2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 2007 MIPS Technologies, Inc.
7 * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org>
9 #include <linux/clockchips.h>
10 #include <linux/interrupt.h>
11 #include <linux/cpufreq.h>
12 #include <linux/percpu.h>
13 #include <linux/smp.h>
14 #include <linux/irq.h>
17 #include <asm/cevt-r4k.h>
19 static int mips_next_event(unsigned long delta
,
20 struct clock_event_device
*evt
)
25 cnt
= read_c0_count();
27 write_c0_compare(cnt
);
28 res
= ((int)(read_c0_count() - cnt
) >= 0) ? -ETIME
: 0;
33 * calculate_min_delta() - Calculate a good minimum delta for mips_next_event().
35 * Running under virtualisation can introduce overhead into mips_next_event() in
36 * the form of hypervisor emulation of CP0_Count/CP0_Compare registers,
37 * potentially with an unnatural frequency, which makes a fixed min_delta_ns
38 * value inappropriate as it may be too small.
40 * It can also introduce occasional latency from the guest being descheduled.
42 * This function calculates a good minimum delta based roughly on the 75th
43 * percentile of the time taken to do the mips_next_event() sequence, in order
44 * to handle potentially higher overhead while also eliminating outliers due to
45 * unpredictable hypervisor latency (which can be handled by retries).
47 * Return: An appropriate minimum delta for the clock event device.
49 static unsigned int calculate_min_delta(void)
51 unsigned int cnt
, i
, j
, k
, l
;
52 unsigned int buf1
[4], buf2
[3];
53 unsigned int min_delta
;
56 * Calculate the median of 5 75th percentiles of 5 samples of how long
57 * it takes to set CP0_Compare = CP0_Count + delta.
59 for (i
= 0; i
< 5; ++i
) {
60 for (j
= 0; j
< 5; ++j
) {
62 * This is like the code in mips_next_event(), and
63 * directly measures the borderline "safe" delta.
65 cnt
= read_c0_count();
66 write_c0_compare(cnt
);
67 cnt
= read_c0_count() - cnt
;
69 /* Sorted insert into buf1 */
70 for (k
= 0; k
< j
; ++k
) {
72 l
= min_t(unsigned int,
73 j
, ARRAY_SIZE(buf1
) - 1);
75 buf1
[l
] = buf1
[l
- 1];
79 if (k
< ARRAY_SIZE(buf1
))
83 /* Sorted insert of 75th percentile into buf2 */
84 for (k
= 0; k
< i
&& k
< ARRAY_SIZE(buf2
); ++k
) {
85 if (buf1
[ARRAY_SIZE(buf1
) - 1] < buf2
[k
]) {
86 l
= min_t(unsigned int,
87 i
, ARRAY_SIZE(buf2
) - 1);
89 buf2
[l
] = buf2
[l
- 1];
93 if (k
< ARRAY_SIZE(buf2
))
94 buf2
[k
] = buf1
[ARRAY_SIZE(buf1
) - 1];
97 /* Use 2 * median of 75th percentiles */
98 min_delta
= buf2
[ARRAY_SIZE(buf2
) - 1] * 2;
100 /* Don't go too low */
101 if (min_delta
< 0x300)
104 pr_debug("%s: median 75th percentile=%#x, min_delta=%#x\n",
105 __func__
, buf2
[ARRAY_SIZE(buf2
) - 1], min_delta
);
109 DEFINE_PER_CPU(struct clock_event_device
, mips_clockevent_device
);
110 int cp0_timer_irq_installed
;
113 * Possibly handle a performance counter interrupt.
114 * Return true if the timer interrupt should not be checked
116 static inline int handle_perf_irq(int r2
)
119 * The performance counter overflow interrupt may be shared with the
120 * timer interrupt (cp0_perfcount_irq < 0). If it is and a
121 * performance counter has overflowed (perf_irq() == IRQ_HANDLED)
122 * and we can't reliably determine if a counter interrupt has also
123 * happened (!r2) then don't check for a timer interrupt.
125 return (cp0_perfcount_irq
< 0) &&
126 perf_irq() == IRQ_HANDLED
&&
130 irqreturn_t
c0_compare_interrupt(int irq
, void *dev_id
)
132 const int r2
= cpu_has_mips_r2_r6
;
133 struct clock_event_device
*cd
;
134 int cpu
= smp_processor_id();
138 * Before R2 of the architecture there was no way to see if a
139 * performance counter interrupt was pending, so we have to run
140 * the performance counter interrupt handler anyway.
142 if (handle_perf_irq(r2
))
146 * The same applies to performance counter interrupts. But with the
147 * above we now know that the reason we got here must be a timer
148 * interrupt. Being the paranoiacs we are we check anyway.
150 if (!r2
|| (read_c0_cause() & CAUSEF_TI
)) {
151 /* Clear Count/Compare Interrupt */
152 write_c0_compare(read_c0_compare());
153 cd
= &per_cpu(mips_clockevent_device
, cpu
);
154 cd
->event_handler(cd
);
162 struct irqaction c0_compare_irqaction
= {
163 .handler
= c0_compare_interrupt
,
165 * IRQF_SHARED: The timer interrupt may be shared with other interrupts
166 * such as perf counter and FDC interrupts.
