drm/rockchip: Don't change hdmi reference clock rate
[drm/drm-misc.git] / arch / arm64 / kernel / ptrace.c
blobf79b0d5f71ac949d4d2c1c75309a421a22475d9d
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/ptrace.c
5 * By Ross Biro 1/23/92
6 * edited by Linus Torvalds
7 * ARM modifications Copyright (C) 2000 Russell King
8 * Copyright (C) 2012 ARM Ltd.
9 */
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31 #include <linux/rseq.h>
33 #include <asm/compat.h>
34 #include <asm/cpufeature.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/fpsimd.h>
37 #include <asm/gcs.h>
38 #include <asm/mte.h>
39 #include <asm/pointer_auth.h>
40 #include <asm/stacktrace.h>
41 #include <asm/syscall.h>
42 #include <asm/traps.h>
43 #include <asm/system_misc.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/syscalls.h>
48 struct pt_regs_offset {
49 const char *name;
50 int offset;
53 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
54 #define REG_OFFSET_END {.name = NULL, .offset = 0}
55 #define GPR_OFFSET_NAME(r) \
56 {.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
58 static const struct pt_regs_offset regoffset_table[] = {
59 GPR_OFFSET_NAME(0),
60 GPR_OFFSET_NAME(1),
61 GPR_OFFSET_NAME(2),
62 GPR_OFFSET_NAME(3),
63 GPR_OFFSET_NAME(4),
64 GPR_OFFSET_NAME(5),
65 GPR_OFFSET_NAME(6),
66 GPR_OFFSET_NAME(7),
67 GPR_OFFSET_NAME(8),
68 GPR_OFFSET_NAME(9),
69 GPR_OFFSET_NAME(10),
70 GPR_OFFSET_NAME(11),
71 GPR_OFFSET_NAME(12),
72 GPR_OFFSET_NAME(13),
73 GPR_OFFSET_NAME(14),
74 GPR_OFFSET_NAME(15),
75 GPR_OFFSET_NAME(16),
76 GPR_OFFSET_NAME(17),
77 GPR_OFFSET_NAME(18),
78 GPR_OFFSET_NAME(19),
79 GPR_OFFSET_NAME(20),
80 GPR_OFFSET_NAME(21),
81 GPR_OFFSET_NAME(22),
82 GPR_OFFSET_NAME(23),
83 GPR_OFFSET_NAME(24),
84 GPR_OFFSET_NAME(25),
85 GPR_OFFSET_NAME(26),
86 GPR_OFFSET_NAME(27),
87 GPR_OFFSET_NAME(28),
88 GPR_OFFSET_NAME(29),
89 GPR_OFFSET_NAME(30),
90 {.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
91 REG_OFFSET_NAME(sp),
92 REG_OFFSET_NAME(pc),
93 REG_OFFSET_NAME(pstate),
94 REG_OFFSET_END,
97 /**
98 * regs_query_register_offset() - query register offset from its name
99 * @name: the name of a register
101 * regs_query_register_offset() returns the offset of a register in struct
102 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
104 int regs_query_register_offset(const char *name)
106 const struct pt_regs_offset *roff;
108 for (roff = regoffset_table; roff->name != NULL; roff++)
109 if (!strcmp(roff->name, name))
110 return roff->offset;
111 return -EINVAL;
115 * regs_within_kernel_stack() - check the address in the stack
116 * @regs: pt_regs which contains kernel stack pointer.
117 * @addr: address which is checked.
119 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
120 * If @addr is within the kernel stack, it returns true. If not, returns false.
122 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
124 return ((addr & ~(THREAD_SIZE - 1)) ==
125 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
126 on_irq_stack(addr, sizeof(unsigned long));
130 * regs_get_kernel_stack_nth() - get Nth entry of the stack
131 * @regs: pt_regs which contains kernel stack pointer.
132 * @n: stack entry number.
134 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
135 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
136 * this returns 0.
138 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
140 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
142 addr += n;
143 if (regs_within_kernel_stack(regs, (unsigned long)addr))
144 return *addr;
145 else
146 return 0;
150 * TODO: does not yet catch signals sent when the child dies.
151 * in exit.c or in signal.c.
155 * Called by kernel/ptrace.c when detaching..
157 void ptrace_disable(struct task_struct *child)
160 * This would be better off in core code, but PTRACE_DETACH has
161 * grown its fair share of arch-specific worts and changing it
162 * is likely to cause regressions on obscure architectures.
164 user_disable_single_step(child);
167 #ifdef CONFIG_HAVE_HW_BREAKPOINT
169 * Handle hitting a HW-breakpoint.
171 static void ptrace_hbptriggered(struct perf_event *bp,
172 struct perf_sample_data *data,
173 struct pt_regs *regs)
175 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
176 const char *desc = "Hardware breakpoint trap (ptrace)";
178 if (is_compat_task()) {
179 int si_errno = 0;
180 int i;
182 for (i = 0; i < ARM_MAX_BRP; ++i) {
183 if (current->thread.debug.hbp_break[i] == bp) {
184 si_errno = (i << 1) + 1;
185 break;
189 for (i = 0; i < ARM_MAX_WRP; ++i) {
190 if (current->thread.debug.hbp_watch[i] == bp) {
191 si_errno = -((i << 1) + 1);
192 break;
195 arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
196 desc);
197 return;
200 arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
204 * Unregister breakpoints from this task and reset the pointers in
205 * the thread_struct.
207 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
209 int i;
210 struct thread_struct *t = &tsk->thread;
212 for (i = 0; i < ARM_MAX_BRP; i++) {
213 if (t->debug.hbp_break[i]) {
214 unregister_hw_breakpoint(t->debug.hbp_break[i]);
215 t->debug.hbp_break[i] = NULL;
219 for (i = 0; i < ARM_MAX_WRP; i++) {
220 if (t->debug.hbp_watch[i]) {
221 unregister_hw_breakpoint(t->debug.hbp_watch[i]);
222 t->debug.hbp_watch[i] = NULL;
227 void ptrace_hw_copy_thread(struct task_struct *tsk)
229 memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
232 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
233 struct task_struct *tsk,
234 unsigned long idx)
236 struct perf_event *bp = ERR_PTR(-EINVAL);
238 switch (note_type) {
239 case NT_ARM_HW_BREAK:
240 if (idx >= ARM_MAX_BRP)
241 goto out;
242 idx = array_index_nospec(idx, ARM_MAX_BRP);
243 bp = tsk->thread.debug.hbp_break[idx];
244 break;
245 case NT_ARM_HW_WATCH:
246 if (idx >= ARM_MAX_WRP)
247 goto out;
248 idx = array_index_nospec(idx, ARM_MAX_WRP);
249 bp = tsk->thread.debug.hbp_watch[idx];
250 break;
253 out:
254 return bp;
257 static int ptrace_hbp_set_event(unsigned int note_type,
258 struct task_struct *tsk,
259 unsigned long idx,
260 struct perf_event *bp)
262 int err = -EINVAL;
264 switch (note_type) {
265 case NT_ARM_HW_BREAK:
266 if (idx >= ARM_MAX_BRP)
267 goto out;
268 idx = array_index_nospec(idx, ARM_MAX_BRP);
269 tsk->thread.debug.hbp_break[idx] = bp;
270 err = 0;
271 break;
272 case NT_ARM_HW_WATCH:
273 if (idx >= ARM_MAX_WRP)
274 goto out;
275 idx = array_index_nospec(idx, ARM_MAX_WRP);
276 tsk->thread.debug.hbp_watch[idx] = bp;
277 err = 0;
278 break;
281 out:
282 return err;
285 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
286 struct task_struct *tsk,
287 unsigned long idx)
289 struct perf_event *bp;
290 struct perf_event_attr attr;
291 int err, type;
293 switch (note_type) {
294 case NT_ARM_HW_BREAK:
295 type = HW_BREAKPOINT_X;
296 break;
297 case NT_ARM_HW_WATCH:
298 type = HW_BREAKPOINT_RW;
299 break;
300 default:
301 return ERR_PTR(-EINVAL);
304 ptrace_breakpoint_init(&attr);
307 * Initialise fields to sane defaults
308 * (i.e. values that will pass validation).
