drm/dp_mst: Add helper to get port number at specific LCT from RAD
[drm/drm-misc.git] / drivers / clocksource / sh_cmt.c
blobb72b36e0abed860202a2aba001d6d8f002f50983
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SuperH Timer Support - CMT
5 * Copyright (C) 2008 Magnus Damm
6 */
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/ioport.h>
18 #include <linux/irq.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
28 #ifdef CONFIG_SUPERH
29 #include <asm/platform_early.h>
30 #endif
32 struct sh_cmt_device;
35 * The CMT comes in 5 different identified flavours, depending not only on the
36 * SoC but also on the particular instance. The following table lists the main
37 * characteristics of those flavours.
39 * 16B 32B 32B-F 48B R-Car Gen2
40 * -----------------------------------------------------------------------------
41 * Channels 2 1/4 1 6 2/8
42 * Control Width 16 16 16 16 32
43 * Counter Width 16 32 32 32/48 32/48
44 * Shared Start/Stop Y Y Y Y N
46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47 * located in the channel registers block. All other versions have a shared
48 * start/stop register located in the global space.
50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
51 * infers the start/stop bit position in the control register and the channel
52 * registers block address. Some CMT instances have a subset of channels
53 * available, in which case the index in the documentation doesn't match the
54 * "real" index as implemented in hardware. This is for instance the case with
55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56 * in the documentation but using start/stop bit 5 and having its registers
57 * block at 0x60.
59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
63 enum sh_cmt_model {
64 SH_CMT_16BIT,
65 SH_CMT_32BIT,
66 SH_CMT_48BIT,
67 SH_CMT0_RCAR_GEN2,
68 SH_CMT1_RCAR_GEN2,
71 struct sh_cmt_info {
72 enum sh_cmt_model model;
74 unsigned int channels_mask;
76 unsigned long width; /* 16 or 32 bit version of hardware block */
77 u32 overflow_bit;
78 u32 clear_bits;
80 /* callbacks for CMSTR and CMCSR access */
81 u32 (*read_control)(void __iomem *base, unsigned long offs);
82 void (*write_control)(void __iomem *base, unsigned long offs,
83 u32 value);
85 /* callbacks for CMCNT and CMCOR access */
86 u32 (*read_count)(void __iomem *base, unsigned long offs);
87 void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
90 struct sh_cmt_channel {
91 struct sh_cmt_device *cmt;
93 unsigned int index; /* Index in the documentation */
94 unsigned int hwidx; /* Real hardware index */
96 void __iomem *iostart;
97 void __iomem *ioctrl;
99 unsigned int timer_bit;
100 unsigned long flags;
101 u32 match_value;
102 u32 next_match_value;
103 u32 max_match_value;
104 raw_spinlock_t lock;
105 struct clock_event_device ced;
106 struct clocksource cs;
107 u64 total_cycles;
108 bool cs_enabled;
111 struct sh_cmt_device {
112 struct platform_device *pdev;
114 const struct sh_cmt_info *info;
116 void __iomem *mapbase;
117 struct clk *clk;
118 unsigned long rate;
119 unsigned int reg_delay;
121 raw_spinlock_t lock; /* Protect the shared start/stop register */
123 struct sh_cmt_channel *channels;
124 unsigned int num_channels;
125 unsigned int hw_channels;
127 bool has_clockevent;
128 bool has_clocksource;
131 #define SH_CMT16_CMCSR_CMF (1 << 7)
132 #define SH_CMT16_CMCSR_CMIE (1 << 6)
133 #define SH_CMT16_CMCSR_CKS8 (0 << 0)
134 #define SH_CMT16_CMCSR_CKS32 (1 << 0)
135 #define SH_CMT16_CMCSR_CKS128 (2 << 0)
136 #define SH_CMT16_CMCSR_CKS512 (3 << 0)
137 #define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
139 #define SH_CMT32_CMCSR_CMF (1 << 15)
140 #define SH_CMT32_CMCSR_OVF (1 << 14)
141 #define SH_CMT32_CMCSR_WRFLG (1 << 13)
142 #define SH_CMT32_CMCSR_STTF (1 << 12)
143 #define SH_CMT32_CMCSR_STPF (1 << 11)
144 #define SH_CMT32_CMCSR_SSIE (1 << 10)
145 #define SH_CMT32_CMCSR_CMS (1 << 9)
146 #define SH_CMT32_CMCSR_CMM (1 << 8)
147 #define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
148 #define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
149 #define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
150 #define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
151 #define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
