accel/qaic: Add AIC200 support
[drm/drm-misc.git] / arch / riscv / kvm / mmu.c
blob1087ea74567b4c9ce2742bf6427ade7f8944ce9d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2019 Western Digital Corporation or its affiliates.
5 * Authors:
6 * Anup Patel <anup.patel@wdc.com>
7 */
9 #include <linux/bitops.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/hugetlb.h>
13 #include <linux/module.h>
14 #include <linux/uaccess.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kvm_host.h>
17 #include <linux/sched/signal.h>
18 #include <asm/kvm_nacl.h>
19 #include <asm/page.h>
20 #include <asm/pgtable.h>
22 #ifdef CONFIG_64BIT
23 static unsigned long gstage_mode __ro_after_init = (HGATP_MODE_SV39X4 << HGATP_MODE_SHIFT);
24 static unsigned long gstage_pgd_levels __ro_after_init = 3;
25 #define gstage_index_bits 9
26 #else
27 static unsigned long gstage_mode __ro_after_init = (HGATP_MODE_SV32X4 << HGATP_MODE_SHIFT);
28 static unsigned long gstage_pgd_levels __ro_after_init = 2;
29 #define gstage_index_bits 10
30 #endif
32 #define gstage_pgd_xbits 2
33 #define gstage_pgd_size (1UL << (HGATP_PAGE_SHIFT + gstage_pgd_xbits))
34 #define gstage_gpa_bits (HGATP_PAGE_SHIFT + \
35 (gstage_pgd_levels * gstage_index_bits) + \
36 gstage_pgd_xbits)
37 #define gstage_gpa_size ((gpa_t)(1ULL << gstage_gpa_bits))
39 #define gstage_pte_leaf(__ptep) \
40 (pte_val(*(__ptep)) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC))
42 static inline unsigned long gstage_pte_index(gpa_t addr, u32 level)
44 unsigned long mask;
45 unsigned long shift = HGATP_PAGE_SHIFT + (gstage_index_bits * level);
47 if (level == (gstage_pgd_levels - 1))
48 mask = (PTRS_PER_PTE * (1UL << gstage_pgd_xbits)) - 1;
49 else
50 mask = PTRS_PER_PTE - 1;
52 return (addr >> shift) & mask;
55 static inline unsigned long gstage_pte_page_vaddr(pte_t pte)
57 return (unsigned long)pfn_to_virt(__page_val_to_pfn(pte_val(pte)));
60 static int gstage_page_size_to_level(unsigned long page_size, u32 *out_level)
62 u32 i;
63 unsigned long psz = 1UL << 12;
65 for (i = 0; i < gstage_pgd_levels; i++) {
66 if (page_size == (psz << (i * gstage_index_bits))) {
67 *out_level = i;
68 return 0;
72 return -EINVAL;
75 static int gstage_level_to_page_order(u32 level, unsigned long *out_pgorder)
77 if (gstage_pgd_levels < level)
78 return -EINVAL;
80 *out_pgorder = 12 + (level * gstage_index_bits);
81 return 0;
84 static int gstage_level_to_page_size(u32 level, unsigned long *out_pgsize)
86 int rc;
87 unsigned long page_order = PAGE_SHIFT;
89 rc = gstage_level_to_page_order(level, &page_order);
90 if (rc)
91 return rc;
93 *out_pgsize = BIT(page_order);
94 return 0;
97 static bool gstage_get_leaf_entry(struct kvm *kvm, gpa_t addr,
98 pte_t **ptepp, u32 *ptep_level)
