1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
4 #include <linux/module.h>
5 #include <linux/sched.h>
6 #include <linux/perf_event.h>
7 #include <linux/mutex.h>
8 #include <linux/list.h>
9 #include <linux/stringify.h>
10 #include <linux/highmem.h>
12 #include <linux/vmalloc.h>
13 #include <linux/memory.h>
14 #include <linux/stop_machine.h>
15 #include <linux/slab.h>
16 #include <linux/kdebug.h>
17 #include <linux/kprobes.h>
18 #include <linux/mmu_context.h>
19 #include <linux/bsearch.h>
20 #include <linux/sync_core.h>
21 #include <asm/text-patching.h>
22 #include <asm/alternative.h>
23 #include <asm/sections.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
30 #include <asm/fixmap.h>
31 #include <asm/paravirt.h>
32 #include <asm/asm-prototypes.h>
35 int __read_mostly alternatives_patched
;
37 EXPORT_SYMBOL_GPL(alternatives_patched
);
39 #define MAX_PATCH_LEN (255-1)
44 #define DA_RETPOLINE 0x04
48 static unsigned int debug_alternative
;
50 static int __init
debug_alt(char *str
)
52 if (str
&& *str
== '=')
55 if (!str
|| kstrtouint(str
, 0, &debug_alternative
))
56 debug_alternative
= DA_ALL
;
60 __setup("debug-alternative", debug_alt
);
62 static int noreplace_smp
;
64 static int __init
setup_noreplace_smp(char *str
)
69 __setup("noreplace-smp", setup_noreplace_smp
);
71 #define DPRINTK(type, fmt, args...) \
73 if (debug_alternative & DA_##type) \
74 printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \
77 #define DUMP_BYTES(type, buf, len, fmt, args...) \
79 if (unlikely(debug_alternative & DA_##type)) { \
85 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
86 for (j = 0; j < (len) - 1; j++) \
87 printk(KERN_CONT "%02hhx ", buf[j]); \
88 printk(KERN_CONT "%02hhx\n", buf[j]); \
92 static const unsigned char x86nops
[] =
109 const unsigned char * const x86_nops
[ASM_NOP_MAX
+1] =
116 x86nops
+ 1 + 2 + 3 + 4,
117 x86nops
+ 1 + 2 + 3 + 4 + 5,
118 x86nops
+ 1 + 2 + 3 + 4 + 5 + 6,
119 x86nops
+ 1 + 2 + 3 + 4 + 5 + 6 + 7,
121 x86nops
+ 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
122 x86nops
+ 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9,
123 x86nops
+ 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
128 * Nomenclature for variable names to simplify and clarify this code and ease
129 * any potential staring at it:
131 * @instr: source address of the original instructions in the kernel text as
132 * generated by the compiler.
134 * @buf: temporary buffer on which the patching operates. This buffer is
135 * eventually text-poked into the kernel image.
137 * @replacement/@repl: pointer to the opcodes which are replacing @instr, located
138 * in the .altinstr_replacement section.
142 * Fill the buffer with a single effective instruction of size @len.
144 * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info)
145 * for every single-byte NOP, try to generate the maximally available NOP of
146 * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for
147 * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and
148 * *jump* over instead of executing long and daft NOPs.
150 static void add_nop(u8
*buf
, unsigned int len
)
152 u8
*target
= buf
+ len
;
157 if (len
<= ASM_NOP_MAX
) {
158 memcpy(buf
, x86_nops
[len
], len
);
163 __text_gen_insn(buf
, JMP8_INSN_OPCODE
, buf
, target
, JMP8_INSN_SIZE
);
164 buf
+= JMP8_INSN_SIZE
;
166 __text_gen_insn(buf
, JMP32_INSN_OPCODE
, buf
, target
, JMP32_INSN_SIZE
);
167 buf
+= JMP32_INSN_SIZE
;
170 for (;buf
< target
; buf
++)
171 *buf
= INT3_INSN_OPCODE
;
174 extern s32 __retpoline_sites
[], __retpoline_sites_end
[];
175 extern s32 __return_sites
[], __return_sites_end
[];
176 extern s32 __cfi_sites
[], __cfi_sites_end
[];
177 extern s32 __ibt_endbr_seal
[], __ibt_endbr_seal_end
[];
178 extern s32 __smp_locks
[], __smp_locks_end
[];
179 void text_poke_early(void *addr
, const void *opcode
, size_t len
);
182 * Matches NOP and NOPL, not any of the other possible NOPs.
184 static bool insn_is_nop(struct insn
*insn
)
186 /* Anything NOP, but no REP NOP */
187 if (insn
->opcode
.bytes
[0] == 0x90 &&
188 (!insn
->prefixes
.nbytes
|| insn
->prefixes
.bytes
[0] != 0xF3))
192 if (insn
->opcode
.bytes
[0] == 0x0F && insn
->opcode
.bytes
[1] == 0x1F)
195 /* TODO: more nops */
201 * Find the offset of the first non-NOP instruction starting at @offset
202 * but no further than @len.
204 static int skip_nops(u8
*buf
, int offset
, int len
)
208 for (; offset
< len
; offset
+= insn
.length
) {
209 if (insn_decode_kernel(&insn
, &buf
[offset
]))
212 if (!insn_is_nop(&insn
))
220 * "noinline" to cause control flow change and thus invalidate I$ and
221 * cause refetch after modification.
223 static void noinline
optimize_nops(const u8
* const instr
, u8
*buf
, size_t len
)
225 for (int next
, i
= 0; i
< len
; i
= next
) {
228 if (insn_decode_kernel(&insn
, &buf
[i
]))
231 next
= i
+ insn
.length
;
233 if (insn_is_nop(&insn
)) {
236 /* Has the NOP already been optimized? */
237 if (i
+ insn
.length
== len
)
240 next
= skip_nops(buf
, next
, len
);
242 add_nop(buf
+ nop
, next
- nop
);
243 DUMP_BYTES(ALT
, buf
, len
, "%px: [%d:%d) optimized NOPs: ", instr
, nop
, next
);
249 * In this context, "source" is where the instructions are placed in the
250 * section .altinstr_replacement, for example during kernel build by the
252 * "Destination" is where the instructions are being patched in by this
255 * The source offset is:
257 * src_imm = target - src_next_ip (1)
259 * and the target offset is:
261 * dst_imm = target - dst_next_ip (2)
263 * so rework (1) as an expression for target like:
265 * target = src_imm + src_next_ip (1a)
267 * and substitute in (2) to get:
269 * dst_imm = (src_imm + src_next_ip) - dst_next_ip (3)
271 * Now, since the instruction stream is 'identical' at src and dst (it
272 * is being copied after all) it can be stated that:
274 * src_next_ip = src + ip_offset
275 * dst_next_ip = dst + ip_offset (4)
277 * Substitute (4) in (3) and observe ip_offset being cancelled out to
280 * dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset)
281 * = src_imm + src - dst + ip_offset - ip_offset
282 * = src_imm + src - dst (5)
284 * IOW, only the relative displacement of the code block matters.
287 #define apply_reloc_n(n_, p_, d_) \
289 s32 v = *(s##n_ *)(p_); \
291 BUG_ON((v >> 31) != (v >> (n_-1))); \
292 *(s##n_ *)(p_) = (s##n_)v; \
296 static __always_inline
297 void apply_reloc(int n
, void *ptr
, uintptr_t diff
)
300 case 1: apply_reloc_n(8, ptr
, diff
); break;
301 case 2: apply_reloc_n(16, ptr
, diff
); break;
302 case 4: apply_reloc_n(32, ptr
, diff
); break;
307 static __always_inline
308 bool need_reloc(unsigned long offset
, u8
*src
, size_t src_len
)
310 u8
*target
= src
+ offset
;
312 * If the target is inside the patched block, it's relative to the
313 * block itself and does not need relocation.
315 return (target
< src
|| target
> src
+ src_len
);
318 static void __apply_relocation(u8
*buf
, const u8
* const instr
, size_t instrlen
, u8
*repl
, size_t repl_len
)
320 for (int next
, i
= 0; i
< instrlen
; i
= next
) {
323 if (WARN_ON_ONCE(insn_decode_kernel(&insn
, &buf
[i
])))
326 next
= i
+ insn
.length
;
328 switch (insn
.opcode
.bytes
[0]) {
330 if (insn
.opcode
.bytes
[1] < 0x80 ||
331 insn
.opcode
.bytes
[1] > 0x8f)
334 fallthrough
; /* Jcc.d32 */
335 case 0x70 ... 0x7f: /* Jcc.d8 */
336 case JMP8_INSN_OPCODE
:
337 case JMP32_INSN_OPCODE
:
338 case CALL_INSN_OPCODE
:
339 if (need_reloc(next
+ insn
.immediate
.value
, repl
, repl_len
)) {
340 apply_reloc(insn
.immediate
.nbytes
,
341 buf
+ i
+ insn_offset_immediate(&insn
),
346 * Where possible, convert JMP.d32 into JMP.d8.
