drm/modes: Fix drm_mode_vrefres() docs
[drm/drm-misc.git] / arch / x86 / kernel / smpboot.c
blobb5a8f0891135b1c0802e5f450041bf0d0e4ab64f
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * x86 SMP booting functions
5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7 * Copyright 2001 Andi Kleen, SuSE Labs.
9 * Much of the core SMP work is based on previous work by Thomas Radke, to
10 * whom a great many thanks are extended.
12 * Thanks to Intel for making available several different Pentium,
13 * Pentium Pro and Pentium-II/Xeon MP machines.
14 * Original development of Linux SMP code supported by Caldera.
16 * Fixes
17 * Felix Koop : NR_CPUS used properly
18 * Jose Renau : Handle single CPU case.
19 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
20 * Greg Wright : Fix for kernel stacks panic.
21 * Erich Boleyn : MP v1.4 and additional changes.
22 * Matthias Sattler : Changes for 2.1 kernel map.
23 * Michel Lespinasse : Changes for 2.1 kernel map.
24 * Michael Chastain : Change trampoline.S to gnu as.
25 * Alan Cox : Dumb bug: 'B' step PPro's are fine
26 * Ingo Molnar : Added APIC timers, based on code
27 * from Jose Renau
28 * Ingo Molnar : various cleanups and rewrites
29 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
30 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
31 * Andi Kleen : Changed for SMP boot into long mode.
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
35 * Andi Kleen : Converted to new state machine.
36 * Ashok Raj : CPU hotplug support
37 * Glauber Costa : i386 and x86_64 integration
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/kexec.h>
57 #include <linux/numa.h>
58 #include <linux/pgtable.h>
59 #include <linux/overflow.h>
60 #include <linux/stackprotector.h>
61 #include <linux/cpuhotplug.h>
62 #include <linux/mc146818rtc.h>
63 #include <linux/acpi.h>
65 #include <asm/acpi.h>
66 #include <asm/cacheinfo.h>
67 #include <asm/desc.h>
68 #include <asm/nmi.h>
69 #include <asm/irq.h>
70 #include <asm/realmode.h>
71 #include <asm/cpu.h>
72 #include <asm/numa.h>
73 #include <asm/tlbflush.h>
74 #include <asm/mtrr.h>
75 #include <asm/mwait.h>
76 #include <asm/apic.h>
77 #include <asm/io_apic.h>
78 #include <asm/fpu/api.h>
79 #include <asm/setup.h>
80 #include <asm/uv/uv.h>
81 #include <asm/microcode.h>
82 #include <asm/i8259.h>
83 #include <asm/misc.h>
84 #include <asm/qspinlock.h>
85 #include <asm/intel-family.h>
86 #include <asm/cpu_device_id.h>
87 #include <asm/spec-ctrl.h>
88 #include <asm/hw_irq.h>
89 #include <asm/stackprotector.h>
90 #include <asm/sev.h>
91 #include <asm/spec-ctrl.h>
93 /* representing HT siblings of each logical CPU */
94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
95 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
97 /* representing HT and core siblings of each logical CPU */
98 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
99 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
101 /* representing HT, core, and die siblings of each logical CPU */
102 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
103 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
105 /* CPUs which are the primary SMT threads */
106 struct cpumask __cpu_primary_thread_mask __read_mostly;
108 /* Representing CPUs for which sibling maps can be computed */
109 static cpumask_var_t cpu_sibling_setup_mask;
111 struct mwait_cpu_dead {
112 unsigned int control;
113 unsigned int status;
116 #define CPUDEAD_MWAIT_WAIT 0xDEADBEEF
117 #define CPUDEAD_MWAIT_KEXEC_HLT 0x4A17DEAD
120 * Cache line aligned data for mwait_play_dead(). Separate on purpose so
121 * that it's unlikely to be touched by other CPUs.
123 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
125 /* Maximum number of SMT threads on any online core */
126 int __read_mostly __max_smt_threads = 1;
128 /* Flag to indicate if a complete sched domain rebuild is required */
129 bool x86_topology_update;
131 int arch_update_cpu_topology(void)
133 int retval = x86_topology_update;
135 x86_topology_update = false;
136 return retval;
139 static unsigned int smpboot_warm_reset_vector_count;
141 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
143 unsigned long flags;
145 spin_lock_irqsave(&rtc_lock, flags);
146 if (!smpboot_warm_reset_vector_count++) {
147 CMOS_WRITE(0xa, 0xf);
148 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
149 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
151 spin_unlock_irqrestore(&rtc_lock, flags);
154 static inline void smpboot_restore_warm_reset_vector(void)
156 unsigned long flags;
159 * Paranoid: Set warm reset code and vector here back
160 * to default values.