100 pte_t *ptep;
101 u32 current_level = gstage_pgd_levels - 1;
103 *ptep_level = current_level;
104 ptep = (pte_t *)kvm->arch.pgd;
105 ptep = &ptep[gstage_pte_index(addr, current_level)];
106 while (ptep && pte_val(ptep_get(ptep))) {
107 if (gstage_pte_leaf(ptep)) {
108 *ptep_level = current_level;
109 *ptepp = ptep;
110 return true;
113 if (current_level) {
114 current_level--;
115 *ptep_level = current_level;
116 ptep = (pte_t *)gstage_pte_page_vaddr(ptep_get(ptep));
117 ptep = &ptep[gstage_pte_index(addr, current_level)];
118 } else {
119 ptep = NULL;
123 return false;
126 static void gstage_remote_tlb_flush(struct kvm *kvm, u32 level, gpa_t addr)
128 unsigned long order = PAGE_SHIFT;
130 if (gstage_level_to_page_order(level, &order))
131 return;
132 addr &= ~(BIT(order) - 1);
134 kvm_riscv_hfence_gvma_vmid_gpa(kvm, -1UL, 0, addr, BIT(order), order);
137 static int gstage_set_pte(struct kvm *kvm, u32 level,
138 struct kvm_mmu_memory_cache *pcache,
139 gpa_t addr, const pte_t *new_pte)
141 u32 current_level = gstage_pgd_levels - 1;
142 pte_t *next_ptep = (pte_t *)kvm->arch.pgd;
143 pte_t *ptep = &next_ptep[gstage_pte_index(addr, current_level)];
145 if (current_level < level)
146 return -EINVAL;
148 while (current_level != level) {
149 if (gstage_pte_leaf(ptep))
150 return -EEXIST;
152 if (!pte_val(ptep_get(ptep))) {
153 if (!pcache)
154 return -ENOMEM;
155 next_ptep = kvm_mmu_memory_cache_alloc(pcache);
156 if (!next_ptep)
157 return -ENOMEM;
158 set_pte(ptep, pfn_pte(PFN_DOWN(__pa(next_ptep)),
159 __pgprot(_PAGE_TABLE)));
160 } else {
161 if (gstage_pte_leaf(ptep))
162 return -EEXIST;
163 next_ptep = (pte_t *)gstage_pte_page_vaddr(ptep_get(ptep));
166 current_level--;
167 ptep = &next_ptep[gstage_pte_index(addr, current_level)];
170 set_pte(ptep, *new_pte);
171 if (gstage_pte_leaf(ptep))
172 gstage_remote_tlb_flush(kvm, current_level, addr);
174 return 0;
177 static int gstage_map_page(struct kvm *kvm,
178 struct kvm_mmu_memory_cache *pcache,
179 gpa_t gpa, phys_addr_t hpa,
180 unsigned long page_size,
181 bool page_rdonly, bool page_exec)
183 int ret;
184 u32 level = 0;
185 pte_t new_pte;
186 pgprot_t prot;
188 ret = gstage_page_size_to_level(page_size, &level);
189 if (ret)
190 return ret;
193 * A RISC-V implementation can choose to either:
194 * 1) Update 'A' and 'D' PTE bits in hardware
195 * 2) Generate page fault when 'A' and/or 'D' bits are not set
196 * PTE so that software can update these bits.
198 * We support both options mentioned above. To achieve this, we
199 * always set 'A' and 'D' PTE bits at time of creating G-stage
200 * mapping. To support KVM dirty page logging with both options
201 * mentioned above, we will write-protect G-stage PTEs to track
202 * dirty pages.
