1 // SPDX-License-Identifier: GPL-2.0
2 /* Performance event support for sparc64.
4 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
6 * This code is based almost entirely upon the x86 perf event
9 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
10 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
11 * Copyright (C) 2009 Jaswinder Singh Rajput
12 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
13 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
16 #include <linux/perf_event.h>
17 #include <linux/kprobes.h>
18 #include <linux/ftrace.h>
19 #include <linux/kernel.h>
20 #include <linux/kdebug.h>
21 #include <linux/mutex.h>
23 #include <asm/stacktrace.h>
24 #include <asm/cpudata.h>
25 #include <linux/uaccess.h>
26 #include <linux/atomic.h>
27 #include <linux/sched/clock.h>
30 #include <asm/cacheflush.h>
35 /* Two classes of sparc64 chips currently exist. All of which have
36 * 32-bit counters which can generate overflow interrupts on the
37 * transition from 0xffffffff to 0.
39 * All chips upto and including SPARC-T3 have two performance
40 * counters. The two 32-bit counters are accessed in one go using a
41 * single 64-bit register.
43 * On these older chips both counters are controlled using a single
44 * control register. The only way to stop all sampling is to clear
45 * all of the context (user, supervisor, hypervisor) sampling enable
46 * bits. But these bits apply to both counters, thus the two counters
47 * can't be enabled/disabled individually.
49 * Furthermore, the control register on these older chips have two
50 * event fields, one for each of the two counters. It's thus nearly
51 * impossible to have one counter going while keeping the other one
52 * stopped. Therefore it is possible to get overflow interrupts for
53 * counters not currently "in use" and that condition must be checked
54 * in the overflow interrupt handler.
56 * So we use a hack, in that we program inactive counters with the
57 * "sw_count0" and "sw_count1" events. These count how many times
58 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
59 * unusual way to encode a NOP and therefore will not trigger in
62 * Starting with SPARC-T4 we have one control register per counter.
63 * And the counters are stored in individual registers. The registers
64 * for the counters are 64-bit but only a 32-bit counter is
65 * implemented. The event selections on SPARC-T4 lack any
66 * restrictions, therefore we can elide all of the complicated
67 * conflict resolution code we have for SPARC-T3 and earlier chips.
70 #define MAX_HWEVENTS 4
72 #define MAX_PERIOD ((1UL << 32) - 1)
74 #define PIC_UPPER_INDEX 0
75 #define PIC_LOWER_INDEX 1
76 #define PIC_NO_INDEX -1
78 struct cpu_hw_events
{
79 /* Number of events currently scheduled onto this cpu.
80 * This tells how many entries in the arrays below
85 /* Number of new events added since the last hw_perf_disable().
86 * This works because the perf event layer always adds new
87 * events inside of a perf_{disable,enable}() sequence.
91 /* Array of events current scheduled on this cpu. */
92 struct perf_event
*event
[MAX_HWEVENTS
];
94 /* Array of encoded longs, specifying the %pcr register
95 * encoding and the mask of PIC counters this even can
96 * be scheduled on. See perf_event_encode() et al.
98 unsigned long events
[MAX_HWEVENTS
];
100 /* The current counter index assigned to an event. When the
101 * event hasn't been programmed into the cpu yet, this will
102 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
103 * we ought to schedule the event.
105 int current_idx
[MAX_HWEVENTS
];
107 /* Software copy of %pcr register(s) on this cpu. */
108 u64 pcr
[MAX_HWEVENTS
];
110 /* Enabled/disable state. */
113 unsigned int txn_flags
;
115 static DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = { .enabled
= 1, };
117 /* An event map describes the characteristics of a performance
118 * counter event. In particular it gives the encoding as well as
119 * a mask telling which counters the event can be measured on.
121 * The mask is unused on SPARC-T4 and later.
123 struct perf_event_map
{
126 #define PIC_NONE 0x00
127 #define PIC_UPPER 0x01
128 #define PIC_LOWER 0x02
131 /* Encode a perf_event_map entry into a long. */
132 static unsigned long perf_event_encode(const struct perf_event_map
*pmap
)
134 return ((unsigned long) pmap
->encoding
<< 16) | pmap
->pic_mask
;
137 static u8
perf_event_get_msk(unsigned long val
)
142 static u64
perf_event_get_enc(unsigned long val
)
147 #define C(x) PERF_COUNT_HW_CACHE_##x
149 #define CACHE_OP_UNSUPPORTED 0xfffe
150 #define CACHE_OP_NONSENSE 0xffff
152 typedef struct perf_event_map cache_map_t
153 [PERF_COUNT_HW_CACHE_MAX
]
154 [PERF_COUNT_HW_CACHE_OP_MAX
]
155 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
158 const struct perf_event_map
*(*event_map
)(int);
159 const cache_map_t
*cache_map
;
161 u32 (*read_pmc
)(int);
162 void (*write_pmc
)(int, u64
);
173 #define SPARC_PMU_ALL_EXCLUDES_SAME 0x00000001
174 #define SPARC_PMU_HAS_CONFLICTS 0x00000002
180 static u32
sparc_default_read_pmc(int idx
)
184 val
= pcr_ops
->read_pic(0);
185 if (idx
== PIC_UPPER_INDEX
)
188 return val
& 0xffffffff;
191 static void sparc_default_write_pmc(int idx
, u64 val
)
193 u64 shift
, mask
, pic
;
196 if (idx
== PIC_UPPER_INDEX
)
199 mask
= ((u64
) 0xffffffff) << shift
;
202 pic
= pcr_ops
->read_pic(0);
205 pcr_ops
->write_pic(0, pic
);
208 static const struct perf_event_map ultra3_perfmon_event_map
[] = {
209 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x0000, PIC_UPPER
| PIC_LOWER
},
210 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x0001, PIC_UPPER
| PIC_LOWER
},
211 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x0009, PIC_LOWER
},
212 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x0009, PIC_UPPER
},
215 static const struct perf_event_map
*ultra3_event_map(int event_id
)
217 return &ultra3_perfmon_event_map
[event_id
];
220 static const cache_map_t ultra3_cache_map
= {
223 [C(RESULT_ACCESS
)] = { 0x09, PIC_LOWER
, },
224 [C(RESULT_MISS
)] = { 0x09, PIC_UPPER
, },
227 [C(RESULT_ACCESS
)] = { 0x0a, PIC_LOWER
},
228 [C(RESULT_MISS
)] = { 0x0a, PIC_UPPER
},
231 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
232 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
237 [C(RESULT_ACCESS
)] = { 0x09, PIC_LOWER
, },
238 [C(RESULT_MISS
)] = { 0x09, PIC_UPPER
, },
241 [ C(RESULT_ACCESS
) ] = { CACHE_OP_NONSENSE
},
242 [ C(RESULT_MISS
) ] = { CACHE_OP_NONSENSE
},
244 [ C(OP_PREFETCH
) ] = {
245 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
246 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
251 [C(RESULT_ACCESS
)] = { 0x0c, PIC_LOWER
, },
252 [C(RESULT_MISS
)] = { 0x0c, PIC_UPPER
, },
255 [C(RESULT_ACCESS
)] = { 0x0c, PIC_LOWER
},
256 [C(RESULT_MISS
)] = { 0x0c, PIC_UPPER
},
