accel/qaic: Add AIC200 support
[drm/drm-misc.git] / arch / x86 / kvm / svm / sev.c
blob943bd074a5d37212a1fdf1f01e42f1c8f0e416c6
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
5 * AMD SVM-SEV support
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kvm_types.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <linux/highmem.h>
15 #include <linux/psp.h>
16 #include <linux/psp-sev.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/misc_cgroup.h>
20 #include <linux/processor.h>
21 #include <linux/trace_events.h>
22 #include <uapi/linux/sev-guest.h>
24 #include <asm/pkru.h>
25 #include <asm/trapnr.h>
26 #include <asm/fpu/xcr.h>
27 #include <asm/fpu/xstate.h>
28 #include <asm/debugreg.h>
29 #include <asm/sev.h>
31 #include "mmu.h"
32 #include "x86.h"
33 #include "svm.h"
34 #include "svm_ops.h"
35 #include "cpuid.h"
36 #include "trace.h"
38 #define GHCB_VERSION_MAX 2ULL
39 #define GHCB_VERSION_DEFAULT 2ULL
40 #define GHCB_VERSION_MIN 1ULL
42 #define GHCB_HV_FT_SUPPORTED (GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION)
44 /* enable/disable SEV support */
45 static bool sev_enabled = true;
46 module_param_named(sev, sev_enabled, bool, 0444);
48 /* enable/disable SEV-ES support */
49 static bool sev_es_enabled = true;
50 module_param_named(sev_es, sev_es_enabled, bool, 0444);
52 /* enable/disable SEV-SNP support */
53 static bool sev_snp_enabled = true;
54 module_param_named(sev_snp, sev_snp_enabled, bool, 0444);
56 /* enable/disable SEV-ES DebugSwap support */
57 static bool sev_es_debug_swap_enabled = true;
58 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
59 static u64 sev_supported_vmsa_features;
61 #define AP_RESET_HOLD_NONE 0
62 #define AP_RESET_HOLD_NAE_EVENT 1
63 #define AP_RESET_HOLD_MSR_PROTO 2
65 /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */
66 #define SNP_POLICY_MASK_API_MINOR GENMASK_ULL(7, 0)
67 #define SNP_POLICY_MASK_API_MAJOR GENMASK_ULL(15, 8)
68 #define SNP_POLICY_MASK_SMT BIT_ULL(16)
69 #define SNP_POLICY_MASK_RSVD_MBO BIT_ULL(17)
70 #define SNP_POLICY_MASK_DEBUG BIT_ULL(19)
71 #define SNP_POLICY_MASK_SINGLE_SOCKET BIT_ULL(20)
73 #define SNP_POLICY_MASK_VALID (SNP_POLICY_MASK_API_MINOR | \
74 SNP_POLICY_MASK_API_MAJOR | \
75 SNP_POLICY_MASK_SMT | \
76 SNP_POLICY_MASK_RSVD_MBO | \
77 SNP_POLICY_MASK_DEBUG | \
78 SNP_POLICY_MASK_SINGLE_SOCKET)
80 #define INITIAL_VMSA_GPA 0xFFFFFFFFF000
82 static u8 sev_enc_bit;
83 static DECLARE_RWSEM(sev_deactivate_lock);
84 static DEFINE_MUTEX(sev_bitmap_lock);
85 unsigned int max_sev_asid;
86 static unsigned int min_sev_asid;
87 static unsigned long sev_me_mask;
88 static unsigned int nr_asids;
89 static unsigned long *sev_asid_bitmap;
90 static unsigned long *sev_reclaim_asid_bitmap;
92 static int snp_decommission_context(struct kvm *kvm);
94 struct enc_region {
95 struct list_head list;
96 unsigned long npages;
97 struct page **pages;
98 unsigned long uaddr;
99 unsigned long size;
102 /* Called with the sev_bitmap_lock held, or on shutdown */
103 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid)
105 int ret, error = 0;
106 unsigned int asid;
108 /* Check if there are any ASIDs to reclaim before performing a flush */
109 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
110 if (asid > max_asid)
111 return -EBUSY;
114 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
115 * so it must be guarded.
117 down_write(&sev_deactivate_lock);
119 wbinvd_on_all_cpus();
121 if (sev_snp_enabled)
122 ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error);
123 else
124 ret = sev_guest_df_flush(&error);
126 up_write(&sev_deactivate_lock);
128 if (ret)
129 pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n",
130 sev_snp_enabled ? "-SNP" : "", ret, error);
132 return ret;
135 static inline bool is_mirroring_enc_context(struct kvm *kvm)
137 return !!to_kvm_sev_info(kvm)->enc_context_owner;
140 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm)
142 struct kvm_vcpu *vcpu = &svm->vcpu;
143 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
145 return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP;
148 /* Must be called with the sev_bitmap_lock held */
149 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid)
151 if (sev_flush_asids(min_asid, max_asid))
152 return false;
154 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
155 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
156 nr_asids);
157 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
159 return true;
162 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
164 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
165 return misc_cg_try_charge(type, sev->misc_cg, 1);
168 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
170 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
171 misc_cg_uncharge(type, sev->misc_cg, 1);
174 static int sev_asid_new(struct kvm_sev_info *sev)
177 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
178 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
179 * Note: min ASID can end up larger than the max if basic SEV support is
180 * effectively disabled by disallowing use of ASIDs for SEV guests.
182 unsigned int min_asid = sev->es_active ? 1 : min_sev_asid;
183 unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
184 unsigned int asid;
185 bool retry = true;
186 int ret;
188 if (min_asid > max_asid)
189 return -ENOTTY;
191 WARN_ON(sev->misc_cg);
192 sev->misc_cg = get_current_misc_cg();
193 ret = sev_misc_cg_try_charge(sev);
194 if (ret) {
195 put_misc_cg(sev->misc_cg);
196 sev->misc_cg = NULL;
197 return ret;
200 mutex_lock(&sev_bitmap_lock);
202 again:
203 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
204 if (asid > max_asid) {
205 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
206 retry = false;
207 goto again;
209 mutex_unlock(&sev_bitmap_lock);
210 ret = -EBUSY;
211 goto e_uncharge;
214 __set_bit(asid, sev_asid_bitmap);
216 mutex_unlock(&sev_bitmap_lock);
218 sev->asid = asid;
219 return 0;
220 e_uncharge:
221 sev_misc_cg_uncharge(sev);
222 put_misc_cg(sev->misc_cg);
223 sev->misc_cg = NULL;
224 return ret;
227 static unsigned int sev_get_asid(struct kvm *kvm)
229 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
231 return sev->asid;
234 static void sev_asid_free(struct kvm_sev_info *sev)
236 struct svm_cpu_data *sd;
237 int cpu;
239 mutex_lock(&sev_bitmap_lock);
241 __set_bit(sev->asid, sev_reclaim_asid_bitmap);
243 for_each_possible_cpu(cpu) {
244 sd = per_cpu_ptr(&svm_data, cpu);
245 sd->sev_vmcbs[sev->asid] = NULL;
248 mutex_unlock(&sev_bitmap_lock);
250 sev_misc_cg_uncharge(sev);
251 put_misc_cg(sev->misc_cg);
252 sev->misc_cg = NULL;
255 static void sev_decommission(unsigned int handle)
257 struct sev_data_decommission decommission;
259 if (!handle)
260 return;
262 decommission.handle = handle;
263 sev_guest_decommission(&decommission, NULL);
267 * Transition a page to hypervisor-owned/shared state in the RMP table. This
268 * should not fail under normal conditions, but leak the page should that
269 * happen since it will no longer be usable by the host due to RMP protections.
271 static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level)
273 if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) {
274 snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT);
275 return -EIO;
278 return 0;
282 * Certain page-states, such as Pre-Guest and Firmware pages (as documented
283 * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be
284 * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE
285 * unless they are reclaimed first.
287 * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they
288 * might not be usable by the host due to being set as immutable or still
289 * being associated with a guest ASID.
291 * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be
292 * converted back to shared, as the page is no longer usable due to RMP
293 * protections, and it's infeasible for the guest to continue on.
295 static int snp_page_reclaim(struct kvm *kvm, u64 pfn)
297 struct sev_data_snp_page_reclaim data = {0};
298 int fw_err, rc;
300 data.paddr = __sme_set(pfn << PAGE_SHIFT);
301 rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err);
302 if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) {
303 snp_leak_pages(pfn, 1);
304 return -EIO;
307 if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K))
308 return -EIO;
310 return rc;
313 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
315 struct sev_data_deactivate deactivate;
317 if (!handle)
318 return;
320 deactivate.handle = handle;
322 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
323 down_read(&sev_deactivate_lock);
324 sev_guest_deactivate(&deactivate, NULL);
325 up_read(&sev_deactivate_lock);
327 sev_decommission(handle);
331 * This sets up bounce buffers/firmware pages to handle SNP Guest Request
332 * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB
333 * 2.0 specification for more details.
335 * Technically, when an SNP Guest Request is issued, the guest will provide its
336 * own request/response pages, which could in theory be passed along directly
337 * to firmware rather than using bounce pages. However, these pages would need
338 * special care:
340 * - Both pages are from shared guest memory, so they need to be protected
341 * from migration/etc. occurring while firmware reads/writes to them. At a
342 * minimum, this requires elevating the ref counts and potentially needing
343 * an explicit pinning of the memory. This places additional restrictions
344 * on what type of memory backends userspace can use for shared guest
345 * memory since there is some reliance on using refcounted pages.
347 * - The response page needs to be switched to Firmware-owned[1] state
348 * before the firmware can write to it, which can lead to potential
349 * host RMP #PFs if the guest is misbehaved and hands the host a
350 * guest page that KVM might write to for other reasons (e.g. virtio
351 * buffers/etc.).
353 * Both of these issues can be avoided completely by using separately-allocated
354 * bounce pages for both the request/response pages and passing those to
355 * firmware instead. So that's what is being set up here.
357 * Guest requests rely on message sequence numbers to ensure requests are
358 * issued to firmware in the order the guest issues them, so concurrent guest
359 * requests generally shouldn't happen. But a misbehaved guest could issue
360 * concurrent guest requests in theory, so a mutex is used to serialize
361 * access to the bounce buffers.
363 * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more
364 * details on Firmware-owned pages, along with "RMP and VMPL Access Checks"
365 * in the APM for details on the related RMP restrictions.
367 static int snp_guest_req_init(struct kvm *kvm)
369 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
370 struct page *req_page;
372 req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
373 if (!req_page)
374 return -ENOMEM;
376 sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
377 if (!sev->guest_resp_buf) {
378 __free_page(req_page);
379 return -EIO;
382 sev->guest_req_buf = page_address(req_page);
383 mutex_init(&sev->guest_req_mutex);
385 return 0;
388 static void snp_guest_req_cleanup(struct kvm *kvm)
390 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
392 if (sev->guest_resp_buf)
393 snp_free_firmware_page(sev->guest_resp_buf);
395 if (sev->guest_req_buf)
396 __free_page(virt_to_page(sev->guest_req_buf));
398 sev->guest_req_buf = NULL;
399 sev->guest_resp_buf = NULL;
402 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp,
403 struct kvm_sev_init *data,
404 unsigned long vm_type)
406 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
407 struct sev_platform_init_args init_args = {0};
408 bool es_active = vm_type != KVM_X86_SEV_VM;
409 u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0;
410 int ret;
412 if (kvm->created_vcpus)
413 return -EINVAL;
415 if (data->flags)
416 return -EINVAL;
418 if (data->vmsa_features & ~valid_vmsa_features)
419 return -EINVAL;
421 if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version))
422 return -EINVAL;
424 if (unlikely(sev->active))
425 return -EINVAL;
427 sev->active = true;
428 sev->es_active = es_active;
429 sev->vmsa_features = data->vmsa_features;
430 sev->ghcb_version = data->ghcb_version;
433 * Currently KVM supports the full range of mandatory features defined
434 * by version 2 of the GHCB protocol, so default to that for SEV-ES
435 * guests created via KVM_SEV_INIT2.
437 if (sev->es_active && !sev->ghcb_version)
438 sev->ghcb_version = GHCB_VERSION_DEFAULT;
440 if (vm_type == KVM_X86_SNP_VM)
441 sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE;
443 ret = sev_asid_new(sev);
444 if (ret)
445 goto e_no_asid;
447 init_args.probe = false;
448 ret = sev_platform_init(&init_args);
449 if (ret)
450 goto e_free;
452 /* This needs to happen after SEV/SNP firmware initialization. */
453 if (vm_type == KVM_X86_SNP_VM) {
454 ret = snp_guest_req_init(kvm);
455 if (ret)
456 goto e_free;
459 INIT_LIST_HEAD(&sev->regions_list);
460 INIT_LIST_HEAD(&sev->mirror_vms);
461 sev->need_init = false;
463 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
465 return 0;
467 e_free:
468 argp->error = init_args.error;
469 sev_asid_free(sev);
470 sev->asid = 0;
471 e_no_asid:
472 sev->vmsa_features = 0;
473 sev->es_active = false;
474 sev->active = false;
475 return ret;
478 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
480 struct kvm_sev_init data = {
481 .vmsa_features = 0,
482 .ghcb_version = 0,
484 unsigned long vm_type;
486 if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM)
487 return -EINVAL;
489 vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM);
492 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will
493 * continue to only ever support the minimal GHCB protocol version.
495 if (vm_type == KVM_X86_SEV_ES_VM)
496 data.ghcb_version = GHCB_VERSION_MIN;
498 return __sev_guest_init(kvm, argp, &data, vm_type);
501 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp)
503 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
504 struct kvm_sev_init data;
506 if (!sev->need_init)
507 return -EINVAL;
509 if (kvm->arch.vm_type != KVM_X86_SEV_VM &&
510 kvm->arch.vm_type != KVM_X86_SEV_ES_VM &&
511 kvm->arch.vm_type != KVM_X86_SNP_VM)
512 return -EINVAL;
514 if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data)))
515 return -EFAULT;
517 return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type);
520 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
522 unsigned int asid = sev_get_asid(kvm);
523 struct sev_data_activate activate;
524 int ret;
526 /* activate ASID on the given handle */
527 activate.handle = handle;
528 activate.asid = asid;
529 ret = sev_guest_activate(&activate, error);
531 return ret;
534 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
536 CLASS(fd, f)(fd);
538 if (fd_empty(f))
539 return -EBADF;
541 return sev_issue_cmd_external_user(fd_file(f), id, data, error);
544 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
546 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
548 return __sev_issue_cmd(sev->fd, id, data, error);
551 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
553 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
554 struct sev_data_launch_start start;
555 struct kvm_sev_launch_start params;
556 void *dh_blob, *session_blob;
557 int *error = &argp->error;
558 int ret;
560 if (!sev_guest(kvm))
561 return -ENOTTY;
563 if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
564 return -EFAULT;
566 memset(&start, 0, sizeof(start));
568 dh_blob = NULL;
569 if (params.dh_uaddr) {
570 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
571 if (IS_ERR(dh_blob))
572 return PTR_ERR(dh_blob);
574 start.dh_cert_address = __sme_set(__pa(dh_blob));
575 start.dh_cert_len = params.dh_len;
578 session_blob = NULL;
579 if (params.session_uaddr) {
580 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
581 if (IS_ERR(session_blob)) {
582 ret = PTR_ERR(session_blob);
583 goto e_free_dh;
586 start.session_address = __sme_set(__pa(session_blob));
587 start.session_len = params.session_len;
590 start.handle = params.handle;
591 start.policy = params.policy;
593 /* create memory encryption context */
594 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
595 if (ret)
596 goto e_free_session;
598 /* Bind ASID to this guest */
599 ret = sev_bind_asid(kvm, start.handle, error);
600 if (ret) {
601 sev_decommission(start.handle);
602 goto e_free_session;
605 /* return handle to userspace */
606 params.handle = start.handle;
607 if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params))) {
608 sev_unbind_asid(kvm, start.handle);
609 ret = -EFAULT;
610 goto e_free_session;
613 sev->handle = start.handle;
614 sev->fd = argp->sev_fd;
616 e_free_session:
617 kfree(session_blob);
618 e_free_dh:
619 kfree(dh_blob);
620 return ret;
623 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
624 unsigned long ulen, unsigned long *n,
625 int write)
627 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
628 unsigned long npages, size;
629 int npinned;
630 unsigned long locked, lock_limit;
631 struct page **pages;
632 unsigned long first, last;
633 int ret;
635 lockdep_assert_held(&kvm->lock);
637 if (ulen == 0 || uaddr + ulen < uaddr)
638 return ERR_PTR(-EINVAL);
640 /* Calculate number of pages. */
641 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
642 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
643 npages = (last - first + 1);
645 locked = sev->pages_locked + npages;
646 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
647 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
648 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
649 return ERR_PTR(-ENOMEM);
652 if (WARN_ON_ONCE(npages > INT_MAX))
653 return ERR_PTR(-EINVAL);
655 /* Avoid using vmalloc for smaller buffers. */
656 size = npages * sizeof(struct page *);
657 if (size > PAGE_SIZE)
658 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT);
659 else
660 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
662 if (!pages)
663 return ERR_PTR(-ENOMEM);
665 /* Pin the user virtual address. */
666 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
667 if (npinned != npages) {
668 pr_err("SEV: Failure locking %lu pages.\n", npages);
669 ret = -ENOMEM;
670 goto err;
673 *n = npages;
674 sev->pages_locked = locked;
676 return pages;
678 err:
679 if (npinned > 0)
680 unpin_user_pages(pages, npinned);
682 kvfree(pages);
683 return ERR_PTR(ret);
686 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
687 unsigned long npages)
689 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
691 unpin_user_pages(pages, npages);
692 kvfree(pages);
693 sev->pages_locked -= npages;
696 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
698 uint8_t *page_virtual;
699 unsigned long i;
701 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
702 pages == NULL)
703 return;
705 for (i = 0; i < npages; i++) {
706 page_virtual = kmap_local_page(pages[i]);
707 clflush_cache_range(page_virtual, PAGE_SIZE);
708 kunmap_local(page_virtual);
709 cond_resched();
713 static unsigned long get_num_contig_pages(unsigned long idx,
714 struct page **inpages, unsigned long npages)
716 unsigned long paddr, next_paddr;
717 unsigned long i = idx + 1, pages = 1;
719 /* find the number of contiguous pages starting from idx */
720 paddr = __sme_page_pa(inpages[idx]);
721 while (i < npages) {
722 next_paddr = __sme_page_pa(inpages[i++]);
723 if ((paddr + PAGE_SIZE) == next_paddr) {
724 pages++;
725 paddr = next_paddr;
726 continue;
728 break;
731 return pages;
734 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
736 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
737 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
738 struct kvm_sev_launch_update_data params;
739 struct sev_data_launch_update_data data;
740 struct page **inpages;
741 int ret;
743 if (!sev_guest(kvm))
744 return -ENOTTY;
746 if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
747 return -EFAULT;
749 vaddr = params.uaddr;
750 size = params.len;
751 vaddr_end = vaddr + size;
753 /* Lock the user memory. */
754 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
755 if (IS_ERR(inpages))
756 return PTR_ERR(inpages);
759 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
760 * place; the cache may contain the data that was written unencrypted.