348 if (insn
.opcode
.bytes
[0] == JMP32_INSN_OPCODE
) {
349 s32 imm
= insn
.immediate
.value
;
351 imm
+= JMP32_INSN_SIZE
- JMP8_INSN_SIZE
;
352 if ((imm
>> 31) == (imm
>> 7)) {
353 buf
[i
+0] = JMP8_INSN_OPCODE
;
356 memset(&buf
[i
+2], INT3_INSN_OPCODE
, insn
.length
- 2);
362 if (insn_rip_relative(&insn
)) {
363 if (need_reloc(next
+ insn
.displacement
.value
, repl
, repl_len
)) {
364 apply_reloc(insn
.displacement
.nbytes
,
365 buf
+ i
+ insn_offset_displacement(&insn
),
372 void apply_relocation(u8
*buf
, const u8
* const instr
, size_t instrlen
, u8
*repl
, size_t repl_len
)
374 __apply_relocation(buf
, instr
, instrlen
, repl
, repl_len
);
375 optimize_nops(instr
, buf
, instrlen
);
378 /* Low-level backend functions usable from alternative code replacements. */
379 DEFINE_ASM_FUNC(nop_func
, "", .entry
.text
);
380 EXPORT_SYMBOL_GPL(nop_func
);
382 noinstr
void BUG_func(void)
386 EXPORT_SYMBOL(BUG_func
);
388 #define CALL_RIP_REL_OPCODE 0xff
389 #define CALL_RIP_REL_MODRM 0x15
392 * Rewrite the "call BUG_func" replacement to point to the target of the
393 * indirect pv_ops call "call *disp(%ip)".
395 static int alt_replace_call(u8
*instr
, u8
*insn_buff
, struct alt_instr
*a
,
398 u8
*wr_instr
= module_writable_address(mod
, instr
);
399 void *target
, *bug
= &BUG_func
;
402 if (a
->replacementlen
!= 5 || insn_buff
[0] != CALL_INSN_OPCODE
) {
403 pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n");
407 if (a
->instrlen
!= 6 ||
408 wr_instr
[0] != CALL_RIP_REL_OPCODE
||
409 wr_instr
[1] != CALL_RIP_REL_MODRM
) {
410 pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n");
414 /* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */
415 disp
= *(s32
*)(wr_instr
+ 2);
417 /* ff 15 00 00 00 00 call *0x0(%rip) */
418 /* target address is stored at "next instruction + disp". */
419 target
= *(void **)(instr
+ a
->instrlen
+ disp
);
421 /* ff 15 00 00 00 00 call *0x0 */
422 /* target address is stored at disp. */
423 target
= *(void **)disp
;
428 /* (BUG_func - .) + (target - BUG_func) := target - . */
429 *(s32
*)(insn_buff
+ 1) += target
- bug
;
431 if (target
== &nop_func
)
437 static inline u8
* instr_va(struct alt_instr
*i
)
439 return (u8
*)&i
->instr_offset
+ i
->instr_offset
;
443 * Replace instructions with better alternatives for this CPU type. This runs
444 * before SMP is initialized to avoid SMP problems with self modifying code.
445 * This implies that asymmetric systems where APs have less capabilities than
446 * the boot processor are not handled. Tough. Make sure you disable such
449 * Marked "noinline" to cause control flow change and thus insn cache
450 * to refetch changed I$ lines.
452 void __init_or_module noinline
apply_alternatives(struct alt_instr
*start
,
453 struct alt_instr
*end
,
456 u8 insn_buff
[MAX_PATCH_LEN
];
457 u8
*instr
, *replacement
;
458 struct alt_instr
*a
, *b
;
460 DPRINTK(ALT
, "alt table %px, -> %px", start
, end
);
463 * In the case CONFIG_X86_5LEVEL=y, KASAN_SHADOW_START is defined using
464 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
465 * During the process, KASAN becomes confused seeing partial LA57
466 * conversion and triggers a false-positive out-of-bound report.
468 * Disable KASAN until the patching is complete.
470 kasan_disable_current();
473 * The scan order should be from start to end. A later scanned
474 * alternative code can overwrite previously scanned alternative code.
475 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
478 * So be careful if you want to change the scan order to any other
481 for (a
= start
; a
< end
; a
++) {
482 int insn_buff_sz
= 0;
483 u8
*wr_instr
, *wr_replacement
;
486 * In case of nested ALTERNATIVE()s the outer alternative might
487 * add more padding. To ensure consistent patching find the max
488 * padding for all alt_instr entries for this site (nested
489 * alternatives result in consecutive entries).
491 for (b
= a
+1; b
< end
&& instr_va(b
) == instr_va(a
); b
++) {
492 u8 len
= max(a
->instrlen
, b
->instrlen
);
493 a
->instrlen
= b
->instrlen
= len
;
497 wr_instr
= module_writable_address(mod
, instr
);
499 replacement
= (u8
*)&a
->repl_offset
+ a
->repl_offset
;
500 wr_replacement
= module_writable_address(mod
, replacement
);
502 BUG_ON(a
->instrlen
> sizeof(insn_buff
));
503 BUG_ON(a
->cpuid
>= (NCAPINTS
+ NBUGINTS
) * 32);
507 * - feature is present
508 * - feature not present but ALT_FLAG_NOT is set to mean,
509 * patch if feature is *NOT* present.
511 if (!boot_cpu_has(a
->cpuid
) == !(a
->flags
& ALT_FLAG_NOT
)) {
512 memcpy(insn_buff
, wr_instr
, a
->instrlen
);
513 optimize_nops(instr
, insn_buff
, a
->instrlen
);
514 text_poke_early(wr_instr
, insn_buff
, a
->instrlen
);
518 DPRINTK(ALT
, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x",
521 instr
, instr
, a
->instrlen
,
522 replacement
, a
->replacementlen
, a
->flags
);
524 memcpy(insn_buff
, wr_replacement
, a
->replacementlen
);
525 insn_buff_sz
= a
->replacementlen
;
527 if (a
->flags
& ALT_FLAG_DIRECT_CALL
) {
528 insn_buff_sz
= alt_replace_call(instr
, insn_buff
, a
,
530 if (insn_buff_sz
< 0)
534 for (; insn_buff_sz
< a
->instrlen
; insn_buff_sz
++)
535 insn_buff
[insn_buff_sz
] = 0x90;
537 apply_relocation(insn_buff
, instr
, a
->instrlen
, replacement
, a
->replacementlen
);
539 DUMP_BYTES(ALT
, wr_instr
, a
->instrlen
, "%px: old_insn: ", instr
);
540 DUMP_BYTES(ALT
, replacement
, a
->replacementlen
, "%px: rpl_insn: ", replacement
);
541 DUMP_BYTES(ALT
, insn_buff
, insn_buff_sz
, "%px: final_insn: ", instr
);
543 text_poke_early(wr_instr
, insn_buff
, insn_buff_sz
);
546 kasan_enable_current();
549 static inline bool is_jcc32(struct insn
*insn
)
551 /* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
552 return insn
->opcode
.bytes
[0] == 0x0f && (insn
->opcode
.bytes
[1] & 0xf0) == 0x80;
555 #if defined(CONFIG_MITIGATION_RETPOLINE) && defined(CONFIG_OBJTOOL)
560 static int emit_indirect(int op
, int reg
, u8
*bytes
)
566 case CALL_INSN_OPCODE
:
567 modrm
= 0x10; /* Reg = 2; CALL r/m */
570 case JMP32_INSN_OPCODE
:
571 modrm
= 0x20; /* Reg = 4; JMP r/m */
580 bytes
[i
++] = 0x41; /* REX.B prefix */
584 modrm
|= 0xc0; /* Mod = 3 */
587 bytes
[i
++] = 0xff; /* opcode */
593 static int emit_call_track_retpoline(void *addr
, struct insn
*insn
, int reg
, u8
*bytes
)
595 u8 op
= insn
->opcode
.bytes
[0];
599 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
600 * tail-calls. Deal with them.
602 if (is_jcc32(insn
)) {
604 op
= insn
->opcode
.bytes
[1];
608 if (insn
->length
== 6)
609 bytes
[i
++] = 0x2e; /* CS-prefix */
612 case CALL_INSN_OPCODE
:
613 __text_gen_insn(bytes
+i
, op
, addr
+i
,
614 __x86_indirect_call_thunk_array
[reg
],
619 case JMP32_INSN_OPCODE
:
621 __text_gen_insn(bytes
+i
, op
, addr
+i
,
622 __x86_indirect_jump_thunk_array
[reg
],
624 i
+= JMP32_INSN_SIZE
;
628 WARN(1, "%pS %px %*ph\n", addr
, addr
, 6, addr
);
632 WARN_ON_ONCE(i
!= insn
->length
);
638 * Rewrite the compiler generated retpoline thunk calls.