162 spin_lock_irqsave(&rtc_lock, flags);
163 if (!--smpboot_warm_reset_vector_count) {
164 CMOS_WRITE(0, 0xf);
165 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
167 spin_unlock_irqrestore(&rtc_lock, flags);
171 /* Run the next set of setup steps for the upcoming CPU */
172 static void ap_starting(void)
174 int cpuid = smp_processor_id();
176 /* Mop up eventual mwait_play_dead() wreckage */
177 this_cpu_write(mwait_cpu_dead.status, 0);
178 this_cpu_write(mwait_cpu_dead.control, 0);
181 * If woken up by an INIT in an 82489DX configuration the alive
182 * synchronization guarantees that the CPU does not reach this
183 * point before an INIT_deassert IPI reaches the local APIC, so it
184 * is now safe to touch the local APIC.
186 * Set up this CPU, first the APIC, which is probably redundant on
187 * most boards.
189 apic_ap_setup();
191 /* Save the processor parameters. */
192 smp_store_cpu_info(cpuid);
195 * The topology information must be up to date before
196 * notify_cpu_starting().
198 set_cpu_sibling_map(cpuid);
200 ap_init_aperfmperf();
202 pr_debug("Stack at about %p\n", &cpuid);
204 wmb();
207 * This runs the AP through all the cpuhp states to its target
208 * state CPUHP_ONLINE.
210 notify_cpu_starting(cpuid);
213 static void ap_calibrate_delay(void)
216 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
217 * smp_store_cpu_info() stored a value that is close but not as
218 * accurate as the value just calculated.
220 * As this is invoked after the TSC synchronization check,
221 * calibrate_delay_is_known() will skip the calibration routine
222 * when TSC is synchronized across sockets.
224 calibrate_delay();
225 cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
229 * Activate a secondary processor.
231 static void notrace start_secondary(void *unused)
234 * Don't put *anything* except direct CPU state initialization
235 * before cpu_init(), SMP booting is too fragile that we want to
236 * limit the things done here to the most necessary things.
238 cr4_init();
241 * 32-bit specific. 64-bit reaches this code with the correct page
242 * table established. Yet another historical divergence.
244 if (IS_ENABLED(CONFIG_X86_32)) {
245 /* switch away from the initial page table */
246 load_cr3(swapper_pg_dir);
247 __flush_tlb_all();
250 cpu_init_exception_handling(false);
253 * Load the microcode before reaching the AP alive synchronization
254 * point below so it is not part of the full per CPU serialized
255 * bringup part when "parallel" bringup is enabled.
257 * That's even safe when hyperthreading is enabled in the CPU as
258 * the core code starts the primary threads first and leaves the
259 * secondary threads waiting for SIPI. Loading microcode on
260 * physical cores concurrently is a safe operation.
262 * This covers both the Intel specific issue that concurrent
263 * microcode loading on SMT siblings must be prohibited and the
264 * vendor independent issue`that microcode loading which changes
265 * CPUID, MSRs etc. must be strictly serialized to maintain
266 * software state correctness.
268 load_ucode_ap();
271 * Synchronization point with the hotplug core. Sets this CPUs
272 * synchronization state to ALIVE and spin-waits for the control CPU to
273 * release this CPU for further bringup.
275 cpuhp_ap_sync_alive();
277 cpu_init();
278 fpu__init_cpu();
279 rcutree_report_cpu_starting(raw_smp_processor_id());
280 x86_cpuinit.early_percpu_clock_init();
282 ap_starting();
284 /* Check TSC synchronization with the control CPU. */
285 check_tsc_sync_target();
288 * Calibrate the delay loop after the TSC synchronization check.
289 * This allows to skip the calibration when TSC is synchronized
290 * across sockets.
292 ap_calibrate_delay();
294 speculative_store_bypass_ht_init();
297 * Lock vector_lock, set CPU online and bring the vector
298 * allocator online. Online must be set with vector_lock held
299 * to prevent a concurrent irq setup/teardown from seeing a
300 * half valid vector space.
302 lock_vector_lock();
303 set_cpu_online(smp_processor_id(), true);
304 lapic_online();
305 unlock_vector_lock();
306 x86_platform.nmi_init();
308 /* enable local interrupts */
309 local_irq_enable();
311 x86_cpuinit.setup_percpu_clockev();
313 wmb();
314 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
318 * The bootstrap kernel entry code has set these up. Save them for
319 * a given CPU
321 void smp_store_cpu_info(int id)
323 struct cpuinfo_x86 *c = &cpu_data(id);
325 /* Copy boot_cpu_data only on the first bringup */
326 if (!c->initialized)
327 *c = boot_cpu_data;
328 c->cpu_index = id;
330 * During boot time, CPU0 has this setup already. Save the info when
331 * bringing up an AP.
