drm/nouveau: consume the return of large GSP message
[drm/drm-misc.git] / arch / loongarch / kvm / mmu.c
blob4d203294767c5a2f72946b17fb793470a2672ed9
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2020-2023 Loongson Technology Corporation Limited
4 */
6 #include <linux/highmem.h>
7 #include <linux/hugetlb.h>
8 #include <linux/kvm_host.h>
9 #include <linux/page-flags.h>
10 #include <linux/uaccess.h>
11 #include <asm/mmu_context.h>
12 #include <asm/pgalloc.h>
13 #include <asm/tlb.h>
14 #include <asm/kvm_mmu.h>
16 static inline bool kvm_hugepage_capable(struct kvm_memory_slot *slot)
18 return slot->arch.flags & KVM_MEM_HUGEPAGE_CAPABLE;
21 static inline bool kvm_hugepage_incapable(struct kvm_memory_slot *slot)
23 return slot->arch.flags & KVM_MEM_HUGEPAGE_INCAPABLE;
26 static inline void kvm_ptw_prepare(struct kvm *kvm, kvm_ptw_ctx *ctx)
28 ctx->level = kvm->arch.root_level;
29 /* pte table */
30 ctx->invalid_ptes = kvm->arch.invalid_ptes;
31 ctx->pte_shifts = kvm->arch.pte_shifts;
32 ctx->pgtable_shift = ctx->pte_shifts[ctx->level];
33 ctx->invalid_entry = ctx->invalid_ptes[ctx->level];
34 ctx->opaque = kvm;
38 * Mark a range of guest physical address space old (all accesses fault) in the
39 * VM's GPA page table to allow detection of commonly used pages.
41 static int kvm_mkold_pte(kvm_pte_t *pte, phys_addr_t addr, kvm_ptw_ctx *ctx)
43 if (kvm_pte_young(*pte)) {
44 *pte = kvm_pte_mkold(*pte);
45 return 1;
48 return 0;
52 * Mark a range of guest physical address space clean (writes fault) in the VM's
53 * GPA page table to allow dirty page tracking.
55 static int kvm_mkclean_pte(kvm_pte_t *pte, phys_addr_t addr, kvm_ptw_ctx *ctx)
57 gfn_t offset;
58 kvm_pte_t val;
60 val = *pte;
62 * For kvm_arch_mmu_enable_log_dirty_pt_masked with mask, start and end
63 * may cross hugepage, for first huge page parameter addr is equal to
64 * start, however for the second huge page addr is base address of
65 * this huge page, rather than start or end address
67 if ((ctx->flag & _KVM_HAS_PGMASK) && !kvm_pte_huge(val)) {
68 offset = (addr >> PAGE_SHIFT) - ctx->gfn;
69 if (!(BIT(offset) & ctx->mask))
70 return 0;
74 * Need not split huge page now, just set write-proect pte bit
75 * Split huge page until next write fault
77 if (kvm_pte_dirty(val)) {
78 *pte = kvm_pte_mkclean(val);
79 return 1;
82 return 0;
86 * Clear pte entry
88 static int kvm_flush_pte(kvm_pte_t *pte, phys_addr_t addr, kvm_ptw_ctx *ctx)
90 struct kvm *kvm;
92 kvm = ctx->opaque;
93 if (ctx->level)
94 kvm->stat.hugepages--;
95 else
96 kvm->stat.pages--;
98 *pte = ctx->invalid_entry;
100 return 1;
104 * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
106 * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
107 * to host physical page mappings.
109 * Returns: Pointer to new KVM GPA page directory.
110 * NULL on allocation failure.