152 #define SH_CMT32_CMCSR_DBGIVD (1 << 3)
153 #define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
156 #define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
157 #define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
159 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
161 return ioread16(base + (offs << 1));
164 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
166 return ioread32(base + (offs << 2));
169 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
171 iowrite16(value, base + (offs << 1));
174 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
176 iowrite32(value, base + (offs << 2));
179 static const struct sh_cmt_info sh_cmt_info[] = {
180 [SH_CMT_16BIT] = {
181 .model = SH_CMT_16BIT,
182 .width = 16,
183 .overflow_bit = SH_CMT16_CMCSR_CMF,
184 .clear_bits = ~SH_CMT16_CMCSR_CMF,
185 .read_control = sh_cmt_read16,
186 .write_control = sh_cmt_write16,
187 .read_count = sh_cmt_read16,
188 .write_count = sh_cmt_write16,
190 [SH_CMT_32BIT] = {
191 .model = SH_CMT_32BIT,
192 .width = 32,
193 .overflow_bit = SH_CMT32_CMCSR_CMF,
194 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
195 .read_control = sh_cmt_read16,
196 .write_control = sh_cmt_write16,
197 .read_count = sh_cmt_read32,
198 .write_count = sh_cmt_write32,
200 [SH_CMT_48BIT] = {
201 .model = SH_CMT_48BIT,
202 .channels_mask = 0x3f,
203 .width = 32,
204 .overflow_bit = SH_CMT32_CMCSR_CMF,
205 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
206 .read_control = sh_cmt_read32,
207 .write_control = sh_cmt_write32,
208 .read_count = sh_cmt_read32,
209 .write_count = sh_cmt_write32,
211 [SH_CMT0_RCAR_GEN2] = {
212 .model = SH_CMT0_RCAR_GEN2,
213 .channels_mask = 0x60,
214 .width = 32,
215 .overflow_bit = SH_CMT32_CMCSR_CMF,
216 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
217 .read_control = sh_cmt_read32,
218 .write_control = sh_cmt_write32,
219 .read_count = sh_cmt_read32,
220 .write_count = sh_cmt_write32,
222 [SH_CMT1_RCAR_GEN2] = {
223 .model = SH_CMT1_RCAR_GEN2,
224 .channels_mask = 0xff,
225 .width = 32,
226 .overflow_bit = SH_CMT32_CMCSR_CMF,
227 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
228 .read_control = sh_cmt_read32,
229 .write_control = sh_cmt_write32,
230 .read_count = sh_cmt_read32,
231 .write_count = sh_cmt_write32,
235 #define CMCSR 0 /* channel register */
236 #define CMCNT 1 /* channel register */
237 #define CMCOR 2 /* channel register */
239 #define CMCLKE 0x1000 /* CLK Enable Register (R-Car Gen2) */
241 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
243 if (ch->iostart)
244 return ch->cmt->info->read_control(ch->iostart, 0);
245 else
246 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
249 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
251 u32 old_value = sh_cmt_read_cmstr(ch);
253 if (value != old_value) {
254 if (ch->iostart) {
255 ch->cmt->info->write_control(ch->iostart, 0, value);
256 udelay(ch->cmt->reg_delay);
257 } else {
258 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
259 udelay(ch->cmt->reg_delay);
264 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
266 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
269 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
271 u32 old_value = sh_cmt_read_cmcsr(ch);
273 if (value != old_value) {
274 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
275 udelay(ch->cmt->reg_delay);
279 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
281 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
284 static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
286 /* Tests showed that we need to wait 3 clocks here */
287 unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
288 u32 reg;
290 if (ch->cmt->info->model > SH_CMT_16BIT) {
291 int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
292 !(reg & SH_CMT32_CMCSR_WRFLG),
293 1, cmcnt_delay, false, ch);
294 if (ret < 0)
295 return ret;
298 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
299 udelay(cmcnt_delay);
300 return 0;
303 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
305 u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
307 if (value != old_value) {
308 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
