drm/modes: Fix drm_mode_vrefres() docs
[drm/drm-misc.git] / arch / x86 / mm / mem_encrypt_identity.c
blobe6c7686f443a060cc62fdb6a82d549a1a0c9e9df
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD Memory Encryption Support
5 * Copyright (C) 2016 Advanced Micro Devices, Inc.
7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 */
10 #define DISABLE_BRANCH_PROFILING
13 * Since we're dealing with identity mappings, physical and virtual
14 * addresses are the same, so override these defines which are ultimately
15 * used by the headers in misc.h.
17 #define __pa(x) ((unsigned long)(x))
18 #define __va(x) ((void *)((unsigned long)(x)))
21 * Special hack: we have to be careful, because no indirections are
22 * allowed here, and paravirt_ops is a kind of one. As it will only run in
23 * baremetal anyway, we just keep it from happening. (This list needs to
24 * be extended when new paravirt and debugging variants are added.)
26 #undef CONFIG_PARAVIRT
27 #undef CONFIG_PARAVIRT_XXL
28 #undef CONFIG_PARAVIRT_SPINLOCKS
31 * This code runs before CPU feature bits are set. By default, the
32 * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if
33 * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5
34 * is provided to handle this situation and, instead, use a variable that
35 * has been set by the early boot code.
37 #define USE_EARLY_PGTABLE_L5
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/mem_encrypt.h>
42 #include <linux/cc_platform.h>
44 #include <asm/init.h>
45 #include <asm/setup.h>
46 #include <asm/sections.h>
47 #include <asm/coco.h>
48 #include <asm/sev.h>
50 #include "mm_internal.h"
52 #define PGD_FLAGS _KERNPG_TABLE_NOENC
53 #define P4D_FLAGS _KERNPG_TABLE_NOENC
54 #define PUD_FLAGS _KERNPG_TABLE_NOENC
55 #define PMD_FLAGS _KERNPG_TABLE_NOENC
57 #define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
59 #define PMD_FLAGS_DEC PMD_FLAGS_LARGE
60 #define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \
61 (_PAGE_PAT_LARGE | _PAGE_PWT))
63 #define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC)
65 #define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
67 #define PTE_FLAGS_DEC PTE_FLAGS
68 #define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
69 (_PAGE_PAT | _PAGE_PWT))
71 #define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC)
73 struct sme_populate_pgd_data {
74 void *pgtable_area;
75 pgd_t *pgd;
77 pmdval_t pmd_flags;
78 pteval_t pte_flags;
79 unsigned long paddr;
81 unsigned long vaddr;
82 unsigned long vaddr_end;
86 * This work area lives in the .init.scratch section, which lives outside of
87 * the kernel proper. It is sized to hold the intermediate copy buffer and
88 * more than enough pagetable pages.
90 * By using this section, the kernel can be encrypted in place and it
91 * avoids any possibility of boot parameters or initramfs images being
92 * placed such that the in-place encryption logic overwrites them. This
93 * section is 2MB aligned to allow for simple pagetable setup using only
94 * PMD entries (see vmlinux.lds.S).
96 static char sme_workarea[2 * PMD_SIZE] __section(".init.scratch");
98 static void __head sme_clear_pgd(struct sme_populate_pgd_data *ppd)
100 unsigned long pgd_start, pgd_end, pgd_size;
101 pgd_t *pgd_p;
103 pgd_start = ppd->vaddr & PGDIR_MASK;
104 pgd_end = ppd->vaddr_end & PGDIR_MASK;
106 pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
108 pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
110 memset(pgd_p, 0, pgd_size);
113 static pud_t __head *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
115 pgd_t *pgd;
116 p4d_t *p4d;
117 pud_t *pud;
118 pmd_t *pmd;
120 pgd = ppd->pgd + pgd_index(ppd->vaddr);
121 if (pgd_none(*pgd)) {
122 p4d = ppd->pgtable_area;
123 memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
124 ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
125 set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
128 p4d = p4d_offset(pgd, ppd->vaddr);
129 if (p4d_none(*p4d)) {
130 pud = ppd->pgtable_area;
131 memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
132 ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
133 set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
136 pud = pud_offset(p4d, ppd->vaddr);
137 if (pud_none(*pud)) {
138 pmd = ppd->pgtable_area;
139 memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
140 ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
141 set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
144 if (pud_leaf(*pud))
145 return NULL;
147 return pud;
150 static void __head sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
152 pud_t *pud;
153 pmd_t *pmd;
155 pud = sme_prepare_pgd(ppd);
156 if (!pud)
157 return;
159 pmd = pmd_offset(pud, ppd->vaddr);
160 if (pmd_leaf(*pmd))
161 return;
