2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 2005-2009, 2010 Cavium Networks
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/msi.h>
11 #include <linux/spinlock.h>
12 #include <linux/interrupt.h>
14 #include <asm/octeon/octeon.h>
15 #include <asm/octeon/cvmx-npi-defs.h>
16 #include <asm/octeon/cvmx-pci-defs.h>
17 #include <asm/octeon/cvmx-npei-defs.h>
18 #include <asm/octeon/cvmx-sli-defs.h>
19 #include <asm/octeon/cvmx-pexp-defs.h>
20 #include <asm/octeon/pci-octeon.h>
23 * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
26 static u64 msi_free_irq_bitmask
[4];
29 * Each bit in msi_multiple_irq_bitmask tells that the device using
30 * this bit in msi_free_irq_bitmask is also using the next bit. This
31 * is used so we can disable all of the MSI interrupts when a device
34 static u64 msi_multiple_irq_bitmask
[4];
37 * This lock controls updates to msi_free_irq_bitmask and
38 * msi_multiple_irq_bitmask.
40 static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock
);
43 * Number of MSI IRQs used. This variable is set up in
44 * the module init time.
46 static int msi_irq_size
;
49 * arch_setup_msi_irq() - setup MSI IRQs for a device
50 * @dev: Device requesting MSI interrupts
51 * @desc: MSI descriptor
53 * Called when a driver requests MSI interrupts instead of the
54 * legacy INT A-D. This routine will allocate multiple interrupts
55 * for MSI devices that support them. A device can override this by
56 * programming the MSI control bits [6:4] before calling
59 * Return: %0 on success, non-%0 on error.
61 int arch_setup_msi_irq(struct pci_dev
*dev
, struct msi_desc
*desc
)
65 int configured_private_bits
;
66 int request_private_bits
;
72 if (desc
->pci
.msi_attrib
.is_msix
)
76 * Read the MSI config to figure out how many IRQs this device
77 * wants. Most devices only want 1, which will give
78 * configured_private_bits and request_private_bits equal 0.
80 pci_read_config_word(dev
, dev
->msi_cap
+ PCI_MSI_FLAGS
, &control
);
83 * If the number of private bits has been configured then use
84 * that value instead of the requested number. This gives the
85 * driver the chance to override the number of interrupts
86 * before calling pci_enable_msi().
88 configured_private_bits
= (control
& PCI_MSI_FLAGS_QSIZE
) >> 4;
89 if (configured_private_bits
== 0) {
90 /* Nothing is configured, so use the hardware requested size */
91 request_private_bits
= (control
& PCI_MSI_FLAGS_QMASK
) >> 1;
94 * Use the number of configured bits, assuming the
95 * driver wanted to override the hardware request
98 request_private_bits
= configured_private_bits
;
102 * The PCI 2.3 spec mandates that there are at most 32
103 * interrupts. If this device asks for more, only give it one.
105 if (request_private_bits
> 5)
106 request_private_bits
= 0;
110 * The IRQs have to be aligned on a power of two based on the
111 * number being requested.
