drm/rockchip: vop2: Support 32x8 superblock afbc
[drm/drm-misc.git] / arch / x86 / kernel / cpu / intel.c
blob8ded9f859a3a964314579100ca0608256d347eec
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/pgtable.h>
5 #include <linux/string.h>
6 #include <linux/bitops.h>
7 #include <linux/smp.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/thread_info.h>
11 #include <linux/init.h>
12 #include <linux/uaccess.h>
14 #include <asm/cpufeature.h>
15 #include <asm/msr.h>
16 #include <asm/bugs.h>
17 #include <asm/cpu.h>
18 #include <asm/intel-family.h>
19 #include <asm/microcode.h>
20 #include <asm/hwcap2.h>
21 #include <asm/elf.h>
22 #include <asm/cpu_device_id.h>
23 #include <asm/resctrl.h>
24 #include <asm/numa.h>
25 #include <asm/thermal.h>
27 #ifdef CONFIG_X86_64
28 #include <linux/topology.h>
29 #endif
31 #include "cpu.h"
33 #ifdef CONFIG_X86_LOCAL_APIC
34 #include <asm/mpspec.h>
35 #include <asm/apic.h>
36 #endif
39 * Processors which have self-snooping capability can handle conflicting
40 * memory type across CPUs by snooping its own cache. However, there exists
41 * CPU models in which having conflicting memory types still leads to
42 * unpredictable behavior, machine check errors, or hangs. Clear this
43 * feature to prevent its use on machines with known erratas.
45 static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
47 switch (c->x86_vfm) {
48 case INTEL_CORE_YONAH:
49 case INTEL_CORE2_MEROM:
50 case INTEL_CORE2_MEROM_L:
51 case INTEL_CORE2_PENRYN:
52 case INTEL_CORE2_DUNNINGTON:
53 case INTEL_NEHALEM:
54 case INTEL_NEHALEM_G:
55 case INTEL_NEHALEM_EP:
56 case INTEL_NEHALEM_EX:
57 case INTEL_WESTMERE:
58 case INTEL_WESTMERE_EP:
59 case INTEL_SANDYBRIDGE:
60 setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
64 static bool ring3mwait_disabled __read_mostly;
66 static int __init ring3mwait_disable(char *__unused)
68 ring3mwait_disabled = true;
69 return 1;
71 __setup("ring3mwait=disable", ring3mwait_disable);
73 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
76 * Ring 3 MONITOR/MWAIT feature cannot be detected without
77 * cpu model and family comparison.
79 if (c->x86 != 6)
80 return;
81 switch (c->x86_vfm) {
82 case INTEL_XEON_PHI_KNL:
83 case INTEL_XEON_PHI_KNM:
84 break;
85 default:
86 return;
89 if (ring3mwait_disabled)
90 return;
92 set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
93 this_cpu_or(msr_misc_features_shadow,
94 1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
96 if (c == &boot_cpu_data)
97 ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
101 * Early microcode releases for the Spectre v2 mitigation were broken.
102 * Information taken from;
103 * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
104 * - https://kb.vmware.com/s/article/52345
105 * - Microcode revisions observed in the wild
106 * - Release note from 20180108 microcode release
108 struct sku_microcode {
109 u32 vfm;
110 u8 stepping;
111 u32 microcode;
113 static const struct sku_microcode spectre_bad_microcodes[] = {
114 { INTEL_KABYLAKE, 0x0B, 0x80 },
115 { INTEL_KABYLAKE, 0x0A, 0x80 },
116 { INTEL_KABYLAKE, 0x09, 0x80 },
117 { INTEL_KABYLAKE_L, 0x0A, 0x80 },
118 { INTEL_KABYLAKE_L, 0x09, 0x80 },
119 { INTEL_SKYLAKE_X, 0x03, 0x0100013e },
120 { INTEL_SKYLAKE_X, 0x04, 0x0200003c },
121 { INTEL_BROADWELL, 0x04, 0x28 },
122 { INTEL_BROADWELL_G, 0x01, 0x1b },
123 { INTEL_BROADWELL_D, 0x02, 0x14 },
124 { INTEL_BROADWELL_D, 0x03, 0x07000011 },
125 { INTEL_BROADWELL_X, 0x01, 0x0b000025 },
126 { INTEL_HASWELL_L, 0x01, 0x21 },
127 { INTEL_HASWELL_G, 0x01, 0x18 },
128 { INTEL_HASWELL, 0x03, 0x23 },
129 { INTEL_HASWELL_X, 0x02, 0x3b },
130 { INTEL_HASWELL_X, 0x04, 0x10 },
131 { INTEL_IVYBRIDGE_X, 0x04, 0x42a },
132 /* Observed in the wild */
133 { INTEL_SANDYBRIDGE_X, 0x06, 0x61b },
134 { INTEL_SANDYBRIDGE_X, 0x07, 0x712 },
137 static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
139 int i;
142 * We know that the hypervisor lie to us on the microcode version so
143 * we may as well hope that it is running the correct version.