168 .flags
= IRQF_PERCPU
| IRQF_TIMER
| IRQF_SHARED
,
173 void mips_event_handler(struct clock_event_device
*dev
)
178 * FIXME: This doesn't hold for the relocated E9000 compare interrupt.
180 static int c0_compare_int_pending(void)
182 /* When cpu_has_mips_r2, this checks Cause.TI instead of Cause.IP7 */
183 return (read_c0_cause() >> cp0_compare_irq_shift
) & (1ul << CAUSEB_IP
);
187 * Compare interrupt can be routed and latched outside the core,
188 * so wait up to worst case number of cycle counter ticks for timer interrupt
189 * changes to propagate to the cause register.
191 #define COMPARE_INT_SEEN_TICKS 50
193 int c0_compare_int_usable(void)
199 * IP7 already pending? Try to clear it by acking the timer.
201 if (c0_compare_int_pending()) {
202 cnt
= read_c0_count();
203 write_c0_compare(cnt
- 1);
204 back_to_back_c0_hazard();
205 while (read_c0_count() < (cnt
+ COMPARE_INT_SEEN_TICKS
))
206 if (!c0_compare_int_pending())
208 if (c0_compare_int_pending())
212 for (delta
= 0x10; delta
<= 0x400000; delta
<<= 1) {
213 cnt
= read_c0_count();
215 write_c0_compare(cnt
);
216 back_to_back_c0_hazard();
217 if ((int)(read_c0_count() - cnt
) < 0)
219 /* increase delta if the timer was already expired */
222 while ((int)(read_c0_count() - cnt
) <= 0)
223 ; /* Wait for expiry */
225 while (read_c0_count() < (cnt
+ COMPARE_INT_SEEN_TICKS
))
226 if (c0_compare_int_pending())
228 if (!c0_compare_int_pending())
230 cnt
= read_c0_count();
231 write_c0_compare(cnt
- 1);
232 back_to_back_c0_hazard();
233 while (read_c0_count() < (cnt
+ COMPARE_INT_SEEN_TICKS
))
234 if (!c0_compare_int_pending())
236 if (c0_compare_int_pending())
240 * Feels like a real count / compare timer.
245 unsigned int __weak
get_c0_compare_int(void)
247 return MIPS_CPU_IRQ_BASE
+ cp0_compare_irq
;
250 #ifdef CONFIG_CPU_FREQ
252 static unsigned long mips_ref_freq
;
254 static int r4k_cpufreq_callback(struct notifier_block
*nb
,
255 unsigned long val
, void *data
)
257 struct cpufreq_freqs
*freq
= data
;
258 struct clock_event_device
*cd
;
263 mips_ref_freq
= freq
->old
;
265 if (val
== CPUFREQ_POSTCHANGE
) {
266 rate
= cpufreq_scale(mips_hpt_frequency
, mips_ref_freq
,
269 for_each_cpu(cpu
, freq
->policy
->cpus
) {
270 cd
= &per_cpu(mips_clockevent_device
, cpu
);
272 clockevents_update_freq(cd
, rate
);
279 static struct notifier_block r4k_cpufreq_notifier
= {
280 .notifier_call
= r4k_cpufreq_callback
,
283 static int __init
r4k_register_cpufreq_notifier(void)
285 return cpufreq_register_notifier(&r4k_cpufreq_notifier
,
286 CPUFREQ_TRANSITION_NOTIFIER
);
289 core_initcall(r4k_register_cpufreq_notifier
);
291 #endif /* !CONFIG_CPU_FREQ */
293 int r4k_clockevent_init(void)
295 unsigned long flags
= IRQF_PERCPU
| IRQF_TIMER
| IRQF_SHARED
;
296 unsigned int cpu
= smp_processor_id();
297 struct clock_event_device
*cd
;
298 unsigned int irq
, min_delta
;
300 if (!cpu_has_counter
|| !mips_hpt_frequency
)
303 if (!c0_compare_int_usable())
306 cd
= &per_cpu(mips_clockevent_device
, cpu
);
309 cd
->features
= CLOCK_EVT_FEAT_ONESHOT
|
310 CLOCK_EVT_FEAT_C3STOP
|
311 CLOCK_EVT_FEAT_PERCPU
;
313 min_delta
= calculate_min_delta();
316 cd
->cpumask
= cpumask_of(cpu
);
317 cd
->set_next_event
= mips_next_event
;
318 cd
->event_handler
= mips_event_handler
;
320 clockevents_config_and_register(cd
, mips_hpt_frequency
, min_delta
, 0x7fffffff);
322 if (cp0_timer_irq_installed
)
325 cp0_timer_irq_installed
= 1;
328 * With vectored interrupts things are getting platform specific.
329 * get_c0_compare_int is a hook to allow a platform to return the
330 * interrupt number of its liking.
332 irq
= get_c0_compare_int();
334 if (request_irq(irq
, c0_compare_interrupt
, flags
, "timer",
335 c0_compare_interrupt
))
336 pr_err("Failed to request irq %d (timer)\n", irq
);