333 identify_secondary_cpu(c);
334 c->initialized = true;
337 static bool
338 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
340 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
342 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
345 static bool
346 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
348 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
350 return !WARN_ONCE(!topology_same_node(c, o),
351 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
352 "[node: %d != %d]. Ignoring dependency.\n",
353 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
356 #define link_mask(mfunc, c1, c2) \
357 do { \
358 cpumask_set_cpu((c1), mfunc(c2)); \
359 cpumask_set_cpu((c2), mfunc(c1)); \
360 } while (0)
362 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
364 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
365 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
367 if (c->topo.pkg_id == o->topo.pkg_id &&
368 c->topo.die_id == o->topo.die_id &&
369 c->topo.amd_node_id == o->topo.amd_node_id &&
370 per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) {
371 if (c->topo.core_id == o->topo.core_id)
372 return topology_sane(c, o, "smt");
374 if ((c->topo.cu_id != 0xff) &&
375 (o->topo.cu_id != 0xff) &&
376 (c->topo.cu_id == o->topo.cu_id))
377 return topology_sane(c, o, "smt");
380 } else if (c->topo.pkg_id == o->topo.pkg_id &&
381 c->topo.die_id == o->topo.die_id &&
382 c->topo.core_id == o->topo.core_id) {
383 return topology_sane(c, o, "smt");
386 return false;
389 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
391 if (c->topo.pkg_id != o->topo.pkg_id || c->topo.die_id != o->topo.die_id)
392 return false;
394 if (cpu_feature_enabled(X86_FEATURE_TOPOEXT) && topology_amd_nodes_per_pkg() > 1)
395 return c->topo.amd_node_id == o->topo.amd_node_id;
397 return true;
400 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
402 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
404 /* If the arch didn't set up l2c_id, fall back to SMT */
405 if (per_cpu_l2c_id(cpu1) == BAD_APICID)
406 return match_smt(c, o);
408 /* Do not match if L2 cache id does not match: */
409 if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2))
410 return false;
412 return topology_sane(c, o, "l2c");
416 * Unlike the other levels, we do not enforce keeping a
417 * multicore group inside a NUMA node. If this happens, we will
418 * discard the MC level of the topology later.
420 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
422 if (c->topo.pkg_id == o->topo.pkg_id)
423 return true;
424 return false;
428 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
430 * Any Intel CPU that has multiple nodes per package and does not
431 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
433 * When in SNC mode, these CPUs enumerate an LLC that is shared
434 * by multiple NUMA nodes. The LLC is shared for off-package data
435 * access but private to the NUMA node (half of the package) for
436 * on-package access. CPUID (the source of the information about
437 * the LLC) can only enumerate the cache as shared or unshared,
438 * but not this particular configuration.
441 static const struct x86_cpu_id intel_cod_cpu[] = {
442 X86_MATCH_VFM(INTEL_HASWELL_X, 0), /* COD */
443 X86_MATCH_VFM(INTEL_BROADWELL_X, 0), /* COD */
444 X86_MATCH_VFM(INTEL_ANY, 1), /* SNC */
448 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
450 const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
451 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
452 bool intel_snc = id && id->driver_data;
454 /* Do not match if we do not have a valid APICID for cpu: */
455 if (per_cpu_llc_id(cpu1) == BAD_APICID)
456 return false;
458 /* Do not match if LLC id does not match: */
459 if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2))
460 return false;
463 * Allow the SNC topology without warning. Return of false
464 * means 'c' does not share the LLC of 'o'. This will be
465 * reflected to userspace.
467 if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
468 return false;
470 return topology_sane(c, o, "llc");
474 static inline int x86_sched_itmt_flags(void)
476 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
479 #ifdef CONFIG_SCHED_MC
480 static int x86_core_flags(void)
482 return cpu_core_flags() | x86_sched_itmt_flags();
484 #endif
485 #ifdef CONFIG_SCHED_SMT
486 static int x86_smt_flags(void)
488 return cpu_smt_flags();
490 #endif
491 #ifdef CONFIG_SCHED_CLUSTER
492 static int x86_cluster_flags(void)
494 return cpu_cluster_flags() | x86_sched_itmt_flags();
496 #endif
498 static int x86_die_flags(void)
500 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU) ||
501 cpu_feature_enabled(X86_FEATURE_AMD_HETEROGENEOUS_CORES))
502 return x86_sched_itmt_flags();
504 return 0;
508 * Set if a package/die has multiple NUMA nodes inside.
509 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
510 * Sub-NUMA Clustering have this.