259 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
260 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
265 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
266 [C(RESULT_MISS
)] = { 0x12, PIC_UPPER
, },
269 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
270 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
272 [ C(OP_PREFETCH
) ] = {
273 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
274 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
279 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
280 [C(RESULT_MISS
)] = { 0x11, PIC_UPPER
, },
283 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
284 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
286 [ C(OP_PREFETCH
) ] = {
287 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
288 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
293 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
294 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
297 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
298 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
300 [ C(OP_PREFETCH
) ] = {
301 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
302 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
307 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
308 [C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
311 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
312 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
314 [ C(OP_PREFETCH
) ] = {
315 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
316 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
321 static const struct sparc_pmu ultra3_pmu
= {
322 .event_map
= ultra3_event_map
,
323 .cache_map
= &ultra3_cache_map
,
324 .max_events
= ARRAY_SIZE(ultra3_perfmon_event_map
),
325 .read_pmc
= sparc_default_read_pmc
,
326 .write_pmc
= sparc_default_write_pmc
,
330 .user_bit
= PCR_UTRACE
,
331 .priv_bit
= PCR_STRACE
,
334 .flags
= (SPARC_PMU_ALL_EXCLUDES_SAME
|
335 SPARC_PMU_HAS_CONFLICTS
),
341 /* Niagara1 is very limited. The upper PIC is hard-locked to count
342 * only instructions, so it is free running which creates all kinds of
343 * problems. Some hardware designs make one wonder if the creator
344 * even looked at how this stuff gets used by software.
346 static const struct perf_event_map niagara1_perfmon_event_map
[] = {
347 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, PIC_UPPER
},
348 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x00, PIC_UPPER
},
349 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0, PIC_NONE
},
350 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x03, PIC_LOWER
},
353 static const struct perf_event_map
*niagara1_event_map(int event_id
)
355 return &niagara1_perfmon_event_map
[event_id
];
358 static const cache_map_t niagara1_cache_map
= {
361 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
362 [C(RESULT_MISS
)] = { 0x03, PIC_LOWER
, },
365 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
366 [C(RESULT_MISS
)] = { 0x03, PIC_LOWER
, },
369 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
370 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
375 [C(RESULT_ACCESS
)] = { 0x00, PIC_UPPER
},
376 [C(RESULT_MISS
)] = { 0x02, PIC_LOWER
, },
379 [ C(RESULT_ACCESS
) ] = { CACHE_OP_NONSENSE
},
380 [ C(RESULT_MISS
) ] = { CACHE_OP_NONSENSE
},
382 [ C(OP_PREFETCH
) ] = {
383 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
384 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
389 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
390 [C(RESULT_MISS
)] = { 0x07, PIC_LOWER
, },
393 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
394 [C(RESULT_MISS
)] = { 0x07, PIC_LOWER
, },
397 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
398 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
403 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
404 [C(RESULT_MISS
)] = { 0x05, PIC_LOWER
, },
407 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
408 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
410 [ C(OP_PREFETCH
) ] = {
411 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
412 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
417 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
418 [C(RESULT_MISS
)] = { 0x04, PIC_LOWER
, },
421 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
422 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
424 [ C(OP_PREFETCH
) ] = {
425 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
426 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
431 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
432 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
435 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
436 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
438 [ C(OP_PREFETCH
) ] = {
439 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
440 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
445 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
446 [C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
449 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
450 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
452 [ C(OP_PREFETCH
) ] = {
453 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
454 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
459 static const struct sparc_pmu niagara1_pmu
= {
460 .event_map
= niagara1_event_map
,
461 .cache_map
= &niagara1_cache_map
,
462 .max_events
= ARRAY_SIZE(niagara1_perfmon_event_map
),
463 .read_pmc
= sparc_default_read_pmc
,
464 .write_pmc
= sparc_default_write_pmc
,
468 .user_bit
= PCR_UTRACE
,
469 .priv_bit
= PCR_STRACE
,
472 .flags
= (SPARC_PMU_ALL_EXCLUDES_SAME
|
473 SPARC_PMU_HAS_CONFLICTS
),
479 static const struct perf_event_map niagara2_perfmon_event_map
[] = {
480 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x02ff, PIC_UPPER
| PIC_LOWER
},
481 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x02ff, PIC_UPPER
| PIC_LOWER
},
482 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x0208, PIC_UPPER
| PIC_LOWER
},
483 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x0302, PIC_UPPER
| PIC_LOWER
},
484 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x0201, PIC_UPPER
| PIC_LOWER
},
485 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x0202, PIC_UPPER
| PIC_LOWER
},
488 static const struct perf_event_map
*niagara2_event_map(int event_id
)
490 return &niagara2_perfmon_event_map
[event_id
];
493 static const cache_map_t niagara2_cache_map
= {
496 [C(RESULT_ACCESS
)] = { 0x0208, PIC_UPPER
| PIC_LOWER
, },
497 [C(RESULT_MISS
)] = { 0x0302, PIC_UPPER
| PIC_LOWER
, },
500 [C(RESULT_ACCESS
)] = { 0x0210, PIC_UPPER
| PIC_LOWER
, },
501 [C(RESULT_MISS
)] = { 0x0302, PIC_UPPER
| PIC_LOWER
, },
504 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
505 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