762 sev_clflush_pages(inpages, npages);
764 data.reserved = 0;
765 data.handle = sev->handle;
767 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
768 int offset, len;
771 * If the user buffer is not page-aligned, calculate the offset
772 * within the page.
774 offset = vaddr & (PAGE_SIZE - 1);
776 /* Calculate the number of pages that can be encrypted in one go. */
777 pages = get_num_contig_pages(i, inpages, npages);
779 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
781 data.len = len;
782 data.address = __sme_page_pa(inpages[i]) + offset;
783 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
784 if (ret)
785 goto e_unpin;
787 size -= len;
788 next_vaddr = vaddr + len;
791 e_unpin:
792 /* content of memory is updated, mark pages dirty */
793 for (i = 0; i < npages; i++) {
794 set_page_dirty_lock(inpages[i]);
795 mark_page_accessed(inpages[i]);
797 /* unlock the user pages */
798 sev_unpin_memory(kvm, inpages, npages);
799 return ret;
802 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
804 struct kvm_vcpu *vcpu = &svm->vcpu;
805 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
806 struct sev_es_save_area *save = svm->sev_es.vmsa;
807 struct xregs_state *xsave;
808 const u8 *s;
809 u8 *d;
810 int i;
812 /* Check some debug related fields before encrypting the VMSA */
813 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
814 return -EINVAL;
817 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
818 * the traditional VMSA that is part of the VMCB. Copy the
819 * traditional VMSA as it has been built so far (in prep
820 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
822 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
824 /* Sync registgers */
825 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
826 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
827 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
828 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
829 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
830 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
831 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
832 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
833 #ifdef CONFIG_X86_64
834 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8];
835 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9];
836 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
837 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
838 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
839 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
840 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
841 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
842 #endif
843 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
845 /* Sync some non-GPR registers before encrypting */
846 save->xcr0 = svm->vcpu.arch.xcr0;
847 save->pkru = svm->vcpu.arch.pkru;
848 save->xss = svm->vcpu.arch.ia32_xss;
849 save->dr6 = svm->vcpu.arch.dr6;
851 save->sev_features = sev->vmsa_features;
854 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid
855 * breaking older measurements.
857 if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) {
858 xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave;
859 save->x87_dp = xsave->i387.rdp;
860 save->mxcsr = xsave->i387.mxcsr;
861 save->x87_ftw = xsave->i387.twd;
862 save->x87_fsw = xsave->i387.swd;
863 save->x87_fcw = xsave->i387.cwd;
864 save->x87_fop = xsave->i387.fop;
865 save->x87_ds = 0;
866 save->x87_cs = 0;
867 save->x87_rip = xsave->i387.rip;
869 for (i = 0; i < 8; i++) {
871 * The format of the x87 save area is undocumented and
872 * definitely not what you would expect. It consists of
873 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes
874 * area with bytes 8-9 of each register.
876 d = save->fpreg_x87 + i * 8;
877 s = ((u8 *)xsave->i387.st_space) + i * 16;
878 memcpy(d, s, 8);
879 save->fpreg_x87[64 + i * 2] = s[8];
880 save->fpreg_x87[64 + i * 2 + 1] = s[9];
882 memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256);
884 s = get_xsave_addr(xsave, XFEATURE_YMM);
885 if (s)
886 memcpy(save->fpreg_ymm, s, 256);
887 else
888 memset(save->fpreg_ymm, 0, 256);
891 pr_debug("Virtual Machine Save Area (VMSA):\n");
892 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
894 return 0;
897 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
898 int *error)
900 struct sev_data_launch_update_vmsa vmsa;
901 struct vcpu_svm *svm = to_svm(vcpu);
902 int ret;
904 if (vcpu->guest_debug) {
905 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
906 return -EINVAL;
909 /* Perform some pre-encryption checks against the VMSA */
910 ret = sev_es_sync_vmsa(svm);
911 if (ret)
912 return ret;
915 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
916 * the VMSA memory content (i.e it will write the same memory region
917 * with the guest's key), so invalidate it first.
919 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
921 vmsa.reserved = 0;
922 vmsa.handle = to_kvm_sev_info(kvm)->handle;
923 vmsa.address = __sme_pa(svm->sev_es.vmsa);
924 vmsa.len = PAGE_SIZE;
925 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
926 if (ret)
927 return ret;
930 * SEV-ES guests maintain an encrypted version of their FPU
931 * state which is restored and saved on VMRUN and VMEXIT.
932 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
933 * do xsave/xrstor on it.
935 fpstate_set_confidential(&vcpu->arch.guest_fpu);
936 vcpu->arch.guest_state_protected = true;
939 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it
940 * only after setting guest_state_protected because KVM_SET_MSRS allows
941 * dynamic toggling of LBRV (for performance reason) on write access to
942 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
944 svm_enable_lbrv(vcpu);
945 return 0;
948 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
950 struct kvm_vcpu *vcpu;
951 unsigned long i;
952 int ret;
954 if (!sev_es_guest(kvm))
955 return -ENOTTY;
957 kvm_for_each_vcpu(i, vcpu, kvm) {
958 ret = mutex_lock_killable(&vcpu->mutex);
959 if (ret)
960 return ret;
962 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
964 mutex_unlock(&vcpu->mutex);
965 if (ret)
966 return ret;
969 return 0;
972 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
974 void __user *measure = u64_to_user_ptr(argp->data);
975 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
976 struct sev_data_launch_measure data;
977 struct kvm_sev_launch_measure params;
978 void __user *p = NULL;
979 void *blob = NULL;
980 int ret;
982 if (!sev_guest(kvm))
983 return -ENOTTY;
985 if (copy_from_user(&params, measure, sizeof(params)))
986 return -EFAULT;
988 memset(&data, 0, sizeof(data));
990 /* User wants to query the blob length */
991 if (!params.len)
992 goto cmd;
994 p = u64_to_user_ptr(params.uaddr);
995 if (p) {
996 if (params.len > SEV_FW_BLOB_MAX_SIZE)
997 return -EINVAL;
999 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1000 if (!blob)
1001 return -ENOMEM;
1003 data.address = __psp_pa(blob);
1004 data.len = params.len;
1007 cmd:
1008 data.handle = sev->handle;
1009 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
1012 * If we query the session length, FW responded with expected data.
1014 if (!params.len)
1015 goto done;
1017 if (ret)
1018 goto e_free_blob;
1020 if (blob) {
1021 if (copy_to_user(p, blob, params.len))
1022 ret = -EFAULT;
1025 done:
1026 params.len = data.len;
1027 if (copy_to_user(measure, &params, sizeof(params)))
1028 ret = -EFAULT;
1029 e_free_blob:
1030 kfree(blob);
1031 return ret;
1034 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1036 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1037 struct sev_data_launch_finish data;
1039 if (!sev_guest(kvm))
1040 return -ENOTTY;
1042 data.handle = sev->handle;
1043 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
1046 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
1048 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1049 struct kvm_sev_guest_status params;
1050 struct sev_data_guest_status data;
1051 int ret;
1053 if (!sev_guest(kvm))
1054 return -ENOTTY;
1056 memset(&data, 0, sizeof(data));
1058 data.handle = sev->handle;
1059 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
1060 if (ret)
1061 return ret;
1063 params.policy = data.policy;
1064 params.state = data.state;
1065 params.handle = data.handle;
1067 if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params)))
1068 ret = -EFAULT;
1070 return ret;
1073 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
1074 unsigned long dst, int size,
1075 int *error, bool enc)
1077 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1078 struct sev_data_dbg data;
1080 data.reserved = 0;
1081 data.handle = sev->handle;
1082 data.dst_addr = dst;
1083 data.src_addr = src;
1084 data.len = size;
1086 return sev_issue_cmd(kvm,
1087 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
1088 &data, error);
1091 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
1092 unsigned long dst_paddr, int sz, int *err)
1094 int offset;
1097 * Its safe to read more than we are asked, caller should ensure that
1098 * destination has enough space.
1100 offset = src_paddr & 15;
1101 src_paddr = round_down(src_paddr, 16);
1102 sz = round_up(sz + offset, 16);
1104 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
1107 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
1108 void __user *dst_uaddr,
1109 unsigned long dst_paddr,
1110 int size, int *err)
1112 struct page *tpage = NULL;
1113 int ret, offset;
1115 /* if inputs are not 16-byte then use intermediate buffer */
1116 if (!IS_ALIGNED(dst_paddr, 16) ||
1117 !IS_ALIGNED(paddr, 16) ||
1118 !IS_ALIGNED(size, 16)) {
1119 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1120 if (!tpage)
1121 return -ENOMEM;
1123 dst_paddr = __sme_page_pa(tpage);
1126 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
1127 if (ret)
1128 goto e_free;
1130 if (tpage) {
1131 offset = paddr & 15;
1132 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
1133 ret = -EFAULT;
1136 e_free:
1137 if (tpage)
1138 __free_page(tpage);
1140 return ret;
1143 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
1144 void __user *vaddr,
1145 unsigned long dst_paddr,
1146 void __user *dst_vaddr,
1147 int size, int *error)
1149 struct page *src_tpage = NULL;
1150 struct page *dst_tpage = NULL;
1151 int ret, len = size;
1153 /* If source buffer is not aligned then use an intermediate buffer */
1154 if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
1155 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1156 if (!src_tpage)
1157 return -ENOMEM;
1159 if (copy_from_user(page_address(src_tpage), vaddr, size)) {
1160 __free_page(src_tpage);
1161 return -EFAULT;
1164 paddr = __sme_page_pa(src_tpage);
1168 * If destination buffer or length is not aligned then do read-modify-write:
1169 * - decrypt destination in an intermediate buffer
1170 * - copy the source buffer in an intermediate buffer
1171 * - use the intermediate buffer as source buffer
1173 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
1174 int dst_offset;
1176 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1177 if (!dst_tpage) {
1178 ret = -ENOMEM;
1179 goto e_free;
1182 ret = __sev_dbg_decrypt(kvm, dst_paddr,
1183 __sme_page_pa(dst_tpage), size, error);
1184 if (ret)
1185 goto e_free;
1188 * If source is kernel buffer then use memcpy() otherwise
1189 * copy_from_user().
1191 dst_offset = dst_paddr & 15;
1193 if (src_tpage)
1194 memcpy(page_address(dst_tpage) + dst_offset,
1195 page_address(src_tpage), size);
1196 else {
1197 if (copy_from_user(page_address(dst_tpage) + dst_offset,
1198 vaddr, size)) {
1199 ret = -EFAULT;
1200 goto e_free;
1204 paddr = __sme_page_pa(dst_tpage);
1205 dst_paddr = round_down(dst_paddr, 16);
1206 len = round_up(size, 16);
1209 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
1211 e_free:
1212 if (src_tpage)
1213 __free_page(src_tpage);
1214 if (dst_tpage)
1215 __free_page(dst_tpage);
1216 return ret;
1219 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
1221 unsigned long vaddr, vaddr_end, next_vaddr;
1222 unsigned long dst_vaddr;
1223 struct page **src_p, **dst_p;
1224 struct kvm_sev_dbg debug;
1225 unsigned long n;
1226 unsigned int size;
1227 int ret;
1229 if (!sev_guest(kvm))
1230 return -ENOTTY;
1232 if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug)))
1233 return -EFAULT;
1235 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
1236 return -EINVAL;
1237 if (!debug.dst_uaddr)
1238 return -EINVAL;
1240 vaddr = debug.src_uaddr;
1241 size = debug.len;
1242 vaddr_end = vaddr + size;
1243 dst_vaddr = debug.dst_uaddr;
1245 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
1246 int len, s_off, d_off;
1248 /* lock userspace source and destination page */
1249 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
1250 if (IS_ERR(src_p))
1251 return PTR_ERR(src_p);
1253 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
1254 if (IS_ERR(dst_p)) {
1255 sev_unpin_memory(kvm, src_p, n);
1256 return PTR_ERR(dst_p);
1260 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
1261 * the pages; flush the destination too so that future accesses do not
1262 * see stale data.
1264 sev_clflush_pages(src_p, 1);
1265 sev_clflush_pages(dst_p, 1);
1268 * Since user buffer may not be page aligned, calculate the
1269 * offset within the page.
1271 s_off = vaddr & ~PAGE_MASK;
1272 d_off = dst_vaddr & ~PAGE_MASK;
1273 len = min_t(size_t, (PAGE_SIZE - s_off), size);
1275 if (dec)
1276 ret = __sev_dbg_decrypt_user(kvm,
1277 __sme_page_pa(src_p[0]) + s_off,
1278 (void __user *)dst_vaddr,
1279 __sme_page_pa(dst_p[0]) + d_off,
1280 len, &argp->error);
1281 else
1282 ret = __sev_dbg_encrypt_user(kvm,
1283 __sme_page_pa(src_p[0]) + s_off,
1284 (void __user *)vaddr,
1285 __sme_page_pa(dst_p[0]) + d_off,
1286 (void __user *)dst_vaddr,
1287 len, &argp->error);
1289 sev_unpin_memory(kvm, src_p, n);
1290 sev_unpin_memory(kvm, dst_p, n);
1292 if (ret)
1293 goto err;
1295 next_vaddr = vaddr + len;
1296 dst_vaddr = dst_vaddr + len;
1297 size -= len;
1299 err:
1300 return ret;
1303 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1305 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1306 struct sev_data_launch_secret data;
1307 struct kvm_sev_launch_secret params;
1308 struct page **pages;
1309 void *blob, *hdr;
1310 unsigned long n, i;
1311 int ret, offset;
1313 if (!sev_guest(kvm))
1314 return -ENOTTY;
1316 if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
1317 return -EFAULT;
1319 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1320 if (IS_ERR(pages))
1321 return PTR_ERR(pages);
1324 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1325 * place; the cache may contain the data that was written unencrypted.
1327 sev_clflush_pages(pages, n);
1330 * The secret must be copied into contiguous memory region, lets verify
1331 * that userspace memory pages are contiguous before we issue command.