512 static bool x86_has_numa_in_package;
514 static struct sched_domain_topology_level x86_topology[6];
516 static void __init build_sched_topology(void)
518 int i = 0;
520 #ifdef CONFIG_SCHED_SMT
521 x86_topology[i++] = (struct sched_domain_topology_level){
522 cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
524 #endif
525 #ifdef CONFIG_SCHED_CLUSTER
526 x86_topology[i++] = (struct sched_domain_topology_level){
527 cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
529 #endif
530 #ifdef CONFIG_SCHED_MC
531 x86_topology[i++] = (struct sched_domain_topology_level){
532 cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
534 #endif
536 * When there is NUMA topology inside the package skip the PKG domain
537 * since the NUMA domains will auto-magically create the right spanning
538 * domains based on the SLIT.
540 if (!x86_has_numa_in_package) {
541 x86_topology[i++] = (struct sched_domain_topology_level){
542 cpu_cpu_mask, x86_die_flags, SD_INIT_NAME(PKG)
547 * There must be one trailing NULL entry left.
549 BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
551 set_sched_topology(x86_topology);
554 void set_cpu_sibling_map(int cpu)
556 bool has_smt = __max_threads_per_core > 1;
557 bool has_mp = has_smt || topology_num_cores_per_package() > 1;
558 struct cpuinfo_x86 *c = &cpu_data(cpu);
559 struct cpuinfo_x86 *o;
560 int i, threads;
562 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
564 if (!has_mp) {
565 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
566 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
567 cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
568 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
569 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
570 c->booted_cores = 1;
571 return;
574 for_each_cpu(i, cpu_sibling_setup_mask) {
575 o = &cpu_data(i);
577 if (match_pkg(c, o) && !topology_same_node(c, o))
578 x86_has_numa_in_package = true;
580 if ((i == cpu) || (has_smt && match_smt(c, o)))
581 link_mask(topology_sibling_cpumask, cpu, i);
583 if ((i == cpu) || (has_mp && match_llc(c, o)))
584 link_mask(cpu_llc_shared_mask, cpu, i);
586 if ((i == cpu) || (has_mp && match_l2c(c, o)))
587 link_mask(cpu_l2c_shared_mask, cpu, i);
589 if ((i == cpu) || (has_mp && match_die(c, o)))
590 link_mask(topology_die_cpumask, cpu, i);
593 threads = cpumask_weight(topology_sibling_cpumask(cpu));
594 if (threads > __max_smt_threads)
595 __max_smt_threads = threads;
597 for_each_cpu(i, topology_sibling_cpumask(cpu))
598 cpu_data(i).smt_active = threads > 1;
601 * This needs a separate iteration over the cpus because we rely on all
602 * topology_sibling_cpumask links to be set-up.
604 for_each_cpu(i, cpu_sibling_setup_mask) {
605 o = &cpu_data(i);
607 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
608 link_mask(topology_core_cpumask, cpu, i);
611 * Does this new cpu bringup a new core?
613 if (threads == 1) {
615 * for each core in package, increment
616 * the booted_cores for this new cpu
618 if (cpumask_first(
619 topology_sibling_cpumask(i)) == i)
620 c->booted_cores++;
622 * increment the core count for all
623 * the other cpus in this package
625 if (i != cpu)
626 cpu_data(i).booted_cores++;
627 } else if (i != cpu && !c->booted_cores)
628 c->booted_cores = cpu_data(i).booted_cores;
633 /* maps the cpu to the sched domain representing multi-core */
634 const struct cpumask *cpu_coregroup_mask(int cpu)
636 return cpu_llc_shared_mask(cpu);
639 const struct cpumask *cpu_clustergroup_mask(int cpu)
641 return cpu_l2c_shared_mask(cpu);
643 EXPORT_SYMBOL_GPL(cpu_clustergroup_mask);
645 static void impress_friends(void)
647 int cpu;
648 unsigned long bogosum = 0;
650 * Allow the user to impress friends.
652 pr_debug("Before bogomips\n");
653 for_each_online_cpu(cpu)
654 bogosum += cpu_data(cpu).loops_per_jiffy;
656 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
657 num_online_cpus(),
658 bogosum/(500000/HZ),
659 (bogosum/(5000/HZ))%100);
661 pr_debug("Before bogocount - setting activated=1\n");
665 * The Multiprocessor Specification 1.4 (1997) example code suggests
666 * that there should be a 10ms delay between the BSP asserting INIT
667 * and de-asserting INIT, when starting a remote processor.
668 * But that slows boot and resume on modern processors, which include
669 * many cores and don't require that delay.
671 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
672 * Modern processor families are quirked to remove the delay entirely.