112 kvm_pte_t *kvm_pgd_alloc(void)
114 kvm_pte_t *pgd;
116 pgd = (kvm_pte_t *)__get_free_pages(GFP_KERNEL, 0);
117 if (pgd)
118 pgd_init((void *)pgd);
120 return pgd;
123 static void _kvm_pte_init(void *addr, unsigned long val)
125 unsigned long *p, *end;
127 p = (unsigned long *)addr;
128 end = p + PTRS_PER_PTE;
129 do {
130 p[0] = val;
131 p[1] = val;
132 p[2] = val;
133 p[3] = val;
134 p[4] = val;
135 p += 8;
136 p[-3] = val;
137 p[-2] = val;
138 p[-1] = val;
139 } while (p != end);
143 * Caller must hold kvm->mm_lock
145 * Walk the page tables of kvm to find the PTE corresponding to the
146 * address @addr. If page tables don't exist for @addr, they will be created
147 * from the MMU cache if @cache is not NULL.
149 static kvm_pte_t *kvm_populate_gpa(struct kvm *kvm,
150 struct kvm_mmu_memory_cache *cache,
151 unsigned long addr, int level)
153 kvm_ptw_ctx ctx;
154 kvm_pte_t *entry, *child;
156 kvm_ptw_prepare(kvm, &ctx);
157 child = kvm->arch.pgd;
158 while (ctx.level > level) {
159 entry = kvm_pgtable_offset(&ctx, child, addr);
160 if (kvm_pte_none(&ctx, entry)) {
161 if (!cache)
162 return NULL;
164 child = kvm_mmu_memory_cache_alloc(cache);
165 _kvm_pte_init(child, ctx.invalid_ptes[ctx.level - 1]);
166 smp_wmb(); /* Make pte visible before pmd */
167 kvm_set_pte(entry, __pa(child));
168 } else if (kvm_pte_huge(*entry)) {
169 return entry;
170 } else
171 child = (kvm_pte_t *)__va(PHYSADDR(*entry));
172 kvm_ptw_enter(&ctx);
175 entry = kvm_pgtable_offset(&ctx, child, addr);
177 return entry;
181 * Page walker for VM shadow mmu at last level
182 * The last level is small pte page or huge pmd page
184 static int kvm_ptw_leaf(kvm_pte_t *dir, phys_addr_t addr, phys_addr_t end, kvm_ptw_ctx *ctx)
186 int ret;
187 phys_addr_t next, start, size;
188 struct list_head *list;
189 kvm_pte_t *entry, *child;
191 ret = 0;
192 start = addr;
193 child = (kvm_pte_t *)__va(PHYSADDR(*dir));
194 entry = kvm_pgtable_offset(ctx, child, addr);
195 do {
196 next = addr + (0x1UL << ctx->pgtable_shift);
197 if (!kvm_pte_present(ctx, entry))
198 continue;
200 ret |= ctx->ops(entry, addr, ctx);
201 } while (entry++, addr = next, addr < end);
203 if (kvm_need_flush(ctx)) {
204 size = 0x1UL << (ctx->pgtable_shift + PAGE_SHIFT - 3);
205 if (start + size == end) {
206 list = (struct list_head *)child;
207 list_add_tail(list, &ctx->list);
208 *dir = ctx->invalid_ptes[ctx->level + 1];
212 return ret;
216 * Page walker for VM shadow mmu at page table dir level
218 static int kvm_ptw_dir(kvm_pte_t *dir, phys_addr_t addr, phys_addr_t end, kvm_ptw_ctx *ctx)
220 int ret;
221 phys_addr_t next, start, size;
222 struct list_head *list;
223 kvm_pte_t *entry, *child;
225 ret = 0;
226 start = addr;
227 child = (kvm_pte_t *)__va(PHYSADDR(*dir));
228 entry = kvm_pgtable_offset(ctx, child, addr);
229 do {
230 next = kvm_pgtable_addr_end(ctx, addr, end);
231 if (!kvm_pte_present(ctx, entry))
232 continue;
234 if (kvm_pte_huge(*entry)) {
235 ret |= ctx->ops(entry, addr, ctx);
236 continue;
239 kvm_ptw_enter(ctx);
240 if (ctx->level == 0)
241 ret |= kvm_ptw_leaf(entry, addr, next, ctx);
242 else
243 ret |= kvm_ptw_dir(entry, addr, next, ctx);
244 kvm_ptw_exit(ctx);
245 } while (entry++, addr = next, addr < end);