310 attr.bp_addr = 0;
311 attr.bp_len = HW_BREAKPOINT_LEN_4;
312 attr.bp_type = type;
313 attr.disabled = 1;
315 bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
316 if (IS_ERR(bp))
317 return bp;
319 err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
320 if (err)
321 return ERR_PTR(err);
323 return bp;
326 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
327 struct arch_hw_breakpoint_ctrl ctrl,
328 struct perf_event_attr *attr)
330 int err, len, type, offset, disabled = !ctrl.enabled;
332 attr->disabled = disabled;
333 if (disabled)
334 return 0;
336 err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
337 if (err)
338 return err;
340 switch (note_type) {
341 case NT_ARM_HW_BREAK:
342 if ((type & HW_BREAKPOINT_X) != type)
343 return -EINVAL;
344 break;
345 case NT_ARM_HW_WATCH:
346 if ((type & HW_BREAKPOINT_RW) != type)
347 return -EINVAL;
348 break;
349 default:
350 return -EINVAL;
353 attr->bp_len = len;
354 attr->bp_type = type;
355 attr->bp_addr += offset;
357 return 0;
360 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
362 u8 num;
363 u32 reg = 0;
365 switch (note_type) {
366 case NT_ARM_HW_BREAK:
367 num = hw_breakpoint_slots(TYPE_INST);
368 break;
369 case NT_ARM_HW_WATCH:
370 num = hw_breakpoint_slots(TYPE_DATA);
371 break;
372 default:
373 return -EINVAL;
376 reg |= debug_monitors_arch();
377 reg <<= 8;
378 reg |= num;
380 *info = reg;
381 return 0;
384 static int ptrace_hbp_get_ctrl(unsigned int note_type,
385 struct task_struct *tsk,
386 unsigned long idx,
387 u32 *ctrl)
389 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
391 if (IS_ERR(bp))
392 return PTR_ERR(bp);
394 *ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
395 return 0;
398 static int ptrace_hbp_get_addr(unsigned int note_type,
399 struct task_struct *tsk,
400 unsigned long idx,
401 u64 *addr)
403 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
405 if (IS_ERR(bp))
406 return PTR_ERR(bp);
408 *addr = bp ? counter_arch_bp(bp)->address : 0;
409 return 0;
412 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
413 struct task_struct *tsk,
414 unsigned long idx)
416 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
418 if (!bp)
419 bp = ptrace_hbp_create(note_type, tsk, idx);
421 return bp;
424 static int ptrace_hbp_set_ctrl(unsigned int note_type,
425 struct task_struct *tsk,
426 unsigned long idx,
427 u32 uctrl)
429 int err;
430 struct perf_event *bp;
431 struct perf_event_attr attr;
432 struct arch_hw_breakpoint_ctrl ctrl;
434 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
435 if (IS_ERR(bp)) {
436 err = PTR_ERR(bp);
437 return err;
440 attr = bp->attr;
441 decode_ctrl_reg(uctrl, &ctrl);
442 err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
443 if (err)
444 return err;
446 return modify_user_hw_breakpoint(bp, &attr);
449 static int ptrace_hbp_set_addr(unsigned int note_type,
450 struct task_struct *tsk,
451 unsigned long idx,
452 u64 addr)
454 int err;
455 struct perf_event *bp;
456 struct perf_event_attr attr;
458 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
459 if (IS_ERR(bp)) {
460 err = PTR_ERR(bp);
461 return err;
464 attr = bp->attr;
465 attr.bp_addr = addr;
466 err = modify_user_hw_breakpoint(bp, &attr);
467 return err;
470 #define PTRACE_HBP_ADDR_SZ sizeof(u64)
471 #define PTRACE_HBP_CTRL_SZ sizeof(u32)
472 #define PTRACE_HBP_PAD_SZ sizeof(u32)
474 static int hw_break_get(struct task_struct *target,
475 const struct user_regset *regset,
476 struct membuf to)
478 unsigned int note_type = regset->core_note_type;
479 int ret, idx = 0;
480 u32 info, ctrl;
481 u64 addr;
483 /* Resource info */
484 ret = ptrace_hbp_get_resource_info(note_type, &info);
485 if (ret)
486 return ret;
488 membuf_write(&to, &info, sizeof(info));
489 membuf_zero(&to, sizeof(u32));
490 /* (address, ctrl) registers */
491 while (to.left) {
492 ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
493 if (ret)
494 return ret;
495 ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
496 if (ret)
497 return ret;
498 membuf_store(&to, addr);
499 membuf_store(&to, ctrl);
500 membuf_zero(&to, sizeof(u32));
501 idx++;
503 return 0;
506 static int hw_break_set(struct task_struct *target,
507 const struct user_regset *regset,
508 unsigned int pos, unsigned int count,
509 const void *kbuf, const void __user *ubuf)
511 unsigned int note_type = regset->core_note_type;
512 int ret, idx = 0, offset, limit;
513 u32 ctrl;
514 u64 addr;
516 /* Resource info and pad */
517 offset = offsetof(struct user_hwdebug_state, dbg_regs);
518 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
520 /* (address, ctrl) registers */
521 limit = regset->n * regset->size;
522 while (count && offset < limit) {
523 if (count < PTRACE_HBP_ADDR_SZ)
524 return -EINVAL;
525 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
526 offset, offset + PTRACE_HBP_ADDR_SZ);
527 if (ret)
528 return ret;
529 ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
530 if (ret)
531 return ret;
532 offset += PTRACE_HBP_ADDR_SZ;
534 if (!count)
535 break;
536 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
537 offset, offset + PTRACE_HBP_CTRL_SZ);
538 if (ret)
539 return ret;
540 ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
541 if (ret)
542 return ret;
543 offset += PTRACE_HBP_CTRL_SZ;
545 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
546 offset, offset + PTRACE_HBP_PAD_SZ);
547 offset += PTRACE_HBP_PAD_SZ;
548 idx++;
551 return 0;
553 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
555 static int gpr_get(struct task_struct *target,
556 const struct user_regset *regset,
557 struct membuf to)
559 struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
560 return membuf_write(&to, uregs, sizeof(*uregs));
563 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
564 unsigned int pos, unsigned int count,
565 const void *kbuf, const void __user *ubuf)
567 int ret;
568 struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
570 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
571 if (ret)
572 return ret;
574 if (!valid_user_regs(&newregs, target))
575 return -EINVAL;
577 task_pt_regs(target)->user_regs = newregs;
578 return 0;
581 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
583 if (!system_supports_fpsimd())
584 return -ENODEV;
585 return regset->n;
589 * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
591 static int __fpr_get(struct task_struct *target,
592 const struct user_regset *regset,
593 struct membuf to)
595 struct user_fpsimd_state *uregs;
597 sve_sync_to_fpsimd(target);
599 uregs = &target->thread.uw.fpsimd_state;
601 return membuf_write(&to, uregs, sizeof(*uregs));
604 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
605 struct membuf to)
607 if (!system_supports_fpsimd())
608 return -EINVAL;
610 if (target == current)
611 fpsimd_preserve_current_state();
613 return __fpr_get(target, regset, to);
616 static int __fpr_set(struct task_struct *target,
617 const struct user_regset *regset,
618 unsigned int pos, unsigned int count,
619 const void *kbuf, const void __user *ubuf,
620 unsigned int start_pos)
622 int ret;
623 struct user_fpsimd_state newstate;
626 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
627 * short copyin can't resurrect stale data.