674 #define UDELAY_10MS_DEFAULT 10000
676 static unsigned int init_udelay = UINT_MAX;
678 static int __init cpu_init_udelay(char *str)
680 get_option(&str, &init_udelay);
682 return 0;
684 early_param("cpu_init_udelay", cpu_init_udelay);
686 static void __init smp_quirk_init_udelay(void)
688 /* if cmdline changed it from default, leave it alone */
689 if (init_udelay != UINT_MAX)
690 return;
692 /* if modern processor, use no delay */
693 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
694 ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
695 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
696 init_udelay = 0;
697 return;
699 /* else, use legacy delay */
700 init_udelay = UDELAY_10MS_DEFAULT;
704 * Wake up AP by INIT, INIT, STARTUP sequence.
706 static void send_init_sequence(u32 phys_apicid)
708 int maxlvt = lapic_get_maxlvt();
710 /* Be paranoid about clearing APIC errors. */
711 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
712 /* Due to the Pentium erratum 3AP. */
713 if (maxlvt > 3)
714 apic_write(APIC_ESR, 0);
715 apic_read(APIC_ESR);
718 /* Assert INIT on the target CPU */
719 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
720 safe_apic_wait_icr_idle();
722 udelay(init_udelay);
724 /* Deassert INIT on the target CPU */
725 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
726 safe_apic_wait_icr_idle();
730 * Wake up AP by INIT, INIT, STARTUP sequence.
732 static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip)
734 unsigned long send_status = 0, accept_status = 0;
735 int num_starts, j, maxlvt;
737 preempt_disable();
738 maxlvt = lapic_get_maxlvt();
739 send_init_sequence(phys_apicid);
741 mb();
744 * Should we send STARTUP IPIs ?
746 * Determine this based on the APIC version.
747 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
749 if (APIC_INTEGRATED(boot_cpu_apic_version))
750 num_starts = 2;
751 else
752 num_starts = 0;
755 * Run STARTUP IPI loop.
757 pr_debug("#startup loops: %d\n", num_starts);
759 for (j = 1; j <= num_starts; j++) {
760 pr_debug("Sending STARTUP #%d\n", j);
761 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
762 apic_write(APIC_ESR, 0);
763 apic_read(APIC_ESR);
764 pr_debug("After apic_write\n");
767 * STARTUP IPI
770 /* Target chip */
771 /* Boot on the stack */
772 /* Kick the second */
773 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
774 phys_apicid);
777 * Give the other CPU some time to accept the IPI.
779 if (init_udelay == 0)
780 udelay(10);
781 else
782 udelay(300);
784 pr_debug("Startup point 1\n");
786 pr_debug("Waiting for send to finish...\n");
787 send_status = safe_apic_wait_icr_idle();
790 * Give the other CPU some time to accept the IPI.
792 if (init_udelay == 0)
793 udelay(10);
794 else
795 udelay(200);
797 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
798 apic_write(APIC_ESR, 0);
799 accept_status = (apic_read(APIC_ESR) & 0xEF);
800 if (send_status || accept_status)
801 break;
803 pr_debug("After Startup\n");
805 if (send_status)
806 pr_err("APIC never delivered???\n");
807 if (accept_status)
808 pr_err("APIC delivery error (%lx)\n", accept_status);
810 preempt_enable();
811 return (send_status | accept_status);
814 /* reduce the number of lines printed when booting a large cpu count system */
815 static void announce_cpu(int cpu, int apicid)
817 static int width, node_width, first = 1;
818 static int current_node = NUMA_NO_NODE;
819 int node = early_cpu_to_node(cpu);
821 if (!width)
822 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
824 if (!node_width)
825 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
827 if (system_state < SYSTEM_RUNNING) {
828 if (first)
829 pr_info("x86: Booting SMP configuration:\n");
831 if (node != current_node) {
832 if (current_node > (-1))
833 pr_cont("\n");
834 current_node = node;
836 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
837 node_width - num_digits(node), " ", node);
840 /* Add padding for the BSP */
841 if (first)
842 pr_cont("%*s", width + 1, " ");
843 first = 0;
845 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
846 } else
847 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
848 node, cpu, apicid);
851 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
853 int ret;
855 /* Just in case we booted with a single CPU. */
856 alternatives_enable_smp();
858 per_cpu(pcpu_hot.current_task, cpu) = idle;
859 cpu_init_stack_canary(cpu, idle);
861 /* Initialize the interrupt stack(s) */
862 ret = irq_init_percpu_irqstack(cpu);
863 if (ret)
864 return ret;
866 #ifdef CONFIG_X86_32
867 /* Stack for startup_32 can be just as for start_secondary onwards */
868 per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
869 #endif
870 return 0;
874 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
875 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
876 * Returns zero if startup was successfully sent, else error code from
877 * ->wakeup_secondary_cpu.