1333 if (get_num_contig_pages(0, pages, n) != n) {
1334 ret = -EINVAL;
1335 goto e_unpin_memory;
1338 memset(&data, 0, sizeof(data));
1340 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1341 data.guest_address = __sme_page_pa(pages[0]) + offset;
1342 data.guest_len = params.guest_len;
1344 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1345 if (IS_ERR(blob)) {
1346 ret = PTR_ERR(blob);
1347 goto e_unpin_memory;
1350 data.trans_address = __psp_pa(blob);
1351 data.trans_len = params.trans_len;
1353 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1354 if (IS_ERR(hdr)) {
1355 ret = PTR_ERR(hdr);
1356 goto e_free_blob;
1358 data.hdr_address = __psp_pa(hdr);
1359 data.hdr_len = params.hdr_len;
1361 data.handle = sev->handle;
1362 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1364 kfree(hdr);
1366 e_free_blob:
1367 kfree(blob);
1368 e_unpin_memory:
1369 /* content of memory is updated, mark pages dirty */
1370 for (i = 0; i < n; i++) {
1371 set_page_dirty_lock(pages[i]);
1372 mark_page_accessed(pages[i]);
1374 sev_unpin_memory(kvm, pages, n);
1375 return ret;
1378 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1380 void __user *report = u64_to_user_ptr(argp->data);
1381 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1382 struct sev_data_attestation_report data;
1383 struct kvm_sev_attestation_report params;
1384 void __user *p;
1385 void *blob = NULL;
1386 int ret;
1388 if (!sev_guest(kvm))
1389 return -ENOTTY;
1391 if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
1392 return -EFAULT;
1394 memset(&data, 0, sizeof(data));
1396 /* User wants to query the blob length */
1397 if (!params.len)
1398 goto cmd;
1400 p = u64_to_user_ptr(params.uaddr);
1401 if (p) {
1402 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1403 return -EINVAL;
1405 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1406 if (!blob)
1407 return -ENOMEM;
1409 data.address = __psp_pa(blob);
1410 data.len = params.len;
1411 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1413 cmd:
1414 data.handle = sev->handle;
1415 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1417 * If we query the session length, FW responded with expected data.
1419 if (!params.len)
1420 goto done;
1422 if (ret)
1423 goto e_free_blob;
1425 if (blob) {
1426 if (copy_to_user(p, blob, params.len))
1427 ret = -EFAULT;
1430 done:
1431 params.len = data.len;
1432 if (copy_to_user(report, &params, sizeof(params)))
1433 ret = -EFAULT;
1434 e_free_blob:
1435 kfree(blob);
1436 return ret;
1439 /* Userspace wants to query session length. */
1440 static int
1441 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1442 struct kvm_sev_send_start *params)
1444 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1445 struct sev_data_send_start data;
1446 int ret;
1448 memset(&data, 0, sizeof(data));
1449 data.handle = sev->handle;
1450 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1452 params->session_len = data.session_len;
1453 if (copy_to_user(u64_to_user_ptr(argp->data), params,
1454 sizeof(struct kvm_sev_send_start)))
1455 ret = -EFAULT;
1457 return ret;
1460 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1462 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1463 struct sev_data_send_start data;
1464 struct kvm_sev_send_start params;
1465 void *amd_certs, *session_data;
1466 void *pdh_cert, *plat_certs;
1467 int ret;
1469 if (!sev_guest(kvm))
1470 return -ENOTTY;
1472 if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1473 sizeof(struct kvm_sev_send_start)))
1474 return -EFAULT;
1476 /* if session_len is zero, userspace wants to query the session length */
1477 if (!params.session_len)
1478 return __sev_send_start_query_session_length(kvm, argp,
1479 &params);
1481 /* some sanity checks */
1482 if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1483 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1484 return -EINVAL;
1486 /* allocate the memory to hold the session data blob */
1487 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1488 if (!session_data)
1489 return -ENOMEM;
1491 /* copy the certificate blobs from userspace */
1492 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1493 params.pdh_cert_len);
1494 if (IS_ERR(pdh_cert)) {
1495 ret = PTR_ERR(pdh_cert);
1496 goto e_free_session;
1499 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1500 params.plat_certs_len);
1501 if (IS_ERR(plat_certs)) {
1502 ret = PTR_ERR(plat_certs);
1503 goto e_free_pdh;
1506 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1507 params.amd_certs_len);
1508 if (IS_ERR(amd_certs)) {
1509 ret = PTR_ERR(amd_certs);
1510 goto e_free_plat_cert;
1513 /* populate the FW SEND_START field with system physical address */
1514 memset(&data, 0, sizeof(data));
1515 data.pdh_cert_address = __psp_pa(pdh_cert);
1516 data.pdh_cert_len = params.pdh_cert_len;
1517 data.plat_certs_address = __psp_pa(plat_certs);
1518 data.plat_certs_len = params.plat_certs_len;
1519 data.amd_certs_address = __psp_pa(amd_certs);
1520 data.amd_certs_len = params.amd_certs_len;
1521 data.session_address = __psp_pa(session_data);
1522 data.session_len = params.session_len;
1523 data.handle = sev->handle;
1525 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1527 if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr),
1528 session_data, params.session_len)) {
1529 ret = -EFAULT;
1530 goto e_free_amd_cert;
1533 params.policy = data.policy;
1534 params.session_len = data.session_len;
1535 if (copy_to_user(u64_to_user_ptr(argp->data), &params,
1536 sizeof(struct kvm_sev_send_start)))
1537 ret = -EFAULT;
1539 e_free_amd_cert:
1540 kfree(amd_certs);
1541 e_free_plat_cert:
1542 kfree(plat_certs);
1543 e_free_pdh:
1544 kfree(pdh_cert);
1545 e_free_session:
1546 kfree(session_data);
1547 return ret;
1550 /* Userspace wants to query either header or trans length. */
1551 static int
1552 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1553 struct kvm_sev_send_update_data *params)
1555 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1556 struct sev_data_send_update_data data;
1557 int ret;
1559 memset(&data, 0, sizeof(data));
1560 data.handle = sev->handle;
1561 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1563 params->hdr_len = data.hdr_len;
1564 params->trans_len = data.trans_len;
1566 if (copy_to_user(u64_to_user_ptr(argp->data), params,
1567 sizeof(struct kvm_sev_send_update_data)))
1568 ret = -EFAULT;
1570 return ret;
1573 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1575 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1576 struct sev_data_send_update_data data;
1577 struct kvm_sev_send_update_data params;
1578 void *hdr, *trans_data;
1579 struct page **guest_page;
1580 unsigned long n;
1581 int ret, offset;
1583 if (!sev_guest(kvm))
1584 return -ENOTTY;
1586 if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1587 sizeof(struct kvm_sev_send_update_data)))
1588 return -EFAULT;
1590 /* userspace wants to query either header or trans length */
1591 if (!params.trans_len || !params.hdr_len)
1592 return __sev_send_update_data_query_lengths(kvm, argp, &params);
1594 if (!params.trans_uaddr || !params.guest_uaddr ||
1595 !params.guest_len || !params.hdr_uaddr)
1596 return -EINVAL;
1598 /* Check if we are crossing the page boundary */
1599 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1600 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1601 return -EINVAL;
1603 /* Pin guest memory */
1604 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1605 PAGE_SIZE, &n, 0);
1606 if (IS_ERR(guest_page))
1607 return PTR_ERR(guest_page);
1609 /* allocate memory for header and transport buffer */
1610 ret = -ENOMEM;
1611 hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1612 if (!hdr)
1613 goto e_unpin;
1615 trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1616 if (!trans_data)
1617 goto e_free_hdr;
1619 memset(&data, 0, sizeof(data));
1620 data.hdr_address = __psp_pa(hdr);
1621 data.hdr_len = params.hdr_len;
1622 data.trans_address = __psp_pa(trans_data);
1623 data.trans_len = params.trans_len;
1625 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1626 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1627 data.guest_address |= sev_me_mask;
1628 data.guest_len = params.guest_len;
1629 data.handle = sev->handle;
1631 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1633 if (ret)
1634 goto e_free_trans_data;
1636 /* copy transport buffer to user space */
1637 if (copy_to_user(u64_to_user_ptr(params.trans_uaddr),
1638 trans_data, params.trans_len)) {
1639 ret = -EFAULT;
1640 goto e_free_trans_data;
1643 /* Copy packet header to userspace. */
1644 if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr,
1645 params.hdr_len))
1646 ret = -EFAULT;
1648 e_free_trans_data:
1649 kfree(trans_data);
1650 e_free_hdr:
1651 kfree(hdr);
1652 e_unpin:
1653 sev_unpin_memory(kvm, guest_page, n);
1655 return ret;
1658 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1660 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1661 struct sev_data_send_finish data;
1663 if (!sev_guest(kvm))
1664 return -ENOTTY;
1666 data.handle = sev->handle;
1667 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1670 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1672 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1673 struct sev_data_send_cancel data;
1675 if (!sev_guest(kvm))
1676 return -ENOTTY;
1678 data.handle = sev->handle;
1679 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1682 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1684 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1685 struct sev_data_receive_start start;
1686 struct kvm_sev_receive_start params;
1687 int *error = &argp->error;
1688 void *session_data;
1689 void *pdh_data;
1690 int ret;
1692 if (!sev_guest(kvm))
1693 return -ENOTTY;
1695 /* Get parameter from the userspace */
1696 if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1697 sizeof(struct kvm_sev_receive_start)))
1698 return -EFAULT;
1700 /* some sanity checks */
1701 if (!params.pdh_uaddr || !params.pdh_len ||
1702 !params.session_uaddr || !params.session_len)
1703 return -EINVAL;
1705 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1706 if (IS_ERR(pdh_data))
1707 return PTR_ERR(pdh_data);
1709 session_data = psp_copy_user_blob(params.session_uaddr,
1710 params.session_len);
1711 if (IS_ERR(session_data)) {
1712 ret = PTR_ERR(session_data);
1713 goto e_free_pdh;
1716 memset(&start, 0, sizeof(start));
1717 start.handle = params.handle;
1718 start.policy = params.policy;
1719 start.pdh_cert_address = __psp_pa(pdh_data);
1720 start.pdh_cert_len = params.pdh_len;
1721 start.session_address = __psp_pa(session_data);
1722 start.session_len = params.session_len;
1724 /* create memory encryption context */
1725 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1726 error);
1727 if (ret)
1728 goto e_free_session;
1730 /* Bind ASID to this guest */
1731 ret = sev_bind_asid(kvm, start.handle, error);
1732 if (ret) {
1733 sev_decommission(start.handle);
1734 goto e_free_session;
1737 params.handle = start.handle;
1738 if (copy_to_user(u64_to_user_ptr(argp->data),
1739 &params, sizeof(struct kvm_sev_receive_start))) {
1740 ret = -EFAULT;
1741 sev_unbind_asid(kvm, start.handle);
1742 goto e_free_session;
1745 sev->handle = start.handle;
1746 sev->fd = argp->sev_fd;
1748 e_free_session:
1749 kfree(session_data);
1750 e_free_pdh:
1751 kfree(pdh_data);
1753 return ret;
1756 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1758 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1759 struct kvm_sev_receive_update_data params;
1760 struct sev_data_receive_update_data data;
1761 void *hdr = NULL, *trans = NULL;
1762 struct page **guest_page;
1763 unsigned long n;
1764 int ret, offset;
1766 if (!sev_guest(kvm))
1767 return -EINVAL;
1769 if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1770 sizeof(struct kvm_sev_receive_update_data)))
1771 return -EFAULT;
1773 if (!params.hdr_uaddr || !params.hdr_len ||
1774 !params.guest_uaddr || !params.guest_len ||
1775 !params.trans_uaddr || !params.trans_len)
1776 return -EINVAL;
1778 /* Check if we are crossing the page boundary */
1779 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1780 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1781 return -EINVAL;
1783 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1784 if (IS_ERR(hdr))
1785 return PTR_ERR(hdr);
1787 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1788 if (IS_ERR(trans)) {
1789 ret = PTR_ERR(trans);
1790 goto e_free_hdr;
1793 memset(&data, 0, sizeof(data));
1794 data.hdr_address = __psp_pa(hdr);
1795 data.hdr_len = params.hdr_len;
1796 data.trans_address = __psp_pa(trans);
1797 data.trans_len = params.trans_len;
1799 /* Pin guest memory */
1800 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1801 PAGE_SIZE, &n, 1);
1802 if (IS_ERR(guest_page)) {
1803 ret = PTR_ERR(guest_page);
1804 goto e_free_trans;
1808 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1809 * encrypts the written data with the guest's key, and the cache may
1810 * contain dirty, unencrypted data.
1812 sev_clflush_pages(guest_page, n);
1814 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1815 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1816 data.guest_address |= sev_me_mask;
1817 data.guest_len = params.guest_len;
1818 data.handle = sev->handle;
1820 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1821 &argp->error);
1823 sev_unpin_memory(kvm, guest_page, n);
1825 e_free_trans:
1826 kfree(trans);
1827 e_free_hdr:
1828 kfree(hdr);
1830 return ret;
1833 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1835 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1836 struct sev_data_receive_finish data;
1838 if (!sev_guest(kvm))
1839 return -ENOTTY;
1841 data.handle = sev->handle;
1842 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1845 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1848 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1849 * active mirror VMs. Also allow the debugging and status commands.
1851 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1852 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1853 cmd_id == KVM_SEV_DBG_ENCRYPT)
1854 return true;
1856 return false;
1859 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1861 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1862 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1863 int r = -EBUSY;
1865 if (dst_kvm == src_kvm)
1866 return -EINVAL;
1869 * Bail if these VMs are already involved in a migration to avoid
1870 * deadlock between two VMs trying to migrate to/from each other.
1872 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1873 return -EBUSY;
1875 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1876 goto release_dst;
1878 r = -EINTR;
1879 if (mutex_lock_killable(&dst_kvm->lock))
1880 goto release_src;
1881 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1882 goto unlock_dst;
1883 return 0;
1885 unlock_dst:
1886 mutex_unlock(&dst_kvm->lock);
1887 release_src:
1888 atomic_set_release(&src_sev->migration_in_progress, 0);
1889 release_dst:
1890 atomic_set_release(&dst_sev->migration_in_progress, 0);
1891 return r;
1894 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1896 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1897 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1899 mutex_unlock(&dst_kvm->lock);
1900 mutex_unlock(&src_kvm->lock);
1901 atomic_set_release(&dst_sev->migration_in_progress, 0);
1902 atomic_set_release(&src_sev->migration_in_progress, 0);
1905 /* vCPU mutex subclasses. */
1906 enum sev_migration_role {
1907 SEV_MIGRATION_SOURCE = 0,
1908 SEV_MIGRATION_TARGET,
1909 SEV_NR_MIGRATION_ROLES,
1912 static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1913 enum sev_migration_role role)
1915 struct kvm_vcpu *vcpu;
1916 unsigned long i, j;
1918 kvm_for_each_vcpu(i, vcpu, kvm) {
1919 if (mutex_lock_killable_nested(&vcpu->mutex, role))
1920 goto out_unlock;
1922 #ifdef CONFIG_PROVE_LOCKING
1923 if (!i)
1925 * Reset the role to one that avoids colliding with
1926 * the role used for the first vcpu mutex.
1928 role = SEV_NR_MIGRATION_ROLES;
1929 else
1930 mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1931 #endif
1934 return 0;
1936 out_unlock:
1938 kvm_for_each_vcpu(j, vcpu, kvm) {
1939 if (i == j)
1940 break;
1942 #ifdef CONFIG_PROVE_LOCKING
1943 if (j)
1944 mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1945 #endif
1947 mutex_unlock(&vcpu->mutex);
1949 return -EINTR;
1952 static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1954 struct kvm_vcpu *vcpu;
1955 unsigned long i;
1956 bool first = true;
1958 kvm_for_each_vcpu(i, vcpu, kvm) {
1959 if (first)
1960 first = false;
1961 else
1962 mutex_acquire(&vcpu->mutex.dep_map,
1963 SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1965 mutex_unlock(&vcpu->mutex);
1969 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1971 struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1972 struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
1973 struct kvm_vcpu *dst_vcpu, *src_vcpu;
1974 struct vcpu_svm *dst_svm, *src_svm;
1975 struct kvm_sev_info *mirror;
1976 unsigned long i;
1978 dst->active = true;
1979 dst->asid = src->asid;
1980 dst->handle = src->handle;
1981 dst->pages_locked = src->pages_locked;
1982 dst->enc_context_owner = src->enc_context_owner;
1983 dst->es_active = src->es_active;
1984 dst->vmsa_features = src->vmsa_features;
1986 src->asid = 0;
1987 src->active = false;
1988 src->handle = 0;
1989 src->pages_locked = 0;
1990 src->enc_context_owner = NULL;
1991 src->es_active = false;
1993 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1996 * If this VM has mirrors, "transfer" each mirror's refcount of the
1997 * source to the destination (this KVM). The caller holds a reference
1998 * to the source, so there's no danger of use-after-free.
