1 // SPDX-License-Identifier: GPL-2.0-only
3 * (C) Copyright 2009 Intel Corporation
4 * Author: Jacob Pan (jacob.jun.pan@intel.com)
6 * Shared with ARM platforms, Jamie Iles, Picochip 2011
8 * Support for the Synopsys DesignWare APB Timers.
10 #include <linux/dw_apb_timer.h>
11 #include <linux/delay.h>
12 #include <linux/kernel.h>
13 #include <linux/interrupt.h>
14 #include <linux/irq.h>
16 #include <linux/slab.h>
18 #define APBT_MIN_PERIOD 4
19 #define APBT_MIN_DELTA_USEC 200
21 #define APBTMR_N_LOAD_COUNT 0x00
22 #define APBTMR_N_CURRENT_VALUE 0x04
23 #define APBTMR_N_CONTROL 0x08
24 #define APBTMR_N_EOI 0x0c
25 #define APBTMR_N_INT_STATUS 0x10
27 #define APBTMRS_INT_STATUS 0xa0
28 #define APBTMRS_EOI 0xa4
29 #define APBTMRS_RAW_INT_STATUS 0xa8
30 #define APBTMRS_COMP_VERSION 0xac
32 #define APBTMR_CONTROL_ENABLE (1 << 0)
33 /* 1: periodic, 0:free running. */
34 #define APBTMR_CONTROL_MODE_PERIODIC (1 << 1)
35 #define APBTMR_CONTROL_INT (1 << 2)
37 static inline struct dw_apb_clock_event_device
*
38 ced_to_dw_apb_ced(struct clock_event_device
*evt
)
40 return container_of(evt
, struct dw_apb_clock_event_device
, ced
);
43 static inline struct dw_apb_clocksource
*
44 clocksource_to_dw_apb_clocksource(struct clocksource
*cs
)
46 return container_of(cs
, struct dw_apb_clocksource
, cs
);
49 static inline u32
apbt_readl(struct dw_apb_timer
*timer
, unsigned long offs
)
51 return readl(timer
->base
+ offs
);
54 static inline void apbt_writel(struct dw_apb_timer
*timer
, u32 val
,
57 writel(val
, timer
->base
+ offs
);
60 static inline u32
apbt_readl_relaxed(struct dw_apb_timer
*timer
, unsigned long offs
)
62 return readl_relaxed(timer
->base
+ offs
);
65 static inline void apbt_writel_relaxed(struct dw_apb_timer
*timer
, u32 val
,
68 writel_relaxed(val
, timer
->base
+ offs
);
71 static void apbt_eoi(struct dw_apb_timer
*timer
)
73 apbt_readl_relaxed(timer
, APBTMR_N_EOI
);
76 static irqreturn_t
dw_apb_clockevent_irq(int irq
, void *data
)
78 struct clock_event_device
*evt
= data
;
79 struct dw_apb_clock_event_device
*dw_ced
= ced_to_dw_apb_ced(evt
);
81 if (!evt
->event_handler
) {
82 pr_info("Spurious APBT timer interrupt %d\n", irq
);
87 dw_ced
->eoi(&dw_ced
->timer
);
89 evt
->event_handler(evt
);
93 static void apbt_enable_int(struct dw_apb_timer
*timer
)
95 u32 ctrl
= apbt_readl(timer
, APBTMR_N_CONTROL
);
96 /* clear pending intr */
97 apbt_readl(timer
, APBTMR_N_EOI
);
98 ctrl
&= ~APBTMR_CONTROL_INT
;
99 apbt_writel(timer
, ctrl
, APBTMR_N_CONTROL
);
102 static int apbt_shutdown(struct clock_event_device
*evt
)
104 struct dw_apb_clock_event_device
*dw_ced
= ced_to_dw_apb_ced(evt
);
107 pr_debug("%s CPU %d state=shutdown\n", __func__
,
108 cpumask_first(evt
->cpumask
));
110 ctrl
= apbt_readl(&dw_ced
->timer
, APBTMR_N_CONTROL
);
111 ctrl
&= ~APBTMR_CONTROL_ENABLE
;
112 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
116 static int apbt_set_oneshot(struct clock_event_device
*evt
)
118 struct dw_apb_clock_event_device
*dw_ced
= ced_to_dw_apb_ced(evt
);
121 pr_debug("%s CPU %d state=oneshot\n", __func__
,
122 cpumask_first(evt
->cpumask
));
124 ctrl
= apbt_readl(&dw_ced
->timer
, APBTMR_N_CONTROL
);
126 * set free running mode, this mode will let timer reload max
127 * timeout which will give time (3min on 25MHz clock) to rearm
128 * the next event, therefore emulate the one-shot mode.