247 if (kvm_need_flush(ctx)) {
248 size = 0x1UL << (ctx->pgtable_shift + PAGE_SHIFT - 3);
249 if (start + size == end) {
250 list = (struct list_head *)child;
251 list_add_tail(list, &ctx->list);
252 *dir = ctx->invalid_ptes[ctx->level + 1];
256 return ret;
260 * Page walker for VM shadow mmu at page root table
262 static int kvm_ptw_top(kvm_pte_t *dir, phys_addr_t addr, phys_addr_t end, kvm_ptw_ctx *ctx)
264 int ret;
265 phys_addr_t next;
266 kvm_pte_t *entry;
268 ret = 0;
269 entry = kvm_pgtable_offset(ctx, dir, addr);
270 do {
271 next = kvm_pgtable_addr_end(ctx, addr, end);
272 if (!kvm_pte_present(ctx, entry))
273 continue;
275 kvm_ptw_enter(ctx);
276 ret |= kvm_ptw_dir(entry, addr, next, ctx);
277 kvm_ptw_exit(ctx);
278 } while (entry++, addr = next, addr < end);
280 return ret;
284 * kvm_flush_range() - Flush a range of guest physical addresses.
285 * @kvm: KVM pointer.
286 * @start_gfn: Guest frame number of first page in GPA range to flush.
287 * @end_gfn: Guest frame number of last page in GPA range to flush.
288 * @lock: Whether to hold mmu_lock or not
290 * Flushes a range of GPA mappings from the GPA page tables.
292 static void kvm_flush_range(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn, int lock)
294 int ret;
295 kvm_ptw_ctx ctx;
296 struct list_head *pos, *temp;
298 ctx.ops = kvm_flush_pte;
299 ctx.flag = _KVM_FLUSH_PGTABLE;
300 kvm_ptw_prepare(kvm, &ctx);
301 INIT_LIST_HEAD(&ctx.list);
303 if (lock) {
304 spin_lock(&kvm->mmu_lock);
305 ret = kvm_ptw_top(kvm->arch.pgd, start_gfn << PAGE_SHIFT,
306 end_gfn << PAGE_SHIFT, &ctx);
307 spin_unlock(&kvm->mmu_lock);
308 } else
309 ret = kvm_ptw_top(kvm->arch.pgd, start_gfn << PAGE_SHIFT,
310 end_gfn << PAGE_SHIFT, &ctx);
312 /* Flush vpid for each vCPU individually */
313 if (ret)
314 kvm_flush_remote_tlbs(kvm);
317 * free pte table page after mmu_lock
318 * the pte table page is linked together with ctx.list
320 list_for_each_safe(pos, temp, &ctx.list) {
321 list_del(pos);
322 free_page((unsigned long)pos);
327 * kvm_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
328 * @kvm: KVM pointer.
329 * @start_gfn: Guest frame number of first page in GPA range to flush.
330 * @end_gfn: Guest frame number of last page in GPA range to flush.
332 * Make a range of GPA mappings clean so that guest writes will fault and
333 * trigger dirty page logging.
335 * The caller must hold the @kvm->mmu_lock spinlock.
337 * Returns: Whether any GPA mappings were modified, which would require
338 * derived mappings (GVA page tables & TLB enties) to be
339 * invalidated.
341 static int kvm_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
343 kvm_ptw_ctx ctx;
345 ctx.ops = kvm_mkclean_pte;
346 ctx.flag = 0;
347 kvm_ptw_prepare(kvm, &ctx);
348 return kvm_ptw_top(kvm->arch.pgd, start_gfn << PAGE_SHIFT, end_gfn << PAGE_SHIFT, &ctx);
352 * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
353 * @kvm: The KVM pointer
354 * @slot: The memory slot associated with mask
355 * @gfn_offset: The gfn offset in memory slot
356 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
357 * slot to be write protected
359 * Walks bits set in mask write protects the associated pte's. Caller must
360 * acquire @kvm->mmu_lock.