2000 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
2001 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
2002 kvm_get_kvm(dst_kvm);
2003 kvm_put_kvm(src_kvm);
2004 mirror->enc_context_owner = dst_kvm;
2008 * If this VM is a mirror, remove the old mirror from the owners list
2009 * and add the new mirror to the list.
2011 if (is_mirroring_enc_context(dst_kvm)) {
2012 struct kvm_sev_info *owner_sev_info =
2013 &to_kvm_svm(dst->enc_context_owner)->sev_info;
2015 list_del(&src->mirror_entry);
2016 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
2019 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
2020 dst_svm = to_svm(dst_vcpu);
2022 sev_init_vmcb(dst_svm);
2024 if (!dst->es_active)
2025 continue;
2028 * Note, the source is not required to have the same number of
2029 * vCPUs as the destination when migrating a vanilla SEV VM.
2031 src_vcpu = kvm_get_vcpu(src_kvm, i);
2032 src_svm = to_svm(src_vcpu);
2035 * Transfer VMSA and GHCB state to the destination. Nullify and
2036 * clear source fields as appropriate, the state now belongs to
2037 * the destination.
2039 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
2040 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
2041 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
2042 dst_vcpu->arch.guest_state_protected = true;
2044 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
2045 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
2046 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
2047 src_vcpu->arch.guest_state_protected = false;
2051 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
2053 struct kvm_vcpu *src_vcpu;
2054 unsigned long i;
2056 if (!sev_es_guest(src))
2057 return 0;
2059 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
2060 return -EINVAL;
2062 kvm_for_each_vcpu(i, src_vcpu, src) {
2063 if (!src_vcpu->arch.guest_state_protected)
2064 return -EINVAL;
2067 return 0;
2070 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2072 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
2073 struct kvm_sev_info *src_sev, *cg_cleanup_sev;
2074 CLASS(fd, f)(source_fd);
2075 struct kvm *source_kvm;
2076 bool charged = false;
2077 int ret;
2079 if (fd_empty(f))
2080 return -EBADF;
2082 if (!file_is_kvm(fd_file(f)))
2083 return -EBADF;
2085 source_kvm = fd_file(f)->private_data;
2086 ret = sev_lock_two_vms(kvm, source_kvm);
2087 if (ret)
2088 return ret;
2090 if (kvm->arch.vm_type != source_kvm->arch.vm_type ||
2091 sev_guest(kvm) || !sev_guest(source_kvm)) {
2092 ret = -EINVAL;
2093 goto out_unlock;
2096 src_sev = &to_kvm_svm(source_kvm)->sev_info;
2098 dst_sev->misc_cg = get_current_misc_cg();
2099 cg_cleanup_sev = dst_sev;
2100 if (dst_sev->misc_cg != src_sev->misc_cg) {
2101 ret = sev_misc_cg_try_charge(dst_sev);
2102 if (ret)
2103 goto out_dst_cgroup;
2104 charged = true;
2107 ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
2108 if (ret)
2109 goto out_dst_cgroup;
2110 ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
2111 if (ret)
2112 goto out_dst_vcpu;
2114 ret = sev_check_source_vcpus(kvm, source_kvm);
2115 if (ret)
2116 goto out_source_vcpu;
2118 sev_migrate_from(kvm, source_kvm);
2119 kvm_vm_dead(source_kvm);
2120 cg_cleanup_sev = src_sev;
2121 ret = 0;
2123 out_source_vcpu:
2124 sev_unlock_vcpus_for_migration(source_kvm);
2125 out_dst_vcpu:
2126 sev_unlock_vcpus_for_migration(kvm);
2127 out_dst_cgroup:
2128 /* Operates on the source on success, on the destination on failure. */
2129 if (charged)
2130 sev_misc_cg_uncharge(cg_cleanup_sev);
2131 put_misc_cg(cg_cleanup_sev->misc_cg);
2132 cg_cleanup_sev->misc_cg = NULL;
2133 out_unlock:
2134 sev_unlock_two_vms(kvm, source_kvm);
2135 return ret;
2138 int sev_dev_get_attr(u32 group, u64 attr, u64 *val)
2140 if (group != KVM_X86_GRP_SEV)
2141 return -ENXIO;
2143 switch (attr) {
2144 case KVM_X86_SEV_VMSA_FEATURES:
2145 *val = sev_supported_vmsa_features;
2146 return 0;
2148 default:
2149 return -ENXIO;
2154 * The guest context contains all the information, keys and metadata
2155 * associated with the guest that the firmware tracks to implement SEV
2156 * and SNP features. The firmware stores the guest context in hypervisor
2157 * provide page via the SNP_GCTX_CREATE command.
2159 static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp)
2161 struct sev_data_snp_addr data = {};
2162 void *context;
2163 int rc;
2165 /* Allocate memory for context page */
2166 context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT);
2167 if (!context)
2168 return NULL;
2170 data.address = __psp_pa(context);
2171 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error);
2172 if (rc) {
2173 pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d",
2174 rc, argp->error);
2175 snp_free_firmware_page(context);
2176 return NULL;
2179 return context;
2182 static int snp_bind_asid(struct kvm *kvm, int *error)
2184 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2185 struct sev_data_snp_activate data = {0};
2187 data.gctx_paddr = __psp_pa(sev->snp_context);
2188 data.asid = sev_get_asid(kvm);
2189 return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error);
2192 static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
2194 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2195 struct sev_data_snp_launch_start start = {0};
2196 struct kvm_sev_snp_launch_start params;
2197 int rc;
2199 if (!sev_snp_guest(kvm))
2200 return -ENOTTY;
2202 if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2203 return -EFAULT;
2205 /* Don't allow userspace to allocate memory for more than 1 SNP context. */
2206 if (sev->snp_context)
2207 return -EINVAL;
2209 if (params.flags)
2210 return -EINVAL;
2212 if (params.policy & ~SNP_POLICY_MASK_VALID)
2213 return -EINVAL;
2215 /* Check for policy bits that must be set */
2216 if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO) ||
2217 !(params.policy & SNP_POLICY_MASK_SMT))
2218 return -EINVAL;
2220 if (params.policy & SNP_POLICY_MASK_SINGLE_SOCKET)
2221 return -EINVAL;
2223 sev->snp_context = snp_context_create(kvm, argp);
2224 if (!sev->snp_context)
2225 return -ENOTTY;
2227 start.gctx_paddr = __psp_pa(sev->snp_context);
2228 start.policy = params.policy;
2229 memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw));
2230 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error);
2231 if (rc) {
2232 pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n",
2233 __func__, rc);
2234 goto e_free_context;
2237 sev->fd = argp->sev_fd;
2238 rc = snp_bind_asid(kvm, &argp->error);
2239 if (rc) {
2240 pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n",
2241 __func__, rc);
2242 goto e_free_context;
2245 return 0;
2247 e_free_context:
2248 snp_decommission_context(kvm);
2250 return rc;
2253 struct sev_gmem_populate_args {
2254 __u8 type;
2255 int sev_fd;
2256 int fw_error;
2259 static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn,
2260 void __user *src, int order, void *opaque)
2262 struct sev_gmem_populate_args *sev_populate_args = opaque;
2263 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2264 int n_private = 0, ret, i;
2265 int npages = (1 << order);
2266 gfn_t gfn;
2268 if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src))
2269 return -EINVAL;
2271 for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) {
2272 struct sev_data_snp_launch_update fw_args = {0};
2273 bool assigned = false;
2274 int level;
2276 ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level);
2277 if (ret || assigned) {
2278 pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n",
2279 __func__, gfn, ret, assigned);
2280 ret = ret ? -EINVAL : -EEXIST;
2281 goto err;
2284 if (src) {
2285 void *vaddr = kmap_local_pfn(pfn + i);
2287 if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) {
2288 ret = -EFAULT;
2289 goto err;
2291 kunmap_local(vaddr);
2294 ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K,
2295 sev_get_asid(kvm), true);
2296 if (ret)
2297 goto err;
2299 n_private++;
2301 fw_args.gctx_paddr = __psp_pa(sev->snp_context);
2302 fw_args.address = __sme_set(pfn_to_hpa(pfn + i));
2303 fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K);
2304 fw_args.page_type = sev_populate_args->type;
2306 ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2307 &fw_args, &sev_populate_args->fw_error);
2308 if (ret)
2309 goto fw_err;
2312 return 0;
2314 fw_err:
2316 * If the firmware command failed handle the reclaim and cleanup of that
2317 * PFN specially vs. prior pages which can be cleaned up below without
2318 * needing to reclaim in advance.
2320 * Additionally, when invalid CPUID function entries are detected,
2321 * firmware writes the expected values into the page and leaves it
2322 * unencrypted so it can be used for debugging and error-reporting.
2324 * Copy this page back into the source buffer so userspace can use this
2325 * information to provide information on which CPUID leaves/fields
2326 * failed CPUID validation.
2328 if (!snp_page_reclaim(kvm, pfn + i) &&
2329 sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID &&
2330 sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) {
2331 void *vaddr = kmap_local_pfn(pfn + i);
2333 if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE))
2334 pr_debug("Failed to write CPUID page back to userspace\n");
2336 kunmap_local(vaddr);
2339 /* pfn + i is hypervisor-owned now, so skip below cleanup for it. */
2340 n_private--;
2342 err:
2343 pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n",
2344 __func__, ret, sev_populate_args->fw_error, n_private);
2345 for (i = 0; i < n_private; i++)
2346 kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K);
2348 return ret;
2351 static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp)
2353 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2354 struct sev_gmem_populate_args sev_populate_args = {0};
2355 struct kvm_sev_snp_launch_update params;
2356 struct kvm_memory_slot *memslot;
2357 long npages, count;
2358 void __user *src;
2359 int ret = 0;
2361 if (!sev_snp_guest(kvm) || !sev->snp_context)
2362 return -EINVAL;
2364 if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2365 return -EFAULT;
2367 pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__,
2368 params.gfn_start, params.len, params.type, params.flags);
2370 if (!PAGE_ALIGNED(params.len) || params.flags ||
2371 (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL &&
2372 params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO &&
2373 params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED &&
2374 params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS &&
2375 params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID))
2376 return -EINVAL;
2378 npages = params.len / PAGE_SIZE;
2381 * For each GFN that's being prepared as part of the initial guest
2382 * state, the following pre-conditions are verified:
2384 * 1) The backing memslot is a valid private memslot.
2385 * 2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES
2386 * beforehand.
2387 * 3) The PFN of the guest_memfd has not already been set to private
2388 * in the RMP table.
2390 * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page
2391 * faults if there's a race between a fault and an attribute update via
2392 * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized
2393 * here. However, kvm->slots_lock guards against both this as well as
2394 * concurrent memslot updates occurring while these checks are being
2395 * performed, so use that here to make it easier to reason about the
2396 * initial expected state and better guard against unexpected
2397 * situations.
2399 mutex_lock(&kvm->slots_lock);
2401 memslot = gfn_to_memslot(kvm, params.gfn_start);
2402 if (!kvm_slot_can_be_private(memslot)) {
2403 ret = -EINVAL;
2404 goto out;
2407 sev_populate_args.sev_fd = argp->sev_fd;
2408 sev_populate_args.type = params.type;
2409 src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr);
2411 count = kvm_gmem_populate(kvm, params.gfn_start, src, npages,
2412 sev_gmem_post_populate, &sev_populate_args);
2413 if (count < 0) {
2414 argp->error = sev_populate_args.fw_error;
2415 pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n",
2416 __func__, count, argp->error);
2417 ret = -EIO;
2418 } else {
2419 params.gfn_start += count;
2420 params.len -= count * PAGE_SIZE;
2421 if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO)
2422 params.uaddr += count * PAGE_SIZE;
2424 ret = 0;
2425 if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params)))
2426 ret = -EFAULT;
2429 out:
2430 mutex_unlock(&kvm->slots_lock);
2432 return ret;
2435 static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
2437 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2438 struct sev_data_snp_launch_update data = {};
2439 struct kvm_vcpu *vcpu;
2440 unsigned long i;
2441 int ret;
2443 data.gctx_paddr = __psp_pa(sev->snp_context);
2444 data.page_type = SNP_PAGE_TYPE_VMSA;
2446 kvm_for_each_vcpu(i, vcpu, kvm) {
2447 struct vcpu_svm *svm = to_svm(vcpu);
2448 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
2450 ret = sev_es_sync_vmsa(svm);
2451 if (ret)
2452 return ret;
2454 /* Transition the VMSA page to a firmware state. */
2455 ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true);
2456 if (ret)
2457 return ret;
2459 /* Issue the SNP command to encrypt the VMSA */
2460 data.address = __sme_pa(svm->sev_es.vmsa);
2461 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2462 &data, &argp->error);
2463 if (ret) {
2464 snp_page_reclaim(kvm, pfn);
2466 return ret;
2469 svm->vcpu.arch.guest_state_protected = true;
2471 * SEV-ES (and thus SNP) guest mandates LBR Virtualization to
2472 * be _always_ ON. Enable it only after setting
2473 * guest_state_protected because KVM_SET_MSRS allows dynamic
2474 * toggling of LBRV (for performance reason) on write access to
2475 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
2477 svm_enable_lbrv(vcpu);
2480 return 0;
2483 static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
2485 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2486 struct kvm_sev_snp_launch_finish params;
2487 struct sev_data_snp_launch_finish *data;
2488 void *id_block = NULL, *id_auth = NULL;
2489 int ret;
2491 if (!sev_snp_guest(kvm))
2492 return -ENOTTY;
2494 if (!sev->snp_context)
2495 return -EINVAL;
2497 if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2498 return -EFAULT;
2500 if (params.flags)
2501 return -EINVAL;
2503 /* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */
2504 ret = snp_launch_update_vmsa(kvm, argp);
2505 if (ret)
2506 return ret;
2508 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
2509 if (!data)
2510 return -ENOMEM;
2512 if (params.id_block_en) {
2513 id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE);
2514 if (IS_ERR(id_block)) {
2515 ret = PTR_ERR(id_block);
2516 goto e_free;
2519 data->id_block_en = 1;
2520 data->id_block_paddr = __sme_pa(id_block);
2522 id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE);
2523 if (IS_ERR(id_auth)) {
2524 ret = PTR_ERR(id_auth);
2525 goto e_free_id_block;
2528 data->id_auth_paddr = __sme_pa(id_auth);
2530 if (params.auth_key_en)
2531 data->auth_key_en = 1;
2534 data->vcek_disabled = params.vcek_disabled;
2536 memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE);
2537 data->gctx_paddr = __psp_pa(sev->snp_context);
2538 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error);
2541 * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages
2542 * can be given to the guest simply by marking the RMP entry as private.
2543 * This can happen on first access and also with KVM_PRE_FAULT_MEMORY.
2545 if (!ret)
2546 kvm->arch.pre_fault_allowed = true;
2548 kfree(id_auth);
2550 e_free_id_block:
2551 kfree(id_block);
2553 e_free:
2554 kfree(data);
2556 return ret;
2559 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
2561 struct kvm_sev_cmd sev_cmd;
2562 int r;
2564 if (!sev_enabled)
2565 return -ENOTTY;
2567 if (!argp)
2568 return 0;
2570 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
2571 return -EFAULT;
2573 mutex_lock(&kvm->lock);
2575 /* Only the enc_context_owner handles some memory enc operations. */
2576 if (is_mirroring_enc_context(kvm) &&
2577 !is_cmd_allowed_from_mirror(sev_cmd.id)) {
2578 r = -EINVAL;
2579 goto out;
2583 * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only
2584 * allow the use of SNP-specific commands.
