drm/nouveau: consume the return of large GSP message
[drm/drm-misc.git] / drivers / accel / ivpu / ivpu_hw_btrs.c
blob56c56012b980fdddd07b32ee7fc8d69ab11afde0
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2020-2024 Intel Corporation
4 */
6 #include "ivpu_drv.h"
7 #include "ivpu_hw.h"
8 #include "ivpu_hw_btrs.h"
9 #include "ivpu_hw_btrs_lnl_reg.h"
10 #include "ivpu_hw_btrs_mtl_reg.h"
11 #include "ivpu_hw_reg_io.h"
12 #include "ivpu_pm.h"
14 #define BTRS_MTL_IRQ_MASK ((REG_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, ATS_ERR)) | \
15 (REG_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, UFI_ERR)))
17 #define BTRS_LNL_IRQ_MASK ((REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, ATS_ERR)) | \
18 (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI0_ERR)) | \
19 (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI1_ERR)) | \
20 (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR0_ERR)) | \
21 (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR1_ERR)) | \
22 (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, SURV_ERR)))
24 #define BTRS_MTL_ALL_IRQ_MASK (BTRS_MTL_IRQ_MASK | (REG_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, \
25 FREQ_CHANGE)))
27 #define BTRS_IRQ_DISABLE_MASK ((u32)-1)
29 #define BTRS_LNL_ALL_IRQ_MASK ((u32)-1)
31 #define BTRS_MTL_WP_CONFIG_1_TILE_5_3_RATIO WP_CONFIG(MTL_CONFIG_1_TILE, MTL_PLL_RATIO_5_3)
32 #define BTRS_MTL_WP_CONFIG_1_TILE_4_3_RATIO WP_CONFIG(MTL_CONFIG_1_TILE, MTL_PLL_RATIO_4_3)
33 #define BTRS_MTL_WP_CONFIG_2_TILE_5_3_RATIO WP_CONFIG(MTL_CONFIG_2_TILE, MTL_PLL_RATIO_5_3)
34 #define BTRS_MTL_WP_CONFIG_2_TILE_4_3_RATIO WP_CONFIG(MTL_CONFIG_2_TILE, MTL_PLL_RATIO_4_3)
35 #define BTRS_MTL_WP_CONFIG_0_TILE_PLL_OFF WP_CONFIG(0, 0)
37 #define PLL_CDYN_DEFAULT 0x80
38 #define PLL_EPP_DEFAULT 0x80
39 #define PLL_CONFIG_DEFAULT 0x0
40 #define PLL_SIMULATION_FREQ 10000000
41 #define PLL_REF_CLK_FREQ 50000000
42 #define PLL_TIMEOUT_US (1500 * USEC_PER_MSEC)
43 #define IDLE_TIMEOUT_US (5 * USEC_PER_MSEC)
44 #define TIMEOUT_US (150 * USEC_PER_MSEC)
46 /* Work point configuration values */
47 #define WP_CONFIG(tile, ratio) (((tile) << 8) | (ratio))
48 #define MTL_CONFIG_1_TILE 0x01
49 #define MTL_CONFIG_2_TILE 0x02
50 #define MTL_PLL_RATIO_5_3 0x01
51 #define MTL_PLL_RATIO_4_3 0x02
52 #define BTRS_MTL_TILE_FUSE_ENABLE_BOTH 0x0
53 #define BTRS_MTL_TILE_SKU_BOTH 0x3630
55 #define BTRS_LNL_TILE_MAX_NUM 6
56 #define BTRS_LNL_TILE_MAX_MASK 0x3f
58 #define WEIGHTS_DEFAULT 0xf711f711u
59 #define WEIGHTS_ATS_DEFAULT 0x0000f711u
61 #define DCT_REQ 0x2
62 #define DCT_ENABLE 0x1
63 #define DCT_DISABLE 0x0
65 int ivpu_hw_btrs_irqs_clear_with_0_mtl(struct ivpu_device *vdev)
67 REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, BTRS_MTL_ALL_IRQ_MASK);
68 if (REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) == BTRS_MTL_ALL_IRQ_MASK) {
69 /* Writing 1s does not clear the interrupt status register */
70 REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, 0x0);
71 return true;
74 return false;
77 static void freq_ratios_init_mtl(struct ivpu_device *vdev)
79 struct ivpu_hw_info *hw = vdev->hw;
80 u32 fmin_fuse, fmax_fuse;
82 fmin_fuse = REGB_RD32(VPU_HW_BTRS_MTL_FMIN_FUSE);
83 hw->pll.min_ratio = REG_GET_FLD(VPU_HW_BTRS_MTL_FMIN_FUSE, MIN_RATIO, fmin_fuse);
84 hw->pll.pn_ratio = REG_GET_FLD(VPU_HW_BTRS_MTL_FMIN_FUSE, PN_RATIO, fmin_fuse);
86 fmax_fuse = REGB_RD32(VPU_HW_BTRS_MTL_FMAX_FUSE);
87 hw->pll.max_ratio = REG_GET_FLD(VPU_HW_BTRS_MTL_FMAX_FUSE, MAX_RATIO, fmax_fuse);
90 static void freq_ratios_init_lnl(struct ivpu_device *vdev)
92 struct ivpu_hw_info *hw = vdev->hw;
93 u32 fmin_fuse, fmax_fuse;