640 * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
641 * indirect instructions, avoiding the extra indirection.
643 * For example, convert:
645 * CALL __x86_indirect_thunk_\reg
651 * It also tries to inline spectre_v2=retpoline,lfence when size permits.
653 static int patch_retpoline(void *addr
, struct insn
*insn
, u8
*bytes
)
655 retpoline_thunk_t
*target
;
659 target
= addr
+ insn
->length
+ insn
->immediate
.value
;
660 reg
= target
- __x86_indirect_thunk_array
;
662 if (WARN_ON_ONCE(reg
& ~0xf))
665 /* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
668 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE
) &&
669 !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE
)) {
670 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH
))
671 return emit_call_track_retpoline(addr
, insn
, reg
, bytes
);
676 op
= insn
->opcode
.bytes
[0];
681 * Jcc.d32 __x86_indirect_thunk_\reg
691 if (is_jcc32(insn
)) {
692 cc
= insn
->opcode
.bytes
[1] & 0xf;
693 cc
^= 1; /* invert condition */
695 bytes
[i
++] = 0x70 + cc
; /* Jcc.d8 */
696 bytes
[i
++] = insn
->length
- 2; /* sizeof(Jcc.d8) == 2 */
698 /* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
699 op
= JMP32_INSN_OPCODE
;
703 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
705 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE
)) {
708 bytes
[i
++] = 0xe8; /* LFENCE */
711 ret
= emit_indirect(op
, reg
, bytes
+ i
);
717 * The compiler is supposed to EMIT an INT3 after every unconditional
718 * JMP instruction due to AMD BTC. However, if the compiler is too old
719 * or MITIGATION_SLS isn't enabled, we still need an INT3 after
720 * indirect JMPs even on Intel.
722 if (op
== JMP32_INSN_OPCODE
&& i
< insn
->length
)
723 bytes
[i
++] = INT3_INSN_OPCODE
;
725 for (; i
< insn
->length
;)
726 bytes
[i
++] = BYTES_NOP1
;
732 * Generated by 'objtool --retpoline'.
734 void __init_or_module noinline
apply_retpolines(s32
*start
, s32
*end
,
739 for (s
= start
; s
< end
; s
++) {
740 void *addr
= (void *)s
+ *s
;
741 void *wr_addr
= module_writable_address(mod
, addr
);
747 ret
= insn_decode_kernel(&insn
, wr_addr
);
748 if (WARN_ON_ONCE(ret
< 0))
751 op1
= insn
.opcode
.bytes
[0];
752 op2
= insn
.opcode
.bytes
[1];
755 case CALL_INSN_OPCODE
:
756 case JMP32_INSN_OPCODE
:
759 case 0x0f: /* escape */
760 if (op2
>= 0x80 && op2
<= 0x8f)
768 DPRINTK(RETPOLINE
, "retpoline at: %pS (%px) len: %d to: %pS",
769 addr
, addr
, insn
.length
,
770 addr
+ insn
.length
+ insn
.immediate
.value
);
772 len
= patch_retpoline(addr
, &insn
, bytes
);
773 if (len
== insn
.length
) {
774 optimize_nops(addr
, bytes
, len
);
775 DUMP_BYTES(RETPOLINE
, ((u8
*)wr_addr
), len
, "%px: orig: ", addr
);
776 DUMP_BYTES(RETPOLINE
, ((u8
*)bytes
), len
, "%px: repl: ", addr
);
777 text_poke_early(wr_addr
, bytes
, len
);
782 #ifdef CONFIG_MITIGATION_RETHUNK
785 * Rewrite the compiler generated return thunk tail-calls.
787 * For example, convert:
789 * JMP __x86_return_thunk
795 static int patch_return(void *addr
, struct insn
*insn
, u8
*bytes
)
799 /* Patch the custom return thunks... */
800 if (cpu_feature_enabled(X86_FEATURE_RETHUNK
)) {
802 __text_gen_insn(bytes
, JMP32_INSN_OPCODE
, addr
, x86_return_thunk
, i
);
804 /* ... or patch them out if not needed. */
805 bytes
[i
++] = RET_INSN_OPCODE
;
808 for (; i
< insn
->length
;)
809 bytes
[i
++] = INT3_INSN_OPCODE
;
813 void __init_or_module noinline
apply_returns(s32
*start
, s32
*end
,
818 if (cpu_feature_enabled(X86_FEATURE_RETHUNK
))
819 static_call_force_reinit();
821 for (s
= start
; s
< end
; s
++) {
822 void *dest
= NULL
, *addr
= (void *)s
+ *s
;
823 void *wr_addr
= module_writable_address(mod
, addr
);
829 ret
= insn_decode_kernel(&insn
, wr_addr
);
830 if (WARN_ON_ONCE(ret
< 0))
833 op
= insn
.opcode
.bytes
[0];
834 if (op
== JMP32_INSN_OPCODE
)
835 dest
= addr
+ insn
.length
+ insn
.immediate
.value
;
837 if (__static_call_fixup(addr
, op
, dest
) ||
838 WARN_ONCE(dest
!= &__x86_return_thunk
,
839 "missing return thunk: %pS-%pS: %*ph",
840 addr
, dest
, 5, addr
))
843 DPRINTK(RET
, "return thunk at: %pS (%px) len: %d to: %pS",
844 addr
, addr
, insn
.length
,
845 addr
+ insn
.length
+ insn
.immediate
.value
);
847 len
= patch_return(addr
, &insn
, bytes
);
848 if (len
== insn
.length
) {
849 DUMP_BYTES(RET
, ((u8
*)wr_addr
), len
, "%px: orig: ", addr
);
850 DUMP_BYTES(RET
, ((u8
*)bytes
), len
, "%px: repl: ", addr
);
851 text_poke_early(wr_addr
, bytes
, len
);
856 void __init_or_module noinline
apply_returns(s32
*start
, s32
*end
,
857 struct module
*mod
) { }
858 #endif /* CONFIG_MITIGATION_RETHUNK */
860 #else /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
862 void __init_or_module noinline
apply_retpolines(s32
*start
, s32
*end
,
863 struct module
*mod
) { }
864 void __init_or_module noinline
apply_returns(s32
*start
, s32
*end
,
865 struct module
*mod
) { }
867 #endif /* CONFIG_MITIGATION_RETPOLINE && CONFIG_OBJTOOL */
869 #ifdef CONFIG_X86_KERNEL_IBT
871 static void poison_cfi(void *addr
, void *wr_addr
);
873 static void __init_or_module
poison_endbr(void *addr
, void *wr_addr
, bool warn
)
875 u32 endbr
, poison
= gen_endbr_poison();
877 if (WARN_ON_ONCE(get_kernel_nofault(endbr
, wr_addr
)))
880 if (!is_endbr(endbr
)) {
885 DPRINTK(ENDBR
, "ENDBR at: %pS (%px)", addr
, addr
);
888 * When we have IBT, the lack of ENDBR will trigger #CP
890 DUMP_BYTES(ENDBR
, ((u8
*)addr
), 4, "%px: orig: ", addr
);
891 DUMP_BYTES(ENDBR
, ((u8
*)&poison
), 4, "%px: repl: ", addr
);
892 text_poke_early(wr_addr
, &poison
, 4);
896 * Generated by: objtool --ibt
898 * Seal the functions for indirect calls by clobbering the ENDBR instructions
899 * and the kCFI hash value.