510 [C(RESULT_ACCESS
)] = { 0x02ff, PIC_UPPER
| PIC_LOWER
, },
511 [C(RESULT_MISS
)] = { 0x0301, PIC_UPPER
| PIC_LOWER
, },
514 [ C(RESULT_ACCESS
) ] = { CACHE_OP_NONSENSE
},
515 [ C(RESULT_MISS
) ] = { CACHE_OP_NONSENSE
},
517 [ C(OP_PREFETCH
) ] = {
518 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
519 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
524 [C(RESULT_ACCESS
)] = { 0x0208, PIC_UPPER
| PIC_LOWER
, },
525 [C(RESULT_MISS
)] = { 0x0330, PIC_UPPER
| PIC_LOWER
, },
528 [C(RESULT_ACCESS
)] = { 0x0210, PIC_UPPER
| PIC_LOWER
, },
529 [C(RESULT_MISS
)] = { 0x0320, PIC_UPPER
| PIC_LOWER
, },
532 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
533 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
538 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
539 [C(RESULT_MISS
)] = { 0x0b08, PIC_UPPER
| PIC_LOWER
, },
542 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
543 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
545 [ C(OP_PREFETCH
) ] = {
546 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
547 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
552 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
553 [C(RESULT_MISS
)] = { 0xb04, PIC_UPPER
| PIC_LOWER
, },
556 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
557 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
559 [ C(OP_PREFETCH
) ] = {
560 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
561 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
566 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
567 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
570 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
571 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
573 [ C(OP_PREFETCH
) ] = {
574 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
575 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
580 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
581 [C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
584 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
585 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
587 [ C(OP_PREFETCH
) ] = {
588 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
589 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
594 static const struct sparc_pmu niagara2_pmu
= {
595 .event_map
= niagara2_event_map
,
596 .cache_map
= &niagara2_cache_map
,
597 .max_events
= ARRAY_SIZE(niagara2_perfmon_event_map
),
598 .read_pmc
= sparc_default_read_pmc
,
599 .write_pmc
= sparc_default_write_pmc
,
603 .user_bit
= PCR_UTRACE
,
604 .priv_bit
= PCR_STRACE
,
605 .hv_bit
= PCR_N2_HTRACE
,
609 .flags
= (SPARC_PMU_ALL_EXCLUDES_SAME
|
610 SPARC_PMU_HAS_CONFLICTS
),
616 static const struct perf_event_map niagara4_perfmon_event_map
[] = {
617 [PERF_COUNT_HW_CPU_CYCLES
] = { (26 << 6) },
618 [PERF_COUNT_HW_INSTRUCTIONS
] = { (3 << 6) | 0x3f },
619 [PERF_COUNT_HW_CACHE_REFERENCES
] = { (3 << 6) | 0x04 },
620 [PERF_COUNT_HW_CACHE_MISSES
] = { (16 << 6) | 0x07 },
621 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { (4 << 6) | 0x01 },
622 [PERF_COUNT_HW_BRANCH_MISSES
] = { (25 << 6) | 0x0f },
625 static const struct perf_event_map
*niagara4_event_map(int event_id
)
627 return &niagara4_perfmon_event_map
[event_id
];
630 static const cache_map_t niagara4_cache_map
= {
633 [C(RESULT_ACCESS
)] = { (3 << 6) | 0x04 },
634 [C(RESULT_MISS
)] = { (16 << 6) | 0x07 },
637 [C(RESULT_ACCESS
)] = { (3 << 6) | 0x08 },
638 [C(RESULT_MISS
)] = { (16 << 6) | 0x07 },
641 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
642 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
647 [C(RESULT_ACCESS
)] = { (3 << 6) | 0x3f },
648 [C(RESULT_MISS
)] = { (11 << 6) | 0x03 },
651 [ C(RESULT_ACCESS
) ] = { CACHE_OP_NONSENSE
},
652 [ C(RESULT_MISS
) ] = { CACHE_OP_NONSENSE
},
654 [ C(OP_PREFETCH
) ] = {
655 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
656 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
661 [C(RESULT_ACCESS
)] = { (3 << 6) | 0x04 },
662 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
665 [C(RESULT_ACCESS
)] = { (3 << 6) | 0x08 },
666 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
669 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
670 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
675 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
676 [C(RESULT_MISS
)] = { (17 << 6) | 0x3f },
679 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
680 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
682 [ C(OP_PREFETCH
) ] = {
683 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
684 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
689 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
690 [C(RESULT_MISS
)] = { (6 << 6) | 0x3f },
693 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
694 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
696 [ C(OP_PREFETCH
) ] = {
697 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
698 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
703 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
704 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
707 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
708 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
710 [ C(OP_PREFETCH
) ] = {
711 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
712 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
717 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
718 [C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
721 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
722 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
724 [ C(OP_PREFETCH
) ] = {
725 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
726 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
731 static u32
sparc_vt_read_pmc(int idx
)
733 u64 val
= pcr_ops
->read_pic(idx
);
735 return val
& 0xffffffff;
738 static void sparc_vt_write_pmc(int idx
, u64 val
)
742 pcr
= pcr_ops
->read_pcr(idx
);
743 /* ensure ov and ntc are reset */
744 pcr
&= ~(PCR_N4_OV
| PCR_N4_NTC
);
746 pcr_ops
->write_pic(idx
, val
& 0xffffffff);
748 pcr_ops
->write_pcr(idx
, pcr
);
751 static const struct sparc_pmu niagara4_pmu
= {
752 .event_map
= niagara4_event_map
,
753 .cache_map
= &niagara4_cache_map
,
754 .max_events
= ARRAY_SIZE(niagara4_perfmon_event_map
),
755 .read_pmc
= sparc_vt_read_pmc
,
756 .write_pmc
= sparc_vt_write_pmc
,
760 .user_bit
= PCR_N4_UTRACE
,
761 .priv_bit
= PCR_N4_STRACE
,
763 /* We explicitly don't support hypervisor tracing. The T4
764 * generates the overflow event for precise events via a trap
765 * which will not be generated (ie. it's completely lost) if
766 * we happen to be in the hypervisor when the event triggers.
767 * Essentially, the overflow event reporting is completely
768 * unusable when you have hypervisor mode tracing enabled.