113 irq_step
= 1 << request_private_bits
;
115 /* Mask with one bit for each IRQ */
116 search_mask
= (1 << irq_step
) - 1;
119 * We're going to search msi_free_irq_bitmask_lock for zero
120 * bits. This represents an MSI interrupt number that isn't in
123 spin_lock(&msi_free_irq_bitmask_lock
);
124 for (index
= 0; index
< msi_irq_size
/64; index
++) {
125 for (irq
= 0; irq
< 64; irq
+= irq_step
) {
126 if ((msi_free_irq_bitmask
[index
] & (search_mask
<< irq
)) == 0) {
127 msi_free_irq_bitmask
[index
] |= search_mask
<< irq
;
128 msi_multiple_irq_bitmask
[index
] |= (search_mask
>> 1) << irq
;
129 goto msi_irq_allocated
;
134 spin_unlock(&msi_free_irq_bitmask_lock
);
136 /* Make sure the search for available interrupts didn't fail */
138 if (request_private_bits
) {
139 pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one",
140 1 << request_private_bits
);
141 request_private_bits
= 0;
144 panic("arch_setup_msi_irq: Unable to find a free MSI interrupt");
147 /* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
149 irq
+= OCTEON_IRQ_MSI_BIT0
;
151 switch (octeon_dma_bar_type
) {
152 case OCTEON_DMA_BAR_TYPE_SMALL
:
153 /* When not using big bar, Bar 0 is based at 128MB */
155 ((128ul << 20) + CVMX_PCI_MSI_RCV
) & 0xffffffff;
156 msg
.address_hi
= ((128ul << 20) + CVMX_PCI_MSI_RCV
) >> 32;
158 case OCTEON_DMA_BAR_TYPE_BIG
:
159 /* When using big bar, Bar 0 is based at 0 */
160 msg
.address_lo
= (0 + CVMX_PCI_MSI_RCV
) & 0xffffffff;
161 msg
.address_hi
= (0 + CVMX_PCI_MSI_RCV
) >> 32;
163 case OCTEON_DMA_BAR_TYPE_PCIE
:
164 /* When using PCIe, Bar 0 is based at 0 */
165 /* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
166 msg
.address_lo
= (0 + CVMX_NPEI_PCIE_MSI_RCV
) & 0xffffffff;
167 msg
.address_hi
= (0 + CVMX_NPEI_PCIE_MSI_RCV
) >> 32;
169 case OCTEON_DMA_BAR_TYPE_PCIE2
:
170 /* When using PCIe2, Bar 0 is based at 0 */
171 msg
.address_lo
= (0 + CVMX_SLI_PCIE_MSI_RCV
) & 0xffffffff;
172 msg
.address_hi
= (0 + CVMX_SLI_PCIE_MSI_RCV
) >> 32;
175 panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type");
177 msg
.data
= irq
- OCTEON_IRQ_MSI_BIT0
;
179 /* Update the number of IRQs the device has available to it */
180 control
&= ~PCI_MSI_FLAGS_QSIZE
;
181 control
|= request_private_bits
<< 4;
182 pci_write_config_word(dev
, dev
->msi_cap
+ PCI_MSI_FLAGS
, control
);
184 irq_set_msi_desc(irq
, desc
);
185 pci_write_msi_msg(irq
, &msg
);
190 * arch_teardown_msi_irq() - release MSI IRQs for a device
191 * @irq: The devices first irq number. There may be multiple in sequence.
193 * Called when a device no longer needs its MSI interrupts. All
194 * MSI interrupts for the device are freed.
196 void arch_teardown_msi_irq(unsigned int irq
)
203 if ((irq
< OCTEON_IRQ_MSI_BIT0
)
204 || (irq
> msi_irq_size
+ OCTEON_IRQ_MSI_BIT0
))
205 panic("arch_teardown_msi_irq: Attempted to teardown illegal "
206 "MSI interrupt (%d)", irq
);
208 irq
-= OCTEON_IRQ_MSI_BIT0
;
213 * Count the number of IRQs we need to free by looking at the
214 * msi_multiple_irq_bitmask. Each bit set means that the next
215 * IRQ is also owned by this device.