629 sve_sync_to_fpsimd(target);
631 newstate = target->thread.uw.fpsimd_state;
633 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
634 start_pos, start_pos + sizeof(newstate));
635 if (ret)
636 return ret;
638 target->thread.uw.fpsimd_state = newstate;
640 return ret;
643 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
644 unsigned int pos, unsigned int count,
645 const void *kbuf, const void __user *ubuf)
647 int ret;
649 if (!system_supports_fpsimd())
650 return -EINVAL;
652 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
653 if (ret)
654 return ret;
656 sve_sync_from_fpsimd_zeropad(target);
657 fpsimd_flush_task_state(target);
659 return ret;
662 static int tls_get(struct task_struct *target, const struct user_regset *regset,
663 struct membuf to)
665 int ret;
667 if (target == current)
668 tls_preserve_current_state();
670 ret = membuf_store(&to, target->thread.uw.tp_value);
671 if (system_supports_tpidr2())
672 ret = membuf_store(&to, target->thread.tpidr2_el0);
673 else
674 ret = membuf_zero(&to, sizeof(u64));
676 return ret;
679 static int tls_set(struct task_struct *target, const struct user_regset *regset,
680 unsigned int pos, unsigned int count,
681 const void *kbuf, const void __user *ubuf)
683 int ret;
684 unsigned long tls[2];
686 tls[0] = target->thread.uw.tp_value;
687 if (system_supports_tpidr2())
688 tls[1] = target->thread.tpidr2_el0;
690 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count);
691 if (ret)
692 return ret;
694 target->thread.uw.tp_value = tls[0];
695 if (system_supports_tpidr2())
696 target->thread.tpidr2_el0 = tls[1];
698 return ret;
701 static int fpmr_get(struct task_struct *target, const struct user_regset *regset,
702 struct membuf to)
704 if (!system_supports_fpmr())
705 return -EINVAL;
707 if (target == current)
708 fpsimd_preserve_current_state();
710 return membuf_store(&to, target->thread.uw.fpmr);
713 static int fpmr_set(struct task_struct *target, const struct user_regset *regset,
714 unsigned int pos, unsigned int count,
715 const void *kbuf, const void __user *ubuf)
717 int ret;
718 unsigned long fpmr;
720 if (!system_supports_fpmr())
721 return -EINVAL;
723 fpmr = target->thread.uw.fpmr;
725 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpmr, 0, count);
726 if (ret)
727 return ret;
729 target->thread.uw.fpmr = fpmr;
731 fpsimd_flush_task_state(target);
733 return 0;
736 static int system_call_get(struct task_struct *target,
737 const struct user_regset *regset,
738 struct membuf to)
740 return membuf_store(&to, task_pt_regs(target)->syscallno);
743 static int system_call_set(struct task_struct *target,
744 const struct user_regset *regset,
745 unsigned int pos, unsigned int count,
746 const void *kbuf, const void __user *ubuf)
748 int syscallno = task_pt_regs(target)->syscallno;
749 int ret;
751 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
752 if (ret)
753 return ret;
755 task_pt_regs(target)->syscallno = syscallno;
756 return ret;
759 #ifdef CONFIG_ARM64_SVE
761 static void sve_init_header_from_task(struct user_sve_header *header,
762 struct task_struct *target,
763 enum vec_type type)
765 unsigned int vq;
766 bool active;
767 enum vec_type task_type;
769 memset(header, 0, sizeof(*header));
771 /* Check if the requested registers are active for the task */
772 if (thread_sm_enabled(&target->thread))
773 task_type = ARM64_VEC_SME;
774 else
775 task_type = ARM64_VEC_SVE;
776 active = (task_type == type);
778 switch (type) {
779 case ARM64_VEC_SVE:
780 if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
781 header->flags |= SVE_PT_VL_INHERIT;
782 break;
783 case ARM64_VEC_SME:
784 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
785 header->flags |= SVE_PT_VL_INHERIT;
786 break;
787 default:
788 WARN_ON_ONCE(1);
789 return;
792 if (active) {
793 if (target->thread.fp_type == FP_STATE_FPSIMD) {
794 header->flags |= SVE_PT_REGS_FPSIMD;
795 } else {
796 header->flags |= SVE_PT_REGS_SVE;
800 header->vl = task_get_vl(target, type);
801 vq = sve_vq_from_vl(header->vl);
803 header->max_vl = vec_max_vl(type);
804 header->size = SVE_PT_SIZE(vq, header->flags);
805 header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
806 SVE_PT_REGS_SVE);
809 static unsigned int sve_size_from_header(struct user_sve_header const *header)
811 return ALIGN(header->size, SVE_VQ_BYTES);
814 static int sve_get_common(struct task_struct *target,
815 const struct user_regset *regset,
816 struct membuf to,
817 enum vec_type type)
819 struct user_sve_header header;
820 unsigned int vq;
821 unsigned long start, end;
823 /* Header */
824 sve_init_header_from_task(&header, target, type);
825 vq = sve_vq_from_vl(header.vl);
827 membuf_write(&to, &header, sizeof(header));
829 if (target == current)
830 fpsimd_preserve_current_state();
832 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
833 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
835 switch ((header.flags & SVE_PT_REGS_MASK)) {
836 case SVE_PT_REGS_FPSIMD:
837 return __fpr_get(target, regset, to);
839 case SVE_PT_REGS_SVE:
840 start = SVE_PT_SVE_OFFSET;
841 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
842 membuf_write(&to, target->thread.sve_state, end - start);
844 start = end;
845 end = SVE_PT_SVE_FPSR_OFFSET(vq);
846 membuf_zero(&to, end - start);
849 * Copy fpsr, and fpcr which must follow contiguously in
850 * struct fpsimd_state:
852 start = end;
853 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
854 membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
855 end - start);
857 start = end;
858 end = sve_size_from_header(&header);
859 return membuf_zero(&to, end - start);
861 default:
862 return 0;
866 static int sve_get(struct task_struct *target,
867 const struct user_regset *regset,
868 struct membuf to)
870 if (!system_supports_sve())
871 return -EINVAL;
873 return sve_get_common(target, regset, to, ARM64_VEC_SVE);
876 static int sve_set_common(struct task_struct *target,
877 const struct user_regset *regset,
878 unsigned int pos, unsigned int count,
879 const void *kbuf, const void __user *ubuf,
880 enum vec_type type)
882 int ret;
883 struct user_sve_header header;
884 unsigned int vq;
885 unsigned long start, end;
887 /* Header */
888 if (count < sizeof(header))
889 return -EINVAL;
890 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
891 0, sizeof(header));
892 if (ret)
893 goto out;
896 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
897 * vec_set_vector_length(), which will also validate them for us:
899 ret = vec_set_vector_length(target, type, header.vl,
900 ((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
901 if (ret)
902 goto out;
905 * Actual VL set may be different from what the user asked
906 * for, or we may have configured the _ONEXEC VL not the
907 * current VL:
909 vq = sve_vq_from_vl(task_get_vl(target, type));
911 /* Enter/exit streaming mode */
912 if (system_supports_sme()) {
913 u64 old_svcr = target->thread.svcr;
915 switch (type) {
916 case ARM64_VEC_SVE:
917 target->thread.svcr &= ~SVCR_SM_MASK;
918 break;
919 case ARM64_VEC_SME:
920 target->thread.svcr |= SVCR_SM_MASK;
923 * Disable traps and ensure there is SME storage but
924 * preserve any currently set values in ZA/ZT.
926 sme_alloc(target, false);
927 set_tsk_thread_flag(target, TIF_SME);
928 break;
929 default:
930 WARN_ON_ONCE(1);
931 ret = -EINVAL;
932 goto out;
936 * If we switched then invalidate any existing SVE
937 * state and ensure there's storage.
939 if (target->thread.svcr != old_svcr)
940 sve_alloc(target, true);
943 /* Registers: FPSIMD-only case */
945 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
946 if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
947 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
948 SVE_PT_FPSIMD_OFFSET);
949 clear_tsk_thread_flag(target, TIF_SVE);
950 target->thread.fp_type = FP_STATE_FPSIMD;
951 goto out;
955 * Otherwise: no registers or full SVE case. For backwards
956 * compatibility reasons we treat empty flags as SVE registers.
960 * If setting a different VL from the requested VL and there is
961 * register data, the data layout will be wrong: don't even
962 * try to set the registers in this case.
964 if (count && vq != sve_vq_from_vl(header.vl)) {
965 ret = -EIO;
966 goto out;
969 sve_alloc(target, true);
970 if (!target->thread.sve_state) {
971 ret = -ENOMEM;
972 clear_tsk_thread_flag(target, TIF_SVE);
973 target->thread.fp_type = FP_STATE_FPSIMD;
974 goto out;
978 * Ensure target->thread.sve_state is up to date with target's
979 * FPSIMD regs, so that a short copyin leaves trailing
980 * registers unmodified. Only enable SVE if we are
981 * configuring normal SVE, a system with streaming SVE may not
982 * have normal SVE.