772 .irq_bit
= PCR_N4_TOE
,
781 static const struct sparc_pmu sparc_m7_pmu
= {
782 .event_map
= niagara4_event_map
,
783 .cache_map
= &niagara4_cache_map
,
784 .max_events
= ARRAY_SIZE(niagara4_perfmon_event_map
),
785 .read_pmc
= sparc_vt_read_pmc
,
786 .write_pmc
= sparc_vt_write_pmc
,
790 .user_bit
= PCR_N4_UTRACE
,
791 .priv_bit
= PCR_N4_STRACE
,
793 /* We explicitly don't support hypervisor tracing. */
796 .irq_bit
= PCR_N4_TOE
,
804 static const struct sparc_pmu
*sparc_pmu __read_mostly
;
806 static u64
event_encoding(u64 event_id
, int idx
)
808 if (idx
== PIC_UPPER_INDEX
)
809 event_id
<<= sparc_pmu
->upper_shift
;
811 event_id
<<= sparc_pmu
->lower_shift
;
815 static u64
mask_for_index(int idx
)
817 return event_encoding(sparc_pmu
->event_mask
, idx
);
820 static u64
nop_for_index(int idx
)
822 return event_encoding(idx
== PIC_UPPER_INDEX
?
823 sparc_pmu
->upper_nop
:
824 sparc_pmu
->lower_nop
, idx
);
827 static inline void sparc_pmu_enable_event(struct cpu_hw_events
*cpuc
, struct hw_perf_event
*hwc
, int idx
)
829 u64 enc
, val
, mask
= mask_for_index(idx
);
832 if (sparc_pmu
->num_pcrs
> 1)
835 enc
= perf_event_get_enc(cpuc
->events
[idx
]);
837 val
= cpuc
->pcr
[pcr_index
];
839 val
|= event_encoding(enc
, idx
);
840 cpuc
->pcr
[pcr_index
] = val
;
842 pcr_ops
->write_pcr(pcr_index
, cpuc
->pcr
[pcr_index
]);
845 static inline void sparc_pmu_disable_event(struct cpu_hw_events
*cpuc
, struct hw_perf_event
*hwc
, int idx
)
847 u64 mask
= mask_for_index(idx
);
848 u64 nop
= nop_for_index(idx
);
852 if (sparc_pmu
->num_pcrs
> 1)
855 val
= cpuc
->pcr
[pcr_index
];
858 cpuc
->pcr
[pcr_index
] = val
;
860 pcr_ops
->write_pcr(pcr_index
, cpuc
->pcr
[pcr_index
]);
863 static u64
sparc_perf_event_update(struct perf_event
*event
,
864 struct hw_perf_event
*hwc
, int idx
)
867 u64 prev_raw_count
, new_raw_count
;
871 prev_raw_count
= local64_read(&hwc
->prev_count
);
872 new_raw_count
= sparc_pmu
->read_pmc(idx
);
874 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
875 new_raw_count
) != prev_raw_count
)
878 delta
= (new_raw_count
<< shift
) - (prev_raw_count
<< shift
);
881 local64_add(delta
, &event
->count
);
882 local64_sub(delta
, &hwc
->period_left
);
884 return new_raw_count
;
887 static int sparc_perf_event_set_period(struct perf_event
*event
,
888 struct hw_perf_event
*hwc
, int idx
)
890 s64 left
= local64_read(&hwc
->period_left
);
891 s64 period
= hwc
->sample_period
;
894 /* The period may have been changed by PERF_EVENT_IOC_PERIOD */
895 if (unlikely(period
!= hwc
->last_period
))
896 left
= period
- (hwc
->last_period
- left
);
898 if (unlikely(left
<= -period
)) {
900 local64_set(&hwc
->period_left
, left
);
901 hwc
->last_period
= period
;
905 if (unlikely(left
<= 0)) {
907 local64_set(&hwc
->period_left
, left
);
908 hwc
->last_period
= period
;
911 if (left
> MAX_PERIOD
)
914 local64_set(&hwc
->prev_count
, (u64
)-left
);
916 sparc_pmu
->write_pmc(idx
, (u64
)(-left
) & 0xffffffff);
918 perf_event_update_userpage(event
);
923 static void read_in_all_counters(struct cpu_hw_events
*cpuc
)
927 for (i
= 0; i
< cpuc
->n_events
; i
++) {
928 struct perf_event
*cp
= cpuc
->event
[i
];
930 if (cpuc
->current_idx
[i
] != PIC_NO_INDEX
&&
931 cpuc
->current_idx
[i
] != cp
->hw
.idx
) {
932 sparc_perf_event_update(cp
, &cp
->hw
,
933 cpuc
->current_idx
[i
]);
934 cpuc
->current_idx
[i
] = PIC_NO_INDEX
;
935 if (cp
->hw
.state
& PERF_HES_STOPPED
)
936 cp
->hw
.state
|= PERF_HES_ARCH
;
941 /* On this PMU all PICs are programmed using a single PCR. Calculate
942 * the combined control register value.
944 * For such chips we require that all of the events have the same
945 * configuration, so just fetch the settings from the first entry.
947 static void calculate_single_pcr(struct cpu_hw_events
*cpuc
)
954 /* Assign to counters all unassigned events. */
955 for (i
= 0; i
< cpuc
->n_events
; i
++) {
956 struct perf_event
*cp
= cpuc
->event
[i
];
957 struct hw_perf_event
*hwc
= &cp
->hw
;
961 if (cpuc
->current_idx
[i
] != PIC_NO_INDEX
)
964 sparc_perf_event_set_period(cp
, hwc
, idx
);
965 cpuc
->current_idx
[i
] = idx
;
967 enc
= perf_event_get_enc(cpuc
->events
[i
]);
968 cpuc
->pcr
[0] &= ~mask_for_index(idx
);
969 if (hwc
->state
& PERF_HES_ARCH
) {
970 cpuc
->pcr
[0] |= nop_for_index(idx
);
972 cpuc
->pcr
[0] |= event_encoding(enc
, idx
);
977 cpuc
->pcr
[0] |= cpuc
->event
[0]->hw
.config_base
;
980 static void sparc_pmu_start(struct perf_event
*event
, int flags
);
982 /* On this PMU each PIC has its own PCR control register. */
983 static void calculate_multiple_pcrs(struct cpu_hw_events
*cpuc
)
990 for (i
= 0; i
< cpuc
->n_events
; i
++) {
991 struct perf_event
*cp
= cpuc
->event
[i
];
992 struct hw_perf_event
*hwc
= &cp
->hw
;
995 if (cpuc
->current_idx
[i
] != PIC_NO_INDEX
)
998 cpuc
->current_idx
[i
] = idx
;
1000 if (cp
->hw
.state
& PERF_HES_ARCH
)
1003 sparc_pmu_start(cp
, PERF_EF_RELOAD
);
1006 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1007 struct perf_event
*cp
= cpuc
->event
[i
];
1008 int idx
= cp
->hw
.idx
;
1010 cpuc
->pcr
[idx
] |= cp
->hw
.config_base
;
1014 /* If performance event entries have been added, move existing events
1015 * around (if necessary) and then assign new entries to counters.