145 if (cpu_has(c, X86_FEATURE_HYPERVISOR))
146 return false;
148 for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
149 if (c->x86_vfm == spectre_bad_microcodes[i].vfm &&
150 c->x86_stepping == spectre_bad_microcodes[i].stepping)
151 return (c->microcode <= spectre_bad_microcodes[i].microcode);
153 return false;
156 #define MSR_IA32_TME_ACTIVATE 0x982
158 /* Helpers to access TME_ACTIVATE MSR */
159 #define TME_ACTIVATE_LOCKED(x) (x & 0x1)
160 #define TME_ACTIVATE_ENABLED(x) (x & 0x2)
162 #define TME_ACTIVATE_KEYID_BITS(x) ((x >> 32) & 0xf) /* Bits 35:32 */
164 static void detect_tme_early(struct cpuinfo_x86 *c)
166 u64 tme_activate;
167 int keyid_bits;
169 rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
171 if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
172 pr_info_once("x86/tme: not enabled by BIOS\n");
173 clear_cpu_cap(c, X86_FEATURE_TME);
174 return;
176 pr_info_once("x86/tme: enabled by BIOS\n");
177 keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
178 if (!keyid_bits)
179 return;
182 * KeyID bits are set by BIOS and can be present regardless
183 * of whether the kernel is using them. They effectively lower
184 * the number of physical address bits.
186 * Update cpuinfo_x86::x86_phys_bits accordingly.
188 c->x86_phys_bits -= keyid_bits;
189 pr_info_once("x86/mktme: BIOS enabled: x86_phys_bits reduced by %d\n",
190 keyid_bits);
193 void intel_unlock_cpuid_leafs(struct cpuinfo_x86 *c)
195 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
196 return;
198 if (c->x86 < 6 || (c->x86 == 6 && c->x86_model < 0xd))
199 return;
202 * The BIOS can have limited CPUID to leaf 2, which breaks feature
203 * enumeration. Unlock it and update the maximum leaf info.
205 if (msr_clear_bit(MSR_IA32_MISC_ENABLE, MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0)
206 c->cpuid_level = cpuid_eax(0);
209 static void early_init_intel(struct cpuinfo_x86 *c)
211 u64 misc_enable;
213 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
214 (c->x86 == 0x6 && c->x86_model >= 0x0e))
215 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
217 if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
218 c->microcode = intel_get_microcode_revision();
220 /* Now if any of them are set, check the blacklist and clear the lot */
221 if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
222 cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
223 cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
224 cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
225 pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
226 setup_clear_cpu_cap(X86_FEATURE_IBRS);
227 setup_clear_cpu_cap(X86_FEATURE_IBPB);
228 setup_clear_cpu_cap(X86_FEATURE_STIBP);
229 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
230 setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
231 setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
232 setup_clear_cpu_cap(X86_FEATURE_SSBD);
233 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
237 * Atom erratum AAE44/AAF40/AAG38/AAH41:
239 * A race condition between speculative fetches and invalidating
240 * a large page. This is worked around in microcode, but we
241 * need the microcode to have already been loaded... so if it is
242 * not, recommend a BIOS update and disable large pages.
244 if (c->x86_vfm == INTEL_ATOM_BONNELL && c->x86_stepping <= 2 &&
245 c->microcode < 0x20e) {
246 pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
247 clear_cpu_cap(c, X86_FEATURE_PSE);
250 #ifdef CONFIG_X86_64
251 set_cpu_cap(c, X86_FEATURE_SYSENTER32);
252 #else
253 /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
254 if (c->x86 == 15 && c->x86_cache_alignment == 64)
255 c->x86_cache_alignment = 128;
256 #endif
258 /* CPUID workaround for 0F33/0F34 CPU */
259 if (c->x86 == 0xF && c->x86_model == 0x3
260 && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
261 c->x86_phys_bits = 36;
264 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
265 * with P/T states and does not stop in deep C-states.