95 fmin_fuse = REGB_RD32(VPU_HW_BTRS_LNL_FMIN_FUSE);
96 hw->pll.min_ratio = REG_GET_FLD(VPU_HW_BTRS_LNL_FMIN_FUSE, MIN_RATIO, fmin_fuse);
97 hw->pll.pn_ratio = REG_GET_FLD(VPU_HW_BTRS_LNL_FMIN_FUSE, PN_RATIO, fmin_fuse);
99 fmax_fuse = REGB_RD32(VPU_HW_BTRS_LNL_FMAX_FUSE);
100 hw->pll.max_ratio = REG_GET_FLD(VPU_HW_BTRS_LNL_FMAX_FUSE, MAX_RATIO, fmax_fuse);
103 void ivpu_hw_btrs_freq_ratios_init(struct ivpu_device *vdev)
105 struct ivpu_hw_info *hw = vdev->hw;
107 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
108 freq_ratios_init_mtl(vdev);
109 else
110 freq_ratios_init_lnl(vdev);
112 hw->pll.min_ratio = clamp_t(u8, ivpu_pll_min_ratio, hw->pll.min_ratio, hw->pll.max_ratio);
113 hw->pll.max_ratio = clamp_t(u8, ivpu_pll_max_ratio, hw->pll.min_ratio, hw->pll.max_ratio);
114 hw->pll.pn_ratio = clamp_t(u8, hw->pll.pn_ratio, hw->pll.min_ratio, hw->pll.max_ratio);
117 static bool tile_disable_check(u32 config)
119 /* Allowed values: 0 or one bit from range 0-5 (6 tiles) */
120 if (config == 0)
121 return true;
123 if (config > BIT(BTRS_LNL_TILE_MAX_NUM - 1))
124 return false;
126 if ((config & (config - 1)) == 0)
127 return true;
129 return false;
132 static int read_tile_config_fuse(struct ivpu_device *vdev, u32 *tile_fuse_config)
134 u32 fuse;
135 u32 config;
137 fuse = REGB_RD32(VPU_HW_BTRS_LNL_TILE_FUSE);
138 if (!REG_TEST_FLD(VPU_HW_BTRS_LNL_TILE_FUSE, VALID, fuse)) {
139 ivpu_err(vdev, "Fuse: invalid (0x%x)\n", fuse);
140 return -EIO;
143 config = REG_GET_FLD(VPU_HW_BTRS_LNL_TILE_FUSE, CONFIG, fuse);
144 if (!tile_disable_check(config))
145 ivpu_warn(vdev, "More than 1 tile disabled, tile fuse config mask: 0x%x\n", config);
147 ivpu_dbg(vdev, MISC, "Tile disable config mask: 0x%x\n", config);
149 *tile_fuse_config = config;
150 return 0;
153 static int info_init_mtl(struct ivpu_device *vdev)
155 struct ivpu_hw_info *hw = vdev->hw;
157 hw->tile_fuse = BTRS_MTL_TILE_FUSE_ENABLE_BOTH;
158 hw->sku = BTRS_MTL_TILE_SKU_BOTH;
159 hw->config = BTRS_MTL_WP_CONFIG_2_TILE_4_3_RATIO;
161 return 0;
164 static int info_init_lnl(struct ivpu_device *vdev)
166 struct ivpu_hw_info *hw = vdev->hw;
167 u32 tile_fuse_config;
168 int ret;
170 ret = read_tile_config_fuse(vdev, &tile_fuse_config);
171 if (ret)
172 return ret;
174 hw->tile_fuse = tile_fuse_config;
175 hw->pll.profiling_freq = PLL_PROFILING_FREQ_DEFAULT;
177 return 0;
180 int ivpu_hw_btrs_info_init(struct ivpu_device *vdev)
182 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
183 return info_init_mtl(vdev);
184 else
185 return info_init_lnl(vdev);
188 static int wp_request_sync(struct ivpu_device *vdev)
190 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
191 return REGB_POLL_FLD(VPU_HW_BTRS_MTL_WP_REQ_CMD, SEND, 0, PLL_TIMEOUT_US);
192 else
193 return REGB_POLL_FLD(VPU_HW_BTRS_LNL_WP_REQ_CMD, SEND, 0, PLL_TIMEOUT_US);
196 static int wait_for_status_ready(struct ivpu_device *vdev, bool enable)
198 u32 exp_val = enable ? 0x1 : 0x0;
200 if (IVPU_WA(punit_disabled))
201 return 0;
203 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
204 return REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, READY, exp_val, PLL_TIMEOUT_US);
205 else
206 return REGB_POLL_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, READY, exp_val, PLL_TIMEOUT_US);
209 struct wp_request {
210 u16 min;
211 u16 max;
212 u16 target;
213 u16 cfg;
214 u16 epp;
215 u16 cdyn;
218 static void wp_request_mtl(struct ivpu_device *vdev, struct wp_request *wp)
220 u32 val;
222 val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0);
223 val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0, MIN_RATIO, wp->min, val);