362 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
363 struct kvm_memory_slot *slot, gfn_t gfn_offset, unsigned long mask)
365 kvm_ptw_ctx ctx;
366 gfn_t base_gfn = slot->base_gfn + gfn_offset;
367 gfn_t start = base_gfn + __ffs(mask);
368 gfn_t end = base_gfn + __fls(mask) + 1;
370 ctx.ops = kvm_mkclean_pte;
371 ctx.flag = _KVM_HAS_PGMASK;
372 ctx.mask = mask;
373 ctx.gfn = base_gfn;
374 kvm_ptw_prepare(kvm, &ctx);
376 kvm_ptw_top(kvm->arch.pgd, start << PAGE_SHIFT, end << PAGE_SHIFT, &ctx);
379 int kvm_arch_prepare_memory_region(struct kvm *kvm, const struct kvm_memory_slot *old,
380 struct kvm_memory_slot *new, enum kvm_mr_change change)
382 gpa_t gpa_start;
383 hva_t hva_start;
384 size_t size, gpa_offset, hva_offset;
386 if ((change != KVM_MR_MOVE) && (change != KVM_MR_CREATE))
387 return 0;
389 * Prevent userspace from creating a memory region outside of the
390 * VM GPA address space
392 if ((new->base_gfn + new->npages) > (kvm->arch.gpa_size >> PAGE_SHIFT))
393 return -ENOMEM;
395 new->arch.flags = 0;
396 size = new->npages * PAGE_SIZE;
397 gpa_start = new->base_gfn << PAGE_SHIFT;
398 hva_start = new->userspace_addr;
399 if (IS_ALIGNED(size, PMD_SIZE) && IS_ALIGNED(gpa_start, PMD_SIZE)
400 && IS_ALIGNED(hva_start, PMD_SIZE))
401 new->arch.flags |= KVM_MEM_HUGEPAGE_CAPABLE;
402 else {
404 * Pages belonging to memslots that don't have the same
405 * alignment within a PMD for userspace and GPA cannot be
406 * mapped with PMD entries, because we'll end up mapping
407 * the wrong pages.
409 * Consider a layout like the following:
411 * memslot->userspace_addr:
412 * +-----+--------------------+--------------------+---+
413 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
414 * +-----+--------------------+--------------------+---+
416 * memslot->base_gfn << PAGE_SIZE:
417 * +---+--------------------+--------------------+-----+
418 * |abc|def Stage-2 block | Stage-2 block |tvxyz|
419 * +---+--------------------+--------------------+-----+
421 * If we create those stage-2 blocks, we'll end up with this
422 * incorrect mapping:
423 * d -> f
424 * e -> g
425 * f -> h
427 gpa_offset = gpa_start & (PMD_SIZE - 1);
428 hva_offset = hva_start & (PMD_SIZE - 1);
429 if (gpa_offset != hva_offset) {
430 new->arch.flags |= KVM_MEM_HUGEPAGE_INCAPABLE;
431 } else {
432 if (gpa_offset == 0)
433 gpa_offset = PMD_SIZE;
434 if ((size + gpa_offset) < (PMD_SIZE * 2))
435 new->arch.flags |= KVM_MEM_HUGEPAGE_INCAPABLE;
439 return 0;
442 void kvm_arch_commit_memory_region(struct kvm *kvm,
443 struct kvm_memory_slot *old,
444 const struct kvm_memory_slot *new,
445 enum kvm_mr_change change)
447 int needs_flush;
448 u32 old_flags = old ? old->flags : 0;
449 u32 new_flags = new ? new->flags : 0;
450 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
452 /* Only track memslot flags changed */
453 if (change != KVM_MR_FLAGS_ONLY)
454 return;
456 /* Discard dirty page tracking on readonly memslot */
457 if ((old_flags & new_flags) & KVM_MEM_READONLY)
458 return;
461 * If dirty page logging is enabled, write protect all pages in the slot
462 * ready for dirty logging.