205 if (page_exec) {
206 if (page_rdonly)
207 prot = PAGE_READ_EXEC;
208 else
209 prot = PAGE_WRITE_EXEC;
210 } else {
211 if (page_rdonly)
212 prot = PAGE_READ;
213 else
214 prot = PAGE_WRITE;
216 new_pte = pfn_pte(PFN_DOWN(hpa), prot);
217 new_pte = pte_mkdirty(new_pte);
219 return gstage_set_pte(kvm, level, pcache, gpa, &new_pte);
222 enum gstage_op {
223 GSTAGE_OP_NOP = 0, /* Nothing */
224 GSTAGE_OP_CLEAR, /* Clear/Unmap */
225 GSTAGE_OP_WP, /* Write-protect */
228 static void gstage_op_pte(struct kvm *kvm, gpa_t addr,
229 pte_t *ptep, u32 ptep_level, enum gstage_op op)
231 int i, ret;
232 pte_t *next_ptep;
233 u32 next_ptep_level;
234 unsigned long next_page_size, page_size;
236 ret = gstage_level_to_page_size(ptep_level, &page_size);
237 if (ret)
238 return;
240 BUG_ON(addr & (page_size - 1));
242 if (!pte_val(ptep_get(ptep)))
243 return;
245 if (ptep_level && !gstage_pte_leaf(ptep)) {
246 next_ptep = (pte_t *)gstage_pte_page_vaddr(ptep_get(ptep));
247 next_ptep_level = ptep_level - 1;
248 ret = gstage_level_to_page_size(next_ptep_level,
249 &next_page_size);
250 if (ret)
251 return;
253 if (op == GSTAGE_OP_CLEAR)
254 set_pte(ptep, __pte(0));
255 for (i = 0; i < PTRS_PER_PTE; i++)
256 gstage_op_pte(kvm, addr + i * next_page_size,
257 &next_ptep[i], next_ptep_level, op);
258 if (op == GSTAGE_OP_CLEAR)
259 put_page(virt_to_page(next_ptep));
260 } else {
261 if (op == GSTAGE_OP_CLEAR)
262 set_pte(ptep, __pte(0));
263 else if (op == GSTAGE_OP_WP)
264 set_pte(ptep, __pte(pte_val(ptep_get(ptep)) & ~_PAGE_WRITE));
265 gstage_remote_tlb_flush(kvm, ptep_level, addr);
269 static void gstage_unmap_range(struct kvm *kvm, gpa_t start,
270 gpa_t size, bool may_block)
272 int ret;
273 pte_t *ptep;
274 u32 ptep_level;
275 bool found_leaf;
276 unsigned long page_size;
277 gpa_t addr = start, end = start + size;
279 while (addr < end) {
280 found_leaf = gstage_get_leaf_entry(kvm, addr,
281 &ptep, &ptep_level);
282 ret = gstage_level_to_page_size(ptep_level, &page_size);
283 if (ret)
284 break;
286 if (!found_leaf)
287 goto next;
289 if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
290 gstage_op_pte(kvm, addr, ptep,
291 ptep_level, GSTAGE_OP_CLEAR);
293 next:
294 addr += page_size;
297 * If the range is too large, release the kvm->mmu_lock
298 * to prevent starvation and lockup detector warnings.
300 if (may_block && addr < end)
301 cond_resched_lock(&kvm->mmu_lock);
305 static void gstage_wp_range(struct kvm *kvm, gpa_t start, gpa_t end)
307 int ret;
308 pte_t *ptep;
309 u32 ptep_level;
310 bool found_leaf;
311 gpa_t addr = start;
312 unsigned long page_size;
314 while (addr < end) {
315 found_leaf = gstage_get_leaf_entry(kvm, addr,
316 &ptep, &ptep_level);
317 ret = gstage_level_to_page_size(ptep_level, &page_size);
318 if (ret)
319 break;
321 if (!found_leaf)
322 goto next;
324 if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
325 gstage_op_pte(kvm, addr, ptep,
326 ptep_level, GSTAGE_OP_WP);
328 next:
329 addr += page_size;
333 static void gstage_wp_memory_region(struct kvm *kvm, int slot)
335 struct kvm_memslots *slots = kvm_memslots(kvm);
336 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
337 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
338 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
340 spin_lock(&kvm->mmu_lock);
341 gstage_wp_range(kvm, start, end);
342 spin_unlock(&kvm->mmu_lock);
343 kvm_flush_remote_tlbs(kvm);
346 int kvm_riscv_gstage_ioremap(struct kvm *kvm, gpa_t gpa,
347 phys_addr_t hpa, unsigned long size,
348 bool writable, bool in_atomic)
350 pte_t pte;
351 int ret = 0;
352 unsigned long pfn;
353 phys_addr_t addr, end;
354 struct kvm_mmu_memory_cache pcache = {
