1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * PRNG: Pseudo Random Number Generator
4 * Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using
7 * (C) Neil Horman <nhorman@tuxdriver.com>
10 #include <crypto/internal/cipher.h>
11 #include <crypto/internal/rng.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/string.h>
18 #define DEFAULT_PRNG_KEY "0123456789abcdef"
19 #define DEFAULT_PRNG_KSZ 16
20 #define DEFAULT_BLK_SZ 16
21 #define DEFAULT_V_SEED "zaybxcwdveuftgsh"
24 * Flags for the prng_context flags field
27 #define PRNG_FIXED_SIZE 0x1
28 #define PRNG_NEED_RESET 0x2
31 * Note: DT is our counter value
32 * I is our intermediate value
33 * V is our seed vector
34 * See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
35 * for implementation details
41 unsigned char rand_data
[DEFAULT_BLK_SZ
];
42 unsigned char last_rand_data
[DEFAULT_BLK_SZ
];
43 unsigned char DT
[DEFAULT_BLK_SZ
];
44 unsigned char I
[DEFAULT_BLK_SZ
];
45 unsigned char V
[DEFAULT_BLK_SZ
];
47 struct crypto_cipher
*tfm
;
53 static void hexdump(char *note
, unsigned char *buf
, unsigned int len
)
56 printk(KERN_CRIT
"%s", note
);
57 print_hex_dump(KERN_CONT
, "", DUMP_PREFIX_OFFSET
,
63 #define dbgprint(format, args...) do {\
65 printk(format, ##args);\
68 static void xor_vectors(unsigned char *in1
, unsigned char *in2
,
69 unsigned char *out
, unsigned int size
)
73 for (i
= 0; i
< size
; i
++)
74 out
[i
] = in1
[i
] ^ in2
[i
];
78 * Returns DEFAULT_BLK_SZ bytes of random data per call
79 * returns 0 if generation succeeded, <0 if something went wrong
81 static int _get_more_prng_bytes(struct prng_context
*ctx
, int cont_test
)
84 unsigned char tmp
[DEFAULT_BLK_SZ
];
85 unsigned char *output
= NULL
;
88 dbgprint(KERN_CRIT
"Calling _get_more_prng_bytes for context %p\n",
91 hexdump("Input DT: ", ctx
->DT
, DEFAULT_BLK_SZ
);
92 hexdump("Input I: ", ctx
->I
, DEFAULT_BLK_SZ
);
93 hexdump("Input V: ", ctx
->V
, DEFAULT_BLK_SZ
);
96 * This algorithm is a 3 stage state machine
98 for (i
= 0; i
< 3; i
++) {
103 * Start by encrypting the counter value
104 * This gives us an intermediate value I
106 memcpy(tmp
, ctx
->DT
, DEFAULT_BLK_SZ
);
108 hexdump("tmp stage 0: ", tmp
, DEFAULT_BLK_SZ
);
113 * Next xor I with our secret vector V
114 * encrypt that result to obtain our
115 * pseudo random data which we output
117 xor_vectors(ctx
->I
, ctx
->V
, tmp
, DEFAULT_BLK_SZ
);
118 hexdump("tmp stage 1: ", tmp
, DEFAULT_BLK_SZ
);
119 output
= ctx
->rand_data
;
123 * First check that we didn't produce the same
124 * random data that we did last time around through this
126 if (!memcmp(ctx
->rand_data
, ctx
->last_rand_data
,
129 panic("cprng %p Failed repetition check!\n",
134 "ctx %p Failed repetition check!\n",
137 ctx
->flags
|= PRNG_NEED_RESET
;
140 memcpy(ctx
->last_rand_data
, ctx
->rand_data
,
144 * Lastly xor the random data with I
145 * and encrypt that to obtain a new secret vector V
147 xor_vectors(ctx
->rand_data
, ctx
->I
, tmp
,
150 hexdump("tmp stage 2: ", tmp
, DEFAULT_BLK_SZ
);
155 /* do the encryption */
156 crypto_cipher_encrypt_one(ctx
->tfm
, output
, tmp
);
161 * Now update our DT value
163 for (i
= DEFAULT_BLK_SZ
- 1; i
>= 0; i
--) {
169 dbgprint("Returning new block for context %p\n", ctx
);
170 ctx
->rand_data_valid
= 0;
172 hexdump("Output DT: ", ctx
->DT
, DEFAULT_BLK_SZ
);
173 hexdump("Output I: ", ctx
->I
, DEFAULT_BLK_SZ
);
174 hexdump("Output V: ", ctx
->V
, DEFAULT_BLK_SZ
);
175 hexdump("New Random Data: ", ctx
->rand_data
, DEFAULT_BLK_SZ
);
180 /* Our exported functions */
181 static int get_prng_bytes(char *buf
, size_t nbytes
, struct prng_context
*ctx
,
184 unsigned char *ptr
= buf
;
185 unsigned int byte_count
= (unsigned int)nbytes
;
189 spin_lock_bh(&ctx
->prng_lock
);
192 if (ctx
->flags
& PRNG_NEED_RESET
)
196 * If the FIXED_SIZE flag is on, only return whole blocks of
200 if (ctx
->flags
& PRNG_FIXED_SIZE
) {
201 if (nbytes
< DEFAULT_BLK_SZ
)
203 byte_count
= DEFAULT_BLK_SZ
;
207 * Return 0 in case of success as mandated by the kernel
208 * crypto API interface definition.
