drm/dp_mst: Add helper to get port number at specific LCT from RAD
[drm/drm-misc.git] / drivers / clocksource / hyperv_timer.c
blob99177835cadec4199d38b00c0a4358c4fde2f99a
1 // SPDX-License-Identifier: GPL-2.0
3 /*
4 * Clocksource driver for the synthetic counter and timers
5 * provided by the Hyper-V hypervisor to guest VMs, as described
6 * in the Hyper-V Top Level Functional Spec (TLFS). This driver
7 * is instruction set architecture independent.
9 * Copyright (C) 2019, Microsoft, Inc.
11 * Author: Michael Kelley <mikelley@microsoft.com>
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/clockchips.h>
17 #include <linux/clocksource.h>
18 #include <linux/sched_clock.h>
19 #include <linux/mm.h>
20 #include <linux/cpuhotplug.h>
21 #include <linux/interrupt.h>
22 #include <linux/irq.h>
23 #include <linux/acpi.h>
24 #include <linux/hyperv.h>
25 #include <clocksource/hyperv_timer.h>
26 #include <asm/hyperv-tlfs.h>
27 #include <asm/mshyperv.h>
29 static struct clock_event_device __percpu *hv_clock_event;
30 static u64 hv_sched_clock_offset __ro_after_init;
33 * If false, we're using the old mechanism for stimer0 interrupts
34 * where it sends a VMbus message when it expires. The old
35 * mechanism is used when running on older versions of Hyper-V
36 * that don't support Direct Mode. While Hyper-V provides
37 * four stimer's per CPU, Linux uses only stimer0.
39 * Because Direct Mode does not require processing a VMbus
40 * message, stimer interrupts can be enabled earlier in the
41 * process of booting a CPU, and consistent with when timer
42 * interrupts are enabled for other clocksource drivers.
43 * However, for legacy versions of Hyper-V when Direct Mode
44 * is not enabled, setting up stimer interrupts must be
45 * delayed until VMbus is initialized and can process the
46 * interrupt message.
48 static bool direct_mode_enabled;
50 static int stimer0_irq = -1;
51 static int stimer0_message_sint;
52 static __maybe_unused DEFINE_PER_CPU(long, stimer0_evt);
55 * Common code for stimer0 interrupts coming via Direct Mode or
56 * as a VMbus message.
58 void hv_stimer0_isr(void)
60 struct clock_event_device *ce;
62 ce = this_cpu_ptr(hv_clock_event);
63 ce->event_handler(ce);
65 EXPORT_SYMBOL_GPL(hv_stimer0_isr);
68 * stimer0 interrupt handler for architectures that support
69 * per-cpu interrupts, which also implies Direct Mode.
71 static irqreturn_t __maybe_unused hv_stimer0_percpu_isr(int irq, void *dev_id)
73 hv_stimer0_isr();
74 return IRQ_HANDLED;
77 static int hv_ce_set_next_event(unsigned long delta,
78 struct clock_event_device *evt)
80 u64 current_tick;
82 current_tick = hv_read_reference_counter();
83 current_tick += delta;
84 hv_set_msr(HV_MSR_STIMER0_COUNT, current_tick);
85 return 0;
88 static int hv_ce_shutdown(struct clock_event_device *evt)
90 hv_set_msr(HV_MSR_STIMER0_COUNT, 0);
91 hv_set_msr(HV_MSR_STIMER0_CONFIG, 0);
92 if (direct_mode_enabled && stimer0_irq >= 0)
93 disable_percpu_irq(stimer0_irq);
95 return 0;
98 static int hv_ce_set_oneshot(struct clock_event_device *evt)
100 union hv_stimer_config timer_cfg;
102 timer_cfg.as_uint64 = 0;
103 timer_cfg.enable = 1;
104 timer_cfg.auto_enable = 1;
105 if (direct_mode_enabled) {
107 * When it expires, the timer will directly interrupt
108 * on the specified hardware vector/IRQ.
110 timer_cfg.direct_mode = 1;
111 timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
112 if (stimer0_irq >= 0)
113 enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
114 } else {
116 * When it expires, the timer will generate a VMbus message,
117 * to be handled by the normal VMbus interrupt handler.