2586 if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) {
2587 r = -EPERM;
2588 goto out;
2591 switch (sev_cmd.id) {
2592 case KVM_SEV_ES_INIT:
2593 if (!sev_es_enabled) {
2594 r = -ENOTTY;
2595 goto out;
2597 fallthrough;
2598 case KVM_SEV_INIT:
2599 r = sev_guest_init(kvm, &sev_cmd);
2600 break;
2601 case KVM_SEV_INIT2:
2602 r = sev_guest_init2(kvm, &sev_cmd);
2603 break;
2604 case KVM_SEV_LAUNCH_START:
2605 r = sev_launch_start(kvm, &sev_cmd);
2606 break;
2607 case KVM_SEV_LAUNCH_UPDATE_DATA:
2608 r = sev_launch_update_data(kvm, &sev_cmd);
2609 break;
2610 case KVM_SEV_LAUNCH_UPDATE_VMSA:
2611 r = sev_launch_update_vmsa(kvm, &sev_cmd);
2612 break;
2613 case KVM_SEV_LAUNCH_MEASURE:
2614 r = sev_launch_measure(kvm, &sev_cmd);
2615 break;
2616 case KVM_SEV_LAUNCH_FINISH:
2617 r = sev_launch_finish(kvm, &sev_cmd);
2618 break;
2619 case KVM_SEV_GUEST_STATUS:
2620 r = sev_guest_status(kvm, &sev_cmd);
2621 break;
2622 case KVM_SEV_DBG_DECRYPT:
2623 r = sev_dbg_crypt(kvm, &sev_cmd, true);
2624 break;
2625 case KVM_SEV_DBG_ENCRYPT:
2626 r = sev_dbg_crypt(kvm, &sev_cmd, false);
2627 break;
2628 case KVM_SEV_LAUNCH_SECRET:
2629 r = sev_launch_secret(kvm, &sev_cmd);
2630 break;
2631 case KVM_SEV_GET_ATTESTATION_REPORT:
2632 r = sev_get_attestation_report(kvm, &sev_cmd);
2633 break;
2634 case KVM_SEV_SEND_START:
2635 r = sev_send_start(kvm, &sev_cmd);
2636 break;
2637 case KVM_SEV_SEND_UPDATE_DATA:
2638 r = sev_send_update_data(kvm, &sev_cmd);
2639 break;
2640 case KVM_SEV_SEND_FINISH:
2641 r = sev_send_finish(kvm, &sev_cmd);
2642 break;
2643 case KVM_SEV_SEND_CANCEL:
2644 r = sev_send_cancel(kvm, &sev_cmd);
2645 break;
2646 case KVM_SEV_RECEIVE_START:
2647 r = sev_receive_start(kvm, &sev_cmd);
2648 break;
2649 case KVM_SEV_RECEIVE_UPDATE_DATA:
2650 r = sev_receive_update_data(kvm, &sev_cmd);
2651 break;
2652 case KVM_SEV_RECEIVE_FINISH:
2653 r = sev_receive_finish(kvm, &sev_cmd);
2654 break;
2655 case KVM_SEV_SNP_LAUNCH_START:
2656 r = snp_launch_start(kvm, &sev_cmd);
2657 break;
2658 case KVM_SEV_SNP_LAUNCH_UPDATE:
2659 r = snp_launch_update(kvm, &sev_cmd);
2660 break;
2661 case KVM_SEV_SNP_LAUNCH_FINISH:
2662 r = snp_launch_finish(kvm, &sev_cmd);
2663 break;
2664 default:
2665 r = -EINVAL;
2666 goto out;
2669 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
2670 r = -EFAULT;
2672 out:
2673 mutex_unlock(&kvm->lock);
2674 return r;
2677 int sev_mem_enc_register_region(struct kvm *kvm,
2678 struct kvm_enc_region *range)
2680 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2681 struct enc_region *region;
2682 int ret = 0;
2684 if (!sev_guest(kvm))
2685 return -ENOTTY;
2687 /* If kvm is mirroring encryption context it isn't responsible for it */
2688 if (is_mirroring_enc_context(kvm))
2689 return -EINVAL;
2691 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
2692 return -EINVAL;
2694 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
2695 if (!region)
2696 return -ENOMEM;
2698 mutex_lock(&kvm->lock);
2699 region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
2700 if (IS_ERR(region->pages)) {
2701 ret = PTR_ERR(region->pages);
2702 mutex_unlock(&kvm->lock);
2703 goto e_free;
2707 * The guest may change the memory encryption attribute from C=0 -> C=1
2708 * or vice versa for this memory range. Lets make sure caches are
2709 * flushed to ensure that guest data gets written into memory with
2710 * correct C-bit. Note, this must be done before dropping kvm->lock,
2711 * as region and its array of pages can be freed by a different task
2712 * once kvm->lock is released.
2714 sev_clflush_pages(region->pages, region->npages);
2716 region->uaddr = range->addr;
2717 region->size = range->size;
2719 list_add_tail(&region->list, &sev->regions_list);
2720 mutex_unlock(&kvm->lock);
2722 return ret;
2724 e_free:
2725 kfree(region);
2726 return ret;
2729 static struct enc_region *
2730 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2732 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2733 struct list_head *head = &sev->regions_list;
2734 struct enc_region *i;
2736 list_for_each_entry(i, head, list) {
2737 if (i->uaddr == range->addr &&
2738 i->size == range->size)
2739 return i;
2742 return NULL;
2745 static void __unregister_enc_region_locked(struct kvm *kvm,
2746 struct enc_region *region)
2748 sev_unpin_memory(kvm, region->pages, region->npages);
2749 list_del(&region->list);
2750 kfree(region);
2753 int sev_mem_enc_unregister_region(struct kvm *kvm,
2754 struct kvm_enc_region *range)
2756 struct enc_region *region;
2757 int ret;
2759 /* If kvm is mirroring encryption context it isn't responsible for it */
2760 if (is_mirroring_enc_context(kvm))
2761 return -EINVAL;
2763 mutex_lock(&kvm->lock);
2765 if (!sev_guest(kvm)) {
2766 ret = -ENOTTY;
2767 goto failed;
2770 region = find_enc_region(kvm, range);
2771 if (!region) {
2772 ret = -EINVAL;
2773 goto failed;
2777 * Ensure that all guest tagged cache entries are flushed before
2778 * releasing the pages back to the system for use. CLFLUSH will
2779 * not do this, so issue a WBINVD.
2781 wbinvd_on_all_cpus();
2783 __unregister_enc_region_locked(kvm, region);
2785 mutex_unlock(&kvm->lock);
2786 return 0;
2788 failed:
2789 mutex_unlock(&kvm->lock);
2790 return ret;
2793 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2795 CLASS(fd, f)(source_fd);
2796 struct kvm *source_kvm;
2797 struct kvm_sev_info *source_sev, *mirror_sev;
2798 int ret;
2800 if (fd_empty(f))
2801 return -EBADF;
2803 if (!file_is_kvm(fd_file(f)))
2804 return -EBADF;
2806 source_kvm = fd_file(f)->private_data;
2807 ret = sev_lock_two_vms(kvm, source_kvm);
2808 if (ret)
2809 return ret;
2812 * Mirrors of mirrors should work, but let's not get silly. Also
2813 * disallow out-of-band SEV/SEV-ES init if the target is already an
2814 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being
2815 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2817 if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2818 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2819 ret = -EINVAL;
2820 goto e_unlock;
2824 * The mirror kvm holds an enc_context_owner ref so its asid can't
2825 * disappear until we're done with it
2827 source_sev = &to_kvm_svm(source_kvm)->sev_info;
2828 kvm_get_kvm(source_kvm);
2829 mirror_sev = &to_kvm_svm(kvm)->sev_info;
2830 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2832 /* Set enc_context_owner and copy its encryption context over */
2833 mirror_sev->enc_context_owner = source_kvm;
2834 mirror_sev->active = true;
2835 mirror_sev->asid = source_sev->asid;
2836 mirror_sev->fd = source_sev->fd;
2837 mirror_sev->es_active = source_sev->es_active;
2838 mirror_sev->need_init = false;
2839 mirror_sev->handle = source_sev->handle;
2840 INIT_LIST_HEAD(&mirror_sev->regions_list);
2841 INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2842 ret = 0;
2845 * Do not copy ap_jump_table. Since the mirror does not share the same
2846 * KVM contexts as the original, and they may have different
2847 * memory-views.
2850 e_unlock:
2851 sev_unlock_two_vms(kvm, source_kvm);
2852 return ret;
2855 static int snp_decommission_context(struct kvm *kvm)
2857 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2858 struct sev_data_snp_addr data = {};
2859 int ret;
2861 /* If context is not created then do nothing */
2862 if (!sev->snp_context)
2863 return 0;
2865 /* Do the decommision, which will unbind the ASID from the SNP context */
2866 data.address = __sme_pa(sev->snp_context);
2867 down_write(&sev_deactivate_lock);
2868 ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL);
2869 up_write(&sev_deactivate_lock);
2871 if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret))
2872 return ret;
2874 snp_free_firmware_page(sev->snp_context);
2875 sev->snp_context = NULL;
2877 return 0;
2880 void sev_vm_destroy(struct kvm *kvm)
2882 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2883 struct list_head *head = &sev->regions_list;
2884 struct list_head *pos, *q;
2886 if (!sev_guest(kvm))
2887 return;
2889 WARN_ON(!list_empty(&sev->mirror_vms));
2891 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2892 if (is_mirroring_enc_context(kvm)) {
2893 struct kvm *owner_kvm = sev->enc_context_owner;
2895 mutex_lock(&owner_kvm->lock);
2896 list_del(&sev->mirror_entry);
2897 mutex_unlock(&owner_kvm->lock);
2898 kvm_put_kvm(owner_kvm);
2899 return;
2903 * Ensure that all guest tagged cache entries are flushed before
2904 * releasing the pages back to the system for use. CLFLUSH will
2905 * not do this, so issue a WBINVD.
2907 wbinvd_on_all_cpus();
2910 * if userspace was terminated before unregistering the memory regions
2911 * then lets unpin all the registered memory.
2913 if (!list_empty(head)) {
2914 list_for_each_safe(pos, q, head) {
2915 __unregister_enc_region_locked(kvm,
2916 list_entry(pos, struct enc_region, list));
2917 cond_resched();
2921 if (sev_snp_guest(kvm)) {
2922 snp_guest_req_cleanup(kvm);
2925 * Decomission handles unbinding of the ASID. If it fails for
2926 * some unexpected reason, just leak the ASID.
2928 if (snp_decommission_context(kvm))
2929 return;
2930 } else {
2931 sev_unbind_asid(kvm, sev->handle);
2934 sev_asid_free(sev);
2937 void __init sev_set_cpu_caps(void)
2939 if (sev_enabled) {
2940 kvm_cpu_cap_set(X86_FEATURE_SEV);
2941 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM);
2943 if (sev_es_enabled) {
2944 kvm_cpu_cap_set(X86_FEATURE_SEV_ES);
2945 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM);
2947 if (sev_snp_enabled) {
2948 kvm_cpu_cap_set(X86_FEATURE_SEV_SNP);
2949 kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM);
2953 void __init sev_hardware_setup(void)
2955 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2956 bool sev_snp_supported = false;
2957 bool sev_es_supported = false;
2958 bool sev_supported = false;
2960 if (!sev_enabled || !npt_enabled || !nrips)
2961 goto out;
2964 * SEV must obviously be supported in hardware. Sanity check that the
2965 * CPU supports decode assists, which is mandatory for SEV guests to
2966 * support instruction emulation. Ditto for flushing by ASID, as SEV
2967 * guests are bound to a single ASID, i.e. KVM can't rotate to a new
2968 * ASID to effect a TLB flush.
2970 if (!boot_cpu_has(X86_FEATURE_SEV) ||
2971 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) ||
2972 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID)))
2973 goto out;
2975 /* Retrieve SEV CPUID information */
2976 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2978 /* Set encryption bit location for SEV-ES guests */
2979 sev_enc_bit = ebx & 0x3f;
2981 /* Maximum number of encrypted guests supported simultaneously */
2982 max_sev_asid = ecx;
2983 if (!max_sev_asid)
2984 goto out;
2986 /* Minimum ASID value that should be used for SEV guest */
2987 min_sev_asid = edx;
2988 sev_me_mask = 1UL << (ebx & 0x3f);
2991 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2992 * even though it's never used, so that the bitmap is indexed by the
2993 * actual ASID.
2995 nr_asids = max_sev_asid + 1;
2996 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2997 if (!sev_asid_bitmap)
2998 goto out;
3000 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
3001 if (!sev_reclaim_asid_bitmap) {
3002 bitmap_free(sev_asid_bitmap);
3003 sev_asid_bitmap = NULL;
3004 goto out;
3007 if (min_sev_asid <= max_sev_asid) {
3008 sev_asid_count = max_sev_asid - min_sev_asid + 1;
3009 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
3011 sev_supported = true;
3013 /* SEV-ES support requested? */
3014 if (!sev_es_enabled)
3015 goto out;
3018 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
3019 * instruction stream, i.e. can't emulate in response to a #NPF and
3020 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
3021 * (the guest can then do a #VMGEXIT to request MMIO emulation).
3023 if (!enable_mmio_caching)
3024 goto out;
3026 /* Does the CPU support SEV-ES? */
3027 if (!boot_cpu_has(X86_FEATURE_SEV_ES))
3028 goto out;
3030 if (!lbrv) {
3031 WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV),
3032 "LBRV must be present for SEV-ES support");
3033 goto out;
3036 /* Has the system been allocated ASIDs for SEV-ES? */
3037 if (min_sev_asid == 1)
3038 goto out;
3040 sev_es_asid_count = min_sev_asid - 1;
3041 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
3042 sev_es_supported = true;
3043 sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP);
3045 out:
3046 if (boot_cpu_has(X86_FEATURE_SEV))
3047 pr_info("SEV %s (ASIDs %u - %u)\n",
3048 sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" :
3049 "unusable" :
3050 "disabled",
3051 min_sev_asid, max_sev_asid);
3052 if (boot_cpu_has(X86_FEATURE_SEV_ES))
3053 pr_info("SEV-ES %s (ASIDs %u - %u)\n",
3054 sev_es_supported ? "enabled" : "disabled",
3055 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
3056 if (boot_cpu_has(X86_FEATURE_SEV_SNP))
3057 pr_info("SEV-SNP %s (ASIDs %u - %u)\n",
3058 sev_snp_supported ? "enabled" : "disabled",
3059 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
3061 sev_enabled = sev_supported;
3062 sev_es_enabled = sev_es_supported;
3063 sev_snp_enabled = sev_snp_supported;
3065 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
3066 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
3067 sev_es_debug_swap_enabled = false;
3069 sev_supported_vmsa_features = 0;
3070 if (sev_es_debug_swap_enabled)
3071 sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP;
3074 void sev_hardware_unsetup(void)
3076 if (!sev_enabled)
3077 return;
3079 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
3080 sev_flush_asids(1, max_sev_asid);
3082 bitmap_free(sev_asid_bitmap);
3083 bitmap_free(sev_reclaim_asid_bitmap);
3085 misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
3086 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
3089 int sev_cpu_init(struct svm_cpu_data *sd)
3091 if (!sev_enabled)
3092 return 0;
3094 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
3095 if (!sd->sev_vmcbs)
3096 return -ENOMEM;
3098 return 0;
3102 * Pages used by hardware to hold guest encrypted state must be flushed before
3103 * returning them to the system.
3105 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
3107 unsigned int asid = sev_get_asid(vcpu->kvm);
3110 * Note! The address must be a kernel address, as regular page walk
3111 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
3112 * address is non-deterministic and unsafe. This function deliberately
3113 * takes a pointer to deter passing in a user address.
3115 unsigned long addr = (unsigned long)va;
3118 * If CPU enforced cache coherency for encrypted mappings of the
3119 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
3120 * flush is still needed in order to work properly with DMA devices.
3122 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
3123 clflush_cache_range(va, PAGE_SIZE);
3124 return;
3128 * VM Page Flush takes a host virtual address and a guest ASID. Fall
3129 * back to WBINVD if this faults so as not to make any problems worse
3130 * by leaving stale encrypted data in the cache.
3132 if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
3133 goto do_wbinvd;
3135 return;
3137 do_wbinvd:
3138 wbinvd_on_all_cpus();
3141 void sev_guest_memory_reclaimed(struct kvm *kvm)
3144 * With SNP+gmem, private/encrypted memory is unreachable via the
3145 * hva-based mmu notifiers, so these events are only actually
3146 * pertaining to shared pages where there is no need to perform
3147 * the WBINVD to flush associated caches.
3149 if (!sev_guest(kvm) || sev_snp_guest(kvm))
3150 return;
3152 wbinvd_on_all_cpus();
3155 void sev_free_vcpu(struct kvm_vcpu *vcpu)
3157 struct vcpu_svm *svm;
3159 if (!sev_es_guest(vcpu->kvm))
3160 return;
3162 svm = to_svm(vcpu);
3165 * If it's an SNP guest, then the VMSA was marked in the RMP table as
3166 * a guest-owned page. Transition the page to hypervisor state before
3167 * releasing it back to the system.