355 .gfp_custom = (in_atomic) ? GFP_ATOMIC | __GFP_ACCOUNT : 0,
356 .gfp_zero = __GFP_ZERO,
359 end = (gpa + size + PAGE_SIZE - 1) & PAGE_MASK;
360 pfn = __phys_to_pfn(hpa);
362 for (addr = gpa; addr < end; addr += PAGE_SIZE) {
363 pte = pfn_pte(pfn, PAGE_KERNEL_IO);
365 if (!writable)
366 pte = pte_wrprotect(pte);
368 ret = kvm_mmu_topup_memory_cache(&pcache, gstage_pgd_levels);
369 if (ret)
370 goto out;
372 spin_lock(&kvm->mmu_lock);
373 ret = gstage_set_pte(kvm, 0, &pcache, addr, &pte);
374 spin_unlock(&kvm->mmu_lock);
375 if (ret)
376 goto out;
378 pfn++;
381 out:
382 kvm_mmu_free_memory_cache(&pcache);
383 return ret;
386 void kvm_riscv_gstage_iounmap(struct kvm *kvm, gpa_t gpa, unsigned long size)
388 spin_lock(&kvm->mmu_lock);
389 gstage_unmap_range(kvm, gpa, size, false);
390 spin_unlock(&kvm->mmu_lock);
393 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
394 struct kvm_memory_slot *slot,
395 gfn_t gfn_offset,
396 unsigned long mask)
398 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
399 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
400 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
402 gstage_wp_range(kvm, start, end);
405 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
409 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free)
413 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
417 void kvm_arch_flush_shadow_all(struct kvm *kvm)
419 kvm_riscv_gstage_free_pgd(kvm);
422 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
423 struct kvm_memory_slot *slot)
425 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
426 phys_addr_t size = slot->npages << PAGE_SHIFT;
428 spin_lock(&kvm->mmu_lock);
429 gstage_unmap_range(kvm, gpa, size, false);
430 spin_unlock(&kvm->mmu_lock);
433 void kvm_arch_commit_memory_region(struct kvm *kvm,
434 struct kvm_memory_slot *old,
435 const struct kvm_memory_slot *new,
436 enum kvm_mr_change change)
439 * At this point memslot has been committed and there is an
440 * allocated dirty_bitmap[], dirty pages will be tracked while
441 * the memory slot is write protected.
443 if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES)
444 gstage_wp_memory_region(kvm, new->id);
447 int kvm_arch_prepare_memory_region(struct kvm *kvm,
448 const struct kvm_memory_slot *old,
449 struct kvm_memory_slot *new,
450 enum kvm_mr_change change)
452 hva_t hva, reg_end, size;
453 gpa_t base_gpa;
454 bool writable;
455 int ret = 0;
457 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
458 change != KVM_MR_FLAGS_ONLY)
459 return 0;
462 * Prevent userspace from creating a memory region outside of the GPA
463 * space addressable by the KVM guest GPA space.
465 if ((new->base_gfn + new->npages) >=
466 (gstage_gpa_size >> PAGE_SHIFT))
467 return -EFAULT;
469 hva = new->userspace_addr;
470 size = new->npages << PAGE_SHIFT;
471 reg_end = hva + size;
472 base_gpa = new->base_gfn << PAGE_SHIFT;
473 writable = !(new->flags & KVM_MEM_READONLY);
475 mmap_read_lock(current->mm);
478 * A memory region could potentially cover multiple VMAs, and
479 * any holes between them, so iterate over all of them to find
480 * out if we can map any of them right now.
482 * +--------------------------------------------+
483 * +---------------+----------------+ +----------------+
484 * | : VMA 1 | VMA 2 | | VMA 3 : |
485 * +---------------+----------------+ +----------------+
486 * | memory region |
487 * +--------------------------------------------+
489 do {
490 struct vm_area_struct *vma = find_vma(current->mm, hva);
491 hva_t vm_start, vm_end;
493 if (!vma || vma->vm_start >= reg_end)
494 break;
497 * Mapping a read-only VMA is only allowed if the
498 * memory region is configured as read-only.