309 udelay(ch->cmt->reg_delay);
313 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
315 u32 v1, v2, v3;
316 u32 o1, o2;
318 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
320 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
321 do {
322 o2 = o1;
323 v1 = sh_cmt_read_cmcnt(ch);
324 v2 = sh_cmt_read_cmcnt(ch);
325 v3 = sh_cmt_read_cmcnt(ch);
326 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
327 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
328 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
330 *has_wrapped = o1;
331 return v2;
334 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
336 unsigned long flags;
337 u32 value;
339 /* start stop register shared by multiple timer channels */
340 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
341 value = sh_cmt_read_cmstr(ch);
343 if (start)
344 value |= 1 << ch->timer_bit;
345 else
346 value &= ~(1 << ch->timer_bit);
348 sh_cmt_write_cmstr(ch, value);
349 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
352 static int sh_cmt_enable(struct sh_cmt_channel *ch)
354 int ret;
356 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
358 /* enable clock */
359 ret = clk_enable(ch->cmt->clk);
360 if (ret) {
361 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
362 ch->index);
363 goto err0;
366 /* make sure channel is disabled */
367 sh_cmt_start_stop_ch(ch, 0);
369 /* configure channel, periodic mode and maximum timeout */
370 if (ch->cmt->info->width == 16) {
371 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
372 SH_CMT16_CMCSR_CKS512);
373 } else {
374 u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
375 SH_CMT32_CMCSR_CMTOUT_IE : 0;
376 sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
377 SH_CMT32_CMCSR_CMR_IRQ |
378 SH_CMT32_CMCSR_CKS_RCLK8);
381 sh_cmt_write_cmcor(ch, 0xffffffff);
382 ret = sh_cmt_write_cmcnt(ch, 0);
384 if (ret || sh_cmt_read_cmcnt(ch)) {
385 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
386 ch->index);
387 ret = -ETIMEDOUT;
388 goto err1;
391 /* enable channel */
392 sh_cmt_start_stop_ch(ch, 1);
393 return 0;
394 err1:
395 /* stop clock */
396 clk_disable(ch->cmt->clk);
398 err0:
399 return ret;
402 static void sh_cmt_disable(struct sh_cmt_channel *ch)
404 /* disable channel */
405 sh_cmt_start_stop_ch(ch, 0);
407 /* disable interrupts in CMT block */
408 sh_cmt_write_cmcsr(ch, 0);
410 /* stop clock */
411 clk_disable(ch->cmt->clk);
413 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
416 /* private flags */
417 #define FLAG_CLOCKEVENT (1 << 0)
418 #define FLAG_CLOCKSOURCE (1 << 1)
419 #define FLAG_REPROGRAM (1 << 2)
420 #define FLAG_SKIPEVENT (1 << 3)
421 #define FLAG_IRQCONTEXT (1 << 4)
423 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
424 int absolute)
426 u32 value = ch->next_match_value;
427 u32 new_match;
428 u32 delay = 0;
429 u32 now = 0;
430 u32 has_wrapped;
432 now = sh_cmt_get_counter(ch, &has_wrapped);
433 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
435 if (has_wrapped) {
436 /* we're competing with the interrupt handler.
437 * -> let the interrupt handler reprogram the timer.
438 * -> interrupt number two handles the event.
440 ch->flags |= FLAG_SKIPEVENT;
441 return;
444 if (absolute)
445 now = 0;
447 do {
448 /* reprogram the timer hardware,
449 * but don't save the new match value yet.
451 new_match = now + value + delay;
452 if (new_match > ch->max_match_value)
453 new_match = ch->max_match_value;
455 sh_cmt_write_cmcor(ch, new_match);
457 now = sh_cmt_get_counter(ch, &has_wrapped);
458 if (has_wrapped && (new_match > ch->match_value)) {
459 /* we are changing to a greater match value,
460 * so this wrap must be caused by the counter
461 * matching the old value.
462 * -> first interrupt reprograms the timer.
463 * -> interrupt number two handles the event.
465 ch->flags |= FLAG_SKIPEVENT;
466 break;
469 if (has_wrapped) {
470 /* we are changing to a smaller match value,
471 * so the wrap must be caused by the counter
472 * matching the new value.
473 * -> save programmed match value.
474 * -> let isr handle the event.
476 ch->match_value = new_match;
477 break;
480 /* be safe: verify hardware settings */
481 if (now < new_match) {
482 /* timer value is below match value, all good.