464 * There is no need to do this in any of the following cases:
465 * CREATE: No dirty mappings will already exist.
466 * MOVE/DELETE: The old mappings will already have been cleaned up by
467 * kvm_arch_flush_shadow_memslot()
469 if (!(old_flags & KVM_MEM_LOG_DIRTY_PAGES) && log_dirty_pages) {
471 * Initially-all-set does not require write protecting any page
472 * because they're all assumed to be dirty.
474 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
475 return;
477 spin_lock(&kvm->mmu_lock);
478 /* Write protect GPA page table entries */
479 needs_flush = kvm_mkclean_gpa_pt(kvm, new->base_gfn,
480 new->base_gfn + new->npages);
481 spin_unlock(&kvm->mmu_lock);
482 if (needs_flush)
483 kvm_flush_remote_tlbs(kvm);
487 void kvm_arch_flush_shadow_all(struct kvm *kvm)
489 kvm_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT, 0);
492 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
495 * The slot has been made invalid (ready for moving or deletion), so we
496 * need to ensure that it can no longer be accessed by any guest vCPUs.
498 kvm_flush_range(kvm, slot->base_gfn, slot->base_gfn + slot->npages, 1);
501 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
503 kvm_ptw_ctx ctx;
505 ctx.flag = 0;
506 ctx.ops = kvm_flush_pte;
507 kvm_ptw_prepare(kvm, &ctx);
508 INIT_LIST_HEAD(&ctx.list);
510 return kvm_ptw_top(kvm->arch.pgd, range->start << PAGE_SHIFT,
511 range->end << PAGE_SHIFT, &ctx);
514 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
516 kvm_ptw_ctx ctx;
518 ctx.flag = 0;
519 ctx.ops = kvm_mkold_pte;
520 kvm_ptw_prepare(kvm, &ctx);
522 return kvm_ptw_top(kvm->arch.pgd, range->start << PAGE_SHIFT,
523 range->end << PAGE_SHIFT, &ctx);
526 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
528 gpa_t gpa = range->start << PAGE_SHIFT;
529 kvm_pte_t *ptep = kvm_populate_gpa(kvm, NULL, gpa, 0);
531 if (ptep && kvm_pte_present(NULL, ptep) && kvm_pte_young(*ptep))
532 return true;
534 return false;
538 * kvm_map_page_fast() - Fast path GPA fault handler.
539 * @vcpu: vCPU pointer.
540 * @gpa: Guest physical address of fault.
541 * @write: Whether the fault was due to a write.
543 * Perform fast path GPA fault handling, doing all that can be done without
544 * calling into KVM. This handles marking old pages young (for idle page
545 * tracking), and dirtying of clean pages (for dirty page logging).
547 * Returns: 0 on success, in which case we can update derived mappings and
548 * resume guest execution.
549 * -EFAULT on failure due to absent GPA mapping or write to
550 * read-only page, in which case KVM must be consulted.
