
116 do_kernel_power_off();
120 * Restart requires that the secondary CPUs stop performing any activity
121 * while the primary CPU resets the system. Systems with multiple CPUs must
122 * provide a HW restart implementation, to ensure that all CPUs reset at once.
123 * This is required so that any code running after reset on the primary CPU
124 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
125 * executing pre-reset code, and using RAM that the primary CPU's code wishes
126 * to use. Implementing such co-ordination would be essentially impossible.
128 void machine_restart(char *cmd
)
130 /* Disable interrupts first */
135 * UpdateCapsule() depends on the system being reset via
138 if (efi_enabled(EFI_RUNTIME_SERVICES
))
139 efi_reboot(reboot_mode
, NULL
);
141 /* Now call the architecture specific reboot code. */
142 do_kernel_restart(cmd
);
145 * Whoops - the architecture was unable to reboot.
147 printk("Reboot failed -- System halted\n");
151 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
152 static const char *const btypes
[] = {
160 static void print_pstate(struct pt_regs
*regs
)
162 u64 pstate
= regs
->pstate
;
164 if (compat_user_mode(regs
)) {
165 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
167 pstate
& PSR_AA32_N_BIT
? 'N' : 'n',
168 pstate
& PSR_AA32_Z_BIT
? 'Z' : 'z',
169 pstate
& PSR_AA32_C_BIT
? 'C' : 'c',
170 pstate
& PSR_AA32_V_BIT
? 'V' : 'v',
171 pstate
& PSR_AA32_Q_BIT
? 'Q' : 'q',
172 pstate
& PSR_AA32_T_BIT
? "T32" : "A32",
173 pstate
& PSR_AA32_E_BIT
? "BE" : "LE",
174 pstate
& PSR_AA32_A_BIT
? 'A' : 'a',
175 pstate
& PSR_AA32_I_BIT
? 'I' : 'i',
176 pstate
& PSR_AA32_F_BIT
? 'F' : 'f',
177 pstate
& PSR_AA32_DIT_BIT
? '+' : '-',
178 pstate
& PSR_AA32_SSBS_BIT
? '+' : '-');
180 const char *btype_str
= btypes
[(pstate
& PSR_BTYPE_MASK
) >>
183 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
185 pstate
& PSR_N_BIT
? 'N' : 'n',
186 pstate
& PSR_Z_BIT
? 'Z' : 'z',
187 pstate
& PSR_C_BIT
? 'C' : 'c',
188 pstate
& PSR_V_BIT
? 'V' : 'v',
189 pstate
& PSR_D_BIT
? 'D' : 'd',
190 pstate
& PSR_A_BIT
? 'A' : 'a',
191 pstate
& PSR_I_BIT
? 'I' : 'i',
192 pstate
& PSR_F_BIT
? 'F' : 'f',
193 pstate
& PSR_PAN_BIT
? '+' : '-',
194 pstate
& PSR_UAO_BIT
? '+' : '-',
195 pstate
& PSR_TCO_BIT
? '+' : '-',
196 pstate
& PSR_DIT_BIT
? '+' : '-',
197 pstate
& PSR_SSBS_BIT
? '+' : '-',
202 void __show_regs(struct pt_regs
*regs
)
207 if (compat_user_mode(regs
)) {
208 lr
= regs
->compat_lr
;
209 sp
= regs
->compat_sp
;
217 show_regs_print_info(KERN_DEFAULT
);
220 if (!user_mode(regs
)) {
221 printk("pc : %pS\n", (void *)regs
->pc
);
222 printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr
));
224 printk("pc : %016llx\n", regs
->pc
);
225 printk("lr : %016llx\n", lr
);
228 printk("sp : %016llx\n", sp
);
230 if (system_uses_irq_prio_masking())
231 printk("pmr: %08x\n", regs
->pmr
);
236 printk("x%-2d: %016llx", i
, regs
->regs
[i
]);
239 pr_cont(" x%-2d: %016llx", i
, regs
->regs
[i
]);
245 void show_regs(struct pt_regs
*regs
)
248 dump_backtrace(regs
, NULL
, KERN_DEFAULT
);
251 static void tls_thread_flush(void)
253 write_sysreg(0, tpidr_el0
);
254 if (system_supports_tpidr2())
255 write_sysreg_s(0, SYS_TPIDR2_EL0
);
257 if (is_compat_task()) {
258 current
->thread
.uw
.tp_value
= 0;
261 * We need to ensure ordering between the shadow state and the
262 * hardware state, so that we don't corrupt the hardware state
263 * with a stale shadow state during context switch.