483 * this makes sure we won't miss any match events.
484 * -> save programmed match value.
485 * -> let isr handle the event.
487 ch->match_value = new_match;
488 break;
491 /* the counter has reached a value greater
492 * than our new match value. and since the
493 * has_wrapped flag isn't set we must have
494 * programmed a too close event.
495 * -> increase delay and retry.
497 if (delay)
498 delay <<= 1;
499 else
500 delay = 1;
502 if (!delay)
503 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
504 ch->index);
506 } while (delay);
509 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
511 if (delta > ch->max_match_value)
512 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
513 ch->index);
515 ch->next_match_value = delta;
516 sh_cmt_clock_event_program_verify(ch, 0);
519 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
521 unsigned long flags;
523 raw_spin_lock_irqsave(&ch->lock, flags);
524 __sh_cmt_set_next(ch, delta);
525 raw_spin_unlock_irqrestore(&ch->lock, flags);
528 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
530 struct sh_cmt_channel *ch = dev_id;
531 unsigned long flags;
533 /* clear flags */
534 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
535 ch->cmt->info->clear_bits);
537 /* update clock source counter to begin with if enabled
538 * the wrap flag should be cleared by the timer specific
539 * isr before we end up here.
541 if (ch->flags & FLAG_CLOCKSOURCE)
542 ch->total_cycles += ch->match_value + 1;
544 if (!(ch->flags & FLAG_REPROGRAM))
545 ch->next_match_value = ch->max_match_value;
547 ch->flags |= FLAG_IRQCONTEXT;
549 if (ch->flags & FLAG_CLOCKEVENT) {
550 if (!(ch->flags & FLAG_SKIPEVENT)) {
551 if (clockevent_state_oneshot(&ch->ced)) {
552 ch->next_match_value = ch->max_match_value;
553 ch->flags |= FLAG_REPROGRAM;
556 ch->ced.event_handler(&ch->ced);
560 ch->flags &= ~FLAG_SKIPEVENT;
562 raw_spin_lock_irqsave(&ch->lock, flags);
564 if (ch->flags & FLAG_REPROGRAM) {
565 ch->flags &= ~FLAG_REPROGRAM;
566 sh_cmt_clock_event_program_verify(ch, 1);
568 if (ch->flags & FLAG_CLOCKEVENT)
569 if ((clockevent_state_shutdown(&ch->ced))
570 || (ch->match_value == ch->next_match_value))
571 ch->flags &= ~FLAG_REPROGRAM;
574 ch->flags &= ~FLAG_IRQCONTEXT;
576 raw_spin_unlock_irqrestore(&ch->lock, flags);
578 return IRQ_HANDLED;
581 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
583 int ret = 0;
584 unsigned long flags;
586 if (flag & FLAG_CLOCKSOURCE)
587 pm_runtime_get_sync(&ch->cmt->pdev->dev);
589 raw_spin_lock_irqsave(&ch->lock, flags);
591 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
592 if (flag & FLAG_CLOCKEVENT)
593 pm_runtime_get_sync(&ch->cmt->pdev->dev);
594 ret = sh_cmt_enable(ch);
597 if (ret)
598 goto out;
599 ch->flags |= flag;
601 /* setup timeout if no clockevent */
602 if (ch->cmt->num_channels == 1 &&
603 flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
604 __sh_cmt_set_next(ch, ch->max_match_value);
605 out:
606 raw_spin_unlock_irqrestore(&ch->lock, flags);
608 return ret;
611 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
613 unsigned long flags;
614 unsigned long f;
616 raw_spin_lock_irqsave(&ch->lock, flags);
618 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
619 ch->flags &= ~flag;
621 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
622 sh_cmt_disable(ch);
623 if (flag & FLAG_CLOCKEVENT)
624 pm_runtime_put(&ch->cmt->pdev->dev);
627 /* adjust the timeout to maximum if only clocksource left */
628 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
629 __sh_cmt_set_next(ch, ch->max_match_value);
631 raw_spin_unlock_irqrestore(&ch->lock, flags);
633 if (flag & FLAG_CLOCKSOURCE)
634 pm_runtime_put(&ch->cmt->pdev->dev);
637 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
639 return container_of(cs, struct sh_cmt_channel, cs);
642 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
644 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
645 u32 has_wrapped;
647 if (ch->cmt->num_channels == 1) {
648 unsigned long flags;
649 u64 value;
650 u32 raw;
652 raw_spin_lock_irqsave(&ch->lock, flags);
653 value = ch->total_cycles;
654 raw = sh_cmt_get_counter(ch, &has_wrapped);
656 if (unlikely(has_wrapped))
657 raw += ch->match_value + 1;
658 raw_spin_unlock_irqrestore(&ch->lock, flags);
660 return value + raw;
663 return sh_cmt_get_counter(ch, &has_wrapped);
666 static int sh_cmt_clocksource_enable(struct clocksource *cs)
668 int ret;
669 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
671 WARN_ON(ch->cs_enabled);
673 ch->total_cycles = 0;
675 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
676 if (!ret)
677 ch->cs_enabled = true;
679 return ret;
682 static void sh_cmt_clocksource_disable(struct clocksource *cs)
684 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
686 WARN_ON(!ch->cs_enabled);
688 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
689 ch->cs_enabled = false;
692 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
694 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
696 if (!ch->cs_enabled)
697 return;
699 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
700 dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
703 static void sh_cmt_clocksource_resume(struct clocksource *cs)