267 * It is also reliable across cores and sockets. (but not across
268 * cabinets - we turn it off in that case explicitly.)
270 if (c->x86_power & (1 << 8)) {
271 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
272 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
275 /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
276 switch (c->x86_vfm) {
277 case INTEL_ATOM_SALTWELL_MID:
278 case INTEL_ATOM_SALTWELL_TABLET:
279 case INTEL_ATOM_SILVERMONT_MID:
280 case INTEL_ATOM_AIRMONT_NP:
281 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
282 break;
286 * PAT is broken on early family 6 CPUs, the last of which
287 * is "Yonah" where the erratum is named "AN7":
289 * Page with PAT (Page Attribute Table) Set to USWC
290 * (Uncacheable Speculative Write Combine) While
291 * Associated MTRR (Memory Type Range Register) Is UC
292 * (Uncacheable) May Consolidate to UC
294 * Disable PAT and fall back to MTRR on these CPUs.
296 if (c->x86_vfm >= INTEL_PENTIUM_PRO &&
297 c->x86_vfm <= INTEL_CORE_YONAH)
298 clear_cpu_cap(c, X86_FEATURE_PAT);
301 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
302 * clear the fast string and enhanced fast string CPU capabilities.
304 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
305 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
306 if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
307 pr_info("Disabled fast string operations\n");
308 setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
309 setup_clear_cpu_cap(X86_FEATURE_ERMS);
314 * Intel Quark Core DevMan_001.pdf section 6.4.11
315 * "The operating system also is required to invalidate (i.e., flush)
316 * the TLB when any changes are made to any of the page table entries.
317 * The operating system must reload CR3 to cause the TLB to be flushed"
319 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
320 * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE
321 * to be modified.
323 if (c->x86_vfm == INTEL_QUARK_X1000) {
324 pr_info("Disabling PGE capability bit\n");
325 setup_clear_cpu_cap(X86_FEATURE_PGE);
328 check_memory_type_self_snoop_errata(c);
331 * Adjust the number of physical bits early because it affects the
332 * valid bits of the MTRR mask registers.
334 if (cpu_has(c, X86_FEATURE_TME))
335 detect_tme_early(c);
338 static void bsp_init_intel(struct cpuinfo_x86 *c)
340 resctrl_cpu_detect(c);
343 #ifdef CONFIG_X86_32
345 * Early probe support logic for ppro memory erratum #50
347 * This is called before we do cpu ident work
350 int ppro_with_ram_bug(void)
352 /* Uses data from early_cpu_detect now */
353 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
354 boot_cpu_data.x86 == 6 &&
355 boot_cpu_data.x86_model == 1 &&
356 boot_cpu_data.x86_stepping < 8) {
357 pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
358 return 1;
360 return 0;
363 static void intel_smp_check(struct cpuinfo_x86 *c)
365 /* calling is from identify_secondary_cpu() ? */
366 if (!c->cpu_index)
367 return;
370 * Mask B, Pentium, but not Pentium MMX
372 if (c->x86 == 5 &&
373 c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
374 c->x86_model <= 3) {
376 * Remember we have B step Pentia with bugs
378 WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
379 "with B stepping processors.\n");
383 static int forcepae;
384 static int __init forcepae_setup(char *__unused)
386 forcepae = 1;
387 return 1;
389 __setup("forcepae", forcepae_setup);
391 static void intel_workarounds(struct cpuinfo_x86 *c)
393 #ifdef CONFIG_X86_F00F_BUG
395 * All models of Pentium and Pentium with MMX technology CPUs
396 * have the F0 0F bug, which lets nonprivileged users lock up the
397 * system. Announce that the fault handler will be checking for it.
398 * The Quark is also family 5, but does not have the same bug.
400 clear_cpu_bug(c, X86_BUG_F00F);
401 if (c->x86 == 5 && c->x86_model < 9) {
402 static int f00f_workaround_enabled;
404 set_cpu_bug(c, X86_BUG_F00F);
405 if (!f00f_workaround_enabled) {
406 pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
407 f00f_workaround_enabled = 1;
410 #endif
413 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
414 * model 3 mask 3
416 if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
417 clear_cpu_cap(c, X86_FEATURE_SEP);
420 * PAE CPUID issue: many Pentium M report no PAE but may have a
421 * functionally usable PAE implementation.