266 write_sysreg(0, tpidrro_el0
);
270 static void flush_tagged_addr_state(void)
272 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI
))
273 clear_thread_flag(TIF_TAGGED_ADDR
);
276 static void flush_poe(void)
278 if (!system_supports_poe())
281 write_sysreg_s(POR_EL0_INIT
, SYS_POR_EL0
);
284 #ifdef CONFIG_ARM64_GCS
286 static void flush_gcs(void)
288 if (!system_supports_gcs())
292 current
->thread
.gcs_el0_mode
= 0;
293 write_sysreg_s(GCSCRE0_EL1_nTR
, SYS_GCSCRE0_EL1
);
294 write_sysreg_s(0, SYS_GCSPR_EL0
);
297 static int copy_thread_gcs(struct task_struct
*p
,
298 const struct kernel_clone_args
*args
)
302 if (!system_supports_gcs())
305 p
->thread
.gcs_base
= 0;
306 p
->thread
.gcs_size
= 0;
308 gcs
= gcs_alloc_thread_stack(p
, args
);
309 if (IS_ERR_VALUE(gcs
))
310 return PTR_ERR((void *)gcs
);
312 p
->thread
.gcs_el0_mode
= current
->thread
.gcs_el0_mode
;
313 p
->thread
.gcs_el0_locked
= current
->thread
.gcs_el0_locked
;
320 static void flush_gcs(void) { }
321 static int copy_thread_gcs(struct task_struct
*p
,
322 const struct kernel_clone_args
*args
)
329 void flush_thread(void)
331 fpsimd_flush_thread();
333 flush_ptrace_hw_breakpoint(current
);
334 flush_tagged_addr_state();
339 void arch_release_task_struct(struct task_struct
*tsk
)
341 fpsimd_release_task(tsk
);
345 int arch_dup_task_struct(struct task_struct
*dst
, struct task_struct
*src
)
348 fpsimd_preserve_current_state();
352 * Detach src's sve_state (if any) from dst so that it does not
353 * get erroneously used or freed prematurely. dst's copies
354 * will be allocated on demand later on if dst uses SVE.
355 * For consistency, also clear TIF_SVE here: this could be done
356 * later in copy_process(), but to avoid tripping up future
357 * maintainers it is best not to leave TIF flags and buffers in
358 * an inconsistent state, even temporarily.
360 dst
->thread
.sve_state
= NULL
;
361 clear_tsk_thread_flag(dst
, TIF_SVE
);
364 * In the unlikely event that we create a new thread with ZA
365 * enabled we should retain the ZA and ZT state so duplicate
366 * it here. This may be shortly freed if we exec() or if
367 * CLONE_SETTLS but it's simpler to do it here. To avoid
368 * confusing the rest of the code ensure that we have a
369 * sve_state allocated whenever sme_state is allocated.