705 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
707 if (!ch->cs_enabled)
708 return;
710 dev_pm_genpd_resume(&ch->cmt->pdev->dev);
711 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
714 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
715 const char *name)
717 struct clocksource *cs = &ch->cs;
719 cs->name = name;
720 cs->rating = 125;
721 cs->read = sh_cmt_clocksource_read;
722 cs->enable = sh_cmt_clocksource_enable;
723 cs->disable = sh_cmt_clocksource_disable;
724 cs->suspend = sh_cmt_clocksource_suspend;
725 cs->resume = sh_cmt_clocksource_resume;
726 cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
727 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
729 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
730 ch->index);
732 clocksource_register_hz(cs, ch->cmt->rate);
733 return 0;
736 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
738 return container_of(ced, struct sh_cmt_channel, ced);
741 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
743 sh_cmt_start(ch, FLAG_CLOCKEVENT);
745 if (periodic)
746 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
747 else
748 sh_cmt_set_next(ch, ch->max_match_value);
751 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
753 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
755 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
756 return 0;
759 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
760 int periodic)
762 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
764 /* deal with old setting first */
765 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
766 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
768 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
769 ch->index, periodic ? "periodic" : "oneshot");
770 sh_cmt_clock_event_start(ch, periodic);
771 return 0;
774 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
776 return sh_cmt_clock_event_set_state(ced, 0);
779 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
781 return sh_cmt_clock_event_set_state(ced, 1);
784 static int sh_cmt_clock_event_next(unsigned long delta,
785 struct clock_event_device *ced)
787 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
788 unsigned long flags;
790 BUG_ON(!clockevent_state_oneshot(ced));
792 raw_spin_lock_irqsave(&ch->lock, flags);
794 if (likely(ch->flags & FLAG_IRQCONTEXT))
795 ch->next_match_value = delta - 1;
796 else
797 __sh_cmt_set_next(ch, delta - 1);
799 raw_spin_unlock_irqrestore(&ch->lock, flags);
801 return 0;
804 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
806 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
808 dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
809 clk_unprepare(ch->cmt->clk);
812 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
814 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
816 clk_prepare(ch->cmt->clk);
817 dev_pm_genpd_resume(&ch->cmt->pdev->dev);
820 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
821 const char *name)
823 struct clock_event_device *ced = &ch->ced;
824 int irq;
825 int ret;
827 irq = platform_get_irq(ch->cmt->pdev, ch->index);
828 if (irq < 0)
829 return irq;
831 ret = request_irq(irq, sh_cmt_interrupt,
832 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
833 dev_name(&ch->cmt->pdev->dev), ch);
834 if (ret) {
835 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
836 ch->index, irq);
837 return ret;
840 ced->name = name;
841 ced->features = CLOCK_EVT_FEAT_PERIODIC;
842 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
843 ced->rating = 125;
844 ced->cpumask = cpu_possible_mask;
845 ced->set_next_event = sh_cmt_clock_event_next;
846 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
847 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
848 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
849 ced->suspend = sh_cmt_clock_event_suspend;
850 ced->resume = sh_cmt_clock_event_resume;
852 /* TODO: calculate good shift from rate and counter bit width */
853 ced->shift = 32;
854 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
855 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
856 ced->max_delta_ticks = ch->max_match_value;
857 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
858 ced->min_delta_ticks = 0x1f;
860 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
861 ch->index);
862 clockevents_register_device(ced);
864 return 0;
867 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
868 bool clockevent, bool clocksource)
870 int ret;
872 if (clockevent) {
873 ch->cmt->has_clockevent = true;
874 ret = sh_cmt_register_clockevent(ch, name);
875 if (ret < 0)
876 return ret;
879 if (clocksource) {
880 ch->cmt->has_clocksource = true;
881 sh_cmt_register_clocksource(ch, name);
884 return 0;
887 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
888 unsigned int hwidx, bool clockevent,
889 bool clocksource, struct sh_cmt_device *cmt)
891 u32 value;
892 int ret;
894 /* Skip unused channels. */
895 if (!clockevent && !clocksource)
896 return 0;
898 ch->cmt = cmt;
899 ch->index = index;
900 ch->hwidx = hwidx;
901 ch->timer_bit = hwidx;
904 * Compute the address of the channel control register block. For the
905 * timers with a per-channel start/stop register, compute its address
906 * as well.