984 fpsimd_sync_to_sve(target);
985 if (type == ARM64_VEC_SVE)
986 set_tsk_thread_flag(target, TIF_SVE);
987 target->thread.fp_type = FP_STATE_SVE;
989 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
990 start = SVE_PT_SVE_OFFSET;
991 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
992 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
993 target->thread.sve_state,
994 start, end);
995 if (ret)
996 goto out;
998 start = end;
999 end = SVE_PT_SVE_FPSR_OFFSET(vq);
1000 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, start, end);
1003 * Copy fpsr, and fpcr which must follow contiguously in
1004 * struct fpsimd_state:
1006 start = end;
1007 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
1008 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1009 &target->thread.uw.fpsimd_state.fpsr,
1010 start, end);
1012 out:
1013 fpsimd_flush_task_state(target);
1014 return ret;
1017 static int sve_set(struct task_struct *target,
1018 const struct user_regset *regset,
1019 unsigned int pos, unsigned int count,
1020 const void *kbuf, const void __user *ubuf)
1022 if (!system_supports_sve())
1023 return -EINVAL;
1025 return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1026 ARM64_VEC_SVE);
1029 #endif /* CONFIG_ARM64_SVE */
1031 #ifdef CONFIG_ARM64_SME
1033 static int ssve_get(struct task_struct *target,
1034 const struct user_regset *regset,
1035 struct membuf to)
1037 if (!system_supports_sme())
1038 return -EINVAL;
1040 return sve_get_common(target, regset, to, ARM64_VEC_SME);
1043 static int ssve_set(struct task_struct *target,
1044 const struct user_regset *regset,
1045 unsigned int pos, unsigned int count,
1046 const void *kbuf, const void __user *ubuf)
1048 if (!system_supports_sme())
1049 return -EINVAL;
1051 return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1052 ARM64_VEC_SME);
1055 static int za_get(struct task_struct *target,
1056 const struct user_regset *regset,
1057 struct membuf to)
1059 struct user_za_header header;
1060 unsigned int vq;
1061 unsigned long start, end;
1063 if (!system_supports_sme())
1064 return -EINVAL;
1066 /* Header */
1067 memset(&header, 0, sizeof(header));
1069 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1070 header.flags |= ZA_PT_VL_INHERIT;
1072 header.vl = task_get_sme_vl(target);
1073 vq = sve_vq_from_vl(header.vl);
1074 header.max_vl = sme_max_vl();
1075 header.max_size = ZA_PT_SIZE(vq);
1077 /* If ZA is not active there is only the header */
1078 if (thread_za_enabled(&target->thread))
1079 header.size = ZA_PT_SIZE(vq);
1080 else
1081 header.size = ZA_PT_ZA_OFFSET;
1083 membuf_write(&to, &header, sizeof(header));
1085 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1086 end = ZA_PT_ZA_OFFSET;
1088 if (target == current)
1089 fpsimd_preserve_current_state();
1091 /* Any register data to include? */
1092 if (thread_za_enabled(&target->thread)) {
1093 start = end;
1094 end = ZA_PT_SIZE(vq);
1095 membuf_write(&to, target->thread.sme_state, end - start);
1098 /* Zero any trailing padding */
1099 start = end;
1100 end = ALIGN(header.size, SVE_VQ_BYTES);
1101 return membuf_zero(&to, end - start);
1104 static int za_set(struct task_struct *target,
1105 const struct user_regset *regset,
1106 unsigned int pos, unsigned int count,
1107 const void *kbuf, const void __user *ubuf)
1109 int ret;
1110 struct user_za_header header;
1111 unsigned int vq;
1112 unsigned long start, end;
1114 if (!system_supports_sme())
1115 return -EINVAL;
1117 /* Header */
1118 if (count < sizeof(header))
1119 return -EINVAL;
1120 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1121 0, sizeof(header));
1122 if (ret)
1123 goto out;
1126 * All current ZA_PT_* flags are consumed by
1127 * vec_set_vector_length(), which will also validate them for
1128 * us:
1130 ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1131 ((unsigned long)header.flags) << 16);
1132 if (ret)
1133 goto out;
1136 * Actual VL set may be different from what the user asked
1137 * for, or we may have configured the _ONEXEC rather than
1138 * current VL:
1140 vq = sve_vq_from_vl(task_get_sme_vl(target));
1142 /* Ensure there is some SVE storage for streaming mode */
1143 if (!target->thread.sve_state) {
1144 sve_alloc(target, false);
1145 if (!target->thread.sve_state) {
1146 ret = -ENOMEM;
1147 goto out;
1152 * Only flush the storage if PSTATE.ZA was not already set,
1153 * otherwise preserve any existing data.
1155 sme_alloc(target, !thread_za_enabled(&target->thread));
1156 if (!target->thread.sme_state)
1157 return -ENOMEM;
1159 /* If there is no data then disable ZA */
1160 if (!count) {
1161 target->thread.svcr &= ~SVCR_ZA_MASK;
1162 goto out;
1166 * If setting a different VL from the requested VL and there is
1167 * register data, the data layout will be wrong: don't even
1168 * try to set the registers in this case.
1170 if (vq != sve_vq_from_vl(header.vl)) {
1171 ret = -EIO;
1172 goto out;
1175 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1176 start = ZA_PT_ZA_OFFSET;
1177 end = ZA_PT_SIZE(vq);
1178 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1179 target->thread.sme_state,
1180 start, end);
1181 if (ret)
1182 goto out;
1184 /* Mark ZA as active and let userspace use it */
1185 set_tsk_thread_flag(target, TIF_SME);
1186 target->thread.svcr |= SVCR_ZA_MASK;
1188 out:
1189 fpsimd_flush_task_state(target);
1190 return ret;
1193 static int zt_get(struct task_struct *target,
1194 const struct user_regset *regset,
1195 struct membuf to)
1197 if (!system_supports_sme2())
1198 return -EINVAL;
1201 * If PSTATE.ZA is not set then ZT will be zeroed when it is
1202 * enabled so report the current register value as zero.
1204 if (thread_za_enabled(&target->thread))
1205 membuf_write(&to, thread_zt_state(&target->thread),
1206 ZT_SIG_REG_BYTES);
1207 else
1208 membuf_zero(&to, ZT_SIG_REG_BYTES);
1210 return 0;
1213 static int zt_set(struct task_struct *target,
1214 const struct user_regset *regset,
1215 unsigned int pos, unsigned int count,
1216 const void *kbuf, const void __user *ubuf)
1218 int ret;
1220 if (!system_supports_sme2())
1221 return -EINVAL;
1223 /* Ensure SVE storage in case this is first use of SME */
1224 sve_alloc(target, false);
1225 if (!target->thread.sve_state)
1226 return -ENOMEM;
1228 if (!thread_za_enabled(&target->thread)) {
1229 sme_alloc(target, true);
1230 if (!target->thread.sme_state)
1231 return -ENOMEM;
1234 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1235 thread_zt_state(&target->thread),
1236 0, ZT_SIG_REG_BYTES);
1237 if (ret == 0) {
1238 target->thread.svcr |= SVCR_ZA_MASK;
1239 set_tsk_thread_flag(target, TIF_SME);
1242 fpsimd_flush_task_state(target);
1244 return ret;
1247 #endif /* CONFIG_ARM64_SME */
1249 #ifdef CONFIG_ARM64_PTR_AUTH
1250 static int pac_mask_get(struct task_struct *target,
1251 const struct user_regset *regset,
1252 struct membuf to)
1255 * The PAC bits can differ across data and instruction pointers
1256 * depending on TCR_EL1.TBID*, which we may make use of in future, so
1257 * we expose separate masks.