371 if (thread_za_enabled(&src
->thread
)) {
372 dst
->thread
.sve_state
= kzalloc(sve_state_size(src
),
374 if (!dst
->thread
.sve_state
)
377 dst
->thread
.sme_state
= kmemdup(src
->thread
.sme_state
,
380 if (!dst
->thread
.sme_state
) {
381 kfree(dst
->thread
.sve_state
);
382 dst
->thread
.sve_state
= NULL
;
386 dst
->thread
.sme_state
= NULL
;
387 clear_tsk_thread_flag(dst
, TIF_SME
);
390 dst
->thread
.fp_type
= FP_STATE_FPSIMD
;
392 /* clear any pending asynchronous tag fault raised by the parent */
393 clear_tsk_thread_flag(dst
, TIF_MTE_ASYNC_FAULT
);
398 asmlinkage
void ret_from_fork(void) asm("ret_from_fork");
400 int copy_thread(struct task_struct
*p
, const struct kernel_clone_args
*args
)
402 unsigned long clone_flags
= args
->flags
;
403 unsigned long stack_start
= args
->stack
;
404 unsigned long tls
= args
->tls
;
405 struct pt_regs
*childregs
= task_pt_regs(p
);
408 memset(&p
->thread
.cpu_context
, 0, sizeof(struct cpu_context
));
411 * In case p was allocated the same task_struct pointer as some
412 * other recently-exited task, make sure p is disassociated from
413 * any cpu that may have run that now-exited task recently.
414 * Otherwise we could erroneously skip reloading the FPSIMD
417 fpsimd_flush_task_state(p
);
419 ptrauth_thread_init_kernel(p
);
421 if (likely(!args
->fn
)) {
422 *childregs
= *current_pt_regs();
423 childregs
->regs
[0] = 0;
426 * Read the current TLS pointer from tpidr_el0 as it may be
427 * out-of-sync with the saved value.
429 *task_user_tls(p
) = read_sysreg(tpidr_el0
);
430 if (system_supports_tpidr2())
431 p
->thread
.tpidr2_el0
= read_sysreg_s(SYS_TPIDR2_EL0
);
433 if (system_supports_poe())
434 p
->thread
.por_el0
= read_sysreg_s(SYS_POR_EL0
);
437 if (is_compat_thread(task_thread_info(p
)))
438 childregs
->compat_sp
= stack_start
;
440 childregs
->sp
= stack_start
;
444 * If a TLS pointer was passed to clone, use it for the new
445 * thread. We also reset TPIDR2 if it's in use.
447 if (clone_flags
& CLONE_SETTLS
) {
448 p
->thread
.uw
.tp_value
= tls
;
449 p
->thread
.tpidr2_el0
= 0;
452 ret
= copy_thread_gcs(p
, args
);
457 * A kthread has no context to ERET to, so ensure any buggy
458 * ERET is treated as an illegal exception return.
460 * When a user task is created from a kthread, childregs will
461 * be initialized by start_thread() or start_compat_thread().
463 memset(childregs
, 0, sizeof(struct pt_regs
));
464 childregs
->pstate
= PSR_MODE_EL1h
| PSR_IL_BIT
;
465 childregs
->stackframe
.type
= FRAME_META_TYPE_FINAL
;
467 p
->thread
.cpu_context
.x19
= (unsigned long)args
->fn
;
468 p
->thread
.cpu_context
.x20
= (unsigned long)args
->fn_arg
;
470 if (system_supports_poe())
471 p
->thread
.por_el0
= POR_EL0_INIT
;
473 p
->thread
.cpu_context
.pc
= (unsigned long)ret_from_fork
;
474 p
->thread
.cpu_context
.sp
= (unsigned long)childregs
;
476 * For the benefit of the unwinder, set up childregs->stackframe
477 * as the final frame for the new task.
479 p
->thread
.cpu_context
.fp
= (unsigned long)&childregs
->stackframe
;
481 ptrace_hw_copy_thread(p
);
486 void tls_preserve_current_state(void)
488 *task_user_tls(current
) = read_sysreg(tpidr_el0
);
489 if (system_supports_tpidr2() && !is_compat_task())
490 current
->thread
.tpidr2_el0
= read_sysreg_s(SYS_TPIDR2_EL0
);
493 static void tls_thread_switch(struct task_struct
*next
)
495 tls_preserve_current_state();
497 if (is_compat_thread(task_thread_info(next
)))
498 write_sysreg(next
->thread
.uw
.tp_value
, tpidrro_el0
);
500 write_sysreg(0, tpidrro_el0
);
502 write_sysreg(*task_user_tls(next
), tpidr_el0
);
503 if (system_supports_tpidr2())
504 write_sysreg_s(next
->thread
.tpidr2_el0
, SYS_TPIDR2_EL0
);
508 * Force SSBS state on context-switch, since it may be lost after migrating
509 * from a CPU which treats the bit as RES0 in a heterogeneous system.