908 switch (cmt->info->model) {
909 case SH_CMT_16BIT:
910 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
911 break;
912 case SH_CMT_32BIT:
913 case SH_CMT_48BIT:
914 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
915 break;
916 case SH_CMT0_RCAR_GEN2:
917 case SH_CMT1_RCAR_GEN2:
918 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
919 ch->ioctrl = ch->iostart + 0x10;
920 ch->timer_bit = 0;
922 /* Enable the clock supply to the channel */
923 value = ioread32(cmt->mapbase + CMCLKE);
924 value |= BIT(hwidx);
925 iowrite32(value, cmt->mapbase + CMCLKE);
926 break;
929 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
930 ch->max_match_value = ~0;
931 else
932 ch->max_match_value = (1 << cmt->info->width) - 1;
934 ch->match_value = ch->max_match_value;
935 raw_spin_lock_init(&ch->lock);
937 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
938 clockevent, clocksource);
939 if (ret) {
940 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
941 ch->index);
942 return ret;
944 ch->cs_enabled = false;
946 return 0;
949 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
951 struct resource *mem;
953 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
954 if (!mem) {
955 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
956 return -ENXIO;
959 cmt->mapbase = ioremap(mem->start, resource_size(mem));
960 if (cmt->mapbase == NULL) {
961 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
962 return -ENXIO;
965 return 0;
968 static const struct platform_device_id sh_cmt_id_table[] = {
969 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
970 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
973 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
975 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
977 /* deprecated, preserved for backward compatibility */
978 .compatible = "renesas,cmt-48",
979 .data = &sh_cmt_info[SH_CMT_48BIT]
982 /* deprecated, preserved for backward compatibility */
983 .compatible = "renesas,cmt-48-gen2",
984 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
987 .compatible = "renesas,r8a7740-cmt1",
988 .data = &sh_cmt_info[SH_CMT_48BIT]
991 .compatible = "renesas,sh73a0-cmt1",
992 .data = &sh_cmt_info[SH_CMT_48BIT]
995 .compatible = "renesas,rcar-gen2-cmt0",
996 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
999 .compatible = "renesas,rcar-gen2-cmt1",
1000 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1003 .compatible = "renesas,rcar-gen3-cmt0",
1004 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1007 .compatible = "renesas,rcar-gen3-cmt1",
1008 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1011 .compatible = "renesas,rcar-gen4-cmt0",
1012 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1015 .compatible = "renesas,rcar-gen4-cmt1",
1016 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1020 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1022 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1024 unsigned int mask, i;
1025 unsigned long rate;
1026 int ret;
1028 cmt->pdev = pdev;
1029 raw_spin_lock_init(&cmt->lock);
1031 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1032 cmt->info = of_device_get_match_data(&pdev->dev);
1033 cmt->hw_channels = cmt->info->channels_mask;
1034 } else if (pdev->dev.platform_data) {
1035 struct sh_timer_config *cfg = pdev->dev.platform_data;
1036 const struct platform_device_id *id = pdev->id_entry;
1038 cmt->info = (const struct sh_cmt_info *)id->driver_data;