1259 unsigned long mask = ptrauth_user_pac_mask();
1260 struct user_pac_mask uregs = {
1261 .data_mask = mask,
1262 .insn_mask = mask,
1265 if (!system_supports_address_auth())
1266 return -EINVAL;
1268 return membuf_write(&to, &uregs, sizeof(uregs));
1271 static int pac_enabled_keys_get(struct task_struct *target,
1272 const struct user_regset *regset,
1273 struct membuf to)
1275 long enabled_keys = ptrauth_get_enabled_keys(target);
1277 if (IS_ERR_VALUE(enabled_keys))
1278 return enabled_keys;
1280 return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1283 static int pac_enabled_keys_set(struct task_struct *target,
1284 const struct user_regset *regset,
1285 unsigned int pos, unsigned int count,
1286 const void *kbuf, const void __user *ubuf)
1288 int ret;
1289 long enabled_keys = ptrauth_get_enabled_keys(target);
1291 if (IS_ERR_VALUE(enabled_keys))
1292 return enabled_keys;
1294 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1295 sizeof(long));
1296 if (ret)
1297 return ret;
1299 return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1300 enabled_keys);
1303 #ifdef CONFIG_CHECKPOINT_RESTORE
1304 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1306 return (__uint128_t)key->hi << 64 | key->lo;
1309 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1311 struct ptrauth_key key = {
1312 .lo = (unsigned long)ukey,
1313 .hi = (unsigned long)(ukey >> 64),
1316 return key;
1319 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1320 const struct ptrauth_keys_user *keys)
1322 ukeys->apiakey = pac_key_to_user(&keys->apia);
1323 ukeys->apibkey = pac_key_to_user(&keys->apib);
1324 ukeys->apdakey = pac_key_to_user(&keys->apda);
1325 ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1328 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1329 const struct user_pac_address_keys *ukeys)
1331 keys->apia = pac_key_from_user(ukeys->apiakey);
1332 keys->apib = pac_key_from_user(ukeys->apibkey);
1333 keys->apda = pac_key_from_user(ukeys->apdakey);
1334 keys->apdb = pac_key_from_user(ukeys->apdbkey);
1337 static int pac_address_keys_get(struct task_struct *target,
1338 const struct user_regset *regset,
1339 struct membuf to)
1341 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1342 struct user_pac_address_keys user_keys;
1344 if (!system_supports_address_auth())
1345 return -EINVAL;
1347 pac_address_keys_to_user(&user_keys, keys);
1349 return membuf_write(&to, &user_keys, sizeof(user_keys));
1352 static int pac_address_keys_set(struct task_struct *target,
1353 const struct user_regset *regset,
1354 unsigned int pos, unsigned int count,
1355 const void *kbuf, const void __user *ubuf)
1357 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1358 struct user_pac_address_keys user_keys;
1359 int ret;
1361 if (!system_supports_address_auth())
1362 return -EINVAL;
1364 pac_address_keys_to_user(&user_keys, keys);
1365 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1366 &user_keys, 0, -1);
1367 if (ret)
1368 return ret;
1369 pac_address_keys_from_user(keys, &user_keys);
1371 return 0;
1374 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1375 const struct ptrauth_keys_user *keys)
1377 ukeys->apgakey = pac_key_to_user(&keys->apga);
1380 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1381 const struct user_pac_generic_keys *ukeys)
1383 keys->apga = pac_key_from_user(ukeys->apgakey);
1386 static int pac_generic_keys_get(struct task_struct *target,
1387 const struct user_regset *regset,
1388 struct membuf to)
1390 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1391 struct user_pac_generic_keys user_keys;
1393 if (!system_supports_generic_auth())
1394 return -EINVAL;
1396 pac_generic_keys_to_user(&user_keys, keys);
1398 return membuf_write(&to, &user_keys, sizeof(user_keys));
1401 static int pac_generic_keys_set(struct task_struct *target,
1402 const struct user_regset *regset,
1403 unsigned int pos, unsigned int count,
1404 const void *kbuf, const void __user *ubuf)
1406 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1407 struct user_pac_generic_keys user_keys;
1408 int ret;
1410 if (!system_supports_generic_auth())
1411 return -EINVAL;
1413 pac_generic_keys_to_user(&user_keys, keys);
1414 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1415 &user_keys, 0, -1);
1416 if (ret)
1417 return ret;
1418 pac_generic_keys_from_user(keys, &user_keys);
1420 return 0;
1422 #endif /* CONFIG_CHECKPOINT_RESTORE */
1423 #endif /* CONFIG_ARM64_PTR_AUTH */
1425 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1426 static int tagged_addr_ctrl_get(struct task_struct *target,
1427 const struct user_regset *regset,
1428 struct membuf to)
1430 long ctrl = get_tagged_addr_ctrl(target);
1432 if (WARN_ON_ONCE(IS_ERR_VALUE(ctrl)))
1433 return ctrl;
1435 return membuf_write(&to, &ctrl, sizeof(ctrl));
1438 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1439 user_regset *regset, unsigned int pos,
1440 unsigned int count, const void *kbuf, const
1441 void __user *ubuf)
1443 int ret;
1444 long ctrl;
1446 ctrl = get_tagged_addr_ctrl(target);
1447 if (WARN_ON_ONCE(IS_ERR_VALUE(ctrl)))
1448 return ctrl;
1450 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1451 if (ret)
1452 return ret;
1454 return set_tagged_addr_ctrl(target, ctrl);
1456 #endif
1458 #ifdef CONFIG_ARM64_POE
1459 static int poe_get(struct task_struct *target,
1460 const struct user_regset *regset,
1461 struct membuf to)
1463 if (!system_supports_poe())
1464 return -EINVAL;
1466 return membuf_write(&to, &target->thread.por_el0,
1467 sizeof(target->thread.por_el0));
1470 static int poe_set(struct task_struct *target, const struct
1471 user_regset *regset, unsigned int pos,
1472 unsigned int count, const void *kbuf, const
1473 void __user *ubuf)
1475 int ret;
1476 long ctrl;
1478 if (!system_supports_poe())
1479 return -EINVAL;
1481 ctrl = target->thread.por_el0;
1483 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1484 if (ret)
1485 return ret;
1487 target->thread.por_el0 = ctrl;
1489 return 0;
1491 #endif
1493 #ifdef CONFIG_ARM64_GCS
1494 static void task_gcs_to_user(struct user_gcs *user_gcs,
1495 const struct task_struct *target)
1497 user_gcs->features_enabled = target->thread.gcs_el0_mode;
1498 user_gcs->features_locked = target->thread.gcs_el0_locked;
1499 user_gcs->gcspr_el0 = target->thread.gcspr_el0;
1502 static void task_gcs_from_user(struct task_struct *target,
1503 const struct user_gcs *user_gcs)
1505 target->thread.gcs_el0_mode = user_gcs->features_enabled;
1506 target->thread.gcs_el0_locked = user_gcs->features_locked;
1507 target->thread.gcspr_el0 = user_gcs->gcspr_el0;
1510 static int gcs_get(struct task_struct *target,
1511 const struct user_regset *regset,
1512 struct membuf to)
1514 struct user_gcs user_gcs;
1516 if (!system_supports_gcs())
1517 return -EINVAL;
1519 if (target == current)
1520 gcs_preserve_current_state();
1522 task_gcs_to_user(&user_gcs, target);
1524 return membuf_write(&to, &user_gcs, sizeof(user_gcs));
1527 static int gcs_set(struct task_struct *target, const struct
1528 user_regset *regset, unsigned int pos,
1529 unsigned int count, const void *kbuf, const
1530 void __user *ubuf)
1532 int ret;
1533 struct user_gcs user_gcs;
1535 if (!system_supports_gcs())
1536 return -EINVAL;
1538 task_gcs_to_user(&user_gcs, target);
1540 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &user_gcs, 0, -1);
1541 if (ret)
1542 return ret;
1544 if (user_gcs.features_enabled & ~PR_SHADOW_STACK_SUPPORTED_STATUS_MASK)
1545 return -EINVAL;
1547 task_gcs_from_user(target, &user_gcs);
1549 return 0;
1551 #endif
1553 enum aarch64_regset {
1554 REGSET_GPR,
1555 REGSET_FPR,
1556 REGSET_TLS,
1557 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1558 REGSET_HW_BREAK,
1559 REGSET_HW_WATCH,
1560 #endif
1561 REGSET_FPMR,
1562 REGSET_SYSTEM_CALL,
1563 #ifdef CONFIG_ARM64_SVE
1564 REGSET_SVE,
1565 #endif
1566 #ifdef CONFIG_ARM64_SME
1567 REGSET_SSVE,
1568 REGSET_ZA,
1569 REGSET_ZT,
1570 #endif
1571 #ifdef CONFIG_ARM64_PTR_AUTH
1572 REGSET_PAC_MASK,
1573 REGSET_PAC_ENABLED_KEYS,
1574 #ifdef CONFIG_CHECKPOINT_RESTORE
1575 REGSET_PACA_KEYS,
1576 REGSET_PACG_KEYS,
1577 #endif
1578 #endif
1579 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1580 REGSET_TAGGED_ADDR_CTRL,
1581 #endif
1582 #ifdef CONFIG_ARM64_POE
1583 REGSET_POE,
1584 #endif
1585 #ifdef CONFIG_ARM64_GCS
1586 REGSET_GCS,
1587 #endif
1590 static const struct user_regset aarch64_regsets[] = {
1591 [REGSET_GPR] = {
1592 .core_note_type = NT_PRSTATUS,
1593 .n = sizeof(struct user_pt_regs) / sizeof(u64),
1594 .size = sizeof(u64),
1595 .align = sizeof(u64),
1596 .regset_get = gpr_get,
1597 .set = gpr_set
1599 [REGSET_FPR] = {
1600 .core_note_type = NT_PRFPREG,
1601 .n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1603 * We pretend we have 32-bit registers because the fpsr and
1604 * fpcr are 32-bits wide.