511 static void ssbs_thread_switch(struct task_struct
*next
)
514 * Nothing to do for kernel threads, but 'regs' may be junk
515 * (e.g. idle task) so check the flags and bail early.
517 if (unlikely(next
->flags
& PF_KTHREAD
))
521 * If all CPUs implement the SSBS extension, then we just need to
522 * context-switch the PSTATE field.
524 if (alternative_has_cap_unlikely(ARM64_SSBS
))
527 spectre_v4_enable_task_mitigation(next
);
531 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
532 * shadow copy so that we can restore this upon entry from userspace.
534 * This is *only* for exception entry from EL0, and is not valid until we
535 * __switch_to() a user task.
537 DEFINE_PER_CPU(struct task_struct
*, __entry_task
);
539 static void entry_task_switch(struct task_struct
*next
)
541 __this_cpu_write(__entry_task
, next
);
544 #ifdef CONFIG_ARM64_GCS
546 void gcs_preserve_current_state(void)
548 current
->thread
.gcspr_el0
= read_sysreg_s(SYS_GCSPR_EL0
);
551 static void gcs_thread_switch(struct task_struct
*next
)
553 if (!system_supports_gcs())
556 /* GCSPR_EL0 is always readable */
557 gcs_preserve_current_state();
558 write_sysreg_s(next
->thread
.gcspr_el0
, SYS_GCSPR_EL0
);
560 if (current
->thread
.gcs_el0_mode
!= next
->thread
.gcs_el0_mode
)
561 gcs_set_el0_mode(next
);
564 * Ensure that GCS memory effects of the 'prev' thread are
565 * ordered before other memory accesses with release semantics
566 * (or preceded by a DMB) on the current PE. In addition, any
567 * memory accesses with acquire semantics (or succeeded by a
568 * DMB) are ordered before GCS memory effects of the 'next'
569 * thread. This will ensure that the GCS memory effects are
570 * visible to other PEs in case of migration.
572 if (task_gcs_el0_enabled(current
) || task_gcs_el0_enabled(next
))
578 static void gcs_thread_switch(struct task_struct
*next
)
585 * Handle sysreg updates for ARM erratum 1418040 which affects the 32bit view of
586 * CNTVCT, various other errata which require trapping all CNTVCT{,_EL0}
587 * accesses and prctl(PR_SET_TSC). Ensure access is disabled iff a workaround is
588 * required or PR_TSC_SIGSEGV is set.
590 static void update_cntkctl_el1(struct task_struct
*next
)
592 struct thread_info
*ti
= task_thread_info(next
);
594 if (test_ti_thread_flag(ti
, TIF_TSC_SIGSEGV
) ||
595 has_erratum_handler(read_cntvct_el0
) ||
596 (IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040
) &&
597 this_cpu_has_cap(ARM64_WORKAROUND_1418040
) &&
598 is_compat_thread(ti
)))
599 sysreg_clear_set(cntkctl_el1
, ARCH_TIMER_USR_VCT_ACCESS_EN
, 0);
601 sysreg_clear_set(cntkctl_el1
, 0, ARCH_TIMER_USR_VCT_ACCESS_EN
);
604 static void cntkctl_thread_switch(struct task_struct
*prev
,
605 struct task_struct
*next
)
607 if ((read_ti_thread_flags(task_thread_info(prev
)) &
608 (_TIF_32BIT
| _TIF_TSC_SIGSEGV
)) !=
609 (read_ti_thread_flags(task_thread_info(next
)) &
610 (_TIF_32BIT
| _TIF_TSC_SIGSEGV
)))
611 update_cntkctl_el1(next
);
614 static int do_set_tsc_mode(unsigned int val
)
618 if (val
== PR_TSC_SIGSEGV
)
620 else if (val
== PR_TSC_ENABLE
)
626 update_thread_flag(TIF_TSC_SIGSEGV
, tsc_sigsegv
);
627 update_cntkctl_el1(current
);
633 static void permission_overlay_switch(struct task_struct
*next
)
635 if (!system_supports_poe())
638 current
->thread
.por_el0
= read_sysreg_s(SYS_POR_EL0
);
639 if (current
->thread
.por_el0
!= next
->thread
.por_el0
) {
640 write_sysreg_s(next
->thread
.por_el0
, SYS_POR_EL0
);
645 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
646 * this function must be called with preemption disabled and the update to
647 * sctlr_user must be made in the same preemption disabled block so that
648 * __switch_to() does not see the variable update before the SCTLR_EL1 one.