224 val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0, MAX_RATIO, wp->max, val);
225 REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0, val);
227 val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1);
228 val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1, TARGET_RATIO, wp->target, val);
229 val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1, EPP, PLL_EPP_DEFAULT, val);
230 REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1, val);
232 val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD2);
233 val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD2, CONFIG, wp->cfg, val);
234 REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD2, val);
236 val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_CMD);
237 val = REG_SET_FLD(VPU_HW_BTRS_MTL_WP_REQ_CMD, SEND, val);
238 REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_CMD, val);
241 static void wp_request_lnl(struct ivpu_device *vdev, struct wp_request *wp)
243 u32 val;
245 val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0);
246 val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0, MIN_RATIO, wp->min, val);
247 val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0, MAX_RATIO, wp->max, val);
248 REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0, val);
250 val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1);
251 val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1, TARGET_RATIO, wp->target, val);
252 val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1, EPP, wp->epp, val);
253 REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1, val);
255 val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2);
256 val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2, CONFIG, wp->cfg, val);
257 val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2, CDYN, wp->cdyn, val);
258 REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2, val);
260 val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_CMD);
261 val = REG_SET_FLD(VPU_HW_BTRS_LNL_WP_REQ_CMD, SEND, val);
262 REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_CMD, val);
265 static void wp_request(struct ivpu_device *vdev, struct wp_request *wp)
267 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
268 wp_request_mtl(vdev, wp);
269 else
270 wp_request_lnl(vdev, wp);
273 static int wp_request_send(struct ivpu_device *vdev, struct wp_request *wp)
275 int ret;
277 ret = wp_request_sync(vdev);
278 if (ret) {
279 ivpu_err(vdev, "Failed to sync before workpoint request: %d\n", ret);
280 return ret;
283 wp_request(vdev, wp);
285 ret = wp_request_sync(vdev);
286 if (ret)
287 ivpu_err(vdev, "Failed to sync after workpoint request: %d\n", ret);
289 return ret;
292 static void prepare_wp_request(struct ivpu_device *vdev, struct wp_request *wp, bool enable)
294 struct ivpu_hw_info *hw = vdev->hw;
296 wp->min = hw->pll.min_ratio;
297 wp->max = hw->pll.max_ratio;
299 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) {
300 wp->target = enable ? hw->pll.pn_ratio : 0;
301 wp->cfg = enable ? hw->config : 0;
302 wp->cdyn = 0;
303 wp->epp = 0;
304 } else {
305 wp->target = hw->pll.pn_ratio;
306 wp->cfg = enable ? PLL_CONFIG_DEFAULT : 0;
307 wp->cdyn = enable ? PLL_CDYN_DEFAULT : 0;
308 wp->epp = enable ? PLL_EPP_DEFAULT : 0;
312 static int wait_for_pll_lock(struct ivpu_device *vdev, bool enable)
314 u32 exp_val = enable ? 0x1 : 0x0;
316 if (ivpu_hw_btrs_gen(vdev) != IVPU_HW_BTRS_MTL)
317 return 0;
319 if (IVPU_WA(punit_disabled))
320 return 0;
322 return REGB_POLL_FLD(VPU_HW_BTRS_MTL_PLL_STATUS, LOCK, exp_val, PLL_TIMEOUT_US);
325 int ivpu_hw_btrs_wp_drive(struct ivpu_device *vdev, bool enable)