879 static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle)
881 unsigned long start_ip = real_mode_header->trampoline_start;
882 int ret;
884 #ifdef CONFIG_X86_64
885 /* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
886 if (apic->wakeup_secondary_cpu_64)
887 start_ip = real_mode_header->trampoline_start64;
888 #endif
889 idle->thread.sp = (unsigned long)task_pt_regs(idle);
890 initial_code = (unsigned long)start_secondary;
892 if (IS_ENABLED(CONFIG_X86_32)) {
893 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
894 initial_stack = idle->thread.sp;
895 } else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
896 smpboot_control = cpu;
899 /* Enable the espfix hack for this CPU */
900 init_espfix_ap(cpu);
902 /* So we see what's up */
903 announce_cpu(cpu, apicid);
906 * This grunge runs the startup process for
907 * the targeted processor.
909 if (x86_platform.legacy.warm_reset) {
911 pr_debug("Setting warm reset code and vector.\n");
913 smpboot_setup_warm_reset_vector(start_ip);
915 * Be paranoid about clearing APIC errors.
917 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
918 apic_write(APIC_ESR, 0);
919 apic_read(APIC_ESR);
923 smp_mb();
926 * Wake up a CPU in difference cases:
927 * - Use a method from the APIC driver if one defined, with wakeup
928 * straight to 64-bit mode preferred over wakeup to RM.
929 * Otherwise,
930 * - Use an INIT boot APIC message
932 if (apic->wakeup_secondary_cpu_64)
933 ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
934 else if (apic->wakeup_secondary_cpu)
935 ret = apic->wakeup_secondary_cpu(apicid, start_ip);
936 else
937 ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
939 /* If the wakeup mechanism failed, cleanup the warm reset vector */
940 if (ret)
941 arch_cpuhp_cleanup_kick_cpu(cpu);
942 return ret;
945 int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
947 u32 apicid = apic->cpu_present_to_apicid(cpu);
948 int err;
950 lockdep_assert_irqs_enabled();
952 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
954 if (apicid == BAD_APICID || !apic_id_valid(apicid)) {
955 pr_err("CPU %u has invalid APIC ID %x. Aborting bringup\n", cpu, apicid);
956 return -EINVAL;
959 if (!test_bit(apicid, phys_cpu_present_map)) {
960 pr_err("CPU %u APIC ID %x is not present. Aborting bringup\n", cpu, apicid);
961 return -EINVAL;
965 * Save current MTRR state in case it was changed since early boot
966 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
968 mtrr_save_state();
970 /* the FPU context is blank, nobody can own it */
971 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
973 err = common_cpu_up(cpu, tidle);
974 if (err)
975 return err;
977 err = do_boot_cpu(apicid, cpu, tidle);
978 if (err)
979 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
981 return err;
984 int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
986 return smp_ops.kick_ap_alive(cpu, tidle);
989 void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
991 /* Cleanup possible dangling ends... */
992 if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
993 smpboot_restore_warm_reset_vector();
996 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
998 if (smp_ops.cleanup_dead_cpu)
999 smp_ops.cleanup_dead_cpu(cpu);
1001 if (system_state == SYSTEM_RUNNING)
1002 pr_info("CPU %u is now offline\n", cpu);
1005 void arch_cpuhp_sync_state_poll(void)
1007 if (smp_ops.poll_sync_state)
1008 smp_ops.poll_sync_state();
1012 * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1014 void __init arch_disable_smp_support(void)
1016 disable_ioapic_support();
1020 * Fall back to non SMP mode after errors.
1022 * RED-PEN audit/test this more. I bet there is more state messed up here.
1024 static __init void disable_smp(void)
1026 pr_info("SMP disabled\n");
1028 disable_ioapic_support();
1029 topology_reset_possible_cpus_up();
1031 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1032 cpumask_set_cpu(0, topology_core_cpumask(0));
1033 cpumask_set_cpu(0, topology_die_cpumask(0));
1036 void __init smp_prepare_cpus_common(void)
1038 unsigned int cpu, node;
1040 /* Mark all except the boot CPU as hotpluggable */
1041 for_each_possible_cpu(cpu) {
1042 if (cpu)
1043 per_cpu(cpu_info.cpu_index, cpu) = nr_cpu_ids;
1046 for_each_possible_cpu(cpu) {
1047 node = cpu_to_node(cpu);
1049 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), GFP_KERNEL, node);
1050 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), GFP_KERNEL, node);
1051 zalloc_cpumask_var_node(&per_cpu(cpu_die_map, cpu), GFP_KERNEL, node);
1052 zalloc_cpumask_var_node(&per_cpu(cpu_llc_shared_map, cpu), GFP_KERNEL, node);
1053 zalloc_cpumask_var_node(&per_cpu(cpu_l2c_shared_map, cpu), GFP_KERNEL, node);
1056 set_cpu_sibling_map(0);
1059 void __init smp_prepare_boot_cpu(void)
1061 smp_ops.smp_prepare_boot_cpu();
1064 #ifdef CONFIG_X86_64
1065 /* Establish whether parallel bringup can be supported. */
1066 bool __init arch_cpuhp_init_parallel_bringup(void)
1068 if (!x86_cpuinit.parallel_bringup) {
1069 pr_info("Parallel CPU startup disabled by the platform\n");
1070 return false;
1073 smpboot_control = STARTUP_READ_APICID;
1074 pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1075 return true;
1077 #endif
1080 * Prepare for SMP bootup.