163 set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
166 static void __head sme_populate_pgd(struct sme_populate_pgd_data *ppd)
168 pud_t *pud;
169 pmd_t *pmd;
170 pte_t *pte;
172 pud = sme_prepare_pgd(ppd);
173 if (!pud)
174 return;
176 pmd = pmd_offset(pud, ppd->vaddr);
177 if (pmd_none(*pmd)) {
178 pte = ppd->pgtable_area;
179 memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
180 ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
181 set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
184 if (pmd_leaf(*pmd))
185 return;
187 pte = pte_offset_kernel(pmd, ppd->vaddr);
188 if (pte_none(*pte))
189 set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
192 static void __head __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
194 while (ppd->vaddr < ppd->vaddr_end) {
195 sme_populate_pgd_large(ppd);
197 ppd->vaddr += PMD_SIZE;
198 ppd->paddr += PMD_SIZE;
202 static void __head __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
204 while (ppd->vaddr < ppd->vaddr_end) {
205 sme_populate_pgd(ppd);
207 ppd->vaddr += PAGE_SIZE;
208 ppd->paddr += PAGE_SIZE;
212 static void __head __sme_map_range(struct sme_populate_pgd_data *ppd,
213 pmdval_t pmd_flags, pteval_t pte_flags)
215 unsigned long vaddr_end;
217 ppd->pmd_flags = pmd_flags;
218 ppd->pte_flags = pte_flags;
220 /* Save original end value since we modify the struct value */
221 vaddr_end = ppd->vaddr_end;
223 /* If start is not 2MB aligned, create PTE entries */
224 ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_SIZE);
225 __sme_map_range_pte(ppd);
227 /* Create PMD entries */
228 ppd->vaddr_end = vaddr_end & PMD_MASK;
229 __sme_map_range_pmd(ppd);
231 /* If end is not 2MB aligned, create PTE entries */
232 ppd->vaddr_end = vaddr_end;
233 __sme_map_range_pte(ppd);
236 static void __head sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
238 __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
241 static void __head sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
243 __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
246 static void __head sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
248 __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
251 static unsigned long __head sme_pgtable_calc(unsigned long len)
253 unsigned long entries = 0, tables = 0;
256 * Perform a relatively simplistic calculation of the pagetable
257 * entries that are needed. Those mappings will be covered mostly
258 * by 2MB PMD entries so we can conservatively calculate the required
259 * number of P4D, PUD and PMD structures needed to perform the
260 * mappings. For mappings that are not 2MB aligned, PTE mappings
261 * would be needed for the start and end portion of the address range
262 * that fall outside of the 2MB alignment. This results in, at most,
263 * two extra pages to hold PTE entries for each range that is mapped.
264 * Incrementing the count for each covers the case where the addresses
265 * cross entries.
268 /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
269 if (PTRS_PER_P4D > 1)
270 entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
271 entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
272 entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
273 entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
276 * Now calculate the added pagetable structures needed to populate
277 * the new pagetables.
280 if (PTRS_PER_P4D > 1)
281 tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
282 tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
283 tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
285 return entries + tables;
288 void __head sme_encrypt_kernel(struct boot_params *bp)
290 unsigned long workarea_start, workarea_end, workarea_len;
291 unsigned long execute_start, execute_end, execute_len;
292 unsigned long kernel_start, kernel_end, kernel_len;
293 unsigned long initrd_start, initrd_end, initrd_len;
294 struct sme_populate_pgd_data ppd;
295 unsigned long pgtable_area_len;
296 unsigned long decrypted_base;
299 * This is early code, use an open coded check for SME instead of
300 * using cc_platform_has(). This eliminates worries about removing
301 * instrumentation or checking boot_cpu_data in the cc_platform_has()
302 * function.
304 if (!sme_get_me_mask() ||
305 RIP_REL_REF(sev_status) & MSR_AMD64_SEV_ENABLED)
306 return;
309 * Prepare for encrypting the kernel and initrd by building new
310 * pagetables with the necessary attributes needed to encrypt the
311 * kernel in place.
313 * One range of virtual addresses will map the memory occupied
314 * by the kernel and initrd as encrypted.
316 * Another range of virtual addresses will map the memory occupied
317 * by the kernel and initrd as decrypted and write-protected.