218 while ((irq0
+ number_irqs
< 64) &&
219 (msi_multiple_irq_bitmask
[index
]
220 & (1ull << (irq0
+ number_irqs
))))
223 /* Mask with one bit for each IRQ */
224 bitmask
= (1 << number_irqs
) - 1;
225 /* Shift the mask to the correct bit location */
227 if ((msi_free_irq_bitmask
[index
] & bitmask
) != bitmask
)
228 panic("arch_teardown_msi_irq: Attempted to teardown MSI "
229 "interrupt (%d) not in use", irq
);
231 /* Checks are done, update the in use bitmask */
232 spin_lock(&msi_free_irq_bitmask_lock
);
233 msi_free_irq_bitmask
[index
] &= ~bitmask
;
234 msi_multiple_irq_bitmask
[index
] &= ~bitmask
;
235 spin_unlock(&msi_free_irq_bitmask_lock
);
238 static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock
);
240 static u64 msi_rcv_reg
[4];
241 static u64 mis_ena_reg
[4];
243 static void octeon_irq_msi_enable_pcie(struct irq_data
*data
)
247 int msi_number
= data
->irq
- OCTEON_IRQ_MSI_BIT0
;
248 int irq_index
= msi_number
>> 6;
249 int irq_bit
= msi_number
& 0x3f;
251 raw_spin_lock_irqsave(&octeon_irq_msi_lock
, flags
);
252 en
= cvmx_read_csr(mis_ena_reg
[irq_index
]);
253 en
|= 1ull << irq_bit
;
254 cvmx_write_csr(mis_ena_reg
[irq_index
], en
);
255 cvmx_read_csr(mis_ena_reg
[irq_index
]);
256 raw_spin_unlock_irqrestore(&octeon_irq_msi_lock
, flags
);
259 static void octeon_irq_msi_disable_pcie(struct irq_data
*data
)
263 int msi_number
= data
->irq
- OCTEON_IRQ_MSI_BIT0
;
264 int irq_index
= msi_number
>> 6;
265 int irq_bit
= msi_number
& 0x3f;
267 raw_spin_lock_irqsave(&octeon_irq_msi_lock
, flags
);
268 en
= cvmx_read_csr(mis_ena_reg
[irq_index
]);
269 en
&= ~(1ull << irq_bit
);
270 cvmx_write_csr(mis_ena_reg
[irq_index
], en
);
271 cvmx_read_csr(mis_ena_reg
[irq_index
]);
272 raw_spin_unlock_irqrestore(&octeon_irq_msi_lock
, flags
);
275 static struct irq_chip octeon_irq_chip_msi_pcie
= {
277 .irq_enable
= octeon_irq_msi_enable_pcie
,
278 .irq_disable
= octeon_irq_msi_disable_pcie
,
281 static void octeon_irq_msi_enable_pci(struct irq_data
*data
)
284 * Octeon PCI doesn't have the ability to mask/unmask MSI
285 * interrupts individually. Instead of masking/unmasking them
286 * in groups of 16, we simple assume MSI devices are well
287 * behaved. MSI interrupts are always enable and the ACK is
288 * assumed to be enough
292 static void octeon_irq_msi_disable_pci(struct irq_data
*data
)
294 /* See comment in enable */
297 static struct irq_chip octeon_irq_chip_msi_pci
= {
299 .irq_enable
= octeon_irq_msi_enable_pci
,
300 .irq_disable
= octeon_irq_msi_disable_pci
,
304 * Called by the interrupt handling code when an MSI interrupt
307 static irqreturn_t
__octeon_msi_do_interrupt(int index
, u64 msi_bits
)
312 bit
= fls64(msi_bits
);
315 /* Acknowledge it first. */
316 cvmx_write_csr(msi_rcv_reg
[index
], 1ull << bit
);
318 irq
= bit
+ OCTEON_IRQ_MSI_BIT0
+ 64 * index
;
325 #define OCTEON_MSI_INT_HANDLER_X(x) \
326 static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id) \
328 u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]); \