130 ctrl
&= ~APBTMR_CONTROL_ENABLE
;
131 ctrl
&= ~APBTMR_CONTROL_MODE_PERIODIC
;
133 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
134 /* write again to set free running mode */
135 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
138 * DW APB p. 46, load counter with all 1s before starting free
141 apbt_writel(&dw_ced
->timer
, ~0, APBTMR_N_LOAD_COUNT
);
142 ctrl
&= ~APBTMR_CONTROL_INT
;
143 ctrl
|= APBTMR_CONTROL_ENABLE
;
144 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
148 static int apbt_set_periodic(struct clock_event_device
*evt
)
150 struct dw_apb_clock_event_device
*dw_ced
= ced_to_dw_apb_ced(evt
);
151 unsigned long period
= DIV_ROUND_UP(dw_ced
->timer
.freq
, HZ
);
154 pr_debug("%s CPU %d state=periodic\n", __func__
,
155 cpumask_first(evt
->cpumask
));
157 ctrl
= apbt_readl(&dw_ced
->timer
, APBTMR_N_CONTROL
);
158 ctrl
|= APBTMR_CONTROL_MODE_PERIODIC
;
159 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
161 * DW APB p. 46, have to disable timer before load counter,
162 * may cause sync problem.
164 ctrl
&= ~APBTMR_CONTROL_ENABLE
;
165 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
167 pr_debug("Setting clock period %lu for HZ %d\n", period
, HZ
);
168 apbt_writel(&dw_ced
->timer
, period
, APBTMR_N_LOAD_COUNT
);
169 ctrl
|= APBTMR_CONTROL_ENABLE
;
170 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
174 static int apbt_resume(struct clock_event_device
*evt
)
176 struct dw_apb_clock_event_device
*dw_ced
= ced_to_dw_apb_ced(evt
);
178 pr_debug("%s CPU %d state=resume\n", __func__
,
179 cpumask_first(evt
->cpumask
));
181 apbt_enable_int(&dw_ced
->timer
);
185 static int apbt_next_event(unsigned long delta
,
186 struct clock_event_device
*evt
)
189 struct dw_apb_clock_event_device
*dw_ced
= ced_to_dw_apb_ced(evt
);
192 ctrl
= apbt_readl_relaxed(&dw_ced
->timer
, APBTMR_N_CONTROL
);
193 ctrl
&= ~APBTMR_CONTROL_ENABLE
;
194 apbt_writel_relaxed(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
195 /* write new count */
196 apbt_writel_relaxed(&dw_ced
->timer
, delta
, APBTMR_N_LOAD_COUNT
);
197 ctrl
|= APBTMR_CONTROL_ENABLE
;
198 apbt_writel_relaxed(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
204 * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
206 * @cpu: The CPU the events will be targeted at or -1 if CPU affiliation
208 * @name: The name used for the timer and the IRQ for it.
209 * @rating: The rating to give the timer.
210 * @base: I/O base for the timer registers.
211 * @irq: The interrupt number to use for the timer.
212 * @freq: The frequency that the timer counts at.
214 * This creates a clock_event_device for using with the generic clock layer
215 * but does not start and register it. This should be done with
216 * dw_apb_clockevent_register() as the next step. If this is the first time
217 * it has been called for a timer then the IRQ will be requested, if not it
218 * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
221 struct dw_apb_clock_event_device
*
222 dw_apb_clockevent_init(int cpu
, const char *name
, unsigned rating
,
223 void __iomem
*base
, int irq
, unsigned long freq
)
225 struct dw_apb_clock_event_device
*dw_ced
=
226 kzalloc(sizeof(*dw_ced
), GFP_KERNEL
);
232 dw_ced
->timer
.base
= base
;
233 dw_ced
->timer
.irq
= irq
;
234 dw_ced
->timer
.freq
= freq
;
236 clockevents_calc_mult_shift(&dw_ced
->ced
, freq
, APBT_MIN_PERIOD
);
237 dw_ced
->ced
.max_delta_ns
= clockevent_delta2ns(0x7fffffff,
239 dw_ced
->ced
.max_delta_ticks
= 0x7fffffff;
240 dw_ced
->ced
.min_delta_ns
= clockevent_delta2ns(5000, &dw_ced
->ced
);
241 dw_ced
->ced
.min_delta_ticks
= 5000;
242 dw_ced
->ced
.cpumask
= cpu
< 0 ? cpu_possible_mask
: cpumask_of(cpu
);
243 dw_ced
->ced
.features
= CLOCK_EVT_FEAT_PERIODIC
|
244 CLOCK_EVT_FEAT_ONESHOT
| CLOCK_EVT_FEAT_DYNIRQ
;
245 dw_ced
->ced
.set_state_shutdown
= apbt_shutdown
;
246 dw_ced
->ced
.set_state_periodic
= apbt_set_periodic
;
247 dw_ced
->ced
.set_state_oneshot
= apbt_set_oneshot
;
248 dw_ced
->ced
.set_state_oneshot_stopped
= apbt_shutdown
;
249 dw_ced
->ced
.tick_resume
= apbt_resume
;
250 dw_ced
->ced
.set_next_event
= apbt_next_event
;
251 dw_ced
->ced
.irq
= dw_ced
->timer
.irq
;
252 dw_ced
->ced
.rating
= rating
;
253 dw_ced
->ced
.name
= name
;
255 dw_ced
->eoi
= apbt_eoi
;
256 err
= request_irq(irq
, dw_apb_clockevent_irq
,
257 IRQF_TIMER
| IRQF_IRQPOLL
| IRQF_NOBALANCING
,
258 dw_ced
->ced
.name
, &dw_ced
->ced
);
260 pr_err("failed to request timer irq\n");
269 * dw_apb_clockevent_register() - register the clock with the generic layer
271 * @dw_ced: The APB clock to register as a clock_event_device.