1017 static void update_pcrs_for_enable(struct cpu_hw_events
*cpuc
)
1020 read_in_all_counters(cpuc
);
1022 if (sparc_pmu
->num_pcrs
== 1) {
1023 calculate_single_pcr(cpuc
);
1025 calculate_multiple_pcrs(cpuc
);
1029 static void sparc_pmu_enable(struct pmu
*pmu
)
1031 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1041 update_pcrs_for_enable(cpuc
);
1043 for (i
= 0; i
< sparc_pmu
->num_pcrs
; i
++)
1044 pcr_ops
->write_pcr(i
, cpuc
->pcr
[i
]);
1047 static void sparc_pmu_disable(struct pmu
*pmu
)
1049 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1058 for (i
= 0; i
< sparc_pmu
->num_pcrs
; i
++) {
1059 u64 val
= cpuc
->pcr
[i
];
1061 val
&= ~(sparc_pmu
->user_bit
| sparc_pmu
->priv_bit
|
1062 sparc_pmu
->hv_bit
| sparc_pmu
->irq_bit
);
1064 pcr_ops
->write_pcr(i
, cpuc
->pcr
[i
]);
1068 static int active_event_index(struct cpu_hw_events
*cpuc
,
1069 struct perf_event
*event
)
1073 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1074 if (cpuc
->event
[i
] == event
)
1077 BUG_ON(i
== cpuc
->n_events
);
1078 return cpuc
->current_idx
[i
];
1081 static void sparc_pmu_start(struct perf_event
*event
, int flags
)
1083 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1084 int idx
= active_event_index(cpuc
, event
);
1086 if (flags
& PERF_EF_RELOAD
) {
1087 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
1088 sparc_perf_event_set_period(event
, &event
->hw
, idx
);
1091 event
->hw
.state
= 0;
1093 sparc_pmu_enable_event(cpuc
, &event
->hw
, idx
);
1095 perf_event_update_userpage(event
);
1098 static void sparc_pmu_stop(struct perf_event
*event
, int flags
)
1100 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1101 int idx
= active_event_index(cpuc
, event
);
1103 if (!(event
->hw
.state
& PERF_HES_STOPPED
)) {
1104 sparc_pmu_disable_event(cpuc
, &event
->hw
, idx
);
1105 event
->hw
.state
|= PERF_HES_STOPPED
;
1108 if (!(event
->hw
.state
& PERF_HES_UPTODATE
) && (flags
& PERF_EF_UPDATE
)) {
1109 sparc_perf_event_update(event
, &event
->hw
, idx
);
1110 event
->hw
.state
|= PERF_HES_UPTODATE
;
1114 static void sparc_pmu_del(struct perf_event
*event
, int _flags
)
1116 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1117 unsigned long flags
;
1120 local_irq_save(flags
);
1122 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1123 if (event
== cpuc
->event
[i
]) {
1124 /* Absorb the final count and turn off the
1127 sparc_pmu_stop(event
, PERF_EF_UPDATE
);
1129 /* Shift remaining entries down into
1130 * the existing slot.
1132 while (++i
< cpuc
->n_events
) {
1133 cpuc
->event
[i
- 1] = cpuc
->event
[i
];
1134 cpuc
->events
[i
- 1] = cpuc
->events
[i
];
1135 cpuc
->current_idx
[i
- 1] =
1136 cpuc
->current_idx
[i
];
1139 perf_event_update_userpage(event
);
1146 local_irq_restore(flags
);
1149 static void sparc_pmu_read(struct perf_event
*event
)
1151 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1152 int idx
= active_event_index(cpuc
, event
);
1153 struct hw_perf_event
*hwc
= &event
->hw
;
1155 sparc_perf_event_update(event
, hwc
, idx
);
1158 static atomic_t active_events
= ATOMIC_INIT(0);
1159 static DEFINE_MUTEX(pmc_grab_mutex
);
1161 static void perf_stop_nmi_watchdog(void *unused
)
1163 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1166 stop_nmi_watchdog(NULL
);
1167 for (i
= 0; i
< sparc_pmu
->num_pcrs
; i
++)
1168 cpuc
->pcr
[i
] = pcr_ops
->read_pcr(i
);
1171 static void perf_event_grab_pmc(void)
1173 if (atomic_inc_not_zero(&active_events
))
1176 mutex_lock(&pmc_grab_mutex
);
1177 if (atomic_read(&active_events
) == 0) {
1178 if (atomic_read(&nmi_active
) > 0) {
1179 on_each_cpu(perf_stop_nmi_watchdog
, NULL
, 1);
1180 BUG_ON(atomic_read(&nmi_active
) != 0);
1182 atomic_inc(&active_events
);
1184 mutex_unlock(&pmc_grab_mutex
);
1187 static void perf_event_release_pmc(void)
1189 if (atomic_dec_and_mutex_lock(&active_events
, &pmc_grab_mutex
)) {
1190 if (atomic_read(&nmi_active
) == 0)
1191 on_each_cpu(start_nmi_watchdog
, NULL
, 1);
1192 mutex_unlock(&pmc_grab_mutex
);
1196 static const struct perf_event_map
*sparc_map_cache_event(u64 config
)
1198 unsigned int cache_type
, cache_op
, cache_result
;
1199 const struct perf_event_map
*pmap
;
1201 if (!sparc_pmu
->cache_map
)
1202 return ERR_PTR(-ENOENT
);
1204 cache_type
= (config
>> 0) & 0xff;
1205 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
1206 return ERR_PTR(-EINVAL
);
1208 cache_op
= (config
>> 8) & 0xff;
1209 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
1210 return ERR_PTR(-EINVAL
);
1212 cache_result
= (config
>> 16) & 0xff;
1213 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
1214 return ERR_PTR(-EINVAL
);
1216 pmap
= &((*sparc_pmu
->cache_map
)[cache_type
][cache_op
][cache_result
]);
1218 if (pmap
->encoding
== CACHE_OP_UNSUPPORTED
)
1219 return ERR_PTR(-ENOENT
);
1221 if (pmap
->encoding
== CACHE_OP_NONSENSE
)
1222 return ERR_PTR(-EINVAL
);
1227 static void hw_perf_event_destroy(struct perf_event
*event
)
1229 perf_event_release_pmc();
1232 /* Make sure all events can be scheduled into the hardware at
1233 * the same time. This is simplified by the fact that we only
1234 * need to support 2 simultaneous HW events.