327 struct wp_request wp;
328 int ret;
330 if (IVPU_WA(punit_disabled)) {
331 ivpu_dbg(vdev, PM, "Skipping workpoint request\n");
332 return 0;
335 prepare_wp_request(vdev, &wp, enable);
337 ivpu_dbg(vdev, PM, "PLL workpoint request: %u Hz, config: 0x%x, epp: 0x%x, cdyn: 0x%x\n",
338 PLL_RATIO_TO_FREQ(wp.target), wp.cfg, wp.epp, wp.cdyn);
340 ret = wp_request_send(vdev, &wp);
341 if (ret) {
342 ivpu_err(vdev, "Failed to send workpoint request: %d\n", ret);
343 return ret;
346 ret = wait_for_pll_lock(vdev, enable);
347 if (ret) {
348 ivpu_err(vdev, "Timed out waiting for PLL lock\n");
349 return ret;
352 ret = wait_for_status_ready(vdev, enable);
353 if (ret) {
354 ivpu_err(vdev, "Timed out waiting for NPU ready status\n");
355 return ret;
358 return 0;
361 static int d0i3_drive_mtl(struct ivpu_device *vdev, bool enable)
363 int ret;
364 u32 val;
366 ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
367 if (ret) {
368 ivpu_err(vdev, "Failed to sync before D0i3 transition: %d\n", ret);
369 return ret;
372 val = REGB_RD32(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL);
373 if (enable)
374 val = REG_SET_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, I3, val);
375 else
376 val = REG_CLR_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, I3, val);
377 REGB_WR32(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, val);
379 ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
380 if (ret)
381 ivpu_err(vdev, "Failed to sync after D0i3 transition: %d\n", ret);
383 return ret;
386 static int d0i3_drive_lnl(struct ivpu_device *vdev, bool enable)
388 int ret;
389 u32 val;
391 ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
392 if (ret) {
393 ivpu_err(vdev, "Failed to sync before D0i3 transition: %d\n", ret);
394 return ret;
397 val = REGB_RD32(VPU_HW_BTRS_LNL_D0I3_CONTROL);
398 if (enable)
399 val = REG_SET_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, I3, val);
400 else
401 val = REG_CLR_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, I3, val);
402 REGB_WR32(VPU_HW_BTRS_LNL_D0I3_CONTROL, val);
404 ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
405 if (ret) {
406 ivpu_err(vdev, "Failed to sync after D0i3 transition: %d\n", ret);
407 return ret;
410 return 0;
413 static int d0i3_drive(struct ivpu_device *vdev, bool enable)
415 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
416 return d0i3_drive_mtl(vdev, enable);
417 else
418 return d0i3_drive_lnl(vdev, enable);
421 int ivpu_hw_btrs_d0i3_enable(struct ivpu_device *vdev)
423 int ret;
425 if (IVPU_WA(punit_disabled))
426 return 0;
428 ret = d0i3_drive(vdev, true);
429 if (ret)
430 ivpu_err(vdev, "Failed to enable D0i3: %d\n", ret);
432 udelay(5); /* VPU requires 5 us to complete the transition */
434 return ret;
437 int ivpu_hw_btrs_d0i3_disable(struct ivpu_device *vdev)
439 int ret;
441 if (IVPU_WA(punit_disabled))
442 return 0;
444 ret = d0i3_drive(vdev, false);
445 if (ret)
446 ivpu_err(vdev, "Failed to disable D0i3: %d\n", ret);
448 return ret;
451 int ivpu_hw_btrs_wait_for_clock_res_own_ack(struct ivpu_device *vdev)
453 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
454 return 0;
456 return REGB_POLL_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, CLOCK_RESOURCE_OWN_ACK, 1, TIMEOUT_US);
459 void ivpu_hw_btrs_set_port_arbitration_weights_lnl(struct ivpu_device *vdev)
461 REGB_WR32(VPU_HW_BTRS_LNL_PORT_ARBITRATION_WEIGHTS, WEIGHTS_DEFAULT);
462 REGB_WR32(VPU_HW_BTRS_LNL_PORT_ARBITRATION_WEIGHTS_ATS, WEIGHTS_ATS_DEFAULT);
465 static int ip_reset_mtl(struct ivpu_device *vdev)
467 int ret;
468 u32 val;
470 ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_IP_RESET, TRIGGER, 0, TIMEOUT_US);