552 static int kvm_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, bool write)
554 int ret = 0;
555 kvm_pte_t *ptep, changed, new;
556 gfn_t gfn = gpa >> PAGE_SHIFT;
557 struct kvm *kvm = vcpu->kvm;
558 struct kvm_memory_slot *slot;
560 spin_lock(&kvm->mmu_lock);
562 /* Fast path - just check GPA page table for an existing entry */
563 ptep = kvm_populate_gpa(kvm, NULL, gpa, 0);
564 if (!ptep || !kvm_pte_present(NULL, ptep)) {
565 ret = -EFAULT;
566 goto out;
569 /* Track access to pages marked old */
570 new = kvm_pte_mkyoung(*ptep);
571 if (write && !kvm_pte_dirty(new)) {
572 if (!kvm_pte_write(new)) {
573 ret = -EFAULT;
574 goto out;
577 if (kvm_pte_huge(new)) {
579 * Do not set write permission when dirty logging is
580 * enabled for HugePages
582 slot = gfn_to_memslot(kvm, gfn);
583 if (kvm_slot_dirty_track_enabled(slot)) {
584 ret = -EFAULT;
585 goto out;
589 /* Track dirtying of writeable pages */
590 new = kvm_pte_mkdirty(new);
593 changed = new ^ (*ptep);
594 if (changed)
595 kvm_set_pte(ptep, new);
597 spin_unlock(&kvm->mmu_lock);
599 if (kvm_pte_dirty(changed))
600 mark_page_dirty(kvm, gfn);
602 return ret;
603 out:
604 spin_unlock(&kvm->mmu_lock);
605 return ret;
608 static bool fault_supports_huge_mapping(struct kvm_memory_slot *memslot,
609 unsigned long hva, bool write)
611 hva_t start, end;
613 /* Disable dirty logging on HugePages */
614 if (kvm_slot_dirty_track_enabled(memslot) && write)
615 return false;
617 if (kvm_hugepage_capable(memslot))
618 return true;
620 if (kvm_hugepage_incapable(memslot))
621 return false;
623 start = memslot->userspace_addr;
624 end = start + memslot->npages * PAGE_SIZE;
627 * Next, let's make sure we're not trying to map anything not covered
628 * by the memslot. This means we have to prohibit block size mappings
629 * for the beginning and end of a non-block aligned and non-block sized
630 * memory slot (illustrated by the head and tail parts of the
631 * userspace view above containing pages 'abcde' and 'xyz',
632 * respectively).
634 * Note that it doesn't matter if we do the check using the
635 * userspace_addr or the base_gfn, as both are equally aligned (per
636 * the check above) and equally sized.
638 return (hva >= ALIGN(start, PMD_SIZE)) && (hva < ALIGN_DOWN(end, PMD_SIZE));
642 * Lookup the mapping level for @gfn in the current mm.
644 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end
645 * consumer to be tied into KVM's handlers for MMU notifier events!
647 * There are several ways to safely use this helper:
649 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before
650 * consuming it. In this case, mmu_lock doesn't need to be held during the
651 * lookup, but it does need to be held while checking the MMU notifier.
653 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
654 * event for the hva. This can be done by explicit checking the MMU notifier
655 * or by ensuring that KVM already has a valid mapping that covers the hva.
657 * - Do not use the result to install new mappings, e.g. use the host mapping
658 * level only to decide whether or not to zap an entry. In this case, it's
659 * not required to hold mmu_lock (though it's highly likely the caller will
660 * want to hold mmu_lock anyways, e.g. to modify SPTEs).
662 * Note! The lookup can still race with modifications to host page tables, but
663 * the above "rules" ensure KVM will not _consume_ the result of the walk if a
664 * race with the primary MMU occurs.
666 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
667 const struct kvm_memory_slot *slot)
669 int level = 0;
670 unsigned long hva;
671 unsigned long flags;
672 pgd_t pgd;
673 p4d_t p4d;
674 pud_t pud;
675 pmd_t pmd;
678 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
679 * is not solely for performance, it's also necessary to avoid the
680 * "writable" check in __gfn_to_hva_many(), which will always fail on
681 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
682 * page fault steps have already verified the guest isn't writing a
683 * read-only memslot.
685 hva = __gfn_to_hva_memslot(slot, gfn);
688 * Disable IRQs to prevent concurrent tear down of host page tables,
689 * e.g. if the primary MMU promotes a P*D to a huge page and then frees
690 * the original page table.
692 local_irq_save(flags);
695 * Read each entry once. As above, a non-leaf entry can be promoted to
696 * a huge page _during_ this walk. Re-reading the entry could send the
697 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old
698 * value) and then p*d_offset() walks into the target huge page instead
699 * of the old page table (sees the new value).