1606 .size = sizeof(u32),
1607 .align = sizeof(u32),
1608 .active = fpr_active,
1609 .regset_get = fpr_get,
1610 .set = fpr_set
1612 [REGSET_TLS] = {
1613 .core_note_type = NT_ARM_TLS,
1614 .n = 2,
1615 .size = sizeof(void *),
1616 .align = sizeof(void *),
1617 .regset_get = tls_get,
1618 .set = tls_set,
1620 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1621 [REGSET_HW_BREAK] = {
1622 .core_note_type = NT_ARM_HW_BREAK,
1623 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1624 .size = sizeof(u32),
1625 .align = sizeof(u32),
1626 .regset_get = hw_break_get,
1627 .set = hw_break_set,
1629 [REGSET_HW_WATCH] = {
1630 .core_note_type = NT_ARM_HW_WATCH,
1631 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1632 .size = sizeof(u32),
1633 .align = sizeof(u32),
1634 .regset_get = hw_break_get,
1635 .set = hw_break_set,
1637 #endif
1638 [REGSET_SYSTEM_CALL] = {
1639 .core_note_type = NT_ARM_SYSTEM_CALL,
1640 .n = 1,
1641 .size = sizeof(int),
1642 .align = sizeof(int),
1643 .regset_get = system_call_get,
1644 .set = system_call_set,
1646 [REGSET_FPMR] = {
1647 .core_note_type = NT_ARM_FPMR,
1648 .n = 1,
1649 .size = sizeof(u64),
1650 .align = sizeof(u64),
1651 .regset_get = fpmr_get,
1652 .set = fpmr_set,
1654 #ifdef CONFIG_ARM64_SVE
1655 [REGSET_SVE] = { /* Scalable Vector Extension */
1656 .core_note_type = NT_ARM_SVE,
1657 .n = DIV_ROUND_UP(SVE_PT_SIZE(ARCH_SVE_VQ_MAX,
1658 SVE_PT_REGS_SVE),
1659 SVE_VQ_BYTES),
1660 .size = SVE_VQ_BYTES,
1661 .align = SVE_VQ_BYTES,
1662 .regset_get = sve_get,
1663 .set = sve_set,
1665 #endif
1666 #ifdef CONFIG_ARM64_SME
1667 [REGSET_SSVE] = { /* Streaming mode SVE */
1668 .core_note_type = NT_ARM_SSVE,
1669 .n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE),
1670 SVE_VQ_BYTES),
1671 .size = SVE_VQ_BYTES,
1672 .align = SVE_VQ_BYTES,
1673 .regset_get = ssve_get,
1674 .set = ssve_set,
1676 [REGSET_ZA] = { /* SME ZA */
1677 .core_note_type = NT_ARM_ZA,
1679 * ZA is a single register but it's variably sized and
1680 * the ptrace core requires that the size of any data
1681 * be an exact multiple of the configured register
1682 * size so report as though we had SVE_VQ_BYTES
1683 * registers. These values aren't exposed to
1684 * userspace.
1686 .n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES),
1687 .size = SVE_VQ_BYTES,
1688 .align = SVE_VQ_BYTES,
1689 .regset_get = za_get,
1690 .set = za_set,
1692 [REGSET_ZT] = { /* SME ZT */
1693 .core_note_type = NT_ARM_ZT,
1694 .n = 1,
1695 .size = ZT_SIG_REG_BYTES,
1696 .align = sizeof(u64),
1697 .regset_get = zt_get,
1698 .set = zt_set,
1700 #endif
1701 #ifdef CONFIG_ARM64_PTR_AUTH
1702 [REGSET_PAC_MASK] = {
1703 .core_note_type = NT_ARM_PAC_MASK,
1704 .n = sizeof(struct user_pac_mask) / sizeof(u64),
1705 .size = sizeof(u64),
1706 .align = sizeof(u64),
1707 .regset_get = pac_mask_get,
1708 /* this cannot be set dynamically */
1710 [REGSET_PAC_ENABLED_KEYS] = {
1711 .core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1712 .n = 1,
1713 .size = sizeof(long),
1714 .align = sizeof(long),
1715 .regset_get = pac_enabled_keys_get,
1716 .set = pac_enabled_keys_set,
1718 #ifdef CONFIG_CHECKPOINT_RESTORE
1719 [REGSET_PACA_KEYS] = {
1720 .core_note_type = NT_ARM_PACA_KEYS,
1721 .n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1722 .size = sizeof(__uint128_t),
1723 .align = sizeof(__uint128_t),
1724 .regset_get = pac_address_keys_get,
1725 .set = pac_address_keys_set,
1727 [REGSET_PACG_KEYS] = {
1728 .core_note_type = NT_ARM_PACG_KEYS,
1729 .n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1730 .size = sizeof(__uint128_t),
1731 .align = sizeof(__uint128_t),
1732 .regset_get = pac_generic_keys_get,
1733 .set = pac_generic_keys_set,
1735 #endif
1736 #endif
1737 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1738 [REGSET_TAGGED_ADDR_CTRL] = {
1739 .core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1740 .n = 1,
1741 .size = sizeof(long),
1742 .align = sizeof(long),
1743 .regset_get = tagged_addr_ctrl_get,
1744 .set = tagged_addr_ctrl_set,
1746 #endif
1747 #ifdef CONFIG_ARM64_POE
1748 [REGSET_POE] = {
1749 .core_note_type = NT_ARM_POE,
1750 .n = 1,
1751 .size = sizeof(long),
1752 .align = sizeof(long),
1753 .regset_get = poe_get,
1754 .set = poe_set,
1756 #endif
1757 #ifdef CONFIG_ARM64_GCS
1758 [REGSET_GCS] = {
1759 .core_note_type = NT_ARM_GCS,
1760 .n = sizeof(struct user_gcs) / sizeof(u64),
1761 .size = sizeof(u64),
1762 .align = sizeof(u64),
1763 .regset_get = gcs_get,
1764 .set = gcs_set,
1766 #endif
1769 static const struct user_regset_view user_aarch64_view = {
1770 .name = "aarch64", .e_machine = EM_AARCH64,
1771 .regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1774 enum compat_regset {
1775 REGSET_COMPAT_GPR,
1776 REGSET_COMPAT_VFP,
1779 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1781 struct pt_regs *regs = task_pt_regs(task);
1783 switch (idx) {
1784 case 15:
1785 return regs->pc;
1786 case 16:
1787 return pstate_to_compat_psr(regs->pstate);
1788 case 17:
1789 return regs->orig_x0;
1790 default:
1791 return regs->regs[idx];
1795 static int compat_gpr_get(struct task_struct *target,
1796 const struct user_regset *regset,
1797 struct membuf to)
1799 int i = 0;
1801 while (to.left)
1802 membuf_store(&to, compat_get_user_reg(target, i++));
1803 return 0;
1806 static int compat_gpr_set(struct task_struct *target,
1807 const struct user_regset *regset,
1808 unsigned int pos, unsigned int count,
1809 const void *kbuf, const void __user *ubuf)
1811 struct pt_regs newregs;
1812 int ret = 0;
1813 unsigned int i, start, num_regs;
1815 /* Calculate the number of AArch32 registers contained in count */
1816 num_regs = count / regset->size;
1818 /* Convert pos into an register number */
1819 start = pos / regset->size;
1821 if (start + num_regs > regset->n)
1822 return -EIO;
1824 newregs = *task_pt_regs(target);
1826 for (i = 0; i < num_regs; ++i) {
1827 unsigned int idx = start + i;
1828 compat_ulong_t reg;
1830 if (kbuf) {
1831 memcpy(&reg, kbuf, sizeof(reg));
1832 kbuf += sizeof(reg);
1833 } else {
1834 ret = copy_from_user(&reg, ubuf, sizeof(reg));
1835 if (ret) {
1836 ret = -EFAULT;
1837 break;
1840 ubuf += sizeof(reg);
1843 switch (idx) {
1844 case 15:
1845 newregs.pc = reg;
1846 break;
1847 case 16:
1848 reg = compat_psr_to_pstate(reg);
1849 newregs.pstate = reg;
1850 break;
1851 case 17:
1852 newregs.orig_x0 = reg;
1853 break;
1854 default:
1855 newregs.regs[idx] = reg;
1860 if (valid_user_regs(&newregs.user_regs, target))
1861 *task_pt_regs(target) = newregs;
1862 else
1863 ret = -EINVAL;
1865 return ret;
1868 static int compat_vfp_get(struct task_struct *target,
1869 const struct user_regset *regset,
1870 struct membuf to)
1872 struct user_fpsimd_state *uregs;
1873 compat_ulong_t fpscr;
1875 if (!system_supports_fpsimd())
1876 return -EINVAL;
1878 uregs = &target->thread.uw.fpsimd_state;
1880 if (target == current)
1881 fpsimd_preserve_current_state();
1884 * The VFP registers are packed into the fpsimd_state, so they all sit
1885 * nicely together for us. We just need to create the fpscr separately.