3169 if (sev_snp_guest(vcpu->kvm)) {
3170 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
3172 if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K))
3173 goto skip_vmsa_free;
3176 if (vcpu->arch.guest_state_protected)
3177 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
3179 __free_page(virt_to_page(svm->sev_es.vmsa));
3181 skip_vmsa_free:
3182 if (svm->sev_es.ghcb_sa_free)
3183 kvfree(svm->sev_es.ghcb_sa);
3186 static void dump_ghcb(struct vcpu_svm *svm)
3188 struct ghcb *ghcb = svm->sev_es.ghcb;
3189 unsigned int nbits;
3191 /* Re-use the dump_invalid_vmcb module parameter */
3192 if (!dump_invalid_vmcb) {
3193 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3194 return;
3197 nbits = sizeof(ghcb->save.valid_bitmap) * 8;
3199 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
3200 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
3201 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
3202 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
3203 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
3204 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
3205 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
3206 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
3207 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
3208 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
3211 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
3213 struct kvm_vcpu *vcpu = &svm->vcpu;
3214 struct ghcb *ghcb = svm->sev_es.ghcb;
3217 * The GHCB protocol so far allows for the following data
3218 * to be returned:
3219 * GPRs RAX, RBX, RCX, RDX
3221 * Copy their values, even if they may not have been written during the
3222 * VM-Exit. It's the guest's responsibility to not consume random data.
3224 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
3225 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
3226 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
3227 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
3230 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
3232 struct vmcb_control_area *control = &svm->vmcb->control;
3233 struct kvm_vcpu *vcpu = &svm->vcpu;
3234 struct ghcb *ghcb = svm->sev_es.ghcb;
3235 u64 exit_code;
3238 * The GHCB protocol so far allows for the following data
3239 * to be supplied:
3240 * GPRs RAX, RBX, RCX, RDX
3241 * XCR0
3242 * CPL
3244 * VMMCALL allows the guest to provide extra registers. KVM also
3245 * expects RSI for hypercalls, so include that, too.
3247 * Copy their values to the appropriate location if supplied.
3249 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
3251 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
3252 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
3254 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
3255 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
3256 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
3257 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
3258 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
3260 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
3262 if (kvm_ghcb_xcr0_is_valid(svm)) {
3263 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
3264 kvm_update_cpuid_runtime(vcpu);
3267 /* Copy the GHCB exit information into the VMCB fields */
3268 exit_code = ghcb_get_sw_exit_code(ghcb);
3269 control->exit_code = lower_32_bits(exit_code);
3270 control->exit_code_hi = upper_32_bits(exit_code);
3271 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
3272 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
3273 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
3275 /* Clear the valid entries fields */
3276 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
3279 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
3281 return (((u64)control->exit_code_hi) << 32) | control->exit_code;
3284 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
3286 struct vmcb_control_area *control = &svm->vmcb->control;
3287 struct kvm_vcpu *vcpu = &svm->vcpu;
3288 u64 exit_code;
3289 u64 reason;
3292 * Retrieve the exit code now even though it may not be marked valid
3293 * as it could help with debugging.
3295 exit_code = kvm_ghcb_get_sw_exit_code(control);
3297 /* Only GHCB Usage code 0 is supported */
3298 if (svm->sev_es.ghcb->ghcb_usage) {
3299 reason = GHCB_ERR_INVALID_USAGE;
3300 goto vmgexit_err;
3303 reason = GHCB_ERR_MISSING_INPUT;
3305 if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
3306 !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
3307 !kvm_ghcb_sw_exit_info_2_is_valid(svm))
3308 goto vmgexit_err;
3310 switch (exit_code) {
3311 case SVM_EXIT_READ_DR7:
3312 break;
3313 case SVM_EXIT_WRITE_DR7:
3314 if (!kvm_ghcb_rax_is_valid(svm))
3315 goto vmgexit_err;
3316 break;
3317 case SVM_EXIT_RDTSC:
3318 break;
3319 case SVM_EXIT_RDPMC:
3320 if (!kvm_ghcb_rcx_is_valid(svm))
3321 goto vmgexit_err;
3322 break;
3323 case SVM_EXIT_CPUID:
3324 if (!kvm_ghcb_rax_is_valid(svm) ||
3325 !kvm_ghcb_rcx_is_valid(svm))
3326 goto vmgexit_err;
3327 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
3328 if (!kvm_ghcb_xcr0_is_valid(svm))
3329 goto vmgexit_err;
3330 break;
3331 case SVM_EXIT_INVD:
3332 break;
3333 case SVM_EXIT_IOIO:
3334 if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
3335 if (!kvm_ghcb_sw_scratch_is_valid(svm))
3336 goto vmgexit_err;
3337 } else {
3338 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
3339 if (!kvm_ghcb_rax_is_valid(svm))
3340 goto vmgexit_err;
3342 break;
3343 case SVM_EXIT_MSR:
3344 if (!kvm_ghcb_rcx_is_valid(svm))
3345 goto vmgexit_err;
3346 if (control->exit_info_1) {
3347 if (!kvm_ghcb_rax_is_valid(svm) ||
3348 !kvm_ghcb_rdx_is_valid(svm))
3349 goto vmgexit_err;
3351 break;
3352 case SVM_EXIT_VMMCALL:
3353 if (!kvm_ghcb_rax_is_valid(svm) ||
3354 !kvm_ghcb_cpl_is_valid(svm))
3355 goto vmgexit_err;
3356 break;
3357 case SVM_EXIT_RDTSCP:
3358 break;
3359 case SVM_EXIT_WBINVD:
3360 break;
3361 case SVM_EXIT_MONITOR:
3362 if (!kvm_ghcb_rax_is_valid(svm) ||
3363 !kvm_ghcb_rcx_is_valid(svm) ||
3364 !kvm_ghcb_rdx_is_valid(svm))
3365 goto vmgexit_err;
3366 break;
3367 case SVM_EXIT_MWAIT:
3368 if (!kvm_ghcb_rax_is_valid(svm) ||
3369 !kvm_ghcb_rcx_is_valid(svm))
3370 goto vmgexit_err;
3371 break;
3372 case SVM_VMGEXIT_MMIO_READ:
3373 case SVM_VMGEXIT_MMIO_WRITE:
3374 if (!kvm_ghcb_sw_scratch_is_valid(svm))
3375 goto vmgexit_err;
3376 break;
3377 case SVM_VMGEXIT_AP_CREATION:
3378 if (!sev_snp_guest(vcpu->kvm))
3379 goto vmgexit_err;
3380 if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY)
3381 if (!kvm_ghcb_rax_is_valid(svm))
3382 goto vmgexit_err;
3383 break;
3384 case SVM_VMGEXIT_NMI_COMPLETE:
3385 case SVM_VMGEXIT_AP_HLT_LOOP:
3386 case SVM_VMGEXIT_AP_JUMP_TABLE:
3387 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
3388 case SVM_VMGEXIT_HV_FEATURES:
3389 case SVM_VMGEXIT_TERM_REQUEST:
3390 break;
3391 case SVM_VMGEXIT_PSC:
3392 if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm))
3393 goto vmgexit_err;
3394 break;
3395 case SVM_VMGEXIT_GUEST_REQUEST:
3396 case SVM_VMGEXIT_EXT_GUEST_REQUEST:
3397 if (!sev_snp_guest(vcpu->kvm) ||
3398 !PAGE_ALIGNED(control->exit_info_1) ||
3399 !PAGE_ALIGNED(control->exit_info_2) ||
3400 control->exit_info_1 == control->exit_info_2)
3401 goto vmgexit_err;
3402 break;
3403 default:
3404 reason = GHCB_ERR_INVALID_EVENT;
3405 goto vmgexit_err;
3408 return 0;
3410 vmgexit_err:
3411 if (reason == GHCB_ERR_INVALID_USAGE) {
3412 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
3413 svm->sev_es.ghcb->ghcb_usage);
3414 } else if (reason == GHCB_ERR_INVALID_EVENT) {
3415 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
3416 exit_code);
3417 } else {
3418 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
3419 exit_code);
3420 dump_ghcb(svm);
3423 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
3424 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason);
3426 /* Resume the guest to "return" the error code. */
3427 return 1;
3430 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
3432 /* Clear any indication that the vCPU is in a type of AP Reset Hold */
3433 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE;
3435 if (!svm->sev_es.ghcb)
3436 return;
3438 if (svm->sev_es.ghcb_sa_free) {
3440 * The scratch area lives outside the GHCB, so there is a
3441 * buffer that, depending on the operation performed, may
3442 * need to be synced, then freed.
3444 if (svm->sev_es.ghcb_sa_sync) {
3445 kvm_write_guest(svm->vcpu.kvm,
3446 svm->sev_es.sw_scratch,
3447 svm->sev_es.ghcb_sa,
3448 svm->sev_es.ghcb_sa_len);
3449 svm->sev_es.ghcb_sa_sync = false;
3452 kvfree(svm->sev_es.ghcb_sa);
3453 svm->sev_es.ghcb_sa = NULL;
3454 svm->sev_es.ghcb_sa_free = false;
3457 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
3459 sev_es_sync_to_ghcb(svm);
3461 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map);
3462 svm->sev_es.ghcb = NULL;
3465 void pre_sev_run(struct vcpu_svm *svm, int cpu)
3467 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
3468 unsigned int asid = sev_get_asid(svm->vcpu.kvm);
3470 /* Assign the asid allocated with this SEV guest */
3471 svm->asid = asid;
3474 * Flush guest TLB:
3476 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
3477 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
3479 if (sd->sev_vmcbs[asid] == svm->vmcb &&
3480 svm->vcpu.arch.last_vmentry_cpu == cpu)
3481 return;
3483 sd->sev_vmcbs[asid] = svm->vmcb;
3484 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3485 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3488 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE)
3489 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
3491 struct vmcb_control_area *control = &svm->vmcb->control;
3492 u64 ghcb_scratch_beg, ghcb_scratch_end;
3493 u64 scratch_gpa_beg, scratch_gpa_end;
3494 void *scratch_va;
3496 scratch_gpa_beg = svm->sev_es.sw_scratch;
3497 if (!scratch_gpa_beg) {
3498 pr_err("vmgexit: scratch gpa not provided\n");
3499 goto e_scratch;
3502 scratch_gpa_end = scratch_gpa_beg + len;
3503 if (scratch_gpa_end < scratch_gpa_beg) {
3504 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
3505 len, scratch_gpa_beg);
3506 goto e_scratch;
3509 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
3510 /* Scratch area begins within GHCB */
3511 ghcb_scratch_beg = control->ghcb_gpa +
3512 offsetof(struct ghcb, shared_buffer);
3513 ghcb_scratch_end = control->ghcb_gpa +
3514 offsetof(struct ghcb, reserved_0xff0);
3517 * If the scratch area begins within the GHCB, it must be
3518 * completely contained in the GHCB shared buffer area.
3520 if (scratch_gpa_beg < ghcb_scratch_beg ||
3521 scratch_gpa_end > ghcb_scratch_end) {
3522 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
3523 scratch_gpa_beg, scratch_gpa_end);
3524 goto e_scratch;
3527 scratch_va = (void *)svm->sev_es.ghcb;
3528 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
3529 } else {
3531 * The guest memory must be read into a kernel buffer, so
3532 * limit the size
3534 if (len > GHCB_SCRATCH_AREA_LIMIT) {
3535 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
3536 len, GHCB_SCRATCH_AREA_LIMIT);
3537 goto e_scratch;
3539 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
3540 if (!scratch_va)
3541 return -ENOMEM;
3543 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
3544 /* Unable to copy scratch area from guest */
3545 pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
3547 kvfree(scratch_va);
3548 return -EFAULT;
3552 * The scratch area is outside the GHCB. The operation will
3553 * dictate whether the buffer needs to be synced before running
3554 * the vCPU next time (i.e. a read was requested so the data
3555 * must be written back to the guest memory).
3557 svm->sev_es.ghcb_sa_sync = sync;
3558 svm->sev_es.ghcb_sa_free = true;
3561 svm->sev_es.ghcb_sa = scratch_va;
3562 svm->sev_es.ghcb_sa_len = len;
3564 return 0;
3566 e_scratch:
3567 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
3568 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
3570 return 1;
3573 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
3574 unsigned int pos)
3576 svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
3577 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
3580 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
3582 return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
3585 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
3587 svm->vmcb->control.ghcb_gpa = value;
3590 static int snp_rmptable_psmash(kvm_pfn_t pfn)
3592 int ret;
3594 pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1);
3597 * PSMASH_FAIL_INUSE indicates another processor is modifying the
3598 * entry, so retry until that's no longer the case.
3600 do {
3601 ret = psmash(pfn);
3602 } while (ret == PSMASH_FAIL_INUSE);
3604 return ret;
3607 static int snp_complete_psc_msr(struct kvm_vcpu *vcpu)
3609 struct vcpu_svm *svm = to_svm(vcpu);
3611 if (vcpu->run->hypercall.ret)
3612 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3613 else
3614 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP);
3616 return 1; /* resume guest */
3619 static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr)
3621 u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr));
3622 u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr);
3623 struct kvm_vcpu *vcpu = &svm->vcpu;
3625 if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) {
3626 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3627 return 1; /* resume guest */
3630 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) {
3631 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3632 return 1; /* resume guest */
3635 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3636 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3637 vcpu->run->hypercall.args[0] = gpa;
3638 vcpu->run->hypercall.args[1] = 1;
3639 vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE)
3640 ? KVM_MAP_GPA_RANGE_ENCRYPTED
3641 : KVM_MAP_GPA_RANGE_DECRYPTED;
3642 vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3644 vcpu->arch.complete_userspace_io = snp_complete_psc_msr;
3646 return 0; /* forward request to userspace */
3649 struct psc_buffer {
3650 struct psc_hdr hdr;
3651 struct psc_entry entries[];
3652 } __packed;
3654 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc);
3656 static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret)
3658 svm->sev_es.psc_inflight = 0;
3659 svm->sev_es.psc_idx = 0;
3660 svm->sev_es.psc_2m = false;
3661 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, psc_ret);
3664 static void __snp_complete_one_psc(struct vcpu_svm *svm)
3666 struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3667 struct psc_entry *entries = psc->entries;
3668 struct psc_hdr *hdr = &psc->hdr;
3669 __u16 idx;
3672 * Everything in-flight has been processed successfully. Update the
3673 * corresponding entries in the guest's PSC buffer and zero out the
3674 * count of in-flight PSC entries.
3676 for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight;
3677 svm->sev_es.psc_inflight--, idx++) {
3678 struct psc_entry *entry = &entries[idx];
3680 entry->cur_page = entry->pagesize ? 512 : 1;
3683 hdr->cur_entry = idx;
3686 static int snp_complete_one_psc(struct kvm_vcpu *vcpu)
3688 struct vcpu_svm *svm = to_svm(vcpu);
3689 struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3691 if (vcpu->run->hypercall.ret) {
3692 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3693 return 1; /* resume guest */
3696 __snp_complete_one_psc(svm);
3698 /* Handle the next range (if any). */
3699 return snp_begin_psc(svm, psc);
3702 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc)
3704 struct psc_entry *entries = psc->entries;
3705 struct kvm_vcpu *vcpu = &svm->vcpu;
3706 struct psc_hdr *hdr = &psc->hdr;
3707 struct psc_entry entry_start;
3708 u16 idx, idx_start, idx_end;
3709 int npages;
3710 bool huge;
3711 u64 gfn;
3713 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) {
3714 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3715 return 1;
3718 next_range:
3719 /* There should be no other PSCs in-flight at this point. */
3720 if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) {
3721 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3722 return 1;
3726 * The PSC descriptor buffer can be modified by a misbehaved guest after
3727 * validation, so take care to only use validated copies of values used
3728 * for things like array indexing.
3730 idx_start = hdr->cur_entry;
3731 idx_end = hdr->end_entry;
3733 if (idx_end >= VMGEXIT_PSC_MAX_COUNT) {
3734 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR);
3735 return 1;
3738 /* Find the start of the next range which needs processing. */
3739 for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) {
3740 entry_start = entries[idx];
3742 gfn = entry_start.gfn;
3743 huge = entry_start.pagesize;
3744 npages = huge ? 512 : 1;
3746 if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) {
3747 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY);
3748 return 1;
3751 if (entry_start.cur_page) {
3753 * If this is a partially-completed 2M range, force 4K handling
3754 * for the remaining pages since they're effectively split at
3755 * this point. Subsequent code should ensure this doesn't get
3756 * combined with adjacent PSC entries where 2M handling is still
3757 * possible.
3759 npages -= entry_start.cur_page;
3760 gfn += entry_start.cur_page;
3761 huge = false;
3764 if (npages)
3765 break;
3768 if (idx > idx_end) {
3769 /* Nothing more to process. */
3770 snp_complete_psc(svm, 0);
3771 return 1;
3774 svm->sev_es.psc_2m = huge;
3775 svm->sev_es.psc_idx = idx;
3776 svm->sev_es.psc_inflight = 1;
3779 * Find all subsequent PSC entries that contain adjacent GPA
3780 * ranges/operations and can be combined into a single
3781 * KVM_HC_MAP_GPA_RANGE exit.