901 void __init_or_module noinline
apply_seal_endbr(s32
*start
, s32
*end
, struct module
*mod
)
905 for (s
= start
; s
< end
; s
++) {
906 void *addr
= (void *)s
+ *s
;
907 void *wr_addr
= module_writable_address(mod
, addr
);
909 poison_endbr(addr
, wr_addr
, true);
910 if (IS_ENABLED(CONFIG_FINEIBT
))
911 poison_cfi(addr
- 16, wr_addr
- 16);
917 void __init_or_module
apply_seal_endbr(s32
*start
, s32
*end
, struct module
*mod
) { }
919 #endif /* CONFIG_X86_KERNEL_IBT */
921 #ifdef CONFIG_CFI_AUTO_DEFAULT
922 #define __CFI_DEFAULT CFI_AUTO
923 #elif defined(CONFIG_CFI_CLANG)
924 #define __CFI_DEFAULT CFI_KCFI
926 #define __CFI_DEFAULT CFI_OFF
929 enum cfi_mode cfi_mode __ro_after_init
= __CFI_DEFAULT
;
931 #ifdef CONFIG_CFI_CLANG
934 /* Must match bpf_func_t / DEFINE_BPF_PROG_RUN() */
935 extern unsigned int __bpf_prog_runX(const void *ctx
,
936 const struct bpf_insn
*insn
);
939 * Force a reference to the external symbol so the compiler generates
942 __ADDRESSABLE(__bpf_prog_runX
);
944 /* u32 __ro_after_init cfi_bpf_hash = __kcfi_typeid___bpf_prog_runX; */
946 " .pushsection .data..ro_after_init,\"aw\",@progbits \n"
947 " .type cfi_bpf_hash,@object \n"
948 " .globl cfi_bpf_hash \n"
949 " .p2align 2, 0x0 \n"
951 " .long __kcfi_typeid___bpf_prog_runX \n"
952 " .size cfi_bpf_hash, 4 \n"
956 /* Must match bpf_callback_t */
957 extern u64
__bpf_callback_fn(u64
, u64
, u64
, u64
, u64
);
959 __ADDRESSABLE(__bpf_callback_fn
);
961 /* u32 __ro_after_init cfi_bpf_subprog_hash = __kcfi_typeid___bpf_callback_fn; */
963 " .pushsection .data..ro_after_init,\"aw\",@progbits \n"
964 " .type cfi_bpf_subprog_hash,@object \n"
965 " .globl cfi_bpf_subprog_hash \n"
966 " .p2align 2, 0x0 \n"
967 "cfi_bpf_subprog_hash: \n"
968 " .long __kcfi_typeid___bpf_callback_fn \n"
969 " .size cfi_bpf_subprog_hash, 4 \n"
973 u32
cfi_get_func_hash(void *func
)
977 func
-= cfi_get_offset();
989 if (get_kernel_nofault(hash
, func
))
996 #ifdef CONFIG_FINEIBT
998 static bool cfi_rand __ro_after_init
= true;
999 static u32 cfi_seed __ro_after_init
;
1002 * Re-hash the CFI hash with a boot-time seed while making sure the result is
1003 * not a valid ENDBR instruction.
1005 static u32
cfi_rehash(u32 hash
)
1008 while (unlikely(is_endbr(hash
) || is_endbr(-hash
))) {
1009 bool lsb
= hash
& 1;
1017 static __init
int cfi_parse_cmdline(char *str
)
1023 char *next
= strchr(str
, ',');
1029 if (!strcmp(str
, "auto")) {
1030 cfi_mode
= CFI_AUTO
;
1031 } else if (!strcmp(str
, "off")) {
1034 } else if (!strcmp(str
, "kcfi")) {
1035 cfi_mode
= CFI_KCFI
;
1036 } else if (!strcmp(str
, "fineibt")) {
1037 cfi_mode
= CFI_FINEIBT
;
1038 } else if (!strcmp(str
, "norand")) {
1041 pr_err("Ignoring unknown cfi option (%s).", str
);
1049 early_param("cfi", cfi_parse_cmdline
);
1054 * __cfi_\func: __cfi_\func:
1055 * movl $0x12345678,%eax // 5 endbr64 // 4
1056 * nop subl $0x12345678,%r10d // 7
1070 * movl $(-0x12345678),%r10d // 6 movl $0x12345678,%r10d // 6
1071 * addl $-15(%r11),%r10d // 4 sub $16,%r11 // 4
1072 * je 1f // 2 nop4 // 4
1074 * 1: call __x86_indirect_thunk_r11 // 5 call *%r11; nop2; // 5
1078 asm( ".pushsection .rodata \n"
1079 "fineibt_preamble_start: \n"
1081 " subl $0x12345678, %r10d \n"
1082 " je fineibt_preamble_end \n"
1085 "fineibt_preamble_end: \n"
1089 extern u8 fineibt_preamble_start
[];
1090 extern u8 fineibt_preamble_end
[];
1092 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
1093 #define fineibt_preamble_hash 7
1095 asm( ".pushsection .rodata \n"
1096 "fineibt_caller_start: \n"
1097 " movl $0x12345678, %r10d \n"
1100 "fineibt_caller_end: \n"
1104 extern u8 fineibt_caller_start
[];
1105 extern u8 fineibt_caller_end
[];
1107 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
1108 #define fineibt_caller_hash 2
1110 #define fineibt_caller_jmp (fineibt_caller_size - 2)
1112 static u32
decode_preamble_hash(void *addr
)
1116 /* b8 78 56 34 12 mov $0x12345678,%eax */
1118 return *(u32
*)(addr
+ 1);
1120 return 0; /* invalid hash value */
1123 static u32
decode_caller_hash(void *addr
)
1127 /* 41 ba 78 56 34 12 mov $0x12345678,%r10d */
1128 if (p
[0] == 0x41 && p
[1] == 0xba)
1129 return -*(u32
*)(addr
+ 2);
1131 /* e8 0c 78 56 34 12 jmp.d8 +12 */
1132 if (p
[0] == JMP8_INSN_OPCODE
&& p
[1] == fineibt_caller_jmp
)
1133 return -*(u32
*)(addr
+ 2);
1135 return 0; /* invalid hash value */
1138 /* .retpoline_sites */
1139 static int cfi_disable_callers(s32
*start
, s32
*end
, struct module
*mod
)
1142 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
1143 * in tact for later usage. Also see decode_caller_hash() and
1144 * cfi_rewrite_callers().
1146 const u8 jmp
[] = { JMP8_INSN_OPCODE
, fineibt_caller_jmp
};
1149 for (s
= start
; s
< end
; s
++) {
1150 void *addr
= (void *)s
+ *s
;
1154 addr
-= fineibt_caller_size
;
1155 wr_addr
= module_writable_address(mod
, addr
);
1156 hash
= decode_caller_hash(wr_addr
);
1158 if (!hash
) /* nocfi callers */
1161 text_poke_early(wr_addr
, jmp
, 2);
1167 static int cfi_enable_callers(s32
*start
, s32
*end
, struct module
*mod
)
1170 * Re-enable kCFI, undo what cfi_disable_callers() did.
1172 const u8 mov
[] = { 0x41, 0xba };
1175 for (s
= start
; s
< end
; s
++) {
1176 void *addr
= (void *)s
+ *s
;
1180 addr
-= fineibt_caller_size
;
1181 wr_addr
= module_writable_address(mod
, addr
);
1182 hash
= decode_caller_hash(wr_addr
);
1183 if (!hash
) /* nocfi callers */
1186 text_poke_early(wr_addr
, mov
, 2);
1193 static int cfi_rand_preamble(s32
*start
, s32
*end
, struct module
*mod
)
1197 for (s
= start
; s
< end
; s
++) {
1198 void *addr
= (void *)s
+ *s
;
1199 void *wr_addr
= module_writable_address(mod
, addr
);
1202 hash
= decode_preamble_hash(wr_addr
);
1203 if (WARN(!hash
, "no CFI hash found at: %pS %px %*ph\n",
1204 addr
, addr
, 5, addr
))
1207 hash
= cfi_rehash(hash
);
1208 text_poke_early(wr_addr
+ 1, &hash
, 4);
1214 static int cfi_rewrite_preamble(s32
*start
, s32
*end
, struct module
*mod
)
1218 for (s
= start
; s
< end
; s
++) {
1219 void *addr
= (void *)s
+ *s
;
1220 void *wr_addr
= module_writable_address(mod
, addr
);
1223 hash
= decode_preamble_hash(wr_addr
);
1224 if (WARN(!hash
, "no CFI hash found at: %pS %px %*ph\n",
1225 addr
, addr
, 5, addr
))
1228 text_poke_early(wr_addr
, fineibt_preamble_start
, fineibt_preamble_size
);
1229 WARN_ON(*(u32
*)(wr_addr
+ fineibt_preamble_hash
) != 0x12345678);
1230 text_poke_early(wr_addr
+ fineibt_preamble_hash
, &hash
, 4);
1236 static void cfi_rewrite_endbr(s32
*start
, s32
*end
, struct module
*mod
)
1240 for (s
= start
; s
< end
; s
++) {
1241 void *addr
= (void *)s
+ *s
;
1242 void *wr_addr
= module_writable_address(mod
, addr
);
1244 poison_endbr(addr
+ 16, wr_addr
+ 16, false);
1248 /* .retpoline_sites */
1249 static int cfi_rand_callers(s32
*start
, s32
*end
, struct module
*mod
)
1253 for (s
= start
; s
< end
; s
++) {
1254 void *addr
= (void *)s
+ *s
;
1258 addr
-= fineibt_caller_size
;
1259 wr_addr
= module_writable_address(mod
, addr
);
1260 hash
= decode_caller_hash(wr_addr
);
1262 hash
= -cfi_rehash(hash
);
1263 text_poke_early(wr_addr
+ 2, &hash
, 4);
1270 static int cfi_rewrite_callers(s32
*start
, s32
*end
, struct module
*mod
)
1274 for (s
= start
; s
< end
; s
++) {
1275 void *addr
= (void *)s
+ *s
;
1279 addr
-= fineibt_caller_size
;
1280 wr_addr
= module_writable_address(mod
, addr
);
1281 hash
= decode_caller_hash(wr_addr
);
1283 text_poke_early(wr_addr
, fineibt_caller_start
, fineibt_caller_size
);
1284 WARN_ON(*(u32
*)(wr_addr
+ fineibt_caller_hash
) != 0x12345678);
1285 text_poke_early(wr_addr
+ fineibt_caller_hash
, &hash
, 4);
1287 /* rely on apply_retpolines() */
1293 static void __apply_fineibt(s32
*start_retpoline
, s32
*end_retpoline
,
1294 s32
*start_cfi
, s32
*end_cfi
, struct module
*mod
)
1296 bool builtin
= mod
? false : true;
1299 if (WARN_ONCE(fineibt_preamble_size
!= 16,
1300 "FineIBT preamble wrong size: %ld", fineibt_preamble_size
))
1303 if (cfi_mode
== CFI_AUTO
) {
1304 cfi_mode
= CFI_KCFI
;
1305 if (HAS_KERNEL_IBT
&& cpu_feature_enabled(X86_FEATURE_IBT
))
1306 cfi_mode
= CFI_FINEIBT
;
1310 * Rewrite the callers to not use the __cfi_ stubs, such that we might
1311 * rewrite them. This disables all CFI. If this succeeds but any of the
1312 * later stages fails, we're without CFI.