212 dbgprint(KERN_CRIT
"getting %d random bytes for context %p\n",
217 if (ctx
->rand_data_valid
== DEFAULT_BLK_SZ
) {
218 if (_get_more_prng_bytes(ctx
, do_cont_test
) < 0) {
219 memset(buf
, 0, nbytes
);
226 * Copy any data less than an entire block
228 if (byte_count
< DEFAULT_BLK_SZ
) {
230 while (ctx
->rand_data_valid
< DEFAULT_BLK_SZ
) {
231 *ptr
= ctx
->rand_data
[ctx
->rand_data_valid
];
234 ctx
->rand_data_valid
++;
241 * Now copy whole blocks
243 for (; byte_count
>= DEFAULT_BLK_SZ
; byte_count
-= DEFAULT_BLK_SZ
) {
244 if (ctx
->rand_data_valid
== DEFAULT_BLK_SZ
) {
245 if (_get_more_prng_bytes(ctx
, do_cont_test
) < 0) {
246 memset(buf
, 0, nbytes
);
251 if (ctx
->rand_data_valid
> 0)
253 memcpy(ptr
, ctx
->rand_data
, DEFAULT_BLK_SZ
);
254 ctx
->rand_data_valid
+= DEFAULT_BLK_SZ
;
255 ptr
+= DEFAULT_BLK_SZ
;
259 * Now go back and get any remaining partial block
265 spin_unlock_bh(&ctx
->prng_lock
);
266 dbgprint(KERN_CRIT
"returning %d from get_prng_bytes in context %p\n",
271 static void free_prng_context(struct prng_context
*ctx
)
273 crypto_free_cipher(ctx
->tfm
);
276 static int reset_prng_context(struct prng_context
*ctx
,
277 const unsigned char *key
, size_t klen
,
278 const unsigned char *V
, const unsigned char *DT
)
281 const unsigned char *prng_key
;
283 spin_lock_bh(&ctx
->prng_lock
);
284 ctx
->flags
|= PRNG_NEED_RESET
;
286 prng_key
= (key
!= NULL
) ? key
: (unsigned char *)DEFAULT_PRNG_KEY
;
289 klen
= DEFAULT_PRNG_KSZ
;
292 memcpy(ctx
->V
, V
, DEFAULT_BLK_SZ
);
294 memcpy(ctx
->V
, DEFAULT_V_SEED
, DEFAULT_BLK_SZ
);
297 memcpy(ctx
->DT
, DT
, DEFAULT_BLK_SZ
);
299 memset(ctx
->DT
, 0, DEFAULT_BLK_SZ
);
301 memset(ctx
->rand_data
, 0, DEFAULT_BLK_SZ
);
302 memset(ctx
->last_rand_data
, 0, DEFAULT_BLK_SZ
);
304 ctx
->rand_data_valid
= DEFAULT_BLK_SZ
;
306 ret
= crypto_cipher_setkey(ctx
->tfm
, prng_key
, klen
);
308 dbgprint(KERN_CRIT
"PRNG: setkey() failed flags=%x\n",
309 crypto_cipher_get_flags(ctx
->tfm
));
314 ctx
->flags
&= ~PRNG_NEED_RESET
;
316 spin_unlock_bh(&ctx
->prng_lock
);
320 static int cprng_init(struct crypto_tfm
*tfm
)
322 struct prng_context
*ctx
= crypto_tfm_ctx(tfm
);
324 spin_lock_init(&ctx
->prng_lock
);
325 ctx
->tfm
= crypto_alloc_cipher("aes", 0, 0);
326 if (IS_ERR(ctx
->tfm
)) {
327 dbgprint(KERN_CRIT
"Failed to alloc tfm for context %p\n",
329 return PTR_ERR(ctx
->tfm
);
332 if (reset_prng_context(ctx
, NULL
, DEFAULT_PRNG_KSZ
, NULL
, NULL
) < 0)
336 * after allocation, we should always force the user to reset
337 * so they don't inadvertently use the insecure default values
338 * without specifying them intentially
340 ctx
->flags
|= PRNG_NEED_RESET
;
344 static void cprng_exit(struct crypto_tfm
*tfm
)
346 free_prng_context(crypto_tfm_ctx(tfm
));
349 static int cprng_get_random(struct crypto_rng
*tfm
,
350 const u8
*src
, unsigned int slen
,
351 u8
*rdata
, unsigned int dlen
)
353 struct prng_context
*prng
= crypto_rng_ctx(tfm
);
355 return get_prng_bytes(rdata