3783 while (++idx <= idx_end) {
3784 struct psc_entry entry = entries[idx];
3786 if (entry.operation != entry_start.operation ||
3787 entry.gfn != entry_start.gfn + npages ||
3788 entry.cur_page || !!entry.pagesize != huge)
3789 break;
3791 svm->sev_es.psc_inflight++;
3792 npages += huge ? 512 : 1;
3795 switch (entry_start.operation) {
3796 case VMGEXIT_PSC_OP_PRIVATE:
3797 case VMGEXIT_PSC_OP_SHARED:
3798 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3799 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3800 vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn);
3801 vcpu->run->hypercall.args[1] = npages;
3802 vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE
3803 ? KVM_MAP_GPA_RANGE_ENCRYPTED
3804 : KVM_MAP_GPA_RANGE_DECRYPTED;
3805 vcpu->run->hypercall.args[2] |= entry_start.pagesize
3806 ? KVM_MAP_GPA_RANGE_PAGE_SZ_2M
3807 : KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3808 vcpu->arch.complete_userspace_io = snp_complete_one_psc;
3809 return 0; /* forward request to userspace */
3810 default:
3812 * Only shared/private PSC operations are currently supported, so if the
3813 * entire range consists of unsupported operations (e.g. SMASH/UNSMASH),
3814 * then consider the entire range completed and avoid exiting to
3815 * userspace. In theory snp_complete_psc() can always be called directly
3816 * at this point to complete the current range and start the next one,
3817 * but that could lead to unexpected levels of recursion.
3819 __snp_complete_one_psc(svm);
3820 goto next_range;
3823 unreachable();
3826 static int __sev_snp_update_protected_guest_state(struct kvm_vcpu *vcpu)
3828 struct vcpu_svm *svm = to_svm(vcpu);
3830 WARN_ON(!mutex_is_locked(&svm->sev_es.snp_vmsa_mutex));
3832 /* Mark the vCPU as offline and not runnable */
3833 vcpu->arch.pv.pv_unhalted = false;
3834 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3836 /* Clear use of the VMSA */
3837 svm->vmcb->control.vmsa_pa = INVALID_PAGE;
3839 if (VALID_PAGE(svm->sev_es.snp_vmsa_gpa)) {
3840 gfn_t gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa);
3841 struct kvm_memory_slot *slot;
3842 struct page *page;
3843 kvm_pfn_t pfn;
3845 slot = gfn_to_memslot(vcpu->kvm, gfn);
3846 if (!slot)
3847 return -EINVAL;
3850 * The new VMSA will be private memory guest memory, so
3851 * retrieve the PFN from the gmem backend.
3853 if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, &page, NULL))
3854 return -EINVAL;
3857 * From this point forward, the VMSA will always be a
3858 * guest-mapped page rather than the initial one allocated
3859 * by KVM in svm->sev_es.vmsa. In theory, svm->sev_es.vmsa
3860 * could be free'd and cleaned up here, but that involves
3861 * cleanups like wbinvd_on_all_cpus() which would ideally
3862 * be handled during teardown rather than guest boot.
3863 * Deferring that also allows the existing logic for SEV-ES
3864 * VMSAs to be re-used with minimal SNP-specific changes.
3866 svm->sev_es.snp_has_guest_vmsa = true;
3868 /* Use the new VMSA */
3869 svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn);
3871 /* Mark the vCPU as runnable */
3872 vcpu->arch.pv.pv_unhalted = false;
3873 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3875 svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
3878 * gmem pages aren't currently migratable, but if this ever
3879 * changes then care should be taken to ensure
3880 * svm->sev_es.vmsa is pinned through some other means.
3882 kvm_release_page_clean(page);
3886 * When replacing the VMSA during SEV-SNP AP creation,
3887 * mark the VMCB dirty so that full state is always reloaded.
3889 vmcb_mark_all_dirty(svm->vmcb);
3891 return 0;
3895 * Invoked as part of svm_vcpu_reset() processing of an init event.
3897 void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu)
3899 struct vcpu_svm *svm = to_svm(vcpu);
3900 int ret;
3902 if (!sev_snp_guest(vcpu->kvm))
3903 return;
3905 mutex_lock(&svm->sev_es.snp_vmsa_mutex);
3907 if (!svm->sev_es.snp_ap_waiting_for_reset)
3908 goto unlock;
3910 svm->sev_es.snp_ap_waiting_for_reset = false;
3912 ret = __sev_snp_update_protected_guest_state(vcpu);
3913 if (ret)
3914 vcpu_unimpl(vcpu, "snp: AP state update on init failed\n");
3916 unlock:
3917 mutex_unlock(&svm->sev_es.snp_vmsa_mutex);
3920 static int sev_snp_ap_creation(struct vcpu_svm *svm)
3922 struct kvm_sev_info *sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
3923 struct kvm_vcpu *vcpu = &svm->vcpu;
3924 struct kvm_vcpu *target_vcpu;
3925 struct vcpu_svm *target_svm;
3926 unsigned int request;
3927 unsigned int apic_id;
3928 bool kick;
3929 int ret;
3931 request = lower_32_bits(svm->vmcb->control.exit_info_1);
3932 apic_id = upper_32_bits(svm->vmcb->control.exit_info_1);
3934 /* Validate the APIC ID */
3935 target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id);
3936 if (!target_vcpu) {
3937 vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n",
3938 apic_id);
3939 return -EINVAL;
3942 ret = 0;
3944 target_svm = to_svm(target_vcpu);
3947 * The target vCPU is valid, so the vCPU will be kicked unless the
3948 * request is for CREATE_ON_INIT. For any errors at this stage, the
3949 * kick will place the vCPU in an non-runnable state.
3951 kick = true;
3953 mutex_lock(&target_svm->sev_es.snp_vmsa_mutex);
3955 target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
3956 target_svm->sev_es.snp_ap_waiting_for_reset = true;
3958 /* Interrupt injection mode shouldn't change for AP creation */
3959 if (request < SVM_VMGEXIT_AP_DESTROY) {
3960 u64 sev_features;
3962 sev_features = vcpu->arch.regs[VCPU_REGS_RAX];
3963 sev_features ^= sev->vmsa_features;
3965 if (sev_features & SVM_SEV_FEAT_INT_INJ_MODES) {
3966 vcpu_unimpl(vcpu, "vmgexit: invalid AP injection mode [%#lx] from guest\n",
3967 vcpu->arch.regs[VCPU_REGS_RAX]);
3968 ret = -EINVAL;
3969 goto out;
3973 switch (request) {
3974 case SVM_VMGEXIT_AP_CREATE_ON_INIT:
3975 kick = false;
3976 fallthrough;
3977 case SVM_VMGEXIT_AP_CREATE:
3978 if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) {
3979 vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n",
3980 svm->vmcb->control.exit_info_2);
3981 ret = -EINVAL;
3982 goto out;
3986 * Malicious guest can RMPADJUST a large page into VMSA which
3987 * will hit the SNP erratum where the CPU will incorrectly signal
3988 * an RMP violation #PF if a hugepage collides with the RMP entry
3989 * of VMSA page, reject the AP CREATE request if VMSA address from
3990 * guest is 2M aligned.
3992 if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) {
3993 vcpu_unimpl(vcpu,
3994 "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n",
3995 svm->vmcb->control.exit_info_2);
3996 ret = -EINVAL;
3997 goto out;
4000 target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2;
4001 break;
4002 case SVM_VMGEXIT_AP_DESTROY:
4003 break;
4004 default:
4005 vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n",
4006 request);
4007 ret = -EINVAL;
4008 break;
4011 out:
4012 if (kick) {
4013 kvm_make_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu);
4014 kvm_vcpu_kick(target_vcpu);
4017 mutex_unlock(&target_svm->sev_es.snp_vmsa_mutex);
4019 return ret;
4022 static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4024 struct sev_data_snp_guest_request data = {0};
4025 struct kvm *kvm = svm->vcpu.kvm;
4026 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
4027 sev_ret_code fw_err = 0;
4028 int ret;
4030 if (!sev_snp_guest(kvm))
4031 return -EINVAL;
4033 mutex_lock(&sev->guest_req_mutex);
4035 if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) {
4036 ret = -EIO;
4037 goto out_unlock;
4040 data.gctx_paddr = __psp_pa(sev->snp_context);
4041 data.req_paddr = __psp_pa(sev->guest_req_buf);
4042 data.res_paddr = __psp_pa(sev->guest_resp_buf);
4045 * Firmware failures are propagated on to guest, but any other failure
4046 * condition along the way should be reported to userspace. E.g. if
4047 * the PSP is dead and commands are timing out.
4049 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err);
4050 if (ret && !fw_err)
4051 goto out_unlock;
4053 if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) {
4054 ret = -EIO;
4055 goto out_unlock;
4058 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, SNP_GUEST_ERR(0, fw_err));
4060 ret = 1; /* resume guest */
4062 out_unlock:
4063 mutex_unlock(&sev->guest_req_mutex);
4064 return ret;
4067 static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4069 struct kvm *kvm = svm->vcpu.kvm;
4070 u8 msg_type;
4072 if (!sev_snp_guest(kvm))
4073 return -EINVAL;
4075 if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type),
4076 &msg_type, 1))
4077 return -EIO;
4080 * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for
4081 * additional certificate data to be provided alongside the attestation
4082 * report via the guest-provided data pages indicated by RAX/RBX. The
4083 * certificate data is optional and requires additional KVM enablement
4084 * to provide an interface for userspace to provide it, but KVM still
4085 * needs to be able to handle extended guest requests either way. So
4086 * provide a stub implementation that will always return an empty
4087 * certificate table in the guest-provided data pages.
4089 if (msg_type == SNP_MSG_REPORT_REQ) {
4090 struct kvm_vcpu *vcpu = &svm->vcpu;
4091 u64 data_npages;
4092 gpa_t data_gpa;
4094 if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm))
4095 goto request_invalid;
4097 data_gpa = vcpu->arch.regs[VCPU_REGS_RAX];
4098 data_npages = vcpu->arch.regs[VCPU_REGS_RBX];
4100 if (!PAGE_ALIGNED(data_gpa))
4101 goto request_invalid;
4104 * As per GHCB spec (see "SNP Extended Guest Request"), the
4105 * certificate table is terminated by 24-bytes of zeroes.
4107 if (data_npages && kvm_clear_guest(kvm, data_gpa, 24))
4108 return -EIO;
4111 return snp_handle_guest_req(svm, req_gpa, resp_gpa);
4113 request_invalid:
4114 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
4115 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
4116 return 1; /* resume guest */
4119 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
4121 struct vmcb_control_area *control = &svm->vmcb->control;
4122 struct kvm_vcpu *vcpu = &svm->vcpu;
4123 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
4124 u64 ghcb_info;
4125 int ret = 1;
4127 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
4129 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
4130 control->ghcb_gpa);
4132 switch (ghcb_info) {
4133 case GHCB_MSR_SEV_INFO_REQ:
4134 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4135 GHCB_VERSION_MIN,
4136 sev_enc_bit));
4137 break;
4138 case GHCB_MSR_CPUID_REQ: {
4139 u64 cpuid_fn, cpuid_reg, cpuid_value;
4141 cpuid_fn = get_ghcb_msr_bits(svm,
4142 GHCB_MSR_CPUID_FUNC_MASK,
4143 GHCB_MSR_CPUID_FUNC_POS);
4145 /* Initialize the registers needed by the CPUID intercept */
4146 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
4147 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
4149 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
4150 if (!ret) {
4151 /* Error, keep GHCB MSR value as-is */
4152 break;
4155 cpuid_reg = get_ghcb_msr_bits(svm,
4156 GHCB_MSR_CPUID_REG_MASK,
4157 GHCB_MSR_CPUID_REG_POS);
4158 if (cpuid_reg == 0)
4159 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
4160 else if (cpuid_reg == 1)
4161 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
4162 else if (cpuid_reg == 2)
4163 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
4164 else
4165 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
4167 set_ghcb_msr_bits(svm, cpuid_value,
4168 GHCB_MSR_CPUID_VALUE_MASK,
4169 GHCB_MSR_CPUID_VALUE_POS);
4171 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
4172 GHCB_MSR_INFO_MASK,
4173 GHCB_MSR_INFO_POS);
4174 break;
4176 case GHCB_MSR_AP_RESET_HOLD_REQ:
4177 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO;
4178 ret = kvm_emulate_ap_reset_hold(&svm->vcpu);
4181 * Preset the result to a non-SIPI return and then only set
4182 * the result to non-zero when delivering a SIPI.
4184 set_ghcb_msr_bits(svm, 0,
4185 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4186 GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4188 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4189 GHCB_MSR_INFO_MASK,
4190 GHCB_MSR_INFO_POS);
4191 break;
4192 case GHCB_MSR_HV_FT_REQ:
4193 set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED,
4194 GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS);
4195 set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP,
4196 GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS);
4197 break;
4198 case GHCB_MSR_PREF_GPA_REQ:
4199 if (!sev_snp_guest(vcpu->kvm))
4200 goto out_terminate;
4202 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK,
4203 GHCB_MSR_GPA_VALUE_POS);
4204 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK,
4205 GHCB_MSR_INFO_POS);
4206 break;
4207 case GHCB_MSR_REG_GPA_REQ: {
4208 u64 gfn;
4210 if (!sev_snp_guest(vcpu->kvm))
4211 goto out_terminate;
4213 gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK,
4214 GHCB_MSR_GPA_VALUE_POS);
4216 svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn);
4218 set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK,
4219 GHCB_MSR_GPA_VALUE_POS);
4220 set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK,
4221 GHCB_MSR_INFO_POS);
4222 break;
4224 case GHCB_MSR_PSC_REQ:
4225 if (!sev_snp_guest(vcpu->kvm))
4226 goto out_terminate;
4228 ret = snp_begin_psc_msr(svm, control->ghcb_gpa);
4229 break;
4230 case GHCB_MSR_TERM_REQ: {
4231 u64 reason_set, reason_code;
4233 reason_set = get_ghcb_msr_bits(svm,
4234 GHCB_MSR_TERM_REASON_SET_MASK,
4235 GHCB_MSR_TERM_REASON_SET_POS);
4236 reason_code = get_ghcb_msr_bits(svm,
4237 GHCB_MSR_TERM_REASON_MASK,
4238 GHCB_MSR_TERM_REASON_POS);
4239 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
4240 reason_set, reason_code);
4242 goto out_terminate;
4244 default:
4245 /* Error, keep GHCB MSR value as-is */
4246 break;
4249 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
4250 control->ghcb_gpa, ret);
4252 return ret;
4254 out_terminate:
4255 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4256 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4257 vcpu->run->system_event.ndata = 1;
4258 vcpu->run->system_event.data[0] = control->ghcb_gpa;
4260 return 0;
4263 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
4265 struct vcpu_svm *svm = to_svm(vcpu);
4266 struct vmcb_control_area *control = &svm->vmcb->control;
4267 u64 ghcb_gpa, exit_code;
4268 int ret;
4270 /* Validate the GHCB */
4271 ghcb_gpa = control->ghcb_gpa;
4272 if (ghcb_gpa & GHCB_MSR_INFO_MASK)
4273 return sev_handle_vmgexit_msr_protocol(svm);
4275 if (!ghcb_gpa) {
4276 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
4278 /* Without a GHCB, just return right back to the guest */
4279 return 1;
4282 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
4283 /* Unable to map GHCB from guest */
4284 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
4285 ghcb_gpa);
4287 /* Without a GHCB, just return right back to the guest */
4288 return 1;
4291 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
4293 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
4295 sev_es_sync_from_ghcb(svm);
4297 /* SEV-SNP guest requires that the GHCB GPA must be registered */
4298 if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) {
4299 vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa);
4300 return -EINVAL;
4303 ret = sev_es_validate_vmgexit(svm);
4304 if (ret)
4305 return ret;
4307 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0);
4308 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0);
4310 exit_code = kvm_ghcb_get_sw_exit_code(control);
4311 switch (exit_code) {
4312 case SVM_VMGEXIT_MMIO_READ:
4313 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4314 if (ret)
4315 break;
4317 ret = kvm_sev_es_mmio_read(vcpu,
4318 control->exit_info_1,
4319 control->exit_info_2,
4320 svm->sev_es.ghcb_sa);
4321 break;
4322 case SVM_VMGEXIT_MMIO_WRITE:
4323 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
4324 if (ret)
4325 break;
4327 ret = kvm_sev_es_mmio_write(vcpu,
4328 control->exit_info_1,
4329 control->exit_info_2,
4330 svm->sev_es.ghcb_sa);
4331 break;
4332 case SVM_VMGEXIT_NMI_COMPLETE:
4333 ++vcpu->stat.nmi_window_exits;
4334 svm->nmi_masked = false;
4335 kvm_make_request(KVM_REQ_EVENT, vcpu);
4336 ret = 1;
4337 break;
4338 case SVM_VMGEXIT_AP_HLT_LOOP:
4339 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT;
4340 ret = kvm_emulate_ap_reset_hold(vcpu);
4341 break;
4342 case SVM_VMGEXIT_AP_JUMP_TABLE: {
4343 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
4345 switch (control->exit_info_1) {
4346 case 0:
4347 /* Set AP jump table address */
4348 sev->ap_jump_table = control->exit_info_2;
4349 break;
4350 case 1:
4351 /* Get AP jump table address */
4352 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table);
4353 break;
4354 default:
4355 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
4356 control->exit_info_1);
4357 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
4358 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
4361 ret = 1;
4362 break;
4364 case SVM_VMGEXIT_HV_FEATURES:
4365 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_HV_FT_SUPPORTED);
4367 ret = 1;
4368 break;
4369 case SVM_VMGEXIT_TERM_REQUEST:
4370 pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n",
4371 control->exit_info_1, control->exit_info_2);
4372 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4373 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4374 vcpu->run->system_event.ndata = 1;
4375 vcpu->run->system_event.data[0] = control->ghcb_gpa;
4376 break;
4377 case SVM_VMGEXIT_PSC:
4378 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4379 if (ret)
4380 break;
4382 ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa);
4383 break;
4384 case SVM_VMGEXIT_AP_CREATION:
4385 ret = sev_snp_ap_creation(svm);
4386 if (ret) {
4387 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
4388 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
4391 ret = 1;
4392 break;
4393 case SVM_VMGEXIT_GUEST_REQUEST:
4394 ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2);
4395 break;
4396 case SVM_VMGEXIT_EXT_GUEST_REQUEST:
4397 ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2);
4398 break;
4399 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
4400 vcpu_unimpl(vcpu,
4401 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
4402 control->exit_info_1, control->exit_info_2);
4403 ret = -EINVAL;
4404 break;
4405 default:
4406 ret = svm_invoke_exit_handler(vcpu, exit_code);
4409 return ret;
4412 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
4414 int count;
4415 int bytes;
4416 int r;
4418 if (svm->vmcb->control.exit_info_2 > INT_MAX)
4419 return -EINVAL;
4421 count = svm->vmcb->control.exit_info_2;
4422 if (unlikely(check_mul_overflow(count, size, &bytes)))
4423 return -EINVAL;
4425 r = setup_vmgexit_scratch(svm, in, bytes);
4426 if (r)
4427 return r;
4429 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
4430 count, in);
4433 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm)
4435 struct kvm_vcpu *vcpu = &svm->vcpu;
4437 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
4438 bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4439 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4441 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux);
4445 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if
4446 * the host/guest supports its use.