1314 ret
= cfi_disable_callers(start_retpoline
, end_retpoline
, mod
);
1320 cfi_seed
= get_random_u32();
1321 cfi_bpf_hash
= cfi_rehash(cfi_bpf_hash
);
1322 cfi_bpf_subprog_hash
= cfi_rehash(cfi_bpf_subprog_hash
);
1325 ret
= cfi_rand_preamble(start_cfi
, end_cfi
, mod
);
1329 ret
= cfi_rand_callers(start_retpoline
, end_retpoline
, mod
);
1337 pr_info("Disabling CFI\n");
1341 ret
= cfi_enable_callers(start_retpoline
, end_retpoline
, mod
);
1346 pr_info("Using kCFI\n");
1350 /* place the FineIBT preamble at func()-16 */
1351 ret
= cfi_rewrite_preamble(start_cfi
, end_cfi
, mod
);
1355 /* rewrite the callers to target func()-16 */
1356 ret
= cfi_rewrite_callers(start_retpoline
, end_retpoline
, mod
);
1360 /* now that nobody targets func()+0, remove ENDBR there */
1361 cfi_rewrite_endbr(start_cfi
, end_cfi
, mod
);
1364 pr_info("Using FineIBT CFI\n");
1372 pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1375 static inline void poison_hash(void *addr
)
1380 static void poison_cfi(void *addr
, void *wr_addr
)
1392 poison_endbr(addr
, wr_addr
, false);
1393 poison_hash(wr_addr
+ fineibt_preamble_hash
);
1402 poison_hash(wr_addr
+ 1);
1412 static void __apply_fineibt(s32
*start_retpoline
, s32
*end_retpoline
,
1413 s32
*start_cfi
, s32
*end_cfi
, struct module
*mod
)
1417 #ifdef CONFIG_X86_KERNEL_IBT
1418 static void poison_cfi(void *addr
, void *wr_addr
) { }
1423 void apply_fineibt(s32
*start_retpoline
, s32
*end_retpoline
,
1424 s32
*start_cfi
, s32
*end_cfi
, struct module
*mod
)
1426 return __apply_fineibt(start_retpoline
, end_retpoline
,
1427 start_cfi
, end_cfi
, mod
);
1431 static void alternatives_smp_lock(const s32
*start
, const s32
*end
,
1432 u8
*text
, u8
*text_end
)
1436 for (poff
= start
; poff
< end
; poff
++) {
1437 u8
*ptr
= (u8
*)poff
+ *poff
;
1439 if (!*poff
|| ptr
< text
|| ptr
>= text_end
)
1441 /* turn DS segment override prefix into lock prefix */
1443 text_poke(ptr
, ((unsigned char []){0xf0}), 1);
1447 static void alternatives_smp_unlock(const s32
*start
, const s32
*end
,
1448 u8
*text
, u8
*text_end
)
1452 for (poff
= start
; poff
< end
; poff
++) {
1453 u8
*ptr
= (u8
*)poff
+ *poff
;
1455 if (!*poff
|| ptr
< text
|| ptr
>= text_end
)
1457 /* turn lock prefix into DS segment override prefix */
1459 text_poke(ptr
, ((unsigned char []){0x3E}), 1);
1463 struct smp_alt_module
{
1464 /* what is this ??? */
1468 /* ptrs to lock prefixes */
1470 const s32
*locks_end
;
1472 /* .text segment, needed to avoid patching init code ;) */
1476 struct list_head next
;
1478 static LIST_HEAD(smp_alt_modules
);
1479 static bool uniproc_patched
= false; /* protected by text_mutex */
1481 void __init_or_module
alternatives_smp_module_add(struct module
*mod
,
1483 void *locks
, void *locks_end
,
1484 void *text
, void *text_end
)
1486 struct smp_alt_module
*smp
;
1488 mutex_lock(&text_mutex
);
1489 if (!uniproc_patched
)
1492 if (num_possible_cpus() == 1)
1493 /* Don't bother remembering, we'll never have to undo it. */
1496 smp
= kzalloc(sizeof(*smp
), GFP_KERNEL
);
1498 /* we'll run the (safe but slow) SMP code then ... */
1504 smp
->locks_end
= locks_end
;
1506 smp
->text_end
= text_end
;
1507 DPRINTK(SMP
, "locks %p -> %p, text %p -> %p, name %s\n",
1508 smp
->locks
, smp
->locks_end
,
1509 smp
->text
, smp
->text_end
, smp
->name
);
1511 list_add_tail(&smp
->next
, &smp_alt_modules
);
1513 alternatives_smp_unlock(locks
, locks_end
, text
, text_end
);
1515 mutex_unlock(&text_mutex
);
1518 void __init_or_module
alternatives_smp_module_del(struct module
*mod
)
1520 struct smp_alt_module
*item
;
1522 mutex_lock(&text_mutex
);
1523 list_for_each_entry(item
, &smp_alt_modules
, next
) {
1524 if (mod
!= item
->mod
)
1526 list_del(&item
->next
);
1530 mutex_unlock(&text_mutex
);
1533 void alternatives_enable_smp(void)
1535 struct smp_alt_module
*mod
;
1537 /* Why bother if there are no other CPUs? */
1538 BUG_ON(num_possible_cpus() == 1);
1540 mutex_lock(&text_mutex
);
1542 if (uniproc_patched
) {
1543 pr_info("switching to SMP code\n");
1544 BUG_ON(num_online_cpus() != 1);
1545 clear_cpu_cap(&boot_cpu_data
, X86_FEATURE_UP
);
1546 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP
);
1547 list_for_each_entry(mod
, &smp_alt_modules
, next
)
1548 alternatives_smp_lock(mod
->locks
, mod
->locks_end
,
1549 mod
->text
, mod
->text_end
);
1550 uniproc_patched
= false;
1552 mutex_unlock(&text_mutex
);
1556 * Return 1 if the address range is reserved for SMP-alternatives.
1557 * Must hold text_mutex.
1559 int alternatives_text_reserved(void *start
, void *end
)
1561 struct smp_alt_module
*mod
;
1563 u8
*text_start
= start
;
1566 lockdep_assert_held(&text_mutex
);
1568 list_for_each_entry(mod
, &smp_alt_modules
, next
) {
1569 if (mod
->text
> text_end
|| mod
->text_end
< text_start
)
1571 for (poff
= mod
->locks
; poff
< mod
->locks_end
; poff
++) {
1572 const u8
*ptr
= (const u8
*)poff
+ *poff
;
1574 if (text_start
<= ptr
&& text_end
> ptr
)
1581 #endif /* CONFIG_SMP */
1584 * Self-test for the INT3 based CALL emulation code.
1586 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
1587 * properly and that there is a stack gap between the INT3 frame and the
1588 * previous context. Without this gap doing a virtual PUSH on the interrupted
1589 * stack would corrupt the INT3 IRET frame.
1591 * See entry_{32,64}.S for more details.
1595 * We define the int3_magic() function in assembly to control the calling
1596 * convention such that we can 'call' it from assembly.
1599 extern void int3_magic(unsigned int *ptr
); /* defined in asm */
1602 " .pushsection .init.text, \"ax\", @progbits\n"
1603 " .type int3_magic, @function\n"
1606 " movl $1, (%" _ASM_ARG1
")\n"
1608 " .size int3_magic, .-int3_magic\n"
1612 extern void int3_selftest_ip(void); /* defined in asm below */
1615 int3_exception_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
1617 unsigned long selftest
= (unsigned long)&int3_selftest_ip
;
1618 struct die_args
*args
= data
;
1619 struct pt_regs
*regs
= args
->regs
;
1621 OPTIMIZER_HIDE_VAR(selftest
);
1623 if (!regs
|| user_mode(regs
))
1626 if (val
!= DIE_INT3
)
1629 if (regs
->ip
- INT3_INSN_SIZE
!= selftest
)
1632 int3_emulate_call(regs
, (unsigned long)&int3_magic
);
1636 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */
1637 static noinline
void __init
int3_selftest(void)
1639 static __initdata
struct notifier_block int3_exception_nb
= {
1640 .notifier_call
= int3_exception_notify
,
1641 .priority
= INT_MAX
-1, /* last */
1643 unsigned int val
= 0;
1645 BUG_ON(register_die_notifier(&int3_exception_nb
));
1648 * Basically: int3_magic(&val); but really complicated :-)
1650 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
1651 * notifier above will emulate CALL for us.