319 * The use of write-protect attribute will prevent any of the
320 * memory from being cached.
323 kernel_start = (unsigned long)RIP_REL_REF(_text);
324 kernel_end = ALIGN((unsigned long)RIP_REL_REF(_end), PMD_SIZE);
325 kernel_len = kernel_end - kernel_start;
327 initrd_start = 0;
328 initrd_end = 0;
329 initrd_len = 0;
330 #ifdef CONFIG_BLK_DEV_INITRD
331 initrd_len = (unsigned long)bp->hdr.ramdisk_size |
332 ((unsigned long)bp->ext_ramdisk_size << 32);
333 if (initrd_len) {
334 initrd_start = (unsigned long)bp->hdr.ramdisk_image |
335 ((unsigned long)bp->ext_ramdisk_image << 32);
336 initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
337 initrd_len = initrd_end - initrd_start;
339 #endif
342 * Calculate required number of workarea bytes needed:
343 * executable encryption area size:
344 * stack page (PAGE_SIZE)
345 * encryption routine page (PAGE_SIZE)
346 * intermediate copy buffer (PMD_SIZE)
347 * pagetable structures for the encryption of the kernel
348 * pagetable structures for workarea (in case not currently mapped)
350 execute_start = workarea_start = (unsigned long)RIP_REL_REF(sme_workarea);
351 execute_end = execute_start + (PAGE_SIZE * 2) + PMD_SIZE;
352 execute_len = execute_end - execute_start;
355 * One PGD for both encrypted and decrypted mappings and a set of
356 * PUDs and PMDs for each of the encrypted and decrypted mappings.
358 pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
359 pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
360 if (initrd_len)
361 pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
363 /* PUDs and PMDs needed in the current pagetables for the workarea */
364 pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
367 * The total workarea includes the executable encryption area and
368 * the pagetable area. The start of the workarea is already 2MB
369 * aligned, align the end of the workarea on a 2MB boundary so that
370 * we don't try to create/allocate PTE entries from the workarea
371 * before it is mapped.
373 workarea_len = execute_len + pgtable_area_len;
374 workarea_end = ALIGN(workarea_start + workarea_len, PMD_SIZE);
377 * Set the address to the start of where newly created pagetable
378 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
379 * structures are created when the workarea is added to the current
380 * pagetables and when the new encrypted and decrypted kernel
381 * mappings are populated.
383 ppd.pgtable_area = (void *)execute_end;
386 * Make sure the current pagetable structure has entries for
387 * addressing the workarea.
389 ppd.pgd = (pgd_t *)native_read_cr3_pa();
390 ppd.paddr = workarea_start;
391 ppd.vaddr = workarea_start;
392 ppd.vaddr_end = workarea_end;
393 sme_map_range_decrypted(&ppd);
395 /* Flush the TLB - no globals so cr3 is enough */
396 native_write_cr3(__native_read_cr3());
399 * A new pagetable structure is being built to allow for the kernel
400 * and initrd to be encrypted. It starts with an empty PGD that will
401 * then be populated with new PUDs and PMDs as the encrypted and
402 * decrypted kernel mappings are created.
404 ppd.pgd = ppd.pgtable_area;
405 memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
406 ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
409 * A different PGD index/entry must be used to get different
410 * pagetable entries for the decrypted mapping. Choose the next
411 * PGD index and convert it to a virtual address to be used as
412 * the base of the mapping.
414 decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
415 if (initrd_len) {
416 unsigned long check_base;
418 check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
419 decrypted_base = max(decrypted_base, check_base);
421 decrypted_base <<= PGDIR_SHIFT;
423 /* Add encrypted kernel (identity) mappings */
424 ppd.paddr = kernel_start;
425 ppd.vaddr = kernel_start;
426 ppd.vaddr_end = kernel_end;
427 sme_map_range_encrypted(&ppd);
429 /* Add decrypted, write-protected kernel (non-identity) mappings */
430 ppd.paddr = kernel_start;
431 ppd.vaddr = kernel_start + decrypted_base;
432 ppd.vaddr_end = kernel_end + decrypted_base;
433 sme_map_range_decrypted_wp(&ppd);
435 if (initrd_len) {
436 /* Add encrypted initrd (identity) mappings */
437 ppd.paddr = initrd_start;
438 ppd.vaddr = initrd_start;
439 ppd.vaddr_end = initrd_end;
440 sme_map_range_encrypted(&ppd);
442 * Add decrypted, write-protected initrd (non-identity) mappings
444 ppd.paddr = initrd_start;
445 ppd.vaddr = initrd_start + decrypted_base;
446 ppd.vaddr_end = initrd_end + decrypted_base;
447 sme_map_range_decrypted_wp(&ppd);
450 /* Add decrypted workarea mappings to both kernel mappings */
451 ppd.paddr = workarea_start;
452 ppd.vaddr = workarea_start;
453 ppd.vaddr_end = workarea_end;
454 sme_map_range_decrypted(&ppd);
456 ppd.paddr = workarea_start;
457 ppd.vaddr = workarea_start + decrypted_base;
458 ppd.vaddr_end = workarea_end + decrypted_base;
459 sme_map_range_decrypted(&ppd);
461 /* Perform the encryption */
462 sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
463 kernel_len, workarea_start, (unsigned long)ppd.pgd);
465 if (initrd_len)
466 sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
467 initrd_len, workarea_start,
468 (unsigned long)ppd.pgd);
471 * At this point we are running encrypted. Remove the mappings for
472 * the decrypted areas - all that is needed for this is to remove
473 * the PGD entry/entries.