1039 cmt->hw_channels = cfg->channels_mask;
1040 } else {
1041 dev_err(&cmt->pdev->dev, "missing platform data\n");
1042 return -ENXIO;
1045 /* Get hold of clock. */
1046 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1047 if (IS_ERR(cmt->clk)) {
1048 dev_err(&cmt->pdev->dev, "cannot get clock\n");
1049 return PTR_ERR(cmt->clk);
1052 ret = clk_prepare(cmt->clk);
1053 if (ret < 0)
1054 goto err_clk_put;
1056 /* Determine clock rate. */
1057 ret = clk_enable(cmt->clk);
1058 if (ret < 0)
1059 goto err_clk_unprepare;
1061 rate = clk_get_rate(cmt->clk);
1062 if (!rate) {
1063 ret = -EINVAL;
1064 goto err_clk_disable;
1067 /* We shall wait 2 input clks after register writes */
1068 if (cmt->info->model >= SH_CMT_48BIT)
1069 cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1070 cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1072 /* Map the memory resource(s). */
1073 ret = sh_cmt_map_memory(cmt);
1074 if (ret < 0)
1075 goto err_clk_disable;
1077 /* Allocate and setup the channels. */
1078 cmt->num_channels = hweight8(cmt->hw_channels);
1079 cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1080 GFP_KERNEL);
1081 if (cmt->channels == NULL) {
1082 ret = -ENOMEM;
1083 goto err_unmap;
1087 * Use the first channel as a clock event device and the second channel
1088 * as a clock source. If only one channel is available use it for both.
1090 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1091 unsigned int hwidx = ffs(mask) - 1;
1092 bool clocksource = i == 1 || cmt->num_channels == 1;
1093 bool clockevent = i == 0;
1095 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1096 clockevent, clocksource, cmt);
1097 if (ret < 0)
1098 goto err_unmap;
1100 mask &= ~(1 << hwidx);
1103 clk_disable(cmt->clk);
1105 platform_set_drvdata(pdev, cmt);
1107 return 0;
1109 err_unmap:
1110 kfree(cmt->channels);
1111 iounmap(cmt->mapbase);
1112 err_clk_disable:
1113 clk_disable(cmt->clk);
1114 err_clk_unprepare:
1115 clk_unprepare(cmt->clk);
1116 err_clk_put:
1117 clk_put(cmt->clk);
1118 return ret;
1121 static int sh_cmt_probe(struct platform_device *pdev)
1123 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1124 int ret;
1126 if (!is_sh_early_platform_device(pdev)) {
1127 pm_runtime_set_active(&pdev->dev);
1128 pm_runtime_enable(&pdev->dev);
1131 if (cmt) {
1132 dev_info(&pdev->dev, "kept as earlytimer\n");
1133 goto out;
1136 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1137 if (cmt == NULL)
1138 return -ENOMEM;
1140 ret = sh_cmt_setup(cmt, pdev);
1141 if (ret) {
1142 kfree(cmt);
1143 pm_runtime_idle(&pdev->dev);
1144 return ret;
1146 if (is_sh_early_platform_device(pdev))
1147 return 0;
1149 out:
1150 if (cmt->has_clockevent || cmt->has_clocksource)
1151 pm_runtime_irq_safe(&pdev->dev);
1152 else
1153 pm_runtime_idle(&pdev->dev);
1155 return 0;
1158 static struct platform_driver sh_cmt_device_driver = {
1159 .probe = sh_cmt_probe,
1160 .driver = {
1161 .name = "sh_cmt",
1162 .of_match_table = of_match_ptr(sh_cmt_of_table),
1163 .suppress_bind_attrs = true,
1165 .id_table = sh_cmt_id_table,
1168 static int __init sh_cmt_init(void)
1170 return platform_driver_register(&sh_cmt_device_driver);
1173 static void __exit sh_cmt_exit(void)
1175 platform_driver_unregister(&sh_cmt_device_driver);
1178 #ifdef CONFIG_SUPERH
1179 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1180 #endif
1182 subsys_initcall(sh_cmt_init);
1183 module_exit(sh_cmt_exit);
1185 MODULE_AUTHOR("Magnus Damm");
1186 MODULE_DESCRIPTION("SuperH CMT Timer Driver");