1653 asm volatile ("int3_selftest_ip:\n\t"
1655 " int3; nop; nop; nop; nop\n\t"
1656 : ASM_CALL_CONSTRAINT
1657 : __ASM_SEL_RAW(a
, D
) (&val
)
1662 unregister_die_notifier(&int3_exception_nb
);
1665 static __initdata
int __alt_reloc_selftest_addr
;
1667 extern void __init
__alt_reloc_selftest(void *arg
);
1668 __visible noinline
void __init
__alt_reloc_selftest(void *arg
)
1670 WARN_ON(arg
!= &__alt_reloc_selftest_addr
);
1673 static noinline
void __init
alt_reloc_selftest(void)
1676 * Tests apply_relocation().
1678 * This has a relative immediate (CALL) in a place other than the first
1679 * instruction and additionally on x86_64 we get a RIP-relative LEA:
1681 * lea 0x0(%rip),%rdi # 5d0: R_X86_64_PC32 .init.data+0x5566c
1682 * call +0 # 5d5: R_X86_64_PLT32 __alt_reloc_selftest-0x4
1684 * Getting this wrong will either crash and burn or tickle the WARN
1687 asm_inline
volatile (
1688 ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1
"; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS
)
1689 : ASM_CALL_CONSTRAINT
1690 : [mem
] "m" (__alt_reloc_selftest_addr
)
1695 void __init
alternative_instructions(void)
1700 * The patching is not fully atomic, so try to avoid local
1701 * interruptions that might execute the to be patched code.
1702 * Other CPUs are not running.
1707 * Don't stop machine check exceptions while patching.
1708 * MCEs only happen when something got corrupted and in this
1709 * case we must do something about the corruption.
1710 * Ignoring it is worse than an unlikely patching race.
1711 * Also machine checks tend to be broadcast and if one CPU
1712 * goes into machine check the others follow quickly, so we don't
1713 * expect a machine check to cause undue problems during to code
1718 * Make sure to set (artificial) features depending on used paravirt
1719 * functions which can later influence alternative patching.
1723 __apply_fineibt(__retpoline_sites
, __retpoline_sites_end
,
1724 __cfi_sites
, __cfi_sites_end
, NULL
);
1727 * Rewrite the retpolines, must be done before alternatives since
1728 * those can rewrite the retpoline thunks.
1730 apply_retpolines(__retpoline_sites
, __retpoline_sites_end
, NULL
);
1731 apply_returns(__return_sites
, __return_sites_end
, NULL
);
1733 apply_alternatives(__alt_instructions
, __alt_instructions_end
, NULL
);
1736 * Now all calls are established. Apply the call thunks if
1739 callthunks_patch_builtin_calls();
1742 * Seal all functions that do not have their address taken.
1744 apply_seal_endbr(__ibt_endbr_seal
, __ibt_endbr_seal_end
, NULL
);
1747 /* Patch to UP if other cpus not imminent. */
1748 if (!noreplace_smp
&& (num_present_cpus() == 1 || setup_max_cpus
<= 1)) {
1749 uniproc_patched
= true;
1750 alternatives_smp_module_add(NULL
, "core kernel",
1751 __smp_locks
, __smp_locks_end
,
1755 if (!uniproc_patched
|| num_possible_cpus() == 1) {
1756 free_init_pages("SMP alternatives",
1757 (unsigned long)__smp_locks
,
1758 (unsigned long)__smp_locks_end
);
1763 alternatives_patched
= 1;
1765 alt_reloc_selftest();
1769 * text_poke_early - Update instructions on a live kernel at boot time
1770 * @addr: address to modify
1771 * @opcode: source of the copy
1772 * @len: length to copy
1774 * When you use this code to patch more than one byte of an instruction
1775 * you need to make sure that other CPUs cannot execute this code in parallel.
1776 * Also no thread must be currently preempted in the middle of these
1777 * instructions. And on the local CPU you need to be protected against NMI or
1778 * MCE handlers seeing an inconsistent instruction while you patch.
1780 void __init_or_module
text_poke_early(void *addr
, const void *opcode
,
1783 unsigned long flags
;
1785 if (boot_cpu_has(X86_FEATURE_NX
) &&
1786 is_module_text_address((unsigned long)addr
)) {
1788 * Modules text is marked initially as non-executable, so the
1789 * code cannot be running and speculative code-fetches are
1790 * prevented. Just change the code.
1792 memcpy(addr
, opcode
, len
);
1794 local_irq_save(flags
);
1795 memcpy(addr
, opcode
, len
);
1797 local_irq_restore(flags
);
1800 * Could also do a CLFLUSH here to speed up CPU recovery; but
1801 * that causes hangs on some VIA CPUs.
1807 struct mm_struct
*mm
;
1811 * Using a temporary mm allows to set temporary mappings that are not accessible
1812 * by other CPUs. Such mappings are needed to perform sensitive memory writes
1813 * that override the kernel memory protections (e.g., W^X), without exposing the
1814 * temporary page-table mappings that are required for these write operations to
1815 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
1816 * mapping is torn down.
1818 * Context: The temporary mm needs to be used exclusively by a single core. To
1819 * harden security IRQs must be disabled while the temporary mm is
1820 * loaded, thereby preventing interrupt handler bugs from overriding
1821 * the kernel memory protection.
1823 static inline temp_mm_state_t
use_temporary_mm(struct mm_struct
*mm
)
1825 temp_mm_state_t temp_state
;
1827 lockdep_assert_irqs_disabled();
1830 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
1831 * with a stale address space WITHOUT being in lazy mode after
1832 * restoring the previous mm.
1834 if (this_cpu_read(cpu_tlbstate_shared
.is_lazy
))
1837 temp_state
.mm
= this_cpu_read(cpu_tlbstate
.loaded_mm
);
1838 switch_mm_irqs_off(NULL
, mm
, current
);
1841 * If breakpoints are enabled, disable them while the temporary mm is
1842 * used. Userspace might set up watchpoints on addresses that are used
1843 * in the temporary mm, which would lead to wrong signals being sent or
1846 * Note that breakpoints are not disabled selectively, which also causes
1847 * kernel breakpoints (e.g., perf's) to be disabled. This might be
1848 * undesirable, but still seems reasonable as the code that runs in the
1849 * temporary mm should be short.
1851 if (hw_breakpoint_active())
1852 hw_breakpoint_disable();
1857 static inline void unuse_temporary_mm(temp_mm_state_t prev_state
)
1859 lockdep_assert_irqs_disabled();
1860 switch_mm_irqs_off(NULL
, prev_state
.mm
, current
);
1863 * Restore the breakpoints if they were disabled before the temporary mm
1866 if (hw_breakpoint_active())
1867 hw_breakpoint_restore();
1870 __ro_after_init
struct mm_struct
*poking_mm
;
1871 __ro_after_init
unsigned long poking_addr
;
1873 static void text_poke_memcpy(void *dst
, const void *src
, size_t len
)
1875 memcpy(dst
, src
, len
);
1878 static void text_poke_memset(void *dst
, const void *src
, size_t len
)
1880 int c
= *(const int *)src
;
1882 memset(dst
, c
, len
);
1885 typedef void text_poke_f(void *dst
, const void *src
, size_t len
);
1887 static void *__text_poke(text_poke_f func
, void *addr
, const void *src
, size_t len
)
1889 bool cross_page_boundary
= offset_in_page(addr
) + len
> PAGE_SIZE
;
1890 struct page
*pages
[2] = {NULL
};
1891 temp_mm_state_t prev
;
1892 unsigned long flags
;
1898 * While boot memory allocator is running we cannot use struct pages as
1899 * they are not yet initialized. There is no way to recover.
1901 BUG_ON(!after_bootmem
);
1903 if (!core_kernel_text((unsigned long)addr
)) {
1904 pages
[0] = vmalloc_to_page(addr
);
1905 if (cross_page_boundary
)
1906 pages
[1] = vmalloc_to_page(addr
+ PAGE_SIZE
);
1908 pages
[0] = virt_to_page(addr
);
1909 WARN_ON(!PageReserved(pages
[0]));
1910 if (cross_page_boundary
)
1911 pages
[1] = virt_to_page(addr
+ PAGE_SIZE
);
1914 * If something went wrong, crash and burn since recovery paths are not
1917 BUG_ON(!pages
[0] || (cross_page_boundary
&& !pages
[1]));
1920 * Map the page without the global bit, as TLB flushing is done with
1921 * flush_tlb_mm_range(), which is intended for non-global PTEs.