422 * Forcefully enable PAE if kernel parameter "forcepae" is present.
424 if (forcepae) {
425 pr_warn("PAE forced!\n");
426 set_cpu_cap(c, X86_FEATURE_PAE);
427 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
431 * P4 Xeon erratum 037 workaround.
432 * Hardware prefetcher may cause stale data to be loaded into the cache.
434 if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
435 if (msr_set_bit(MSR_IA32_MISC_ENABLE,
436 MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
437 pr_info("CPU: C0 stepping P4 Xeon detected.\n");
438 pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
443 * See if we have a good local APIC by checking for buggy Pentia,
444 * i.e. all B steppings and the C2 stepping of P54C when using their
445 * integrated APIC (see 11AP erratum in "Pentium Processor
446 * Specification Update").
448 if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
449 (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
450 set_cpu_bug(c, X86_BUG_11AP);
453 #ifdef CONFIG_X86_INTEL_USERCOPY
455 * Set up the preferred alignment for movsl bulk memory moves
457 switch (c->x86) {
458 case 4: /* 486: untested */
459 break;
460 case 5: /* Old Pentia: untested */
461 break;
462 case 6: /* PII/PIII only like movsl with 8-byte alignment */
463 movsl_mask.mask = 7;
464 break;
465 case 15: /* P4 is OK down to 8-byte alignment */
466 movsl_mask.mask = 7;
467 break;
469 #endif
471 intel_smp_check(c);
473 #else
474 static void intel_workarounds(struct cpuinfo_x86 *c)
477 #endif
479 static void srat_detect_node(struct cpuinfo_x86 *c)
481 #ifdef CONFIG_NUMA
482 unsigned node;
483 int cpu = smp_processor_id();
485 /* Don't do the funky fallback heuristics the AMD version employs
486 for now. */
487 node = numa_cpu_node(cpu);
488 if (node == NUMA_NO_NODE || !node_online(node)) {
489 /* reuse the value from init_cpu_to_node() */
490 node = cpu_to_node(cpu);
492 numa_set_node(cpu, node);
493 #endif
496 static void init_cpuid_fault(struct cpuinfo_x86 *c)
498 u64 msr;
500 if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
501 if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
502 set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
506 static void init_intel_misc_features(struct cpuinfo_x86 *c)
508 u64 msr;
510 if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
511 return;
513 /* Clear all MISC features */
514 this_cpu_write(msr_misc_features_shadow, 0);
516 /* Check features and update capabilities and shadow control bits */
517 init_cpuid_fault(c);
518 probe_xeon_phi_r3mwait(c);
520 msr = this_cpu_read(msr_misc_features_shadow);
521 wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
524 static void init_intel(struct cpuinfo_x86 *c)
526 early_init_intel(c);
528 intel_workarounds(c);
530 init_intel_cacheinfo(c);
532 if (c->cpuid_level > 9) {
533 unsigned eax = cpuid_eax(10);
534 /* Check for version and the number of counters */
535 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
536 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
539 if (cpu_has(c, X86_FEATURE_XMM2))
540 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
542 if (boot_cpu_has(X86_FEATURE_DS)) {
543 unsigned int l1, l2;
545 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
546 if (!(l1 & MSR_IA32_MISC_ENABLE_BTS_UNAVAIL))
547 set_cpu_cap(c, X86_FEATURE_BTS);
548 if (!(l1 & MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL))
549 set_cpu_cap(c, X86_FEATURE_PEBS);
552 if (boot_cpu_has(X86_FEATURE_CLFLUSH) &&
553 (c->x86_vfm == INTEL_CORE2_DUNNINGTON ||
554 c->x86_vfm == INTEL_NEHALEM_EX ||
555 c->x86_vfm == INTEL_WESTMERE_EX))
556 set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
558 if (boot_cpu_has(X86_FEATURE_MWAIT) &&
559 (c->x86_vfm == INTEL_ATOM_GOLDMONT ||
560 c->x86_vfm == INTEL_LUNARLAKE_M))
561 set_cpu_bug(c, X86_BUG_MONITOR);
563 #ifdef CONFIG_X86_64
564 if (c->x86 == 15)
565 c->x86_cache_alignment = c->x86_clflush_size * 2;
566 if (c->x86 == 6)
567 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
568 #else
570 * Names for the Pentium II/Celeron processors
571 * detectable only by also checking the cache size.
572 * Dixon is NOT a Celeron.