119 timer_cfg.direct_mode = 0;
120 timer_cfg.sintx = stimer0_message_sint;
122 hv_set_msr(HV_MSR_STIMER0_CONFIG, timer_cfg.as_uint64);
123 return 0;
127 * hv_stimer_init - Per-cpu initialization of the clockevent
129 static int hv_stimer_init(unsigned int cpu)
131 struct clock_event_device *ce;
133 if (!hv_clock_event)
134 return 0;
136 ce = per_cpu_ptr(hv_clock_event, cpu);
137 ce->name = "Hyper-V clockevent";
138 ce->features = CLOCK_EVT_FEAT_ONESHOT;
139 ce->cpumask = cpumask_of(cpu);
142 * Lower the rating of the Hyper-V timer in a TDX VM without paravisor,
143 * so the local APIC timer (lapic_clockevent) is the default timer in
144 * such a VM. The Hyper-V timer is not preferred in such a VM because
145 * it depends on the slow VM Reference Counter MSR (the Hyper-V TSC
146 * page is not enbled in such a VM because the VM uses Invariant TSC
147 * as a better clocksource and it's challenging to mark the Hyper-V
148 * TSC page shared in very early boot).
150 if (!ms_hyperv.paravisor_present && hv_isolation_type_tdx())
151 ce->rating = 90;
152 else
153 ce->rating = 1000;
155 ce->set_state_shutdown = hv_ce_shutdown;
156 ce->set_state_oneshot = hv_ce_set_oneshot;
157 ce->set_next_event = hv_ce_set_next_event;
159 clockevents_config_and_register(ce,
160 HV_CLOCK_HZ,
161 HV_MIN_DELTA_TICKS,
162 HV_MAX_MAX_DELTA_TICKS);
163 return 0;
167 * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
169 int hv_stimer_cleanup(unsigned int cpu)
171 struct clock_event_device *ce;
173 if (!hv_clock_event)
174 return 0;
177 * In the legacy case where Direct Mode is not enabled
178 * (which can only be on x86/64), stimer cleanup happens
179 * relatively early in the CPU offlining process. We
180 * must unbind the stimer-based clockevent device so
181 * that the LAPIC timer can take over until clockevents
182 * are no longer needed in the offlining process. Note
183 * that clockevents_unbind_device() eventually calls
184 * hv_ce_shutdown().
186 * The unbind should not be done when Direct Mode is
187 * enabled because we may be on an architecture where
188 * there are no other clockevent devices to fallback to.
190 ce = per_cpu_ptr(hv_clock_event, cpu);
191 if (direct_mode_enabled)
192 hv_ce_shutdown(ce);
193 else
194 clockevents_unbind_device(ce, cpu);
196 return 0;
198 EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
201 * These placeholders are overridden by arch specific code on
202 * architectures that need special setup of the stimer0 IRQ because
203 * they don't support per-cpu IRQs (such as x86/x64).
205 void __weak hv_setup_stimer0_handler(void (*handler)(void))
209 void __weak hv_remove_stimer0_handler(void)
213 #ifdef CONFIG_ACPI
214 /* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
215 static int hv_setup_stimer0_irq(void)
217 int ret;
219 ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
220 ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
221 if (ret < 0) {
222 pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
223 return ret;
225 stimer0_irq = ret;
227 ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
228 "Hyper-V stimer0", &stimer0_evt);
229 if (ret) {
230 pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
231 stimer0_irq, ret);
232 acpi_unregister_gsi(stimer0_irq);
233 stimer0_irq = -1;
235 return ret;
238 static void hv_remove_stimer0_irq(void)
240 if (stimer0_irq == -1) {
241 hv_remove_stimer0_handler();
242 } else {
243 free_percpu_irq(stimer0_irq, &stimer0_evt);
244 acpi_unregister_gsi(stimer0_irq);
245 stimer0_irq = -1;
248 #else
249 static int hv_setup_stimer0_irq(void)
251 return 0;
254 static void hv_remove_stimer0_irq(void)
257 #endif
259 /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
260 int hv_stimer_alloc(bool have_percpu_irqs)
262 int ret;
265 * Synthetic timers are always available except on old versions of
266 * Hyper-V on x86. In that case, return as error as Linux will use a
267 * clockevent based on emulated LAPIC timer hardware.
269 if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
270 return -EINVAL;
272 hv_clock_event = alloc_percpu(struct clock_event_device);
273 if (!hv_clock_event)
274 return -ENOMEM;
276 direct_mode_enabled = ms_hyperv.misc_features &
277 HV_STIMER_DIRECT_MODE_AVAILABLE;
280 * If Direct Mode isn't enabled, the remainder of the initialization
281 * is done later by hv_stimer_legacy_init()
283 if (!direct_mode_enabled)
284 return 0;
286 if (have_percpu_irqs) {
287 ret = hv_setup_stimer0_irq();
288 if (ret)
289 goto free_clock_event;
290 } else {
291 hv_setup_stimer0_handler(hv_stimer0_isr);
295 * Since we are in Direct Mode, stimer initialization
296 * can be done now with a CPUHP value in the same range
297 * as other clockevent devices.
