1 // SPDX-License-Identifier: GPL-2.0
3 * This file implements KASLR memory randomization for x86_64. It randomizes
4 * the virtual address space of kernel memory regions (physical memory
5 * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates
6 * exploits relying on predictable kernel addresses.
8 * Entropy is generated using the KASLR early boot functions now shared in
9 * the lib directory (originally written by Kees Cook). Randomization is
10 * done on PGD & P4D/PUD page table levels to increase possible addresses.
11 * The physical memory mapping code was adapted to support P4D/PUD level
12 * virtual addresses. This implementation on the best configuration provides
13 * 30,000 possible virtual addresses in average for each memory region.
14 * An additional low memory page is used to ensure each CPU can start with
15 * a PGD aligned virtual address (for realmode).
17 * The order of each memory region is not changed. The feature looks at
18 * the available space for the regions based on different configuration
19 * options and randomizes the base and space between each. The size of the
20 * physical memory mapping is the available physical memory.
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/prandom.h>
26 #include <linux/memblock.h>
27 #include <linux/pgtable.h>
29 #include <asm/setup.h>
30 #include <asm/kaslr.h>
32 #include "mm_internal.h"
37 * The end address could depend on more configuration options to make the
38 * highest amount of space for randomization available, but that's too hard
39 * to keep straight and caused issues already.
41 static const unsigned long vaddr_end
= CPU_ENTRY_AREA_BASE
;
44 * Memory regions randomized by KASLR (except modules that use a separate logic
45 * earlier during boot). The list is ordered based on virtual addresses. This
46 * order is kept after randomization.
48 static __initdata
struct kaslr_memory_region
{
51 unsigned long size_tb
;
54 .base
= &page_offset_base
,
55 .end
= &direct_map_physmem_end
,
58 .base
= &vmalloc_base
,
61 .base
= &vmemmap_base
,
66 * The end of the physical address space that can be mapped directly by the
67 * kernel. This starts out at (1<<MAX_PHYSMEM_BITS) - 1), but KASLR may reduce
68 * that in order to increase the available entropy for mapping other regions.
70 unsigned long direct_map_physmem_end __ro_after_init
;
72 /* Get size in bytes used by the memory region */
73 static inline unsigned long get_padding(struct kaslr_memory_region
*region
)
75 return (region
->size_tb
<< TB_SHIFT
);
78 /* Initialize base and padding for each memory region randomized with KASLR */
79 void __init
kernel_randomize_memory(void)
82 unsigned long vaddr_start
, vaddr
;
83 unsigned long rand
, memory_tb
;
84 struct rnd_state rand_state
;
85 unsigned long remain_entropy
;
86 unsigned long vmemmap_size
;
88 vaddr_start
= pgtable_l5_enabled() ? __PAGE_OFFSET_BASE_L5
: __PAGE_OFFSET_BASE_L4
;
92 * These BUILD_BUG_ON checks ensure the memory layout is consistent
93 * with the vaddr_start/vaddr_end variables. These checks are very
96 BUILD_BUG_ON(vaddr_start
>= vaddr_end
);
97 BUILD_BUG_ON(vaddr_end
!= CPU_ENTRY_AREA_BASE
);
98 BUILD_BUG_ON(vaddr_end
> __START_KERNEL_map
);
100 /* Preset the end of the possible address space for physical memory */
101 direct_map_physmem_end
= ((1ULL << MAX_PHYSMEM_BITS
) - 1);
102 if (!kaslr_memory_enabled())
105 kaslr_regions
[0].size_tb
= 1 << (MAX_PHYSMEM_BITS
- TB_SHIFT
);
106 kaslr_regions
[1].size_tb
= VMALLOC_SIZE_TB
;
109 * Update Physical memory mapping to available and
110 * add padding if needed (especially for memory hotplug support).
112 BUG_ON(kaslr_regions
[0].base
!= &page_offset_base
);
113 memory_tb
= DIV_ROUND_UP(max_pfn
<< PAGE_SHIFT
, 1UL << TB_SHIFT
) +
114 CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING
;
116 /* Adapt physical memory region size based on available memory */
117 if (memory_tb
< kaslr_regions
[0].size_tb
)
118 kaslr_regions
[0].size_tb
= memory_tb
;
121 * Calculate the vmemmap region size in TBs, aligned to a TB
124 vmemmap_size
= (kaslr_regions
[0].size_tb
<< (TB_SHIFT
- PAGE_SHIFT
)) *
126 kaslr_regions
[2].size_tb
= DIV_ROUND_UP(vmemmap_size
, 1UL << TB_SHIFT
);
128 /* Calculate entropy available between regions */
129 remain_entropy
= vaddr_end
- vaddr_start
;
130 for (i
= 0; i
< ARRAY_SIZE(kaslr_regions
); i
++)
131 remain_entropy
-= get_padding(&kaslr_regions
[i
]);
133 prandom_seed_state(&rand_state
, kaslr_get_random_long("Memory"));
135 for (i
= 0; i
< ARRAY_SIZE(kaslr_regions
); i
++) {
136 unsigned long entropy
;
139 * Select a random virtual address using the extra entropy
142 entropy
= remain_entropy
/ (ARRAY_SIZE(kaslr_regions
) - i
);
143 prandom_bytes_state(&rand_state
, &rand
, sizeof(rand
));
144 entropy
= (rand
% (entropy
+ 1)) & PUD_MASK
;
146 *kaslr_regions
[i
].base
= vaddr
;
148 /* Calculate the end of the region */
149 vaddr
+= get_padding(&kaslr_regions
[i
]);
151 * KASLR trims the maximum possible size of the
152 * direct-map. Update the direct_map_physmem_end boundary.
153 * No rounding required as the region starts
154 * PUD aligned and size is in units of TB.
156 if (kaslr_regions
[i
].end
)
157 *kaslr_regions
[i
].end
= __pa_nodebug(vaddr
- 1);
159 /* Add a minimum padding based on randomization alignment. */
160 vaddr
= round_up(vaddr
+ 1, PUD_SIZE
);
161 remain_entropy
-= entropy
;
165 void __meminit
init_trampoline_kaslr(void)
167 pud_t
*pud_page_tramp
, *pud
, *pud_tramp
;
168 p4d_t
*p4d_page_tramp
, *p4d
, *p4d_tramp
;
169 unsigned long paddr
, vaddr
;
172 pud_page_tramp
= alloc_low_page();
175 * There are two mappings for the low 1MB area, the direct mapping
176 * and the 1:1 mapping for the real mode trampoline:
178 * Direct mapping: virt_addr = phys_addr + PAGE_OFFSET
179 * 1:1 mapping: virt_addr = phys_addr
182 vaddr
= (unsigned long)__va(paddr
);
183 pgd
= pgd_offset_k(vaddr
);
185 p4d
= p4d_offset(pgd
, vaddr
);
186 pud
= pud_offset(p4d
, vaddr
);
188 pud_tramp
= pud_page_tramp
+ pud_index(paddr
);
191 if (pgtable_l5_enabled()) {
192 p4d_page_tramp
= alloc_low_page();
194 p4d_tramp
= p4d_page_tramp
+ p4d_index(paddr
);
197 __p4d(_KERNPG_TABLE
| __pa(pud_page_tramp
)));
199 trampoline_pgd_entry
=
200 __pgd(_KERNPG_TABLE
| __pa(p4d_page_tramp
));
202 trampoline_pgd_entry
=
203 __pgd(_KERNPG_TABLE
| __pa(pud_page_tramp
));