1236 * As a side effect, the evts[]->hw.idx values will be assigned
1237 * on success. These are pending indexes. When the events are
1238 * actually programmed into the chip, these values will propagate
1239 * to the per-cpu cpuc->current_idx[] slots, see the code in
1240 * maybe_change_configuration() for details.
1242 static int sparc_check_constraints(struct perf_event
**evts
,
1243 unsigned long *events
, int n_ev
)
1245 u8 msk0
= 0, msk1
= 0;
1248 /* This case is possible when we are invoked from
1249 * hw_perf_group_sched_in().
1254 if (n_ev
> sparc_pmu
->max_hw_events
)
1257 if (!(sparc_pmu
->flags
& SPARC_PMU_HAS_CONFLICTS
)) {
1260 for (i
= 0; i
< n_ev
; i
++)
1261 evts
[i
]->hw
.idx
= i
;
1265 msk0
= perf_event_get_msk(events
[0]);
1267 if (msk0
& PIC_LOWER
)
1272 msk1
= perf_event_get_msk(events
[1]);
1274 /* If both events can go on any counter, OK. */
1275 if (msk0
== (PIC_UPPER
| PIC_LOWER
) &&
1276 msk1
== (PIC_UPPER
| PIC_LOWER
))
1279 /* If one event is limited to a specific counter,
1280 * and the other can go on both, OK.
1282 if ((msk0
== PIC_UPPER
|| msk0
== PIC_LOWER
) &&
1283 msk1
== (PIC_UPPER
| PIC_LOWER
)) {
1284 if (msk0
& PIC_LOWER
)
1289 if ((msk1
== PIC_UPPER
|| msk1
== PIC_LOWER
) &&
1290 msk0
== (PIC_UPPER
| PIC_LOWER
)) {
1291 if (msk1
& PIC_UPPER
)
1296 /* If the events are fixed to different counters, OK. */
1297 if ((msk0
== PIC_UPPER
&& msk1
== PIC_LOWER
) ||
1298 (msk0
== PIC_LOWER
&& msk1
== PIC_UPPER
)) {
1299 if (msk0
& PIC_LOWER
)
1304 /* Otherwise, there is a conflict. */
1308 evts
[0]->hw
.idx
= idx0
;
1310 evts
[1]->hw
.idx
= idx0
^ 1;
1314 static int check_excludes(struct perf_event
**evts
, int n_prev
, int n_new
)
1316 int eu
= 0, ek
= 0, eh
= 0;
1317 struct perf_event
*event
;
1320 if (!(sparc_pmu
->flags
& SPARC_PMU_ALL_EXCLUDES_SAME
))
1328 for (i
= 0; i
< n
; i
++) {
1331 eu
= event
->attr
.exclude_user
;
1332 ek
= event
->attr
.exclude_kernel
;
1333 eh
= event
->attr
.exclude_hv
;
1335 } else if (event
->attr
.exclude_user
!= eu
||
1336 event
->attr
.exclude_kernel
!= ek
||
1337 event
->attr
.exclude_hv
!= eh
) {
1345 static int collect_events(struct perf_event
*group
, int max_count
,
1346 struct perf_event
*evts
[], unsigned long *events
,
1349 struct perf_event
*event
;
1352 if (!is_software_event(group
)) {
1356 events
[n
] = group
->hw
.event_base
;
1357 current_idx
[n
++] = PIC_NO_INDEX
;
1359 for_each_sibling_event(event
, group
) {
1360 if (!is_software_event(event
) &&
1361 event
->state
!= PERF_EVENT_STATE_OFF
) {
1365 events
[n
] = event
->hw
.event_base
;
1366 current_idx
[n
++] = PIC_NO_INDEX
;
1372 static int sparc_pmu_add(struct perf_event
*event
, int ef_flags
)
1374 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1375 int n0
, ret
= -EAGAIN
;
1376 unsigned long flags
;
1378 local_irq_save(flags
);
1380 n0
= cpuc
->n_events
;
1381 if (n0
>= sparc_pmu
->max_hw_events
)
1384 cpuc
->event
[n0
] = event
;
1385 cpuc
->events
[n0
] = event
->hw
.event_base
;
1386 cpuc
->current_idx
[n0
] = PIC_NO_INDEX
;
1388 event
->hw
.state
= PERF_HES_UPTODATE
| PERF_HES_STOPPED
;
1389 if (!(ef_flags
& PERF_EF_START
))
1390 event
->hw
.state
|= PERF_HES_ARCH
;
1393 * If group events scheduling transaction was started,
1394 * skip the schedulability test here, it will be performed
1395 * at commit time(->commit_txn) as a whole
1397 if (cpuc
->txn_flags
& PERF_PMU_TXN_ADD
)
1400 if (check_excludes(cpuc
->event
, n0
, 1))
1402 if (sparc_check_constraints(cpuc
->event
, cpuc
->events
, n0
+ 1))
1411 local_irq_restore(flags
);
1415 static int sparc_pmu_event_init(struct perf_event
*event
)
1417 struct perf_event_attr
*attr
= &event
->attr
;
1418 struct perf_event
*evts
[MAX_HWEVENTS
];
1419 struct hw_perf_event
*hwc
= &event
->hw
;
1420 unsigned long events
[MAX_HWEVENTS
];
1421 int current_idx_dmy
[MAX_HWEVENTS
];
1422 const struct perf_event_map
*pmap
;
1425 if (atomic_read(&nmi_active
) < 0)
1428 /* does not support taken branch sampling */
1429 if (has_branch_stack(event
))
1432 switch (attr
->type
) {
1433 case PERF_TYPE_HARDWARE
:
1434 if (attr
->config
>= sparc_pmu
->max_events
)
1436 pmap
= sparc_pmu
->event_map(attr
->config
);
1439 case PERF_TYPE_HW_CACHE
:
1440 pmap
= sparc_map_cache_event(attr
->config
);
1442 return PTR_ERR(pmap
);
1455 hwc
->event_base
= perf_event_encode(pmap
);
1458 * User gives us "(encoding << 16) | pic_mask" for
1459 * PERF_TYPE_RAW events.