471 if (ret) {
472 ivpu_err(vdev, "Timed out waiting for TRIGGER bit\n");
473 return ret;
476 val = REGB_RD32(VPU_HW_BTRS_MTL_VPU_IP_RESET);
477 val = REG_SET_FLD(VPU_HW_BTRS_MTL_VPU_IP_RESET, TRIGGER, val);
478 REGB_WR32(VPU_HW_BTRS_MTL_VPU_IP_RESET, val);
480 ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_IP_RESET, TRIGGER, 0, TIMEOUT_US);
481 if (ret)
482 ivpu_err(vdev, "Timed out waiting for RESET completion\n");
484 return ret;
487 static int ip_reset_lnl(struct ivpu_device *vdev)
489 int ret;
490 u32 val;
492 ivpu_hw_btrs_clock_relinquish_disable_lnl(vdev);
494 ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_IP_RESET, TRIGGER, 0, TIMEOUT_US);
495 if (ret) {
496 ivpu_err(vdev, "Wait for *_TRIGGER timed out\n");
497 return ret;
500 val = REGB_RD32(VPU_HW_BTRS_LNL_IP_RESET);
501 val = REG_SET_FLD(VPU_HW_BTRS_LNL_IP_RESET, TRIGGER, val);
502 REGB_WR32(VPU_HW_BTRS_LNL_IP_RESET, val);
504 ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_IP_RESET, TRIGGER, 0, TIMEOUT_US);
505 if (ret)
506 ivpu_err(vdev, "Timed out waiting for RESET completion\n");
508 return ret;
511 int ivpu_hw_btrs_ip_reset(struct ivpu_device *vdev)
513 if (IVPU_WA(punit_disabled))
514 return 0;
516 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
517 return ip_reset_mtl(vdev);
518 else
519 return ip_reset_lnl(vdev);
522 void ivpu_hw_btrs_profiling_freq_reg_set_lnl(struct ivpu_device *vdev)
524 u32 val = REGB_RD32(VPU_HW_BTRS_LNL_VPU_STATUS);
526 if (vdev->hw->pll.profiling_freq == PLL_PROFILING_FREQ_DEFAULT)
527 val = REG_CLR_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, PERF_CLK, val);
528 else
529 val = REG_SET_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, PERF_CLK, val);
531 REGB_WR32(VPU_HW_BTRS_LNL_VPU_STATUS, val);
534 void ivpu_hw_btrs_ats_print_lnl(struct ivpu_device *vdev)
536 ivpu_dbg(vdev, MISC, "Buttress ATS: %s\n",
537 REGB_RD32(VPU_HW_BTRS_LNL_HM_ATS) ? "Enable" : "Disable");
540 void ivpu_hw_btrs_clock_relinquish_disable_lnl(struct ivpu_device *vdev)
542 u32 val = REGB_RD32(VPU_HW_BTRS_LNL_VPU_STATUS);
544 val = REG_SET_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, DISABLE_CLK_RELINQUISH, val);
545 REGB_WR32(VPU_HW_BTRS_LNL_VPU_STATUS, val);
548 bool ivpu_hw_btrs_is_idle(struct ivpu_device *vdev)
550 u32 val;
552 if (IVPU_WA(punit_disabled))
553 return true;
555 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) {
556 val = REGB_RD32(VPU_HW_BTRS_MTL_VPU_STATUS);
558 return REG_TEST_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, READY, val) &&
559 REG_TEST_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, IDLE, val);
560 } else {
561 val = REGB_RD32(VPU_HW_BTRS_LNL_VPU_STATUS);
563 return REG_TEST_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, READY, val) &&
564 REG_TEST_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, IDLE, val);
568 int ivpu_hw_btrs_wait_for_idle(struct ivpu_device *vdev)
570 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
571 return REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, IDLE, 0x1, IDLE_TIMEOUT_US);
572 else
573 return REGB_POLL_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, IDLE, 0x1, IDLE_TIMEOUT_US);
576 /* Handler for IRQs from Buttress core (irqB) */
577 bool ivpu_hw_btrs_irq_handler_mtl(struct ivpu_device *vdev, int irq)
579 u32 status = REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) & BTRS_MTL_IRQ_MASK;
580 bool schedule_recovery = false;
582 if (!status)
583 return false;
585 if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, FREQ_CHANGE, status))
586 ivpu_dbg(vdev, IRQ, "FREQ_CHANGE irq: %08x",