701 pgd = pgdp_get(pgd_offset(kvm->mm, hva));
702 if (pgd_none(pgd))
703 goto out;
705 p4d = p4dp_get(p4d_offset(&pgd, hva));
706 if (p4d_none(p4d) || !p4d_present(p4d))
707 goto out;
709 pud = pudp_get(pud_offset(&p4d, hva));
710 if (pud_none(pud) || !pud_present(pud))
711 goto out;
713 pmd = pmdp_get(pmd_offset(&pud, hva));
714 if (pmd_none(pmd) || !pmd_present(pmd))
715 goto out;
717 if (kvm_pte_huge(pmd_val(pmd)))
718 level = 1;
720 out:
721 local_irq_restore(flags);
722 return level;
726 * Split huge page
728 static kvm_pte_t *kvm_split_huge(struct kvm_vcpu *vcpu, kvm_pte_t *ptep, gfn_t gfn)
730 int i;
731 kvm_pte_t val, *child;
732 struct kvm *kvm = vcpu->kvm;
733 struct kvm_mmu_memory_cache *memcache;
735 memcache = &vcpu->arch.mmu_page_cache;
736 child = kvm_mmu_memory_cache_alloc(memcache);
737 val = kvm_pte_mksmall(*ptep);
738 for (i = 0; i < PTRS_PER_PTE; i++) {
739 kvm_set_pte(child + i, val);
740 val += PAGE_SIZE;
743 smp_wmb(); /* Make pte visible before pmd */
744 /* The later kvm_flush_tlb_gpa() will flush hugepage tlb */
745 kvm_set_pte(ptep, __pa(child));
747 kvm->stat.hugepages--;
748 kvm->stat.pages += PTRS_PER_PTE;
750 return child + (gfn & (PTRS_PER_PTE - 1));
754 * kvm_map_page() - Map a guest physical page.
755 * @vcpu: vCPU pointer.
756 * @gpa: Guest physical address of fault.
757 * @write: Whether the fault was due to a write.
759 * Handle GPA faults by creating a new GPA mapping (or updating an existing
760 * one).
762 * This takes care of marking pages young or dirty (idle/dirty page tracking),
763 * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
764 * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
765 * caller.
767 * Returns: 0 on success
768 * -EFAULT if there is no memory region at @gpa or a write was
769 * attempted to a read-only memory region. This is usually handled
770 * as an MMIO access.
772 static int kvm_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, bool write)
774 bool writeable;
775 int srcu_idx, err, retry_no = 0, level;
776 unsigned long hva, mmu_seq, prot_bits;
777 kvm_pfn_t pfn;
778 kvm_pte_t *ptep, new_pte;
779 gfn_t gfn = gpa >> PAGE_SHIFT;
780 struct kvm *kvm = vcpu->kvm;
781 struct kvm_memory_slot *memslot;
782 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
783 struct page *page;
785 /* Try the fast path to handle old / clean pages */
786 srcu_idx = srcu_read_lock(&kvm->srcu);
787 err = kvm_map_page_fast(vcpu, gpa, write);
788 if (!err)
789 goto out;
791 memslot = gfn_to_memslot(kvm, gfn);
792 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writeable);
793 if (kvm_is_error_hva(hva) || (write && !writeable)) {
794 err = -EFAULT;
795 goto out;
798 /* We need a minimum of cached pages ready for page table creation */
799 err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
800 if (err)
801 goto out;
803 retry:
805 * Used to check for invalidations in progress, of the pfn that is
806 * returned by pfn_to_pfn_prot below.
808 mmu_seq = kvm->mmu_invalidate_seq;
810 * Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads in
811 * kvm_faultin_pfn() (which calls get_user_pages()), so that we don't
812 * risk the page we get a reference to getting unmapped before we have a
813 * chance to grab the mmu_lock without mmu_invalidate_retry() noticing.