1081 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1082 * for common interface support.
1084 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1086 smp_prepare_cpus_common();
1088 switch (apic_intr_mode) {
1089 case APIC_PIC:
1090 case APIC_VIRTUAL_WIRE_NO_CONFIG:
1091 disable_smp();
1092 return;
1093 case APIC_SYMMETRIC_IO_NO_ROUTING:
1094 disable_smp();
1095 /* Setup local timer */
1096 x86_init.timers.setup_percpu_clockev();
1097 return;
1098 case APIC_VIRTUAL_WIRE:
1099 case APIC_SYMMETRIC_IO:
1100 break;
1103 /* Setup local timer */
1104 x86_init.timers.setup_percpu_clockev();
1106 pr_info("CPU0: ");
1107 print_cpu_info(&cpu_data(0));
1109 uv_system_init();
1111 smp_quirk_init_udelay();
1113 speculative_store_bypass_ht_init();
1115 snp_set_wakeup_secondary_cpu();
1118 void arch_thaw_secondary_cpus_begin(void)
1120 set_cache_aps_delayed_init(true);
1123 void arch_thaw_secondary_cpus_end(void)
1125 cache_aps_init();
1129 * Early setup to make printk work.
1131 void __init native_smp_prepare_boot_cpu(void)
1133 int me = smp_processor_id();
1135 /* SMP handles this from setup_per_cpu_areas() */
1136 if (!IS_ENABLED(CONFIG_SMP))
1137 switch_gdt_and_percpu_base(me);
1139 native_pv_lock_init();
1142 void __init native_smp_cpus_done(unsigned int max_cpus)
1144 pr_debug("Boot done\n");
1146 build_sched_topology();
1147 nmi_selftest();
1148 impress_friends();
1149 cache_aps_init();
1152 /* correctly size the local cpu masks */
1153 void __init setup_cpu_local_masks(void)
1155 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1158 #ifdef CONFIG_HOTPLUG_CPU
1160 /* Recompute SMT state for all CPUs on offline */
1161 static void recompute_smt_state(void)
1163 int max_threads, cpu;
1165 max_threads = 0;
1166 for_each_online_cpu (cpu) {
1167 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1169 if (threads > max_threads)
1170 max_threads = threads;
1172 __max_smt_threads = max_threads;
1175 static void remove_siblinginfo(int cpu)
1177 int sibling;
1178 struct cpuinfo_x86 *c = &cpu_data(cpu);
1180 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1181 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1183 * last thread sibling in this cpu core going down
1185 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1186 cpu_data(sibling).booted_cores--;
1189 for_each_cpu(sibling, topology_die_cpumask(cpu))
1190 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1192 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1193 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1194 if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1195 cpu_data(sibling).smt_active = false;
1198 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1199 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1200 for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1201 cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1202 cpumask_clear(cpu_llc_shared_mask(cpu));
1203 cpumask_clear(cpu_l2c_shared_mask(cpu));
1204 cpumask_clear(topology_sibling_cpumask(cpu));
1205 cpumask_clear(topology_core_cpumask(cpu));
1206 cpumask_clear(topology_die_cpumask(cpu));
1207 c->topo.core_id = 0;
1208 c->booted_cores = 0;
1209 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1210 recompute_smt_state();
1213 static void remove_cpu_from_maps(int cpu)
1215 set_cpu_online(cpu, false);
1216 numa_remove_cpu(cpu);
1219 void cpu_disable_common(void)
1221 int cpu = smp_processor_id();
1223 remove_siblinginfo(cpu);
1225 /* It's now safe to remove this processor from the online map */
1226 lock_vector_lock();
1227 remove_cpu_from_maps(cpu);
1228 unlock_vector_lock();
1229 fixup_irqs();
1230 lapic_offline();
1233 int native_cpu_disable(void)
1235 int ret;
1237 ret = lapic_can_unplug_cpu();
1238 if (ret)
1239 return ret;
1241 cpu_disable_common();
1244 * Disable the local APIC. Otherwise IPI broadcasts will reach
1245 * it. It still responds normally to INIT, NMI, SMI, and SIPI
1246 * messages.