500 if (writable && !(vma->vm_flags & VM_WRITE)) {
501 ret = -EPERM;
502 break;
505 /* Take the intersection of this VMA with the memory region */
506 vm_start = max(hva, vma->vm_start);
507 vm_end = min(reg_end, vma->vm_end);
509 if (vma->vm_flags & VM_PFNMAP) {
510 gpa_t gpa = base_gpa + (vm_start - hva);
511 phys_addr_t pa;
513 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
514 pa += vm_start - vma->vm_start;
516 /* IO region dirty page logging not allowed */
517 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
518 ret = -EINVAL;
519 goto out;
522 ret = kvm_riscv_gstage_ioremap(kvm, gpa, pa,
523 vm_end - vm_start,
524 writable, false);
525 if (ret)
526 break;
528 hva = vm_end;
529 } while (hva < reg_end);
531 if (change == KVM_MR_FLAGS_ONLY)
532 goto out;
534 if (ret)
535 kvm_riscv_gstage_iounmap(kvm, base_gpa, size);
537 out:
538 mmap_read_unlock(current->mm);
539 return ret;
542 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
544 if (!kvm->arch.pgd)
545 return false;
547 gstage_unmap_range(kvm, range->start << PAGE_SHIFT,
548 (range->end - range->start) << PAGE_SHIFT,
549 range->may_block);
550 return false;
553 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
555 pte_t *ptep;
556 u32 ptep_level = 0;
557 u64 size = (range->end - range->start) << PAGE_SHIFT;
559 if (!kvm->arch.pgd)
560 return false;
562 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
564 if (!gstage_get_leaf_entry(kvm, range->start << PAGE_SHIFT,
565 &ptep, &ptep_level))
566 return false;
568 return ptep_test_and_clear_young(NULL, 0, ptep);
571 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
573 pte_t *ptep;
574 u32 ptep_level = 0;
575 u64 size = (range->end - range->start) << PAGE_SHIFT;
577 if (!kvm->arch.pgd)
578 return false;
580 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
582 if (!gstage_get_leaf_entry(kvm, range->start << PAGE_SHIFT,
583 &ptep, &ptep_level))
584 return false;
586 return pte_young(ptep_get(ptep));
589 int kvm_riscv_gstage_map(struct kvm_vcpu *vcpu,
590 struct kvm_memory_slot *memslot,
591 gpa_t gpa, unsigned long hva, bool is_write)
593 int ret;
594 kvm_pfn_t hfn;
595 bool writable;
596 short vma_pageshift;
597 gfn_t gfn = gpa >> PAGE_SHIFT;
598 struct vm_area_struct *vma;
599 struct kvm *kvm = vcpu->kvm;
600 struct kvm_mmu_memory_cache *pcache = &vcpu->arch.mmu_page_cache;
601 bool logging = (memslot->dirty_bitmap &&
602 !(memslot->flags & KVM_MEM_READONLY)) ? true : false;
603 unsigned long vma_pagesize, mmu_seq;
604 struct page *page;
606 /* We need minimum second+third level pages */
607 ret = kvm_mmu_topup_memory_cache(pcache, gstage_pgd_levels);
608 if (ret) {
609 kvm_err("Failed to topup G-stage cache\n");
610 return ret;
613 mmap_read_lock(current->mm);
615 vma = vma_lookup(current->mm, hva);
616 if (unlikely(!vma)) {
617 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
618 mmap_read_unlock(current->mm);
619 return -EFAULT;
622 if (is_vm_hugetlb_page(vma))
623 vma_pageshift = huge_page_shift(hstate_vma(vma));
624 else
625 vma_pageshift = PAGE_SHIFT;
626 vma_pagesize = 1ULL << vma_pageshift;
627 if (logging || (vma->vm_flags & VM_PFNMAP))
628 vma_pagesize = PAGE_SIZE;
630 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
631 gfn = (gpa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
634 * Read mmu_invalidate_seq so that KVM can detect if the results of
635 * vma_lookup() or __kvm_faultin_pfn() become stale prior to acquiring
636 * kvm->mmu_lock.
638 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
639 * with the smp_wmb() in kvm_mmu_invalidate_end().