475 ppd.vaddr = kernel_start + decrypted_base;
476 ppd.vaddr_end = kernel_end + decrypted_base;
477 sme_clear_pgd(&ppd);
479 if (initrd_len) {
480 ppd.vaddr = initrd_start + decrypted_base;
481 ppd.vaddr_end = initrd_end + decrypted_base;
482 sme_clear_pgd(&ppd);
485 ppd.vaddr = workarea_start + decrypted_base;
486 ppd.vaddr_end = workarea_end + decrypted_base;
487 sme_clear_pgd(&ppd);
489 /* Flush the TLB - no globals so cr3 is enough */
490 native_write_cr3(__native_read_cr3());
493 void __head sme_enable(struct boot_params *bp)
495 unsigned int eax, ebx, ecx, edx;
496 unsigned long feature_mask;
497 unsigned long me_mask;
498 bool snp_en;
499 u64 msr;
501 snp_en = snp_init(bp);
503 /* Check for the SME/SEV support leaf */
504 eax = 0x80000000;
505 ecx = 0;
506 native_cpuid(&eax, &ebx, &ecx, &edx);
507 if (eax < 0x8000001f)
508 return;
510 #define AMD_SME_BIT BIT(0)
511 #define AMD_SEV_BIT BIT(1)
514 * Check for the SME/SEV feature:
515 * CPUID Fn8000_001F[EAX]
516 * - Bit 0 - Secure Memory Encryption support
517 * - Bit 1 - Secure Encrypted Virtualization support
518 * CPUID Fn8000_001F[EBX]
519 * - Bits 5:0 - Pagetable bit position used to indicate encryption
521 eax = 0x8000001f;
522 ecx = 0;
523 native_cpuid(&eax, &ebx, &ecx, &edx);
524 /* Check whether SEV or SME is supported */
525 if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT)))
526 return;
528 me_mask = 1UL << (ebx & 0x3f);
530 /* Check the SEV MSR whether SEV or SME is enabled */
531 RIP_REL_REF(sev_status) = msr = __rdmsr(MSR_AMD64_SEV);
532 feature_mask = (msr & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT;
535 * Any discrepancies between the presence of a CC blob and SNP
536 * enablement abort the guest.
538 if (snp_en ^ !!(msr & MSR_AMD64_SEV_SNP_ENABLED))
539 snp_abort();
541 /* Check if memory encryption is enabled */
542 if (feature_mask == AMD_SME_BIT) {
543 if (!(bp->hdr.xloadflags & XLF_MEM_ENCRYPTION))
544 return;
547 * No SME if Hypervisor bit is set. This check is here to
548 * prevent a guest from trying to enable SME. For running as a
549 * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there
550 * might be other hypervisors which emulate that MSR as non-zero
551 * or even pass it through to the guest.
552 * A malicious hypervisor can still trick a guest into this
553 * path, but there is no way to protect against that.
555 eax = 1;
556 ecx = 0;
557 native_cpuid(&eax, &ebx, &ecx, &edx);
558 if (ecx & BIT(31))
559 return;
561 /* For SME, check the SYSCFG MSR */
562 msr = __rdmsr(MSR_AMD64_SYSCFG);
563 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
564 return;
567 RIP_REL_REF(sme_me_mask) = me_mask;
568 physical_mask &= ~me_mask;
569 cc_vendor = CC_VENDOR_AMD;
570 cc_set_mask(me_mask);