650 void update_sctlr_el1(u64 sctlr
)
653 * EnIA must not be cleared while in the kernel as this is necessary for
654 * in-kernel PAC. It will be cleared on kernel exit if needed.
656 sysreg_clear_set(sctlr_el1
, SCTLR_USER_MASK
& ~SCTLR_ELx_ENIA
, sctlr
);
658 /* ISB required for the kernel uaccess routines when setting TCF0. */
665 __notrace_funcgraph __sched
666 struct task_struct
*__switch_to(struct task_struct
*prev
,
667 struct task_struct
*next
)
669 struct task_struct
*last
;
671 fpsimd_thread_switch(next
);
672 tls_thread_switch(next
);
673 hw_breakpoint_thread_switch(next
);
674 contextidr_thread_switch(next
);
675 entry_task_switch(next
);
676 ssbs_thread_switch(next
);
677 cntkctl_thread_switch(prev
, next
);
678 ptrauth_thread_switch_user(next
);
679 permission_overlay_switch(next
);
680 gcs_thread_switch(next
);
683 * Complete any pending TLB or cache maintenance on this CPU in case
684 * the thread migrates to a different CPU.
685 * This full barrier is also required by the membarrier system
691 * MTE thread switching must happen after the DSB above to ensure that
692 * any asynchronous tag check faults have been logged in the TFSR*_EL1
695 mte_thread_switch(next
);
696 /* avoid expensive SCTLR_EL1 accesses if no change */
697 if (prev
->thread
.sctlr_user
!= next
->thread
.sctlr_user
)
698 update_sctlr_el1(next
->thread
.sctlr_user
);
700 /* the actual thread switch */
701 last
= cpu_switch_to(prev
, next
);
711 static bool get_wchan_cb(void *arg
, unsigned long pc
)
713 struct wchan_info
*wchan_info
= arg
;
715 if (!in_sched_functions(pc
)) {
719 return wchan_info
->count
++ < 16;
722 unsigned long __get_wchan(struct task_struct
*p
)
724 struct wchan_info wchan_info
= {
729 if (!try_get_task_stack(p
))
732 arch_stack_walk(get_wchan_cb
, &wchan_info
, p
, NULL
);
736 return wchan_info
.pc
;
739 unsigned long arch_align_stack(unsigned long sp
)
741 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
742 sp
-= get_random_u32_below(PAGE_SIZE
);
747 int compat_elf_check_arch(const struct elf32_hdr
*hdr
)
749 if (!system_supports_32bit_el0())
752 if ((hdr
)->e_machine
!= EM_ARM
)
755 if (!((hdr
)->e_flags
& EF_ARM_EABI_MASK
))
759 * Prevent execve() of a 32-bit program from a deadline task
760 * if the restricted affinity mask would be inadmissible on an
763 return !static_branch_unlikely(&arm64_mismatched_32bit_el0
) ||
764 !dl_task_check_affinity(current
, system_32bit_el0_cpumask());
769 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
771 void arch_setup_new_exec(void)
773 unsigned long mmflags
= 0;
775 if (is_compat_task()) {
776 mmflags
= MMCF_AARCH32
;
779 * Restrict the CPU affinity mask for a 32-bit task so that
780 * it contains only 32-bit-capable CPUs.