273 void dw_apb_clockevent_register(struct dw_apb_clock_event_device
*dw_ced
)
275 apbt_writel(&dw_ced
->timer
, 0, APBTMR_N_CONTROL
);
276 clockevents_register_device(&dw_ced
->ced
);
277 apbt_enable_int(&dw_ced
->timer
);
281 * dw_apb_clocksource_start() - start the clocksource counting.
283 * @dw_cs: The clocksource to start.
285 * This is used to start the clocksource before registration and can be used
286 * to enable calibration of timers.
288 void dw_apb_clocksource_start(struct dw_apb_clocksource
*dw_cs
)
291 * start count down from 0xffff_ffff. this is done by toggling the
292 * enable bit then load initial load count to ~0.
294 u32 ctrl
= apbt_readl(&dw_cs
->timer
, APBTMR_N_CONTROL
);
296 ctrl
&= ~APBTMR_CONTROL_ENABLE
;
297 apbt_writel(&dw_cs
->timer
, ctrl
, APBTMR_N_CONTROL
);
298 apbt_writel(&dw_cs
->timer
, ~0, APBTMR_N_LOAD_COUNT
);
299 /* enable, mask interrupt */
300 ctrl
&= ~APBTMR_CONTROL_MODE_PERIODIC
;
301 ctrl
|= (APBTMR_CONTROL_ENABLE
| APBTMR_CONTROL_INT
);
302 apbt_writel(&dw_cs
->timer
, ctrl
, APBTMR_N_CONTROL
);
303 /* read it once to get cached counter value initialized */
304 dw_apb_clocksource_read(dw_cs
);
307 static u64
__apbt_read_clocksource(struct clocksource
*cs
)
310 struct dw_apb_clocksource
*dw_cs
=
311 clocksource_to_dw_apb_clocksource(cs
);
313 current_count
= apbt_readl_relaxed(&dw_cs
->timer
,
314 APBTMR_N_CURRENT_VALUE
);
316 return (u64
)~current_count
;
319 static void apbt_restart_clocksource(struct clocksource
*cs
)
321 struct dw_apb_clocksource
*dw_cs
=
322 clocksource_to_dw_apb_clocksource(cs
);
324 dw_apb_clocksource_start(dw_cs
);
328 * dw_apb_clocksource_init() - use an APB timer as a clocksource.
330 * @rating: The rating to give the clocksource.
331 * @name: The name for the clocksource.
332 * @base: The I/O base for the timer registers.
333 * @freq: The frequency that the timer counts at.
335 * This creates a clocksource using an APB timer but does not yet register it
336 * with the clocksource system. This should be done with
337 * dw_apb_clocksource_register() as the next step.
339 struct dw_apb_clocksource
*
340 dw_apb_clocksource_init(unsigned rating
, const char *name
, void __iomem
*base
,
343 struct dw_apb_clocksource
*dw_cs
= kzalloc(sizeof(*dw_cs
), GFP_KERNEL
);
348 dw_cs
->timer
.base
= base
;
349 dw_cs
->timer
.freq
= freq
;
350 dw_cs
->cs
.name
= name
;
351 dw_cs
->cs
.rating
= rating
;
352 dw_cs
->cs
.read
= __apbt_read_clocksource
;
353 dw_cs
->cs
.mask
= CLOCKSOURCE_MASK(32);
354 dw_cs
->cs
.flags
= CLOCK_SOURCE_IS_CONTINUOUS
;
355 dw_cs
->cs
.resume
= apbt_restart_clocksource
;
361 * dw_apb_clocksource_register() - register the APB clocksource.
363 * @dw_cs: The clocksource to register.
365 void dw_apb_clocksource_register(struct dw_apb_clocksource
*dw_cs
)
367 clocksource_register_hz(&dw_cs
->cs
, dw_cs
->timer
.freq
);
371 * dw_apb_clocksource_read() - read the current value of a clocksource.
373 * @dw_cs: The clocksource to read.
375 u64
dw_apb_clocksource_read(struct dw_apb_clocksource
*dw_cs
)
377 return (u64
)~apbt_readl(&dw_cs
->timer
, APBTMR_N_CURRENT_VALUE
);