641 mmu_seq = kvm->mmu_invalidate_seq;
642 mmap_read_unlock(current->mm);
644 if (vma_pagesize != PUD_SIZE &&
645 vma_pagesize != PMD_SIZE &&
646 vma_pagesize != PAGE_SIZE) {
647 kvm_err("Invalid VMA page size 0x%lx\n", vma_pagesize);
648 return -EFAULT;
651 hfn = kvm_faultin_pfn(vcpu, gfn, is_write, &writable, &page);
652 if (hfn == KVM_PFN_ERR_HWPOISON) {
653 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva,
654 vma_pageshift, current);
655 return 0;
657 if (is_error_noslot_pfn(hfn))
658 return -EFAULT;
661 * If logging is active then we allow writable pages only
662 * for write faults.
664 if (logging && !is_write)
665 writable = false;
667 spin_lock(&kvm->mmu_lock);
669 if (mmu_invalidate_retry(kvm, mmu_seq))
670 goto out_unlock;
672 if (writable) {
673 mark_page_dirty(kvm, gfn);
674 ret = gstage_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
675 vma_pagesize, false, true);
676 } else {
677 ret = gstage_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
678 vma_pagesize, true, true);
681 if (ret)
682 kvm_err("Failed to map in G-stage\n");
684 out_unlock:
685 kvm_release_faultin_page(kvm, page, ret && ret != -EEXIST, writable);
686 spin_unlock(&kvm->mmu_lock);
687 return ret;
690 int kvm_riscv_gstage_alloc_pgd(struct kvm *kvm)
692 struct page *pgd_page;
694 if (kvm->arch.pgd != NULL) {
695 kvm_err("kvm_arch already initialized?\n");
696 return -EINVAL;
699 pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
700 get_order(gstage_pgd_size));
701 if (!pgd_page)
702 return -ENOMEM;
703 kvm->arch.pgd = page_to_virt(pgd_page);
704 kvm->arch.pgd_phys = page_to_phys(pgd_page);
706 return 0;
709 void kvm_riscv_gstage_free_pgd(struct kvm *kvm)
711 void *pgd = NULL;
713 spin_lock(&kvm->mmu_lock);
714 if (kvm->arch.pgd) {
715 gstage_unmap_range(kvm, 0UL, gstage_gpa_size, false);
716 pgd = READ_ONCE(kvm->arch.pgd);
717 kvm->arch.pgd = NULL;
718 kvm->arch.pgd_phys = 0;
720 spin_unlock(&kvm->mmu_lock);
722 if (pgd)
723 free_pages((unsigned long)pgd, get_order(gstage_pgd_size));
726 void kvm_riscv_gstage_update_hgatp(struct kvm_vcpu *vcpu)
728 unsigned long hgatp = gstage_mode;
729 struct kvm_arch *k = &vcpu->kvm->arch;
731 hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) & HGATP_VMID;
732 hgatp |= (k->pgd_phys >> PAGE_SHIFT) & HGATP_PPN;
734 ncsr_write(CSR_HGATP, hgatp);
736 if (!kvm_riscv_gstage_vmid_bits())
737 kvm_riscv_local_hfence_gvma_all();
740 void __init kvm_riscv_gstage_mode_detect(void)
742 #ifdef CONFIG_64BIT
743 /* Try Sv57x4 G-stage mode */
744 csr_write(CSR_HGATP, HGATP_MODE_SV57X4 << HGATP_MODE_SHIFT);
745 if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV57X4) {
746 gstage_mode = (HGATP_MODE_SV57X4 << HGATP_MODE_SHIFT);
747 gstage_pgd_levels = 5;
748 goto skip_sv48x4_test;
751 /* Try Sv48x4 G-stage mode */
752 csr_write(CSR_HGATP, HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
753 if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV48X4) {
754 gstage_mode = (HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
755 gstage_pgd_levels = 4;
757 skip_sv48x4_test:
759 csr_write(CSR_HGATP, 0);
760 kvm_riscv_local_hfence_gvma_all();
761 #endif
764 unsigned long __init kvm_riscv_gstage_mode(void)
766 return gstage_mode >> HGATP_MODE_SHIFT;
769 int kvm_riscv_gstage_gpa_bits(void)
771 return gstage_gpa_bits;