782 * From the perspective of the task, this looks similar to
783 * what would happen if the 64-bit-only CPUs were hot-unplugged
784 * at the point of execve(), although we try a bit harder to
785 * honour the cpuset hierarchy.
787 if (static_branch_unlikely(&arm64_mismatched_32bit_el0
))
788 force_compatible_cpus_allowed_ptr(current
);
789 } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0
)) {
790 relax_compatible_cpus_allowed_ptr(current
);
793 current
->mm
->context
.flags
= mmflags
;
794 ptrauth_thread_init_user();
795 mte_thread_init_user();
796 do_set_tsc_mode(PR_TSC_ENABLE
);
798 if (task_spec_ssb_noexec(current
)) {
799 arch_prctl_spec_ctrl_set(current
, PR_SPEC_STORE_BYPASS
,
804 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
806 * Control the relaxed ABI allowing tagged user addresses into the kernel.
808 static unsigned int tagged_addr_disabled
;
810 long set_tagged_addr_ctrl(struct task_struct
*task
, unsigned long arg
)
812 unsigned long valid_mask
= PR_TAGGED_ADDR_ENABLE
;
813 struct thread_info
*ti
= task_thread_info(task
);
815 if (is_compat_thread(ti
))
818 if (system_supports_mte())
819 valid_mask
|= PR_MTE_TCF_SYNC
| PR_MTE_TCF_ASYNC \
822 if (arg
& ~valid_mask
)
826 * Do not allow the enabling of the tagged address ABI if globally
827 * disabled via sysctl abi.tagged_addr_disabled.
829 if (arg
& PR_TAGGED_ADDR_ENABLE
&& tagged_addr_disabled
)
832 if (set_mte_ctrl(task
, arg
) != 0)
835 update_ti_thread_flag(ti
, TIF_TAGGED_ADDR
, arg
& PR_TAGGED_ADDR_ENABLE
);
840 long get_tagged_addr_ctrl(struct task_struct
*task
)
843 struct thread_info
*ti
= task_thread_info(task
);
845 if (is_compat_thread(ti
))
848 if (test_ti_thread_flag(ti
, TIF_TAGGED_ADDR
))
849 ret
= PR_TAGGED_ADDR_ENABLE
;
851 ret
|= get_mte_ctrl(task
);
857 * Global sysctl to disable the tagged user addresses support. This control
858 * only prevents the tagged address ABI enabling via prctl() and does not
859 * disable it for tasks that already opted in to the relaxed ABI.
862 static struct ctl_table tagged_addr_sysctl_table
[] = {
864 .procname
= "tagged_addr_disabled",
866 .data
= &tagged_addr_disabled
,
867 .maxlen
= sizeof(int),
868 .proc_handler
= proc_dointvec_minmax
,
869 .extra1
= SYSCTL_ZERO
,
870 .extra2
= SYSCTL_ONE
,
874 static int __init
tagged_addr_init(void)
876 if (!register_sysctl("abi", tagged_addr_sysctl_table
))
881 core_initcall(tagged_addr_init
);
882 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
884 #ifdef CONFIG_BINFMT_ELF
885 int arch_elf_adjust_prot(int prot
, const struct arch_elf_state
*state
,
886 bool has_interp
, bool is_interp
)
889 * For dynamically linked executables the interpreter is
890 * responsible for setting PROT_BTI on everything except
893 if (is_interp
!= has_interp
)
896 if (!(state
->flags
& ARM64_ELF_BTI
))
899 if (prot
& PROT_EXEC
)
906 int get_tsc_mode(unsigned long adr
)
910 if (is_compat_task())
913 if (test_thread_flag(TIF_TSC_SIGSEGV
))
914 val
= PR_TSC_SIGSEGV
;
918 return put_user(val
, (unsigned int __user
*)adr
);
921 int set_tsc_mode(unsigned int val
)
923 if (is_compat_task())
926 return do_set_tsc_mode(val
);