574 if (c->x86 == 6) {
575 unsigned int l2 = c->x86_cache_size;
576 char *p = NULL;
578 switch (c->x86_model) {
579 case 5:
580 if (l2 == 0)
581 p = "Celeron (Covington)";
582 else if (l2 == 256)
583 p = "Mobile Pentium II (Dixon)";
584 break;
586 case 6:
587 if (l2 == 128)
588 p = "Celeron (Mendocino)";
589 else if (c->x86_stepping == 0 || c->x86_stepping == 5)
590 p = "Celeron-A";
591 break;
593 case 8:
594 if (l2 == 128)
595 p = "Celeron (Coppermine)";
596 break;
599 if (p)
600 strcpy(c->x86_model_id, p);
603 if (c->x86 == 15)
604 set_cpu_cap(c, X86_FEATURE_P4);
605 if (c->x86 == 6)
606 set_cpu_cap(c, X86_FEATURE_P3);
607 #endif
609 /* Work around errata */
610 srat_detect_node(c);
612 init_ia32_feat_ctl(c);
614 init_intel_misc_features(c);
616 split_lock_init();
618 intel_init_thermal(c);
621 #ifdef CONFIG_X86_32
622 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
625 * Intel PIII Tualatin. This comes in two flavours.
626 * One has 256kb of cache, the other 512. We have no way
627 * to determine which, so we use a boottime override
628 * for the 512kb model, and assume 256 otherwise.
630 if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
631 size = 256;
634 * Intel Quark SoC X1000 contains a 4-way set associative
635 * 16K cache with a 16 byte cache line and 256 lines per tag
637 if ((c->x86 == 5) && (c->x86_model == 9))
638 size = 16;
639 return size;
641 #endif
643 #define TLB_INST_4K 0x01
644 #define TLB_INST_4M 0x02
645 #define TLB_INST_2M_4M 0x03
647 #define TLB_INST_ALL 0x05
648 #define TLB_INST_1G 0x06
650 #define TLB_DATA_4K 0x11
651 #define TLB_DATA_4M 0x12
652 #define TLB_DATA_2M_4M 0x13
653 #define TLB_DATA_4K_4M 0x14
655 #define TLB_DATA_1G 0x16
657 #define TLB_DATA0_4K 0x21
658 #define TLB_DATA0_4M 0x22
659 #define TLB_DATA0_2M_4M 0x23
661 #define STLB_4K 0x41
662 #define STLB_4K_2M 0x42
664 static const struct _tlb_table intel_tlb_table[] = {
665 { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
666 { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
667 { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
668 { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
669 { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
670 { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
671 { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages" },
672 { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
673 { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
674 { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
675 { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
676 { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
677 { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
678 { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
679 { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
680 { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
681 { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
682 { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
683 { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" },
684 { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" },
685 { 0x6b, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 8-way associative" },
686 { 0x6c, TLB_DATA_2M_4M, 128, " TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
687 { 0x6d, TLB_DATA_1G, 16, " TLB_DATA 1 GByte pages, fully associative" },
688 { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
689 { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
690 { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
691 { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
692 { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
693 { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
694 { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" },
695 { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" },
696 { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
697 { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
698 { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
699 { 0xc2, TLB_DATA_2M_4M, 16, " TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
700 { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
701 { 0x00, 0, 0 }
704 static void intel_tlb_lookup(const unsigned char desc)
706 unsigned char k;
707 if (desc == 0)
708 return;
710 /* look up this descriptor in the table */
711 for (k = 0; intel_tlb_table[k].descriptor != desc &&
712 intel_tlb_table[k].descriptor != 0; k++)
715 if (intel_tlb_table[k].tlb_type == 0)
716 return;
718 switch (intel_tlb_table[k].tlb_type) {
719 case STLB_4K:
720 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
721 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
722 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
723 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
724 break;
725 case STLB_4K_2M:
726 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
727 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
728 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
729 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
730 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
731 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
732 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