4448 * guest_can_use() checks a number of requirements on the host/guest to
4449 * ensure that MSR_IA32_XSS is available, but it might report true even
4450 * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host
4451 * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better
4452 * to further check that the guest CPUID actually supports
4453 * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved
4454 * guests will still get intercepted and caught in the normal
4455 * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths.
4457 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
4458 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4459 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1);
4460 else
4461 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0);
4464 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
4466 struct kvm_vcpu *vcpu = &svm->vcpu;
4467 struct kvm_cpuid_entry2 *best;
4469 /* For sev guests, the memory encryption bit is not reserved in CR3. */
4470 best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4471 if (best)
4472 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4474 if (sev_es_guest(svm->vcpu.kvm))
4475 sev_es_vcpu_after_set_cpuid(svm);
4478 static void sev_es_init_vmcb(struct vcpu_svm *svm)
4480 struct vmcb *vmcb = svm->vmcb01.ptr;
4481 struct kvm_vcpu *vcpu = &svm->vcpu;
4483 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
4486 * An SEV-ES guest requires a VMSA area that is a separate from the
4487 * VMCB page. Do not include the encryption mask on the VMSA physical
4488 * address since hardware will access it using the guest key. Note,
4489 * the VMSA will be NULL if this vCPU is the destination for intrahost
4490 * migration, and will be copied later.
4492 if (svm->sev_es.vmsa && !svm->sev_es.snp_has_guest_vmsa)
4493 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
4495 /* Can't intercept CR register access, HV can't modify CR registers */
4496 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
4497 svm_clr_intercept(svm, INTERCEPT_CR4_READ);
4498 svm_clr_intercept(svm, INTERCEPT_CR8_READ);
4499 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
4500 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
4501 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
4503 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
4505 /* Track EFER/CR register changes */
4506 svm_set_intercept(svm, TRAP_EFER_WRITE);
4507 svm_set_intercept(svm, TRAP_CR0_WRITE);
4508 svm_set_intercept(svm, TRAP_CR4_WRITE);
4509 svm_set_intercept(svm, TRAP_CR8_WRITE);
4511 vmcb->control.intercepts[INTERCEPT_DR] = 0;
4512 if (!sev_vcpu_has_debug_swap(svm)) {
4513 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
4514 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
4515 recalc_intercepts(svm);
4516 } else {
4518 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't
4519 * allow debugging SEV-ES guests, and enables DebugSwap iff
4520 * NO_NESTED_DATA_BP is supported, so there's no reason to
4521 * intercept #DB when DebugSwap is enabled. For simplicity
4522 * with respect to guest debug, intercept #DB for other VMs
4523 * even if NO_NESTED_DATA_BP is supported, i.e. even if the
4524 * guest can't DoS the CPU with infinite #DB vectoring.
4526 clr_exception_intercept(svm, DB_VECTOR);
4529 /* Can't intercept XSETBV, HV can't modify XCR0 directly */
4530 svm_clr_intercept(svm, INTERCEPT_XSETBV);
4532 /* Clear intercepts on selected MSRs */
4533 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
4534 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
4537 void sev_init_vmcb(struct vcpu_svm *svm)
4539 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
4540 clr_exception_intercept(svm, UD_VECTOR);
4543 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
4544 * KVM can't decrypt guest memory to decode the faulting instruction.
4546 clr_exception_intercept(svm, GP_VECTOR);
4548 if (sev_es_guest(svm->vcpu.kvm))
4549 sev_es_init_vmcb(svm);
4552 void sev_es_vcpu_reset(struct vcpu_svm *svm)
4554 struct kvm_vcpu *vcpu = &svm->vcpu;
4555 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
4558 * Set the GHCB MSR value as per the GHCB specification when emulating
4559 * vCPU RESET for an SEV-ES guest.
4561 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4562 GHCB_VERSION_MIN,
4563 sev_enc_bit));
4565 mutex_init(&svm->sev_es.snp_vmsa_mutex);
4568 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa)
4571 * All host state for SEV-ES guests is categorized into three swap types
4572 * based on how it is handled by hardware during a world switch:
4574 * A: VMRUN: Host state saved in host save area
4575 * VMEXIT: Host state loaded from host save area
4577 * B: VMRUN: Host state _NOT_ saved in host save area
4578 * VMEXIT: Host state loaded from host save area
4580 * C: VMRUN: Host state _NOT_ saved in host save area
4581 * VMEXIT: Host state initialized to default(reset) values
4583 * Manually save type-B state, i.e. state that is loaded by VMEXIT but
4584 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
4585 * by common SVM code).
4587 hostsa->xcr0 = kvm_host.xcr0;
4588 hostsa->pkru = read_pkru();
4589 hostsa->xss = kvm_host.xss;
4592 * If DebugSwap is enabled, debug registers are loaded but NOT saved by
4593 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both
4594 * saves and loads debug registers (Type-A).
4596 if (sev_vcpu_has_debug_swap(svm)) {
4597 hostsa->dr0 = native_get_debugreg(0);
4598 hostsa->dr1 = native_get_debugreg(1);
4599 hostsa->dr2 = native_get_debugreg(2);
4600 hostsa->dr3 = native_get_debugreg(3);
4601 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
4602 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
4603 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
4604 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
4608 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4610 struct vcpu_svm *svm = to_svm(vcpu);
4612 /* First SIPI: Use the values as initially set by the VMM */
4613 if (!svm->sev_es.received_first_sipi) {
4614 svm->sev_es.received_first_sipi = true;
4615 return;
4618 /* Subsequent SIPI */
4619 switch (svm->sev_es.ap_reset_hold_type) {
4620 case AP_RESET_HOLD_NAE_EVENT:
4622 * Return from an AP Reset Hold VMGEXIT, where the guest will
4623 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value.
4625 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
4626 break;
4627 case AP_RESET_HOLD_MSR_PROTO:
4629 * Return from an AP Reset Hold VMGEXIT, where the guest will
4630 * set the CS and RIP. Set GHCB data field to a non-zero value.
4632 set_ghcb_msr_bits(svm, 1,
4633 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4634 GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4636 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4637 GHCB_MSR_INFO_MASK,
4638 GHCB_MSR_INFO_POS);
4639 break;
4640 default:
4641 break;
4645 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp)
4647 unsigned long pfn;
4648 struct page *p;
4650 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4651 return alloc_pages_node(node, gfp | __GFP_ZERO, 0);
4654 * Allocate an SNP-safe page to workaround the SNP erratum where
4655 * the CPU will incorrectly signal an RMP violation #PF if a
4656 * hugepage (2MB or 1GB) collides with the RMP entry of a
4657 * 2MB-aligned VMCB, VMSA, or AVIC backing page.
4659 * Allocate one extra page, choose a page which is not
4660 * 2MB-aligned, and free the other.
4662 p = alloc_pages_node(node, gfp | __GFP_ZERO, 1);
4663 if (!p)
4664 return NULL;
4666 split_page(p, 1);
4668 pfn = page_to_pfn(p);
4669 if (IS_ALIGNED(pfn, PTRS_PER_PMD))
4670 __free_page(p++);
4671 else
4672 __free_page(p + 1);
4674 return p;
4677 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code)
4679 struct kvm_memory_slot *slot;
4680 struct kvm *kvm = vcpu->kvm;
4681 int order, rmp_level, ret;
4682 struct page *page;
4683 bool assigned;
4684 kvm_pfn_t pfn;
4685 gfn_t gfn;
4687 gfn = gpa >> PAGE_SHIFT;
4690 * The only time RMP faults occur for shared pages is when the guest is
4691 * triggering an RMP fault for an implicit page-state change from
4692 * shared->private. Implicit page-state changes are forwarded to
4693 * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults
4694 * for shared pages should not end up here.
4696 if (!kvm_mem_is_private(kvm, gfn)) {
4697 pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n",
4698 gpa);
4699 return;
4702 slot = gfn_to_memslot(kvm, gfn);
4703 if (!kvm_slot_can_be_private(slot)) {
4704 pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n",
4705 gpa);
4706 return;
4709 ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &page, &order);
4710 if (ret) {
4711 pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n",
4712 gpa);
4713 return;
4716 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4717 if (ret || !assigned) {
4718 pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n",
4719 gpa, pfn, ret);
4720 goto out_no_trace;
4724 * There are 2 cases where a PSMASH may be needed to resolve an #NPF
4725 * with PFERR_GUEST_RMP_BIT set:
4727 * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM
4728 * bit set if the guest issues them with a smaller granularity than
4729 * what is indicated by the page-size bit in the 2MB RMP entry for
4730 * the PFN that backs the GPA.
4732 * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is
4733 * smaller than what is indicated by the 2MB RMP entry for the PFN
4734 * that backs the GPA.
4736 * In both these cases, the corresponding 2M RMP entry needs to
4737 * be PSMASH'd to 512 4K RMP entries. If the RMP entry is already
4738 * split into 4K RMP entries, then this is likely a spurious case which
4739 * can occur when there are concurrent accesses by the guest to a 2MB
4740 * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in
4741 * the process of being PMASH'd into 4K entries. These cases should
4742 * resolve automatically on subsequent accesses, so just ignore them
4743 * here.
4745 if (rmp_level == PG_LEVEL_4K)
4746 goto out;
4748 ret = snp_rmptable_psmash(pfn);
4749 if (ret) {
4751 * Look it up again. If it's 4K now then the PSMASH may have
4752 * raced with another process and the issue has already resolved
4753 * itself.
4755 if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) &&
4756 assigned && rmp_level == PG_LEVEL_4K)
4757 goto out;
4759 pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n",
4760 gpa, pfn, ret);
4763 kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD);
4764 out:
4765 trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret);
4766 out_no_trace:
4767 kvm_release_page_unused(page);
4770 static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end)
4772 kvm_pfn_t pfn = start;
4774 while (pfn < end) {
4775 int ret, rmp_level;
4776 bool assigned;
4778 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4779 if (ret) {
4780 pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n",
4781 pfn, start, end, rmp_level, ret);
4782 return false;
4785 if (assigned) {
4786 pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n",
4787 __func__, pfn, start, end, rmp_level);
4788 return false;
4791 pfn++;
4794 return true;
4797 static u8 max_level_for_order(int order)
4799 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
4800 return PG_LEVEL_2M;
4802 return PG_LEVEL_4K;
4805 static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order)
4807 kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4810 * If this is a large folio, and the entire 2M range containing the
4811 * PFN is currently shared, then the entire 2M-aligned range can be
4812 * set to private via a single 2M RMP entry.
4814 if (max_level_for_order(order) > PG_LEVEL_4K &&
4815 is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD))
4816 return true;
4818 return false;
4821 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order)
4823 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
4824 kvm_pfn_t pfn_aligned;
4825 gfn_t gfn_aligned;
4826 int level, rc;
4827 bool assigned;
4829 if (!sev_snp_guest(kvm))
4830 return 0;
4832 rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4833 if (rc) {
4834 pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n",
4835 gfn, pfn, rc);
4836 return -ENOENT;
4839 if (assigned) {
4840 pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n",
4841 __func__, gfn, pfn, max_order, level);
4842 return 0;
4845 if (is_large_rmp_possible(kvm, pfn, max_order)) {
4846 level = PG_LEVEL_2M;
4847 pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4848 gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD);
4849 } else {
4850 level = PG_LEVEL_4K;
4851 pfn_aligned = pfn;
4852 gfn_aligned = gfn;
4855 rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false);
4856 if (rc) {
4857 pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n",
4858 gfn, pfn, level, rc);
4859 return -EINVAL;
4862 pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n",
4863 __func__, gfn, pfn, pfn_aligned, max_order, level);
4865 return 0;
4868 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
4870 kvm_pfn_t pfn;
4872 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4873 return;
4875 pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end);
4877 for (pfn = start; pfn < end;) {
4878 bool use_2m_update = false;
4879 int rc, rmp_level;
4880 bool assigned;
4882 rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4883 if (rc || !assigned)
4884 goto next_pfn;
4886 use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) &&
4887 end >= (pfn + PTRS_PER_PMD) &&
4888 rmp_level > PG_LEVEL_4K;
4891 * If an unaligned PFN corresponds to a 2M region assigned as a
4892 * large page in the RMP table, PSMASH the region into individual
4893 * 4K RMP entries before attempting to convert a 4K sub-page.
4895 if (!use_2m_update && rmp_level > PG_LEVEL_4K) {
4897 * This shouldn't fail, but if it does, report it, but
4898 * still try to update RMP entry to shared and pray this
4899 * was a spurious error that can be addressed later.
4901 rc = snp_rmptable_psmash(pfn);
4902 WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n",
4903 pfn, rc);
4906 rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K);
4907 if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n",
4908 pfn, rc))
4909 goto next_pfn;
4912 * SEV-ES avoids host/guest cache coherency issues through
4913 * WBINVD hooks issued via MMU notifiers during run-time, and
4914 * KVM's VM destroy path at shutdown. Those MMU notifier events
4915 * don't cover gmem since there is no requirement to map pages
4916 * to a HVA in order to use them for a running guest. While the
4917 * shutdown path would still likely cover things for SNP guests,
4918 * userspace may also free gmem pages during run-time via
4919 * hole-punching operations on the guest_memfd, so flush the
4920 * cache entries for these pages before free'ing them back to
4921 * the host.
4923 clflush_cache_range(__va(pfn_to_hpa(pfn)),
4924 use_2m_update ? PMD_SIZE : PAGE_SIZE);
4925 next_pfn:
4926 pfn += use_2m_update ? PTRS_PER_PMD : 1;
4927 cond_resched();
4931 int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn)
4933 int level, rc;
4934 bool assigned;
4936 if (!sev_snp_guest(kvm))
4937 return 0;
4939 rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4940 if (rc || !assigned)
4941 return PG_LEVEL_4K;
4943 return level;