299 ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
300 "clockevents/hyperv/stimer:starting",
301 hv_stimer_init, hv_stimer_cleanup);
302 if (ret < 0) {
303 hv_remove_stimer0_irq();
304 goto free_clock_event;
306 return ret;
308 free_clock_event:
309 free_percpu(hv_clock_event);
310 hv_clock_event = NULL;
311 return ret;
313 EXPORT_SYMBOL_GPL(hv_stimer_alloc);
316 * hv_stimer_legacy_init -- Called from the VMbus driver to handle
317 * the case when Direct Mode is not enabled, and the stimer
318 * must be initialized late in the CPU onlining process.
321 void hv_stimer_legacy_init(unsigned int cpu, int sint)
323 if (direct_mode_enabled)
324 return;
327 * This function gets called by each vCPU, so setting the
328 * global stimer_message_sint value each time is conceptually
329 * not ideal, but the value passed in is always the same and
330 * it avoids introducing yet another interface into this
331 * clocksource driver just to set the sint in the legacy case.
333 stimer0_message_sint = sint;
334 (void)hv_stimer_init(cpu);
336 EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
339 * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
340 * handle the case when Direct Mode is not enabled, and the
341 * stimer must be cleaned up early in the CPU offlining
342 * process.
344 void hv_stimer_legacy_cleanup(unsigned int cpu)
346 if (direct_mode_enabled)
347 return;
348 (void)hv_stimer_cleanup(cpu);
350 EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
353 * Do a global cleanup of clockevents for the cases of kexec and
354 * vmbus exit
356 void hv_stimer_global_cleanup(void)
358 int cpu;
361 * hv_stime_legacy_cleanup() will stop the stimer if Direct
362 * Mode is not enabled, and fallback to the LAPIC timer.
364 for_each_present_cpu(cpu) {
365 hv_stimer_legacy_cleanup(cpu);
368 if (!hv_clock_event)
369 return;
371 if (direct_mode_enabled) {
372 cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
373 hv_remove_stimer0_irq();
374 stimer0_irq = -1;
376 free_percpu(hv_clock_event);
377 hv_clock_event = NULL;
380 EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
382 static __always_inline u64 read_hv_clock_msr(void)
385 * Read the partition counter to get the current tick count. This count
386 * is set to 0 when the partition is created and is incremented in 100
387 * nanosecond units.
389 * Use hv_raw_get_msr() because this function is used from
390 * noinstr. Notable; while HV_MSR_TIME_REF_COUNT is a synthetic
391 * register it doesn't need the GHCB path.
393 return hv_raw_get_msr(HV_MSR_TIME_REF_COUNT);
397 * Code and definitions for the Hyper-V clocksources. Two
398 * clocksources are defined: one that reads the Hyper-V defined MSR, and
399 * the other that uses the TSC reference page feature as defined in the
400 * TLFS. The MSR version is for compatibility with old versions of
401 * Hyper-V and 32-bit x86. The TSC reference page version is preferred.
404 static union {
405 struct ms_hyperv_tsc_page page;
406 u8 reserved[PAGE_SIZE];
407 } tsc_pg __bss_decrypted __aligned(PAGE_SIZE);
409 static struct ms_hyperv_tsc_page *tsc_page = &tsc_pg.page;
410 static unsigned long tsc_pfn;
412 unsigned long hv_get_tsc_pfn(void)
414 return tsc_pfn;
416 EXPORT_SYMBOL_GPL(hv_get_tsc_pfn);
418 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
420 return tsc_page;
422 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
424 static __always_inline u64 read_hv_clock_tsc(void)
426 u64 cur_tsc, time;
429 * The Hyper-V Top-Level Function Spec (TLFS), section Timers,
430 * subsection Refererence Counter, guarantees that the TSC and MSR
431 * times are in sync and monotonic. Therefore we can fall back
432 * to the MSR in case the TSC page indicates unavailability.
434 if (!hv_read_tsc_page_tsc(tsc_page, &cur_tsc, &time))
435 time = read_hv_clock_msr();
437 return time;
440 static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
442 return read_hv_clock_tsc();
445 static u64 noinstr read_hv_sched_clock_tsc(void)
447 return (read_hv_clock_tsc() - hv_sched_clock_offset) *
448 (NSEC_PER_SEC / HV_CLOCK_HZ);
451 static void suspend_hv_clock_tsc(struct clocksource *arg)
453 union hv_reference_tsc_msr tsc_msr;
455 /* Disable the TSC page */
456 tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
457 tsc_msr.enable = 0;
458 hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
462 static void resume_hv_clock_tsc(struct clocksource *arg)
464 union hv_reference_tsc_msr tsc_msr;
466 /* Re-enable the TSC page */
467 tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
468 tsc_msr.enable = 1;
469 tsc_msr.pfn = tsc_pfn;
470 hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
473 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
474 static int hv_cs_enable(struct clocksource *cs)
476 vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
477 return 0;
479 #endif
481 static struct clocksource hyperv_cs_tsc = {
482 .name = "hyperv_clocksource_tsc_page",
483 .rating = 500,
484 .read = read_hv_clock_tsc_cs,
485 .mask = CLOCKSOURCE_MASK(64),
486 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
487 .suspend= suspend_hv_clock_tsc,
488 .resume = resume_hv_clock_tsc,
489 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
490 .enable = hv_cs_enable,
491 .vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
492 #else
493 .vdso_clock_mode = VDSO_CLOCKMODE_NONE,
494 #endif
497 static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
499 return read_hv_clock_msr();
502 static struct clocksource hyperv_cs_msr = {
503 .name = "hyperv_clocksource_msr",
504 .rating = 495,
505 .read = read_hv_clock_msr_cs,
506 .mask = CLOCKSOURCE_MASK(64),
507 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
511 * Reference to pv_ops must be inline so objtool
512 * detection of noinstr violations can work correctly.