1248 * Disabling the APIC must happen after cpu_disable_common()
1249 * which invokes fixup_irqs().
1251 * Disabling the APIC preserves already set bits in IRR, but
1252 * an interrupt arriving after disabling the local APIC does not
1253 * set the corresponding IRR bit.
1255 * fixup_irqs() scans IRR for set bits so it can raise a not
1256 * yet handled interrupt on the new destination CPU via an IPI
1257 * but obviously it can't do so for IRR bits which are not set.
1258 * IOW, interrupts arriving after disabling the local APIC will
1259 * be lost.
1261 apic_soft_disable();
1263 return 0;
1266 void play_dead_common(void)
1268 idle_task_exit();
1270 cpuhp_ap_report_dead();
1272 local_irq_disable();
1276 * We need to flush the caches before going to sleep, lest we have
1277 * dirty data in our caches when we come back up.
1279 static inline void mwait_play_dead(void)
1281 struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1282 unsigned int eax, ebx, ecx, edx;
1283 unsigned int highest_cstate = 0;
1284 unsigned int highest_subcstate = 0;
1285 int i;
1287 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1288 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1289 return;
1290 if (!this_cpu_has(X86_FEATURE_MWAIT))
1291 return;
1292 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1293 return;
1294 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1295 return;
1297 eax = CPUID_MWAIT_LEAF;
1298 ecx = 0;
1299 native_cpuid(&eax, &ebx, &ecx, &edx);
1302 * eax will be 0 if EDX enumeration is not valid.
1303 * Initialized below to cstate, sub_cstate value when EDX is valid.
1305 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1306 eax = 0;
1307 } else {
1308 edx >>= MWAIT_SUBSTATE_SIZE;
1309 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1310 if (edx & MWAIT_SUBSTATE_MASK) {
1311 highest_cstate = i;
1312 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1315 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1316 (highest_subcstate - 1);
1319 /* Set up state for the kexec() hack below */
1320 md->status = CPUDEAD_MWAIT_WAIT;
1321 md->control = CPUDEAD_MWAIT_WAIT;
1323 wbinvd();
1325 while (1) {
1327 * The CLFLUSH is a workaround for erratum AAI65 for
1328 * the Xeon 7400 series. It's not clear it is actually
1329 * needed, but it should be harmless in either case.
1330 * The WBINVD is insufficient due to the spurious-wakeup
1331 * case where we return around the loop.
1333 mb();
1334 clflush(md);
1335 mb();
1336 __monitor(md, 0, 0);
1337 mb();
1338 __mwait(eax, 0);
1340 if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1342 * Kexec is about to happen. Don't go back into mwait() as
1343 * the kexec kernel might overwrite text and data including
1344 * page tables and stack. So mwait() would resume when the
1345 * monitor cache line is written to and then the CPU goes
1346 * south due to overwritten text, page tables and stack.
1348 * Note: This does _NOT_ protect against a stray MCE, NMI,
1349 * SMI. They will resume execution at the instruction
1350 * following the HLT instruction and run into the problem
1351 * which this is trying to prevent.
1353 WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1354 while(1)
1355 native_halt();
1361 * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1362 * mwait_play_dead().
1364 void smp_kick_mwait_play_dead(void)
1366 u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1367 struct mwait_cpu_dead *md;
1368 unsigned int cpu, i;
1370 for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1371 md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1373 /* Does it sit in mwait_play_dead() ? */
1374 if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1375 continue;
1377 /* Wait up to 5ms */
1378 for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1379 /* Bring it out of mwait */
1380 WRITE_ONCE(md->control, newstate);
1381 udelay(5);
1384 if (READ_ONCE(md->status) != newstate)
1385 pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1389 void __noreturn hlt_play_dead(void)
1391 if (__this_cpu_read(cpu_info.x86) >= 4)
1392 wbinvd();
1394 while (1)
1395 native_halt();
1399 * native_play_dead() is essentially a __noreturn function, but it can't
1400 * be marked as such as the compiler may complain about it.
1402 void native_play_dead(void)
1404 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
1405 __update_spec_ctrl(0);
1407 play_dead_common();
1408 tboot_shutdown(TB_SHUTDOWN_WFS);
1410 mwait_play_dead();
1411 if (cpuidle_play_dead())
1412 hlt_play_dead();
1415 #else /* ... !CONFIG_HOTPLUG_CPU */
1416 int native_cpu_disable(void)
1418 return -ENOSYS;
1421 void native_play_dead(void)
1423 BUG();
1426 #endif