1461 hwc
->event_base
= attr
->config
;
1464 /* We save the enable bits in the config_base. */
1465 hwc
->config_base
= sparc_pmu
->irq_bit
;
1466 if (!attr
->exclude_user
)
1467 hwc
->config_base
|= sparc_pmu
->user_bit
;
1468 if (!attr
->exclude_kernel
)
1469 hwc
->config_base
|= sparc_pmu
->priv_bit
;
1470 if (!attr
->exclude_hv
)
1471 hwc
->config_base
|= sparc_pmu
->hv_bit
;
1474 if (event
->group_leader
!= event
) {
1475 n
= collect_events(event
->group_leader
,
1476 sparc_pmu
->max_hw_events
- 1,
1477 evts
, events
, current_idx_dmy
);
1481 events
[n
] = hwc
->event_base
;
1484 if (check_excludes(evts
, n
, 1))
1487 if (sparc_check_constraints(evts
, events
, n
+ 1))
1490 hwc
->idx
= PIC_NO_INDEX
;
1492 /* Try to do all error checking before this point, as unwinding
1493 * state after grabbing the PMC is difficult.
1495 perf_event_grab_pmc();
1496 event
->destroy
= hw_perf_event_destroy
;
1498 if (!hwc
->sample_period
) {
1499 hwc
->sample_period
= MAX_PERIOD
;
1500 hwc
->last_period
= hwc
->sample_period
;
1501 local64_set(&hwc
->period_left
, hwc
->sample_period
);
1508 * Start group events scheduling transaction
1509 * Set the flag to make pmu::enable() not perform the
1510 * schedulability test, it will be performed at commit time
1512 static void sparc_pmu_start_txn(struct pmu
*pmu
, unsigned int txn_flags
)
1514 struct cpu_hw_events
*cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1516 WARN_ON_ONCE(cpuhw
->txn_flags
); /* txn already in flight */
1518 cpuhw
->txn_flags
= txn_flags
;
1519 if (txn_flags
& ~PERF_PMU_TXN_ADD
)
1522 perf_pmu_disable(pmu
);
1526 * Stop group events scheduling transaction
1527 * Clear the flag and pmu::enable() will perform the
1528 * schedulability test.
1530 static void sparc_pmu_cancel_txn(struct pmu
*pmu
)
1532 struct cpu_hw_events
*cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1533 unsigned int txn_flags
;
1535 WARN_ON_ONCE(!cpuhw
->txn_flags
); /* no txn in flight */
1537 txn_flags
= cpuhw
->txn_flags
;
1538 cpuhw
->txn_flags
= 0;
1539 if (txn_flags
& ~PERF_PMU_TXN_ADD
)
1542 perf_pmu_enable(pmu
);
1546 * Commit group events scheduling transaction
1547 * Perform the group schedulability test as a whole
1548 * Return 0 if success
1550 static int sparc_pmu_commit_txn(struct pmu
*pmu
)
1552 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1558 WARN_ON_ONCE(!cpuc
->txn_flags
); /* no txn in flight */
1560 if (cpuc
->txn_flags
& ~PERF_PMU_TXN_ADD
) {
1561 cpuc
->txn_flags
= 0;
1566 if (check_excludes(cpuc
->event
, 0, n
))
1568 if (sparc_check_constraints(cpuc
->event
, cpuc
->events
, n
))
1571 cpuc
->txn_flags
= 0;
1572 perf_pmu_enable(pmu
);
1576 static struct pmu pmu
= {
1577 .pmu_enable
= sparc_pmu_enable
,
1578 .pmu_disable
= sparc_pmu_disable
,
1579 .event_init
= sparc_pmu_event_init
,
1580 .add
= sparc_pmu_add
,
1581 .del
= sparc_pmu_del
,
1582 .start
= sparc_pmu_start
,
1583 .stop
= sparc_pmu_stop
,
1584 .read
= sparc_pmu_read
,
1585 .start_txn
= sparc_pmu_start_txn
,
1586 .cancel_txn
= sparc_pmu_cancel_txn
,
1587 .commit_txn
= sparc_pmu_commit_txn
,
1590 void perf_event_print_debug(void)
1592 unsigned long flags
;
1598 local_irq_save(flags
);
1600 cpu
= smp_processor_id();
1603 for (i
= 0; i
< sparc_pmu
->num_pcrs
; i
++)
1604 pr_info("CPU#%d: PCR%d[%016llx]\n",
1605 cpu
, i
, pcr_ops
->read_pcr(i
));
1606 for (i
= 0; i
< sparc_pmu
->num_pic_regs
; i
++)
1607 pr_info("CPU#%d: PIC%d[%016llx]\n",
1608 cpu
, i
, pcr_ops
->read_pic(i
));
1610 local_irq_restore(flags
);
1613 static int __kprobes
perf_event_nmi_handler(struct notifier_block
*self
,
1614 unsigned long cmd
, void *__args
)
1616 struct die_args
*args
= __args
;
1617 struct perf_sample_data data
;
1618 struct cpu_hw_events
*cpuc
;
1619 struct pt_regs
*regs
;
1624 if (!atomic_read(&active_events
))
1635 start_clock
= sched_clock();
1639 cpuc
= this_cpu_ptr(&cpu_hw_events
);
1641 /* If the PMU has the TOE IRQ enable bits, we need to do a
1642 * dummy write to the %pcr to clear the overflow bits and thus
1645 * Do this before we peek at the counters to determine
1646 * overflow so we don't lose any events.