514 #ifdef CONFIG_GENERIC_SCHED_CLOCK
515 static __always_inline void hv_setup_sched_clock(void *sched_clock)
518 * We're on an architecture with generic sched clock (not x86/x64).
519 * The Hyper-V sched clock read function returns nanoseconds, not
520 * the normal 100ns units of the Hyper-V synthetic clock.
522 sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
524 #elif defined CONFIG_PARAVIRT
525 static __always_inline void hv_setup_sched_clock(void *sched_clock)
527 /* We're on x86/x64 *and* using PV ops */
528 paravirt_set_sched_clock(sched_clock);
530 #else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
531 static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
532 #endif /* CONFIG_GENERIC_SCHED_CLOCK */
534 static void __init hv_init_tsc_clocksource(void)
536 union hv_reference_tsc_msr tsc_msr;
539 * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
540 * handles frequency and offset changes due to live migration,
541 * pause/resume, and other VM management operations. So lower the
542 * Hyper-V Reference TSC rating, causing the generic TSC to be used.
543 * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
544 * TSC will be preferred over the virtualized ARM64 arch counter.
546 if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
547 hyperv_cs_tsc.rating = 250;
548 hyperv_cs_msr.rating = 245;
551 if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
552 return;
554 hv_read_reference_counter = read_hv_clock_tsc;
557 * TSC page mapping works differently in root compared to guest.
558 * - In guest partition the guest PFN has to be passed to the
559 * hypervisor.
560 * - In root partition it's other way around: it has to map the PFN
561 * provided by the hypervisor.
562 * But it can't be mapped right here as it's too early and MMU isn't
563 * ready yet. So, we only set the enable bit here and will remap the
564 * page later in hv_remap_tsc_clocksource().
566 * It worth mentioning, that TSC clocksource read function
567 * (read_hv_clock_tsc) has a MSR-based fallback mechanism, used when
568 * TSC page is zeroed (which is the case until the PFN is remapped) and
569 * thus TSC clocksource will work even without the real TSC page
570 * mapped.
572 tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
573 if (hv_root_partition)
574 tsc_pfn = tsc_msr.pfn;
575 else
576 tsc_pfn = HVPFN_DOWN(virt_to_phys(tsc_page));
577 tsc_msr.enable = 1;
578 tsc_msr.pfn = tsc_pfn;
579 hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
581 clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
584 * If TSC is invariant, then let it stay as the sched clock since it
585 * will be faster than reading the TSC page. But if not invariant, use
586 * the TSC page so that live migrations across hosts with different
587 * frequencies is handled correctly.
589 if (!(ms_hyperv.features & HV_ACCESS_TSC_INVARIANT)) {
590 hv_sched_clock_offset = hv_read_reference_counter();
591 hv_setup_sched_clock(read_hv_sched_clock_tsc);
595 void __init hv_init_clocksource(void)
598 * Try to set up the TSC page clocksource, then the MSR clocksource.
599 * At least one of these will always be available except on very old
600 * versions of Hyper-V on x86. In that case we won't have a Hyper-V
601 * clocksource, but Linux will still run with a clocksource based
602 * on the emulated PIT or LAPIC timer.
604 * Never use the MSR clocksource as sched clock. It's too slow.
605 * Better to use the native sched clock as the fallback.
607 hv_init_tsc_clocksource();
609 if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
610 clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
613 void __init hv_remap_tsc_clocksource(void)
615 if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
616 return;
618 if (!hv_root_partition) {
619 WARN(1, "%s: attempt to remap TSC page in guest partition\n",
620 __func__);
621 return;
624 tsc_page = memremap(tsc_pfn << HV_HYP_PAGE_SHIFT, sizeof(tsc_pg),
625 MEMREMAP_WB);
626 if (!tsc_page)
627 pr_err("Failed to remap Hyper-V TSC page.\n");