587 REGB_RD32(VPU_HW_BTRS_MTL_CURRENT_PLL));
589 if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, ATS_ERR, status)) {
590 ivpu_err(vdev, "ATS_ERR irq 0x%016llx", REGB_RD64(VPU_HW_BTRS_MTL_ATS_ERR_LOG_0));
591 REGB_WR32(VPU_HW_BTRS_MTL_ATS_ERR_CLEAR, 0x1);
592 schedule_recovery = true;
595 if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, UFI_ERR, status)) {
596 u32 ufi_log = REGB_RD32(VPU_HW_BTRS_MTL_UFI_ERR_LOG);
598 ivpu_err(vdev, "UFI_ERR irq (0x%08x) opcode: 0x%02lx axi_id: 0x%02lx cq_id: 0x%03lx",
599 ufi_log, REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, OPCODE, ufi_log),
600 REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, AXI_ID, ufi_log),
601 REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, CQ_ID, ufi_log));
602 REGB_WR32(VPU_HW_BTRS_MTL_UFI_ERR_CLEAR, 0x1);
603 schedule_recovery = true;
606 /* This must be done after interrupts are cleared at the source. */
607 if (IVPU_WA(interrupt_clear_with_0))
609 * Writing 1 triggers an interrupt, so we can't perform read update write.
610 * Clear local interrupt status by writing 0 to all bits.
612 REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, 0x0);
613 else
614 REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, status);
616 if (schedule_recovery)
617 ivpu_pm_trigger_recovery(vdev, "Buttress IRQ");
619 return true;
622 /* Handler for IRQs from Buttress core (irqB) */
623 bool ivpu_hw_btrs_irq_handler_lnl(struct ivpu_device *vdev, int irq)
625 u32 status = REGB_RD32(VPU_HW_BTRS_LNL_INTERRUPT_STAT) & BTRS_LNL_IRQ_MASK;
626 bool schedule_recovery = false;
628 if (!status)
629 return false;
631 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, SURV_ERR, status)) {
632 ivpu_dbg(vdev, IRQ, "Survivability IRQ\n");
633 queue_work(system_wq, &vdev->irq_dct_work);
636 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, FREQ_CHANGE, status))
637 ivpu_dbg(vdev, IRQ, "FREQ_CHANGE irq: %08x", REGB_RD32(VPU_HW_BTRS_LNL_PLL_FREQ));
639 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, ATS_ERR, status)) {
640 ivpu_err(vdev, "ATS_ERR LOG1 0x%08x ATS_ERR_LOG2 0x%08x\n",
641 REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG1),
642 REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG2));
643 REGB_WR32(VPU_HW_BTRS_LNL_ATS_ERR_CLEAR, 0x1);
644 schedule_recovery = true;
647 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI0_ERR, status)) {
648 ivpu_err(vdev, "CFI0_ERR 0x%08x", REGB_RD32(VPU_HW_BTRS_LNL_CFI0_ERR_LOG));
649 REGB_WR32(VPU_HW_BTRS_LNL_CFI0_ERR_CLEAR, 0x1);
650 schedule_recovery = true;
653 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI1_ERR, status)) {
654 ivpu_err(vdev, "CFI1_ERR 0x%08x", REGB_RD32(VPU_HW_BTRS_LNL_CFI1_ERR_LOG));
655 REGB_WR32(VPU_HW_BTRS_LNL_CFI1_ERR_CLEAR, 0x1);
656 schedule_recovery = true;
659 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR0_ERR, status)) {
660 ivpu_err(vdev, "IMR_ERR_CFI0 LOW: 0x%08x HIGH: 0x%08x",
661 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_LOW),
662 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_HIGH));
663 REGB_WR32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_CLEAR, 0x1);
664 schedule_recovery = true;
667 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR1_ERR, status)) {
668 ivpu_err(vdev, "IMR_ERR_CFI1 LOW: 0x%08x HIGH: 0x%08x",
669 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_LOW),
670 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_HIGH));
671 REGB_WR32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_CLEAR, 0x1);
672 schedule_recovery = true;
675 /* This must be done after interrupts are cleared at the source. */
676 REGB_WR32(VPU_HW_BTRS_LNL_INTERRUPT_STAT, status);