1648 if (sparc_pmu
->irq_bit
&&
1649 sparc_pmu
->num_pcrs
== 1)
1650 pcr_ops
->write_pcr(0, cpuc
->pcr
[0]);
1652 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1653 struct perf_event
*event
= cpuc
->event
[i
];
1654 int idx
= cpuc
->current_idx
[i
];
1655 struct hw_perf_event
*hwc
;
1658 if (sparc_pmu
->irq_bit
&&
1659 sparc_pmu
->num_pcrs
> 1)
1660 pcr_ops
->write_pcr(idx
, cpuc
->pcr
[idx
]);
1663 val
= sparc_perf_event_update(event
, hwc
, idx
);
1664 if (val
& (1ULL << 31))
1667 perf_sample_data_init(&data
, 0, hwc
->last_period
);
1668 if (!sparc_perf_event_set_period(event
, hwc
, idx
))
1671 if (perf_event_overflow(event
, &data
, regs
))
1672 sparc_pmu_stop(event
, 0);
1675 finish_clock
= sched_clock();
1677 perf_sample_event_took(finish_clock
- start_clock
);
1682 static __read_mostly
struct notifier_block perf_event_nmi_notifier
= {
1683 .notifier_call
= perf_event_nmi_handler
,
1686 static bool __init
supported_pmu(void)
1688 if (!strcmp(sparc_pmu_type
, "ultra3") ||
1689 !strcmp(sparc_pmu_type
, "ultra3+") ||
1690 !strcmp(sparc_pmu_type
, "ultra3i") ||
1691 !strcmp(sparc_pmu_type
, "ultra4+")) {
1692 sparc_pmu
= &ultra3_pmu
;
1695 if (!strcmp(sparc_pmu_type
, "niagara")) {
1696 sparc_pmu
= &niagara1_pmu
;
1699 if (!strcmp(sparc_pmu_type
, "niagara2") ||
1700 !strcmp(sparc_pmu_type
, "niagara3")) {
1701 sparc_pmu
= &niagara2_pmu
;
1704 if (!strcmp(sparc_pmu_type
, "niagara4") ||
1705 !strcmp(sparc_pmu_type
, "niagara5")) {
1706 sparc_pmu
= &niagara4_pmu
;
1709 if (!strcmp(sparc_pmu_type
, "sparc-m7")) {
1710 sparc_pmu
= &sparc_m7_pmu
;
1716 static int __init
init_hw_perf_events(void)
1720 pr_info("Performance events: ");
1722 err
= pcr_arch_init();
1723 if (err
|| !supported_pmu()) {
1724 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type
);
1728 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type
);
1730 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1731 register_die_notifier(&perf_event_nmi_notifier
);
1735 pure_initcall(init_hw_perf_events
);
1737 void perf_callchain_kernel(struct perf_callchain_entry_ctx
*entry
,
1738 struct pt_regs
*regs
)
1740 unsigned long ksp
, fp
;
1741 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1745 stack_trace_flush();
1747 perf_callchain_store(entry
, regs
->tpc
);
1749 ksp
= regs
->u_regs
[UREG_I6
];
1750 fp
= ksp
+ STACK_BIAS
;
1752 struct sparc_stackf
*sf
;
1753 struct pt_regs
*regs
;
1756 if (!kstack_valid(current_thread_info(), fp
))
1759 sf
= (struct sparc_stackf
*) fp
;
1760 regs
= (struct pt_regs
*) (sf
+ 1);
1762 if (kstack_is_trap_frame(current_thread_info(), regs
)) {
1763 if (user_mode(regs
))
1766 fp
= regs
->u_regs
[UREG_I6
] + STACK_BIAS
;
1768 pc
= sf
->callers_pc
;
1769 fp
= (unsigned long)sf
->fp
+ STACK_BIAS
;
1771 perf_callchain_store(entry
, pc
);
1772 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1773 if ((pc
+ 8UL) == (unsigned long) &return_to_handler
) {
1774 struct ftrace_ret_stack
*ret_stack
;
1775 ret_stack
= ftrace_graph_get_ret_stack(current
,
1778 pc
= ret_stack
->ret
;
1779 perf_callchain_store(entry
, pc
);
1784 } while (entry
->nr
< entry
->max_stack
);
1788 valid_user_frame(const void __user
*fp
, unsigned long size
)
1790 /* addresses should be at least 4-byte aligned */
1791 if (((unsigned long) fp
) & 3)
1794 return (__range_not_ok(fp
, size
, TASK_SIZE
) == 0);
1797 static void perf_callchain_user_64(struct perf_callchain_entry_ctx
*entry
,
1798 struct pt_regs
*regs
)
1802 ufp
= regs
->u_regs
[UREG_FP
] + STACK_BIAS
;
1804 struct sparc_stackf __user
*usf
;
1805 struct sparc_stackf sf
;
1808 usf
= (struct sparc_stackf __user
*)ufp
;
1809 if (!valid_user_frame(usf
, sizeof(sf
)))
1812 if (__copy_from_user_inatomic(&sf
, usf
, sizeof(sf
)))
1816 ufp
= (unsigned long)sf
.fp
+ STACK_BIAS
;
1817 perf_callchain_store(entry
, pc
);
1818 } while (entry
->nr
< entry
->max_stack
);
1821 static void perf_callchain_user_32(struct perf_callchain_entry_ctx
*entry
,
1822 struct pt_regs
*regs
)
1826 ufp
= regs
->u_regs
[UREG_FP
] & 0xffffffffUL
;
1830 if (thread32_stack_is_64bit(ufp
)) {
1831 struct sparc_stackf __user
*usf
;
1832 struct sparc_stackf sf
;
1835 usf
= (struct sparc_stackf __user
*)ufp
;
1836 if (__copy_from_user_inatomic(&sf
, usf
, sizeof(sf
)))
1838 pc
= sf
.callers_pc
& 0xffffffff;
1839 ufp
= ((unsigned long) sf
.fp
) & 0xffffffff;
1841 struct sparc_stackf32 __user
*usf
;
1842 struct sparc_stackf32 sf
;
1843 usf
= (struct sparc_stackf32 __user
*)ufp
;
1844 if (__copy_from_user_inatomic(&sf
, usf
, sizeof(sf
)))
1847 ufp
= (unsigned long)sf
.fp
;
1849 perf_callchain_store(entry
, pc
);
1850 } while (entry
->nr
< entry
->max_stack
);
1854 perf_callchain_user(struct perf_callchain_entry_ctx
*entry
, struct pt_regs
*regs
)
1856 u64 saved_fault_address
= current_thread_info()->fault_address
;
1857 u8 saved_fault_code
= get_thread_fault_code();
1859 perf_callchain_store(entry
, regs
->tpc
);
1866 pagefault_disable();
1868 if (test_thread_flag(TIF_32BIT
))
1869 perf_callchain_user_32(entry
, regs
);
1871 perf_callchain_user_64(entry
, regs
);
1875 set_thread_fault_code(saved_fault_code
);
1876 current_thread_info()->fault_address
= saved_fault_address
;