1887 membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1888 fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1889 (uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1890 return membuf_store(&to, fpscr);
1893 static int compat_vfp_set(struct task_struct *target,
1894 const struct user_regset *regset,
1895 unsigned int pos, unsigned int count,
1896 const void *kbuf, const void __user *ubuf)
1898 struct user_fpsimd_state *uregs;
1899 compat_ulong_t fpscr;
1900 int ret, vregs_end_pos;
1902 if (!system_supports_fpsimd())
1903 return -EINVAL;
1905 uregs = &target->thread.uw.fpsimd_state;
1907 vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1908 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1909 vregs_end_pos);
1911 if (count && !ret) {
1912 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1913 vregs_end_pos, VFP_STATE_SIZE);
1914 if (!ret) {
1915 uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1916 uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1920 fpsimd_flush_task_state(target);
1921 return ret;
1924 static int compat_tls_get(struct task_struct *target,
1925 const struct user_regset *regset,
1926 struct membuf to)
1928 return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1931 static int compat_tls_set(struct task_struct *target,
1932 const struct user_regset *regset, unsigned int pos,
1933 unsigned int count, const void *kbuf,
1934 const void __user *ubuf)
1936 int ret;
1937 compat_ulong_t tls = target->thread.uw.tp_value;
1939 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1940 if (ret)
1941 return ret;
1943 target->thread.uw.tp_value = tls;
1944 return ret;
1947 static const struct user_regset aarch32_regsets[] = {
1948 [REGSET_COMPAT_GPR] = {
1949 .core_note_type = NT_PRSTATUS,
1950 .n = COMPAT_ELF_NGREG,
1951 .size = sizeof(compat_elf_greg_t),
1952 .align = sizeof(compat_elf_greg_t),
1953 .regset_get = compat_gpr_get,
1954 .set = compat_gpr_set
1956 [REGSET_COMPAT_VFP] = {
1957 .core_note_type = NT_ARM_VFP,
1958 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1959 .size = sizeof(compat_ulong_t),
1960 .align = sizeof(compat_ulong_t),
1961 .active = fpr_active,
1962 .regset_get = compat_vfp_get,
1963 .set = compat_vfp_set
1967 static const struct user_regset_view user_aarch32_view = {
1968 .name = "aarch32", .e_machine = EM_ARM,
1969 .regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1972 static const struct user_regset aarch32_ptrace_regsets[] = {
1973 [REGSET_GPR] = {
1974 .core_note_type = NT_PRSTATUS,
1975 .n = COMPAT_ELF_NGREG,
1976 .size = sizeof(compat_elf_greg_t),
1977 .align = sizeof(compat_elf_greg_t),
1978 .regset_get = compat_gpr_get,
1979 .set = compat_gpr_set
1981 [REGSET_FPR] = {
1982 .core_note_type = NT_ARM_VFP,
1983 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1984 .size = sizeof(compat_ulong_t),
1985 .align = sizeof(compat_ulong_t),
1986 .regset_get = compat_vfp_get,
1987 .set = compat_vfp_set
1989 [REGSET_TLS] = {
1990 .core_note_type = NT_ARM_TLS,
1991 .n = 1,
1992 .size = sizeof(compat_ulong_t),
1993 .align = sizeof(compat_ulong_t),
1994 .regset_get = compat_tls_get,
1995 .set = compat_tls_set,
1997 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1998 [REGSET_HW_BREAK] = {
1999 .core_note_type = NT_ARM_HW_BREAK,
2000 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
2001 .size = sizeof(u32),
2002 .align = sizeof(u32),
2003 .regset_get = hw_break_get,
2004 .set = hw_break_set,
2006 [REGSET_HW_WATCH] = {
2007 .core_note_type = NT_ARM_HW_WATCH,
2008 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
2009 .size = sizeof(u32),
2010 .align = sizeof(u32),
2011 .regset_get = hw_break_get,
2012 .set = hw_break_set,
2014 #endif
2015 [REGSET_SYSTEM_CALL] = {
2016 .core_note_type = NT_ARM_SYSTEM_CALL,
2017 .n = 1,
2018 .size = sizeof(int),
2019 .align = sizeof(int),
2020 .regset_get = system_call_get,
2021 .set = system_call_set,
2025 static const struct user_regset_view user_aarch32_ptrace_view = {
2026 .name = "aarch32", .e_machine = EM_ARM,
2027 .regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
2030 #ifdef CONFIG_COMPAT
2031 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
2032 compat_ulong_t __user *ret)
2034 compat_ulong_t tmp;
2036 if (off & 3)
2037 return -EIO;
2039 if (off == COMPAT_PT_TEXT_ADDR)
2040 tmp = tsk->mm->start_code;
2041 else if (off == COMPAT_PT_DATA_ADDR)
2042 tmp = tsk->mm->start_data;
2043 else if (off == COMPAT_PT_TEXT_END_ADDR)
2044 tmp = tsk->mm->end_code;
2045 else if (off < sizeof(compat_elf_gregset_t))
2046 tmp = compat_get_user_reg(tsk, off >> 2);
2047 else if (off >= COMPAT_USER_SZ)
2048 return -EIO;
2049 else
2050 tmp = 0;
2052 return put_user(tmp, ret);
2055 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
2056 compat_ulong_t val)
2058 struct pt_regs newregs = *task_pt_regs(tsk);
2059 unsigned int idx = off / 4;
2061 if (off & 3 || off >= COMPAT_USER_SZ)
2062 return -EIO;
2064 if (off >= sizeof(compat_elf_gregset_t))
2065 return 0;
2067 switch (idx) {
2068 case 15:
2069 newregs.pc = val;
2070 break;
2071 case 16:
2072 newregs.pstate = compat_psr_to_pstate(val);
2073 break;
2074 case 17:
2075 newregs.orig_x0 = val;
2076 break;
2077 default:
2078 newregs.regs[idx] = val;
2081 if (!valid_user_regs(&newregs.user_regs, tsk))
2082 return -EINVAL;
2084 *task_pt_regs(tsk) = newregs;
2085 return 0;
2088 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2091 * Convert a virtual register number into an index for a thread_info
2092 * breakpoint array. Breakpoints are identified using positive numbers
2093 * whilst watchpoints are negative. The registers are laid out as pairs
2094 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
2095 * Register 0 is reserved for describing resource information.