678 if (schedule_recovery)
679 ivpu_pm_trigger_recovery(vdev, "Buttress IRQ");
681 return true;
684 int ivpu_hw_btrs_dct_get_request(struct ivpu_device *vdev, bool *enable)
686 u32 val = REGB_RD32(VPU_HW_BTRS_LNL_PCODE_MAILBOX_SHADOW);
687 u32 cmd = REG_GET_FLD(VPU_HW_BTRS_LNL_PCODE_MAILBOX_SHADOW, CMD, val);
688 u32 param1 = REG_GET_FLD(VPU_HW_BTRS_LNL_PCODE_MAILBOX_SHADOW, PARAM1, val);
690 if (cmd != DCT_REQ) {
691 ivpu_err_ratelimited(vdev, "Unsupported PCODE command: 0x%x\n", cmd);
692 return -EBADR;
695 switch (param1) {
696 case DCT_ENABLE:
697 *enable = true;
698 return 0;
699 case DCT_DISABLE:
700 *enable = false;
701 return 0;
702 default:
703 ivpu_err_ratelimited(vdev, "Invalid PARAM1 value: %u\n", param1);
704 return -EINVAL;
708 void ivpu_hw_btrs_dct_set_status(struct ivpu_device *vdev, bool enable, u32 active_percent)
710 u32 val = 0;
711 u32 cmd = enable ? DCT_ENABLE : DCT_DISABLE;
713 val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_PCODE_MAILBOX_STATUS, CMD, DCT_REQ, val);
714 val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_PCODE_MAILBOX_STATUS, PARAM1, cmd, val);
715 val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_PCODE_MAILBOX_STATUS, PARAM2, active_percent, val);
717 REGB_WR32(VPU_HW_BTRS_LNL_PCODE_MAILBOX_STATUS, val);
720 static u32 pll_ratio_to_freq_mtl(u32 ratio, u32 config)
722 u32 pll_clock = PLL_REF_CLK_FREQ * ratio;
723 u32 cpu_clock;
725 if ((config & 0xff) == MTL_PLL_RATIO_4_3)
726 cpu_clock = pll_clock * 2 / 4;
727 else
728 cpu_clock = pll_clock * 2 / 5;
730 return cpu_clock;
733 u32 ivpu_hw_btrs_ratio_to_freq(struct ivpu_device *vdev, u32 ratio)
735 struct ivpu_hw_info *hw = vdev->hw;
737 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
738 return pll_ratio_to_freq_mtl(ratio, hw->config);
739 else
740 return PLL_RATIO_TO_FREQ(ratio);
743 static u32 pll_freq_get_mtl(struct ivpu_device *vdev)
745 u32 pll_curr_ratio;
747 pll_curr_ratio = REGB_RD32(VPU_HW_BTRS_MTL_CURRENT_PLL);
748 pll_curr_ratio &= VPU_HW_BTRS_MTL_CURRENT_PLL_RATIO_MASK;
750 if (!ivpu_is_silicon(vdev))
751 return PLL_SIMULATION_FREQ;
753 return pll_ratio_to_freq_mtl(pll_curr_ratio, vdev->hw->config);
756 static u32 pll_freq_get_lnl(struct ivpu_device *vdev)
758 u32 pll_curr_ratio;
760 pll_curr_ratio = REGB_RD32(VPU_HW_BTRS_LNL_PLL_FREQ);
761 pll_curr_ratio &= VPU_HW_BTRS_LNL_PLL_FREQ_RATIO_MASK;
763 return PLL_RATIO_TO_FREQ(pll_curr_ratio);
766 u32 ivpu_hw_btrs_pll_freq_get(struct ivpu_device *vdev)
768 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
769 return pll_freq_get_mtl(vdev);
770 else
771 return pll_freq_get_lnl(vdev);
774 u32 ivpu_hw_btrs_telemetry_offset_get(struct ivpu_device *vdev)
776 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
777 return REGB_RD32(VPU_HW_BTRS_MTL_VPU_TELEMETRY_OFFSET);
778 else
779 return REGB_RD32(VPU_HW_BTRS_LNL_VPU_TELEMETRY_OFFSET);
782 u32 ivpu_hw_btrs_telemetry_size_get(struct ivpu_device *vdev)
784 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
785 return REGB_RD32(VPU_HW_BTRS_MTL_VPU_TELEMETRY_SIZE);
786 else
787 return REGB_RD32(VPU_HW_BTRS_LNL_VPU_TELEMETRY_SIZE);
790 u32 ivpu_hw_btrs_telemetry_enable_get(struct ivpu_device *vdev)
792 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
793 return REGB_RD32(VPU_HW_BTRS_MTL_VPU_TELEMETRY_ENABLE);
794 else
795 return REGB_RD32(VPU_HW_BTRS_LNL_VPU_TELEMETRY_ENABLE);
798 void ivpu_hw_btrs_global_int_disable(struct ivpu_device *vdev)
800 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
801 REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x1);
802 else
803 REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x1);