, dlen
, prng
, 0);
359 * This is the cprng_registered reset method the seed value is
360 * interpreted as the tuple { V KEY DT}
361 * V and KEY are required during reset, and DT is optional, detected
362 * as being present by testing the length of the seed
364 static int cprng_reset(struct crypto_rng
*tfm
,
365 const u8
*seed
, unsigned int slen
)
367 struct prng_context
*prng
= crypto_rng_ctx(tfm
);
368 const u8
*key
= seed
+ DEFAULT_BLK_SZ
;
371 if (slen
< DEFAULT_PRNG_KSZ
+ DEFAULT_BLK_SZ
)
374 if (slen
>= (2 * DEFAULT_BLK_SZ
+ DEFAULT_PRNG_KSZ
))
375 dt
= key
+ DEFAULT_PRNG_KSZ
;
377 reset_prng_context(prng
, key
, DEFAULT_PRNG_KSZ
, seed
, dt
);
379 if (prng
->flags
& PRNG_NEED_RESET
)
384 #ifdef CONFIG_CRYPTO_FIPS
385 static int fips_cprng_get_random(struct crypto_rng
*tfm
,
386 const u8
*src
, unsigned int slen
,
387 u8
*rdata
, unsigned int dlen
)
389 struct prng_context
*prng
= crypto_rng_ctx(tfm
);
391 return get_prng_bytes(rdata
, dlen
, prng
, 1);
394 static int fips_cprng_reset(struct crypto_rng
*tfm
,
395 const u8
*seed
, unsigned int slen
)
397 u8 rdata
[DEFAULT_BLK_SZ
];
398 const u8
*key
= seed
+ DEFAULT_BLK_SZ
;
401 struct prng_context
*prng
= crypto_rng_ctx(tfm
);
403 if (slen
< DEFAULT_PRNG_KSZ
+ DEFAULT_BLK_SZ
)
406 /* fips strictly requires seed != key */
407 if (!memcmp(seed
, key
, DEFAULT_PRNG_KSZ
))
410 rc
= cprng_reset(tfm
, seed
, slen
);
415 /* this primes our continuity test */
416 rc
= get_prng_bytes(rdata
, DEFAULT_BLK_SZ
, prng
, 0);
417 prng
->rand_data_valid
= DEFAULT_BLK_SZ
;
424 static struct rng_alg rng_algs
[] = { {
425 .generate
= cprng_get_random
,
427 .seedsize
= DEFAULT_PRNG_KSZ
+ 2 * DEFAULT_BLK_SZ
,
429 .cra_name
= "stdrng",
430 .cra_driver_name
= "ansi_cprng",
432 .cra_ctxsize
= sizeof(struct prng_context
),
433 .cra_module
= THIS_MODULE
,
434 .cra_init
= cprng_init
,
435 .cra_exit
= cprng_exit
,
437 #ifdef CONFIG_CRYPTO_FIPS
439 .generate
= fips_cprng_get_random
,
440 .seed
= fips_cprng_reset
,
441 .seedsize
= DEFAULT_PRNG_KSZ
+ 2 * DEFAULT_BLK_SZ
,
443 .cra_name
= "fips(ansi_cprng)",
444 .cra_driver_name
= "fips_ansi_cprng",
446 .cra_ctxsize
= sizeof(struct prng_context
),
447 .cra_module
= THIS_MODULE
,
448 .cra_init
= cprng_init
,
449 .cra_exit
= cprng_exit
,
454 /* Module initalization */
455 static int __init
prng_mod_init(void)
457 return crypto_register_rngs(rng_algs
, ARRAY_SIZE(rng_algs
));
460 static void __exit
prng_mod_fini(void)
462 crypto_unregister_rngs(rng_algs
, ARRAY_SIZE(rng_algs
));
465 MODULE_LICENSE("GPL");
466 MODULE_DESCRIPTION("Software Pseudo Random Number Generator");
467 MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>");
468 module_param(dbg
, int, 0);
469 MODULE_PARM_DESC(dbg
, "Boolean to enable debugging (0/1 == off/on)");
470 subsys_initcall(prng_mod_init
);
471 module_exit(prng_mod_fini
);
472 MODULE_ALIAS_CRYPTO("stdrng");
473 MODULE_ALIAS_CRYPTO("ansi_cprng");
474 MODULE_IMPORT_NS("CRYPTO_INTERNAL");