1923 pgprot
= __pgprot(pgprot_val(PAGE_KERNEL
) & ~_PAGE_GLOBAL
);
1926 * The lock is not really needed, but this allows to avoid open-coding.
1928 ptep
= get_locked_pte(poking_mm
, poking_addr
, &ptl
);
1931 * This must not fail; preallocated in poking_init().
1935 local_irq_save(flags
);
1937 pte
= mk_pte(pages
[0], pgprot
);
1938 set_pte_at(poking_mm
, poking_addr
, ptep
, pte
);
1940 if (cross_page_boundary
) {
1941 pte
= mk_pte(pages
[1], pgprot
);
1942 set_pte_at(poking_mm
, poking_addr
+ PAGE_SIZE
, ptep
+ 1, pte
);
1946 * Loading the temporary mm behaves as a compiler barrier, which
1947 * guarantees that the PTE will be set at the time memcpy() is done.
1949 prev
= use_temporary_mm(poking_mm
);
1951 kasan_disable_current();
1952 func((u8
*)poking_addr
+ offset_in_page(addr
), src
, len
);
1953 kasan_enable_current();
1956 * Ensure that the PTE is only cleared after the instructions of memcpy
1957 * were issued by using a compiler barrier.
1961 pte_clear(poking_mm
, poking_addr
, ptep
);
1962 if (cross_page_boundary
)
1963 pte_clear(poking_mm
, poking_addr
+ PAGE_SIZE
, ptep
+ 1);
1966 * Loading the previous page-table hierarchy requires a serializing
1967 * instruction that already allows the core to see the updated version.
1968 * Xen-PV is assumed to serialize execution in a similar manner.
1970 unuse_temporary_mm(prev
);
1973 * Flushing the TLB might involve IPIs, which would require enabled
1974 * IRQs, but not if the mm is not used, as it is in this point.
1976 flush_tlb_mm_range(poking_mm
, poking_addr
, poking_addr
+
1977 (cross_page_boundary
? 2 : 1) * PAGE_SIZE
,
1980 if (func
== text_poke_memcpy
) {
1982 * If the text does not match what we just wrote then something is
1983 * fundamentally screwy; there's nothing we can really do about that.
1985 BUG_ON(memcmp(addr
, src
, len
));
1988 local_irq_restore(flags
);
1989 pte_unmap_unlock(ptep
, ptl
);
1994 * text_poke - Update instructions on a live kernel
1995 * @addr: address to modify
1996 * @opcode: source of the copy
1997 * @len: length to copy
1999 * Only atomic text poke/set should be allowed when not doing early patching.
2000 * It means the size must be writable atomically and the address must be aligned
2001 * in a way that permits an atomic write. It also makes sure we fit on a single
2004 * Note that the caller must ensure that if the modified code is part of a
2005 * module, the module would not be removed during poking. This can be achieved
2006 * by registering a module notifier, and ordering module removal and patching
2009 void *text_poke(void *addr
, const void *opcode
, size_t len
)
2011 lockdep_assert_held(&text_mutex
);
2013 return __text_poke(text_poke_memcpy
, addr
, opcode
, len
);
2017 * text_poke_kgdb - Update instructions on a live kernel by kgdb
2018 * @addr: address to modify
2019 * @opcode: source of the copy
2020 * @len: length to copy
2022 * Only atomic text poke/set should be allowed when not doing early patching.
2023 * It means the size must be writable atomically and the address must be aligned
2024 * in a way that permits an atomic write. It also makes sure we fit on a single
2027 * Context: should only be used by kgdb, which ensures no other core is running,
2028 * despite the fact it does not hold the text_mutex.
2030 void *text_poke_kgdb(void *addr
, const void *opcode
, size_t len
)
2032 return __text_poke(text_poke_memcpy
, addr
, opcode
, len
);
2035 void *text_poke_copy_locked(void *addr
, const void *opcode
, size_t len
,
2038 unsigned long start
= (unsigned long)addr
;
2041 if (WARN_ON_ONCE(!core_ok
&& core_kernel_text(start
)))
2044 while (patched
< len
) {
2045 unsigned long ptr
= start
+ patched
;
2048 s
= min_t(size_t, PAGE_SIZE
* 2 - offset_in_page(ptr
), len
- patched
);
2050 __text_poke(text_poke_memcpy
, (void *)ptr
, opcode
+ patched
, s
);
2057 * text_poke_copy - Copy instructions into (an unused part of) RX memory
2058 * @addr: address to modify
2059 * @opcode: source of the copy
2060 * @len: length to copy, could be more than 2x PAGE_SIZE
2062 * Not safe against concurrent execution; useful for JITs to dump
2063 * new code blocks into unused regions of RX memory. Can be used in
2064 * conjunction with synchronize_rcu_tasks() to wait for existing
2065 * execution to quiesce after having made sure no existing functions
2066 * pointers are live.
2068 void *text_poke_copy(void *addr
, const void *opcode
, size_t len
)
2070 mutex_lock(&text_mutex
);
2071 addr
= text_poke_copy_locked(addr
, opcode
, len
, false);
2072 mutex_unlock(&text_mutex
);
2077 * text_poke_set - memset into (an unused part of) RX memory
2078 * @addr: address to modify
2079 * @c: the byte to fill the area with
2080 * @len: length to copy, could be more than 2x PAGE_SIZE
2082 * This is useful to overwrite unused regions of RX memory with illegal
2085 void *text_poke_set(void *addr
, int c
, size_t len
)
2087 unsigned long start
= (unsigned long)addr
;
2090 if (WARN_ON_ONCE(core_kernel_text(start
)))
2093 mutex_lock(&text_mutex
);
2094 while (patched
< len
) {
2095 unsigned long ptr
= start
+ patched
;
2098 s
= min_t(size_t, PAGE_SIZE
* 2 - offset_in_page(ptr
), len
- patched
);
2100 __text_poke(text_poke_memset
, (void *)ptr
, (void *)&c
, s
);
2103 mutex_unlock(&text_mutex
);
2107 static void do_sync_core(void *info
)
2112 void text_poke_sync(void)
2114 on_each_cpu(do_sync_core
, NULL
, 1);
2118 * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of
2119 * this thing. When len == 6 everything is prefixed with 0x0f and we map
2120 * opcode to Jcc.d8, using len to distinguish.
2122 struct text_poke_loc
{
2123 /* addr := _stext + rel_addr */
2128 const u8 text
[POKE_MAX_OPCODE_SIZE
];
2129 /* see text_poke_bp_batch() */
2133 struct bp_patching_desc
{
2134 struct text_poke_loc
*vec
;
2139 static struct bp_patching_desc bp_desc
;
2141 static __always_inline
2142 struct bp_patching_desc
*try_get_desc(void)
2144 struct bp_patching_desc
*desc
= &bp_desc
;
2146 if (!raw_atomic_inc_not_zero(&desc
->refs
))
2152 static __always_inline
void put_desc(void)
2154 struct bp_patching_desc
*desc
= &bp_desc
;
2156 smp_mb__before_atomic();
2157 raw_atomic_dec(&desc
->refs
);
2160 static __always_inline
void *text_poke_addr(struct text_poke_loc
*tp
)
2162 return _stext
+ tp
->rel_addr
;
2165 static __always_inline
int patch_cmp(const void *key
, const void *elt
)
2167 struct text_poke_loc
*tp
= (struct text_poke_loc
*) elt
;
2169 if (key
< text_poke_addr(tp
))
2171 if (key
> text_poke_addr(tp
))
2176 noinstr
int poke_int3_handler(struct pt_regs
*regs
)
2178 struct bp_patching_desc
*desc
;
2179 struct text_poke_loc
*tp
;
2183 if (user_mode(regs
))
2187 * Having observed our INT3 instruction, we now must observe
2188 * bp_desc with non-zero refcount:
2190 * bp_desc.refs = 1 INT3
2192 * write INT3 if (bp_desc.refs != 0)
2196 desc
= try_get_desc();
2201 * Discount the INT3. See text_poke_bp_batch().
2203 ip
= (void *) regs
->ip
- INT3_INSN_SIZE
;
2206 * Skip the binary search if there is a single member in the vector.