806 void ivpu_hw_btrs_global_int_enable(struct ivpu_device *vdev)
808 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
809 REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x0);
810 else
811 REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x0);
814 void ivpu_hw_btrs_irq_enable(struct ivpu_device *vdev)
816 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) {
817 REGB_WR32(VPU_HW_BTRS_MTL_LOCAL_INT_MASK, (u32)(~BTRS_MTL_IRQ_MASK));
818 REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x0);
819 } else {
820 REGB_WR32(VPU_HW_BTRS_LNL_LOCAL_INT_MASK, (u32)(~BTRS_LNL_IRQ_MASK));
821 REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x0);
825 void ivpu_hw_btrs_irq_disable(struct ivpu_device *vdev)
827 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) {
828 REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x1);
829 REGB_WR32(VPU_HW_BTRS_MTL_LOCAL_INT_MASK, BTRS_IRQ_DISABLE_MASK);
830 } else {
831 REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x1);
832 REGB_WR32(VPU_HW_BTRS_LNL_LOCAL_INT_MASK, BTRS_IRQ_DISABLE_MASK);
836 static void diagnose_failure_mtl(struct ivpu_device *vdev)
838 u32 reg = REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) & BTRS_MTL_IRQ_MASK;
840 if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, ATS_ERR, reg))
841 ivpu_err(vdev, "ATS_ERR irq 0x%016llx", REGB_RD64(VPU_HW_BTRS_MTL_ATS_ERR_LOG_0));
843 if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, UFI_ERR, reg)) {
844 u32 log = REGB_RD32(VPU_HW_BTRS_MTL_UFI_ERR_LOG);
846 ivpu_err(vdev, "UFI_ERR irq (0x%08x) opcode: 0x%02lx axi_id: 0x%02lx cq_id: 0x%03lx",
847 log, REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, OPCODE, log),
848 REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, AXI_ID, log),
849 REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, CQ_ID, log));
853 static void diagnose_failure_lnl(struct ivpu_device *vdev)
855 u32 reg = REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) & BTRS_LNL_IRQ_MASK;
857 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, ATS_ERR, reg)) {
858 ivpu_err(vdev, "ATS_ERR_LOG1 0x%08x ATS_ERR_LOG2 0x%08x\n",
859 REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG1),
860 REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG2));
863 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI0_ERR, reg))
864 ivpu_err(vdev, "CFI0_ERR_LOG 0x%08x\n", REGB_RD32(VPU_HW_BTRS_LNL_CFI0_ERR_LOG));
866 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI1_ERR, reg))
867 ivpu_err(vdev, "CFI1_ERR_LOG 0x%08x\n", REGB_RD32(VPU_HW_BTRS_LNL_CFI1_ERR_LOG));
869 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR0_ERR, reg))
870 ivpu_err(vdev, "IMR_ERR_CFI0 LOW: 0x%08x HIGH: 0x%08x\n",
871 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_LOW),
872 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_HIGH));
874 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR1_ERR, reg))
875 ivpu_err(vdev, "IMR_ERR_CFI1 LOW: 0x%08x HIGH: 0x%08x\n",
876 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_LOW),
877 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_HIGH));
879 if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, SURV_ERR, reg))
880 ivpu_err(vdev, "Survivability IRQ\n");
883 void ivpu_hw_btrs_diagnose_failure(struct ivpu_device *vdev)
885 if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
886 return diagnose_failure_mtl(vdev);
887 else
888 return diagnose_failure_lnl(vdev);
891 int ivpu_hw_btrs_platform_read(struct ivpu_device *vdev)
893 u32 reg = REGB_RD32(VPU_HW_BTRS_LNL_VPU_STATUS);
895 return REG_GET_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, PLATFORM, reg);