329 return __octeon_msi_do_interrupt((x), msi_bits); \
333 * Create octeon_msi_interrupt{0-3} function body
335 OCTEON_MSI_INT_HANDLER_X(0);
336 OCTEON_MSI_INT_HANDLER_X(1);
337 OCTEON_MSI_INT_HANDLER_X(2);
338 OCTEON_MSI_INT_HANDLER_X(3);
341 * Initializes the MSI interrupt handling code
343 int __init
octeon_msi_initialize(void)
346 struct irq_chip
*msi
;
348 if (octeon_dma_bar_type
== OCTEON_DMA_BAR_TYPE_INVALID
) {
350 } else if (octeon_dma_bar_type
== OCTEON_DMA_BAR_TYPE_PCIE
) {
351 msi_rcv_reg
[0] = CVMX_PEXP_NPEI_MSI_RCV0
;
352 msi_rcv_reg
[1] = CVMX_PEXP_NPEI_MSI_RCV1
;
353 msi_rcv_reg
[2] = CVMX_PEXP_NPEI_MSI_RCV2
;
354 msi_rcv_reg
[3] = CVMX_PEXP_NPEI_MSI_RCV3
;
355 mis_ena_reg
[0] = CVMX_PEXP_NPEI_MSI_ENB0
;
356 mis_ena_reg
[1] = CVMX_PEXP_NPEI_MSI_ENB1
;
357 mis_ena_reg
[2] = CVMX_PEXP_NPEI_MSI_ENB2
;
358 mis_ena_reg
[3] = CVMX_PEXP_NPEI_MSI_ENB3
;
359 msi
= &octeon_irq_chip_msi_pcie
;
361 msi_rcv_reg
[0] = CVMX_NPI_NPI_MSI_RCV
;
362 #define INVALID_GENERATE_ADE 0x8700000000000000ULL;
363 msi_rcv_reg
[1] = INVALID_GENERATE_ADE
;
364 msi_rcv_reg
[2] = INVALID_GENERATE_ADE
;
365 msi_rcv_reg
[3] = INVALID_GENERATE_ADE
;
366 mis_ena_reg
[0] = INVALID_GENERATE_ADE
;
367 mis_ena_reg
[1] = INVALID_GENERATE_ADE
;
368 mis_ena_reg
[2] = INVALID_GENERATE_ADE
;
369 mis_ena_reg
[3] = INVALID_GENERATE_ADE
;
370 msi
= &octeon_irq_chip_msi_pci
;
373 for (irq
= OCTEON_IRQ_MSI_BIT0
; irq
<= OCTEON_IRQ_MSI_LAST
; irq
++)
374 irq_set_chip_and_handler(irq
, msi
, handle_simple_irq
);
376 if (octeon_has_feature(OCTEON_FEATURE_PCIE
)) {
377 if (request_irq(OCTEON_IRQ_PCI_MSI0
, octeon_msi_interrupt0
,
378 0, "MSI[0:63]", octeon_msi_interrupt0
))
379 panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
381 if (request_irq(OCTEON_IRQ_PCI_MSI1
, octeon_msi_interrupt1
,
382 0, "MSI[64:127]", octeon_msi_interrupt1
))
383 panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
385 if (request_irq(OCTEON_IRQ_PCI_MSI2
, octeon_msi_interrupt2
,
386 0, "MSI[127:191]", octeon_msi_interrupt2
))
387 panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
389 if (request_irq(OCTEON_IRQ_PCI_MSI3
, octeon_msi_interrupt3
,
390 0, "MSI[192:255]", octeon_msi_interrupt3
))
391 panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
394 } else if (octeon_is_pci_host()) {
395 if (request_irq(OCTEON_IRQ_PCI_MSI0
, octeon_msi_interrupt0
,
396 0, "MSI[0:15]", octeon_msi_interrupt0
))
397 panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
399 if (request_irq(OCTEON_IRQ_PCI_MSI1
, octeon_msi_interrupt0
,
400 0, "MSI[16:31]", octeon_msi_interrupt0
))
401 panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
403 if (request_irq(OCTEON_IRQ_PCI_MSI2
, octeon_msi_interrupt0
,
404 0, "MSI[32:47]", octeon_msi_interrupt0
))
405 panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
407 if (request_irq(OCTEON_IRQ_PCI_MSI3
, octeon_msi_interrupt0
,
408 0, "MSI[48:63]", octeon_msi_interrupt0
))
409 panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
414 subsys_initcall(octeon_msi_initialize
);