2208 if (unlikely(desc
->nr_entries
> 1)) {
2209 tp
= __inline_bsearch(ip
, desc
->vec
, desc
->nr_entries
,
2210 sizeof(struct text_poke_loc
),
2216 if (text_poke_addr(tp
) != ip
)
2222 switch (tp
->opcode
) {
2223 case INT3_INSN_OPCODE
:
2225 * Someone poked an explicit INT3, they'll want to handle it,
2230 case RET_INSN_OPCODE
:
2231 int3_emulate_ret(regs
);
2234 case CALL_INSN_OPCODE
:
2235 int3_emulate_call(regs
, (long)ip
+ tp
->disp
);
2238 case JMP32_INSN_OPCODE
:
2239 case JMP8_INSN_OPCODE
:
2240 int3_emulate_jmp(regs
, (long)ip
+ tp
->disp
);
2243 case 0x70 ... 0x7f: /* Jcc */
2244 int3_emulate_jcc(regs
, tp
->opcode
& 0xf, (long)ip
, tp
->disp
);
2258 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
2259 static struct text_poke_loc tp_vec
[TP_VEC_MAX
];
2260 static int tp_vec_nr
;
2263 * text_poke_bp_batch() -- update instructions on live kernel on SMP
2264 * @tp: vector of instructions to patch
2265 * @nr_entries: number of entries in the vector
2267 * Modify multi-byte instruction by using int3 breakpoint on SMP.
2268 * We completely avoid stop_machine() here, and achieve the
2269 * synchronization using int3 breakpoint.
2271 * The way it is done:
2272 * - For each entry in the vector:
2273 * - add a int3 trap to the address that will be patched
2275 * - For each entry in the vector:
2276 * - update all but the first byte of the patched range
2278 * - For each entry in the vector:
2279 * - replace the first byte (int3) by the first byte of
2283 static void text_poke_bp_batch(struct text_poke_loc
*tp
, unsigned int nr_entries
)
2285 unsigned char int3
= INT3_INSN_OPCODE
;
2289 lockdep_assert_held(&text_mutex
);
2292 bp_desc
.nr_entries
= nr_entries
;
2295 * Corresponds to the implicit memory barrier in try_get_desc() to
2296 * ensure reading a non-zero refcount provides up to date bp_desc data.
2298 atomic_set_release(&bp_desc
.refs
, 1);
2301 * Function tracing can enable thousands of places that need to be
2302 * updated. This can take quite some time, and with full kernel debugging
2303 * enabled, this could cause the softlockup watchdog to trigger.
2304 * This function gets called every 256 entries added to be patched.
2305 * Call cond_resched() here to make sure that other tasks can get scheduled
2306 * while processing all the functions being patched.
2311 * Corresponding read barrier in int3 notifier for making sure the
2312 * nr_entries and handler are correctly ordered wrt. patching.
2317 * First step: add a int3 trap to the address that will be patched.
2319 for (i
= 0; i
< nr_entries
; i
++) {
2320 tp
[i
].old
= *(u8
*)text_poke_addr(&tp
[i
]);
2321 text_poke(text_poke_addr(&tp
[i
]), &int3
, INT3_INSN_SIZE
);
2327 * Second step: update all but the first byte of the patched range.
2329 for (do_sync
= 0, i
= 0; i
< nr_entries
; i
++) {
2330 u8 old
[POKE_MAX_OPCODE_SIZE
+1] = { tp
[i
].old
, };
2331 u8 _new
[POKE_MAX_OPCODE_SIZE
+1];
2332 const u8
*new = tp
[i
].text
;
2333 int len
= tp
[i
].len
;
2335 if (len
- INT3_INSN_SIZE
> 0) {
2336 memcpy(old
+ INT3_INSN_SIZE
,
2337 text_poke_addr(&tp
[i
]) + INT3_INSN_SIZE
,
2338 len
- INT3_INSN_SIZE
);
2342 memcpy(_new
+ 1, new, 5);
2346 text_poke(text_poke_addr(&tp
[i
]) + INT3_INSN_SIZE
,
2347 new + INT3_INSN_SIZE
,
2348 len
- INT3_INSN_SIZE
);
2354 * Emit a perf event to record the text poke, primarily to
2355 * support Intel PT decoding which must walk the executable code
2356 * to reconstruct the trace. The flow up to here is:
2359 * - write instruction tail
2360 * At this point the actual control flow will be through the
2361 * INT3 and handler and not hit the old or new instruction.
2362 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
2363 * can still be decoded. Subsequently:
2364 * - emit RECORD_TEXT_POKE with the new instruction
2366 * - write first byte
2368 * So before the text poke event timestamp, the decoder will see
2369 * either the old instruction flow or FUP/TIP of INT3. After the
2370 * text poke event timestamp, the decoder will see either the
2371 * new instruction flow or FUP/TIP of INT3. Thus decoders can
2372 * use the timestamp as the point at which to modify the
2374 * The old instruction is recorded so that the event can be
2375 * processed forwards or backwards.
2377 perf_event_text_poke(text_poke_addr(&tp
[i
]), old
, len
, new, len
);
2382 * According to Intel, this core syncing is very likely
2383 * not necessary and we'd be safe even without it. But
2384 * better safe than sorry (plus there's not only Intel).
2390 * Third step: replace the first byte (int3) by the first byte of
2393 for (do_sync
= 0, i
= 0; i
< nr_entries
; i
++) {
2394 u8 byte
= tp
[i
].text
[0];
2399 if (byte
== INT3_INSN_OPCODE
)
2402 text_poke(text_poke_addr(&tp
[i
]), &byte
, INT3_INSN_SIZE
);
2410 * Remove and wait for refs to be zero.
2412 if (!atomic_dec_and_test(&bp_desc
.refs
))
2413 atomic_cond_read_acquire(&bp_desc
.refs
, !VAL
);
2416 static void text_poke_loc_init(struct text_poke_loc
*tp
, void *addr
,
2417 const void *opcode
, size_t len
, const void *emulate
)
2424 memcpy((void *)tp
->text
, opcode
+i
, len
-i
);
2428 ret
= insn_decode_kernel(&insn
, emulate
);
2431 tp
->rel_addr
= addr
- (void *)_stext
;
2433 tp
->opcode
= insn
.opcode
.bytes
[0];
2435 if (is_jcc32(&insn
)) {
2437 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish.
2439 tp
->opcode
= insn
.opcode
.bytes
[1] - 0x10;
2442 switch (tp
->opcode
) {
2443 case RET_INSN_OPCODE
:
2444 case JMP32_INSN_OPCODE
:
2445 case JMP8_INSN_OPCODE
:
2447 * Control flow instructions without implied execution of the
2448 * next instruction can be padded with INT3.
2450 for (i
= insn
.length
; i
< len
; i
++)
2451 BUG_ON(tp
->text
[i
] != INT3_INSN_OPCODE
);
2455 BUG_ON(len
!= insn
.length
);
2458 switch (tp
->opcode
) {
2459 case INT3_INSN_OPCODE
:
2460 case RET_INSN_OPCODE
:
2463 case CALL_INSN_OPCODE
:
2464 case JMP32_INSN_OPCODE
:
2465 case JMP8_INSN_OPCODE
:
2466 case 0x70 ... 0x7f: /* Jcc */
2467 tp
->disp
= insn
.immediate
.value
;
2470 default: /* assume NOP */
2472 case 2: /* NOP2 -- emulate as JMP8+0 */
2473 BUG_ON(memcmp(emulate
, x86_nops
[len
], len
));
2474 tp
->opcode
= JMP8_INSN_OPCODE
;
2478 case 5: /* NOP5 -- emulate as JMP32+0 */
2479 BUG_ON(memcmp(emulate
, x86_nops
[len
], len
));
2480 tp
->opcode
= JMP32_INSN_OPCODE
;
2484 default: /* unknown instruction */
2492 * We hard rely on the tp_vec being ordered; ensure this is so by flushing
2495 static bool tp_order_fail(void *addr
)
2497 struct text_poke_loc
*tp
;
2502 if (!addr
) /* force */
2505 tp
= &tp_vec
[tp_vec_nr
- 1];
2506 if ((unsigned long)text_poke_addr(tp
) > (unsigned long)addr
)
2512 static void text_poke_flush(void *addr
)
2514 if (tp_vec_nr
== TP_VEC_MAX
|| tp_order_fail(addr
)) {
2515 text_poke_bp_batch(tp_vec
, tp_vec_nr
);
2520 void text_poke_finish(void)
2522 text_poke_flush(NULL
);
2525 void __ref
text_poke_queue(void *addr
, const void *opcode
, size_t len
, const void *emulate
)
2527 struct text_poke_loc
*tp
;
2529 text_poke_flush(addr
);
2531 tp
= &tp_vec
[tp_vec_nr
++];
2532 text_poke_loc_init(tp
, addr
, opcode
, len
, emulate
);
2536 * text_poke_bp() -- update instructions on live kernel on SMP
2537 * @addr: address to patch
2538 * @opcode: opcode of new instruction
2539 * @len: length to copy
2540 * @emulate: instruction to be emulated
2542 * Update a single instruction with the vector in the stack, avoiding
2543 * dynamically allocated memory. This function should be used when it is
2544 * not possible to allocate memory.
2546 void __ref
text_poke_bp(void *addr
, const void *opcode
, size_t len
, const void *emulate
)
2548 struct text_poke_loc tp
;
2550 text_poke_loc_init(&tp
, addr
, opcode
, len
, emulate
);
2551 text_poke_bp_batch(&tp
, 1);