2097 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
2099 return (abs(num) - 1) >> 1;
2102 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
2104 u8 num_brps, num_wrps, debug_arch, wp_len;
2105 u32 reg = 0;
2107 num_brps = hw_breakpoint_slots(TYPE_INST);
2108 num_wrps = hw_breakpoint_slots(TYPE_DATA);
2110 debug_arch = debug_monitors_arch();
2111 wp_len = 8;
2112 reg |= debug_arch;
2113 reg <<= 8;
2114 reg |= wp_len;
2115 reg <<= 8;
2116 reg |= num_wrps;
2117 reg <<= 8;
2118 reg |= num_brps;
2120 *kdata = reg;
2121 return 0;
2124 static int compat_ptrace_hbp_get(unsigned int note_type,
2125 struct task_struct *tsk,
2126 compat_long_t num,
2127 u32 *kdata)
2129 u64 addr = 0;
2130 u32 ctrl = 0;
2132 int err, idx = compat_ptrace_hbp_num_to_idx(num);
2134 if (num & 1) {
2135 err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
2136 *kdata = (u32)addr;
2137 } else {
2138 err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
2139 *kdata = ctrl;
2142 return err;
2145 static int compat_ptrace_hbp_set(unsigned int note_type,
2146 struct task_struct *tsk,
2147 compat_long_t num,
2148 u32 *kdata)
2150 u64 addr;
2151 u32 ctrl;
2153 int err, idx = compat_ptrace_hbp_num_to_idx(num);
2155 if (num & 1) {
2156 addr = *kdata;
2157 err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
2158 } else {
2159 ctrl = *kdata;
2160 err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
2163 return err;
2166 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
2167 compat_ulong_t __user *data)
2169 int ret;
2170 u32 kdata;
2172 /* Watchpoint */
2173 if (num < 0) {
2174 ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
2175 /* Resource info */
2176 } else if (num == 0) {
2177 ret = compat_ptrace_hbp_get_resource_info(&kdata);
2178 /* Breakpoint */
2179 } else {
2180 ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
2183 if (!ret)
2184 ret = put_user(kdata, data);
2186 return ret;
2189 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
2190 compat_ulong_t __user *data)
2192 int ret;
2193 u32 kdata = 0;
2195 if (num == 0)
2196 return 0;
2198 ret = get_user(kdata, data);
2199 if (ret)
2200 return ret;
2202 if (num < 0)
2203 ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
2204 else
2205 ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
2207 return ret;
2209 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2211 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
2212 compat_ulong_t caddr, compat_ulong_t cdata)
2214 unsigned long addr = caddr;
2215 unsigned long data = cdata;
2216 void __user *datap = compat_ptr(data);
2217 int ret;
2219 switch (request) {
2220 case PTRACE_PEEKUSR:
2221 ret = compat_ptrace_read_user(child, addr, datap);
2222 break;
2224 case PTRACE_POKEUSR:
2225 ret = compat_ptrace_write_user(child, addr, data);
2226 break;
2228 case COMPAT_PTRACE_GETREGS:
2229 ret = copy_regset_to_user(child,
2230 &user_aarch32_view,
2231 REGSET_COMPAT_GPR,
2232 0, sizeof(compat_elf_gregset_t),
2233 datap);
2234 break;
2236 case COMPAT_PTRACE_SETREGS:
2237 ret = copy_regset_from_user(child,
2238 &user_aarch32_view,
2239 REGSET_COMPAT_GPR,
2240 0, sizeof(compat_elf_gregset_t),
2241 datap);
2242 break;
2244 case COMPAT_PTRACE_GET_THREAD_AREA:
2245 ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
2246 (compat_ulong_t __user *)datap);
2247 break;
2249 case COMPAT_PTRACE_SET_SYSCALL:
2250 task_pt_regs(child)->syscallno = data;
2251 ret = 0;
2252 break;
2254 case COMPAT_PTRACE_GETVFPREGS:
2255 ret = copy_regset_to_user(child,
2256 &user_aarch32_view,
2257 REGSET_COMPAT_VFP,
2258 0, VFP_STATE_SIZE,
2259 datap);
2260 break;
2262 case COMPAT_PTRACE_SETVFPREGS:
2263 ret = copy_regset_from_user(child,
2264 &user_aarch32_view,
2265 REGSET_COMPAT_VFP,
2266 0, VFP_STATE_SIZE,
2267 datap);
2268 break;
2270 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2271 case COMPAT_PTRACE_GETHBPREGS:
2272 ret = compat_ptrace_gethbpregs(child, addr, datap);
2273 break;
2275 case COMPAT_PTRACE_SETHBPREGS:
2276 ret = compat_ptrace_sethbpregs(child, addr, datap);
2277 break;
2278 #endif
2280 default:
2281 ret = compat_ptrace_request(child, request, addr,
2282 data);
2283 break;
2286 return ret;
2288 #endif /* CONFIG_COMPAT */
2290 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2293 * Core dumping of 32-bit tasks or compat ptrace requests must use the
2294 * user_aarch32_view compatible with arm32. Native ptrace requests on
2295 * 32-bit children use an extended user_aarch32_ptrace_view to allow
2296 * access to the TLS register.
2298 if (is_compat_task())
2299 return &user_aarch32_view;
2300 else if (is_compat_thread(task_thread_info(task)))
2301 return &user_aarch32_ptrace_view;
2303 return &user_aarch64_view;
2306 long arch_ptrace(struct task_struct *child, long request,
2307 unsigned long addr, unsigned long data)
2309 switch (request) {
2310 case PTRACE_PEEKMTETAGS:
2311 case PTRACE_POKEMTETAGS:
2312 return mte_ptrace_copy_tags(child, request, addr, data);
2315 return ptrace_request(child, request, addr, data);
2318 enum ptrace_syscall_dir {
2319 PTRACE_SYSCALL_ENTER = 0,
2320 PTRACE_SYSCALL_EXIT,
2323 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
2325 int regno;
2326 unsigned long saved_reg;
2329 * We have some ABI weirdness here in the way that we handle syscall
2330 * exit stops because we indicate whether or not the stop has been
2331 * signalled from syscall entry or syscall exit by clobbering a general
2332 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2333 * and restoring its old value after the stop. This means that:
2335 * - Any writes by the tracer to this register during the stop are
2336 * ignored/discarded.
2338 * - The actual value of the register is not available during the stop,
2339 * so the tracer cannot save it and restore it later.
2341 * - Syscall stops behave differently to seccomp and pseudo-step traps
2342 * (the latter do not nobble any registers).
2344 regno = (is_compat_task() ? 12 : 7);
2345 saved_reg = regs->regs[regno];
2346 regs->regs[regno] = dir;
2348 if (dir == PTRACE_SYSCALL_ENTER) {
2349 if (ptrace_report_syscall_entry(regs))
2350 forget_syscall(regs);
2351 regs->regs[regno] = saved_reg;
2352 } else if (!test_thread_flag(TIF_SINGLESTEP)) {
2353 ptrace_report_syscall_exit(regs, 0);
2354 regs->regs[regno] = saved_reg;
2355 } else {
2356 regs->regs[regno] = saved_reg;
2359 * Signal a pseudo-step exception since we are stepping but
2360 * tracer modifications to the registers may have rewound the
2361 * state machine.
2363 ptrace_report_syscall_exit(regs, 1);
2367 int syscall_trace_enter(struct pt_regs *regs)
2369 unsigned long flags = read_thread_flags();
2371 if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2372 report_syscall(regs, PTRACE_SYSCALL_ENTER);
2373 if (flags & _TIF_SYSCALL_EMU)
2374 return NO_SYSCALL;
2377 /* Do the secure computing after ptrace; failures should be fast. */
2378 if (secure_computing() == -1)
2379 return NO_SYSCALL;
2381 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2382 trace_sys_enter(regs, regs->syscallno);
2384 audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2385 regs->regs[2], regs->regs[3]);
2387 return regs->syscallno;
2390 void syscall_trace_exit(struct pt_regs *regs)
2392 unsigned long flags = read_thread_flags();
2394 audit_syscall_exit(regs);
2396 if (flags & _TIF_SYSCALL_TRACEPOINT)
2397 trace_sys_exit(regs, syscall_get_return_value(current, regs));
2399 if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2400 report_syscall(regs, PTRACE_SYSCALL_EXIT);
2402 rseq_syscall(regs);
2406 * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2407 * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2408 * not described in ARM DDI 0487D.a.
2409 * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2410 * be allocated an EL0 meaning in future.
2411 * Userspace cannot use these until they have an architectural meaning.
2412 * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2413 * We also reserve IL for the kernel; SS is handled dynamically.
2415 #define SPSR_EL1_AARCH64_RES0_BITS \
2416 (GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2417 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2418 #define SPSR_EL1_AARCH32_RES0_BITS \
2419 (GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2421 static int valid_compat_regs(struct user_pt_regs *regs)
2423 regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2425 if (!system_supports_mixed_endian_el0()) {
2426 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2427 regs->pstate |= PSR_AA32_E_BIT;
2428 else
2429 regs->pstate &= ~PSR_AA32_E_BIT;
2432 if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2433 (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2434 (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2435 (regs->pstate & PSR_AA32_F_BIT) == 0) {
2436 return 1;
2440 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2441 * arch/arm.
2443 regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2444 PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2445 PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2446 PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2447 PSR_AA32_T_BIT;
2448 regs->pstate |= PSR_MODE32_BIT;
2450 return 0;
2453 static int valid_native_regs(struct user_pt_regs *regs)
2455 regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2457 if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2458 (regs->pstate & PSR_D_BIT) == 0 &&
2459 (regs->pstate & PSR_A_BIT) == 0 &&
2460 (regs->pstate & PSR_I_BIT) == 0 &&
2461 (regs->pstate & PSR_F_BIT) == 0) {
2462 return 1;
2465 /* Force PSR to a valid 64-bit EL0t */
2466 regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2468 return 0;
2472 * Are the current registers suitable for user mode? (used to maintain
2473 * security in signal handlers)
2475 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2477 /* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2478 user_regs_reset_single_step(regs, task);
2480 if (is_compat_thread(task_thread_info(task)))
2481 return valid_compat_regs(regs);
2482 else
2483 return valid_native_regs(regs);