815 * This smp_rmb() pairs with the effective smp_wmb() of the combination
816 * of the pte_unmap_unlock() after the PTE is zapped, and the
817 * spin_lock() in kvm_mmu_invalidate_invalidate_<page|range_end>() before
818 * mmu_invalidate_seq is incremented.
820 smp_rmb();
822 /* Slow path - ask KVM core whether we can access this GPA */
823 pfn = kvm_faultin_pfn(vcpu, gfn, write, &writeable, &page);
824 if (is_error_noslot_pfn(pfn)) {
825 err = -EFAULT;
826 goto out;
829 /* Check if an invalidation has taken place since we got pfn */
830 spin_lock(&kvm->mmu_lock);
831 if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) {
833 * This can happen when mappings are changed asynchronously, but
834 * also synchronously if a COW is triggered by
835 * kvm_faultin_pfn().
837 spin_unlock(&kvm->mmu_lock);
838 kvm_release_page_unused(page);
839 if (retry_no > 100) {
840 retry_no = 0;
841 schedule();
843 retry_no++;
844 goto retry;
848 * For emulated devices such virtio device, actual cache attribute is
849 * determined by physical machine.
850 * For pass through physical device, it should be uncachable
852 prot_bits = _PAGE_PRESENT | __READABLE;
853 if (pfn_valid(pfn))
854 prot_bits |= _CACHE_CC;
855 else
856 prot_bits |= _CACHE_SUC;
858 if (writeable) {
859 prot_bits |= _PAGE_WRITE;
860 if (write)
861 prot_bits |= __WRITEABLE;
864 /* Disable dirty logging on HugePages */
865 level = 0;
866 if (fault_supports_huge_mapping(memslot, hva, write)) {
867 /* Check page level about host mmu*/
868 level = host_pfn_mapping_level(kvm, gfn, memslot);
869 if (level == 1) {
871 * Check page level about secondary mmu
872 * Disable hugepage if it is normal page on
873 * secondary mmu already
875 ptep = kvm_populate_gpa(kvm, NULL, gpa, 0);
876 if (ptep && !kvm_pte_huge(*ptep))
877 level = 0;
880 if (level == 1) {
881 gfn = gfn & ~(PTRS_PER_PTE - 1);
882 pfn = pfn & ~(PTRS_PER_PTE - 1);
886 /* Ensure page tables are allocated */
887 ptep = kvm_populate_gpa(kvm, memcache, gpa, level);
888 new_pte = kvm_pfn_pte(pfn, __pgprot(prot_bits));
889 if (level == 1) {
890 new_pte = kvm_pte_mkhuge(new_pte);
892 * previous pmd entry is invalid_pte_table
893 * there is invalid tlb with small page
894 * need flush these invalid tlbs for current vcpu
896 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
897 ++kvm->stat.hugepages;
898 } else if (kvm_pte_huge(*ptep) && write)
899 ptep = kvm_split_huge(vcpu, ptep, gfn);
900 else
901 ++kvm->stat.pages;
902 kvm_set_pte(ptep, new_pte);
904 kvm_release_faultin_page(kvm, page, false, writeable);
905 spin_unlock(&kvm->mmu_lock);
907 if (prot_bits & _PAGE_DIRTY)
908 mark_page_dirty_in_slot(kvm, memslot, gfn);
910 out:
911 srcu_read_unlock(&kvm->srcu, srcu_idx);
912 return err;
915 int kvm_handle_mm_fault(struct kvm_vcpu *vcpu, unsigned long gpa, bool write)
917 int ret;
919 ret = kvm_map_page(vcpu, gpa, write);
920 if (ret)
921 return ret;
923 /* Invalidate this entry in the TLB */
924 vcpu->arch.flush_gpa = gpa;
925 kvm_make_request(KVM_REQ_TLB_FLUSH_GPA, vcpu);
927 return 0;
930 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
934 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
935 const struct kvm_memory_slot *memslot)
937 kvm_flush_remote_tlbs(kvm);