733 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
734 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
735 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
736 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
737 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
738 break;
739 case TLB_INST_ALL:
740 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
741 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
742 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
743 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
744 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
745 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
746 break;
747 case TLB_INST_4K:
748 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
749 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
750 break;
751 case TLB_INST_4M:
752 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
753 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
754 break;
755 case TLB_INST_2M_4M:
756 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
757 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
758 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
759 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
760 break;
761 case TLB_DATA_4K:
762 case TLB_DATA0_4K:
763 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
764 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
765 break;
766 case TLB_DATA_4M:
767 case TLB_DATA0_4M:
768 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
769 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
770 break;
771 case TLB_DATA_2M_4M:
772 case TLB_DATA0_2M_4M:
773 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
774 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
775 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
776 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
777 break;
778 case TLB_DATA_4K_4M:
779 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
780 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
781 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
782 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
783 break;
784 case TLB_DATA_1G:
785 if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
786 tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
787 break;
791 static void intel_detect_tlb(struct cpuinfo_x86 *c)
793 int i, j, n;
794 unsigned int regs[4];
795 unsigned char *desc = (unsigned char *)regs;
797 if (c->cpuid_level < 2)
798 return;
800 /* Number of times to iterate */
801 n = cpuid_eax(2) & 0xFF;
803 for (i = 0 ; i < n ; i++) {
804 cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
806 /* If bit 31 is set, this is an unknown format */
807 for (j = 0 ; j < 3 ; j++)
808 if (regs[j] & (1 << 31))
809 regs[j] = 0;
811 /* Byte 0 is level count, not a descriptor */
812 for (j = 1 ; j < 16 ; j++)
813 intel_tlb_lookup(desc[j]);
817 static const struct cpu_dev intel_cpu_dev = {
818 .c_vendor = "Intel",
819 .c_ident = { "GenuineIntel" },
820 #ifdef CONFIG_X86_32
821 .legacy_models = {
822 { .family = 4, .model_names =
824 [0] = "486 DX-25/33",
825 [1] = "486 DX-50",
826 [2] = "486 SX",
827 [3] = "486 DX/2",
828 [4] = "486 SL",
829 [5] = "486 SX/2",
830 [7] = "486 DX/2-WB",
831 [8] = "486 DX/4",
832 [9] = "486 DX/4-WB"
835 { .family = 5, .model_names =
837 [0] = "Pentium 60/66 A-step",
838 [1] = "Pentium 60/66",
839 [2] = "Pentium 75 - 200",
840 [3] = "OverDrive PODP5V83",
841 [4] = "Pentium MMX",
842 [7] = "Mobile Pentium 75 - 200",
843 [8] = "Mobile Pentium MMX",
844 [9] = "Quark SoC X1000",
847 { .family = 6, .model_names =
849 [0] = "Pentium Pro A-step",
850 [1] = "Pentium Pro",
851 [3] = "Pentium II (Klamath)",
852 [4] = "Pentium II (Deschutes)",
853 [5] = "Pentium II (Deschutes)",
854 [6] = "Mobile Pentium II",
855 [7] = "Pentium III (Katmai)",
856 [8] = "Pentium III (Coppermine)",
857 [10] = "Pentium III (Cascades)",
858 [11] = "Pentium III (Tualatin)",
861 { .family = 15, .model_names =
863 [0] = "Pentium 4 (Unknown)",
864 [1] = "Pentium 4 (Willamette)",
865 [2] = "Pentium 4 (Northwood)",
866 [4] = "Pentium 4 (Foster)",
867 [5] = "Pentium 4 (Foster)",
871 .legacy_cache_size = intel_size_cache,
872 #endif
873 .c_detect_tlb = intel_detect_tlb,
874 .c_early_init = early_init_intel,
875 .c_bsp_init = bsp_init_intel,
876 .c_init = init_intel,
877 .c_x86_vendor = X86_VENDOR_INTEL,
880 cpu_dev_register(intel_cpu_dev);
882 #define X86_HYBRID_CPU_TYPE_ID_SHIFT 24
885 * get_this_hybrid_cpu_type() - Get the type of this hybrid CPU
887 * Returns the CPU type [31:24] (i.e., Atom or Core) of a CPU in
888 * a hybrid processor. If the processor is not hybrid, returns 0.
890 u8 get_this_hybrid_cpu_type(void)
892 if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
893 return 0;
895 return cpuid_eax(0x0000001a) >> X86_HYBRID_CPU_TYPE_ID_SHIFT;
899 * get_this_hybrid_cpu_native_id() - Get the native id of this hybrid CPU
901 * Returns the uarch native ID [23:0] of a CPU in a hybrid processor.
902 * If the processor is not hybrid, returns 0.
904 u32 get_this_hybrid_cpu_native_id(void)
906 if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
907 return 0;
909 return cpuid_eax(0x0000001a) &
910 (BIT_ULL(X86_HYBRID_CPU_TYPE_ID_SHIFT) - 1);