drm/nouveau: fix kernel-doc comments
[drm/drm-misc.git] / drivers / counter / stm32-timer-cnt.c
blobe75b69476a00a818ad7c4fa627ea7868e4df57c4
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * STM32 Timer Encoder and Counter driver
5 * Copyright (C) STMicroelectronics 2018
7 * Author: Benjamin Gaignard <benjamin.gaignard@st.com>
9 */
10 #include <linux/counter.h>
11 #include <linux/interrupt.h>
12 #include <linux/mfd/stm32-timers.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/platform_device.h>
18 #include <linux/types.h>
20 #define TIM_CCMR_CCXS (BIT(8) | BIT(0))
21 #define TIM_CCMR_MASK (TIM_CCMR_CC1S | TIM_CCMR_CC2S | \
22 TIM_CCMR_IC1F | TIM_CCMR_IC2F)
23 #define TIM_CCER_MASK (TIM_CCER_CC1P | TIM_CCER_CC1NP | \
24 TIM_CCER_CC2P | TIM_CCER_CC2NP)
26 #define STM32_CH1_SIG 0
27 #define STM32_CH2_SIG 1
28 #define STM32_CLOCK_SIG 2
29 #define STM32_CH3_SIG 3
30 #define STM32_CH4_SIG 4
32 struct stm32_timer_regs {
33 u32 cr1;
34 u32 cnt;
35 u32 smcr;
36 u32 arr;
39 struct stm32_timer_cnt {
40 struct regmap *regmap;
41 struct clk *clk;
42 u32 max_arr;
43 bool enabled;
44 struct stm32_timer_regs bak;
45 bool has_encoder;
46 unsigned int nchannels;
47 unsigned int nr_irqs;
48 spinlock_t lock; /* protects nb_ovf */
49 u64 nb_ovf;
52 static const enum counter_function stm32_count_functions[] = {
53 COUNTER_FUNCTION_INCREASE,
54 COUNTER_FUNCTION_QUADRATURE_X2_A,
55 COUNTER_FUNCTION_QUADRATURE_X2_B,
56 COUNTER_FUNCTION_QUADRATURE_X4,
59 static int stm32_count_read(struct counter_device *counter,
60 struct counter_count *count, u64 *val)
62 struct stm32_timer_cnt *const priv = counter_priv(counter);
63 u32 cnt;
65 regmap_read(priv->regmap, TIM_CNT, &cnt);
66 *val = cnt;
68 return 0;
71 static int stm32_count_write(struct counter_device *counter,
72 struct counter_count *count, const u64 val)
74 struct stm32_timer_cnt *const priv = counter_priv(counter);
75 u32 ceiling;
77 regmap_read(priv->regmap, TIM_ARR, &ceiling);
78 if (val > ceiling)
79 return -EINVAL;
81 return regmap_write(priv->regmap, TIM_CNT, val);
84 static int stm32_count_function_read(struct counter_device *counter,
85 struct counter_count *count,
86 enum counter_function *function)
88 struct stm32_timer_cnt *const priv = counter_priv(counter);
89 u32 smcr;
91 regmap_read(priv->regmap, TIM_SMCR, &smcr);
93 switch (smcr & TIM_SMCR_SMS) {
94 case TIM_SMCR_SMS_SLAVE_MODE_DISABLED:
95 *function = COUNTER_FUNCTION_INCREASE;
96 return 0;
97 case TIM_SMCR_SMS_ENCODER_MODE_1:
98 *function = COUNTER_FUNCTION_QUADRATURE_X2_A;
99 return 0;
100 case TIM_SMCR_SMS_ENCODER_MODE_2:
101 *function = COUNTER_FUNCTION_QUADRATURE_X2_B;
102 return 0;
103 case TIM_SMCR_SMS_ENCODER_MODE_3:
104 *function = COUNTER_FUNCTION_QUADRATURE_X4;
105 return 0;
106 default:
107 return -EINVAL;
111 static int stm32_count_function_write(struct counter_device *counter,
112 struct counter_count *count,
113 enum counter_function function)
115 struct stm32_timer_cnt *const priv = counter_priv(counter);
116 u32 cr1, sms;
118 switch (function) {
119 case COUNTER_FUNCTION_INCREASE:
120 sms = TIM_SMCR_SMS_SLAVE_MODE_DISABLED;
121 break;
122 case COUNTER_FUNCTION_QUADRATURE_X2_A:
123 if (!priv->has_encoder)
124 return -EOPNOTSUPP;
125 sms = TIM_SMCR_SMS_ENCODER_MODE_1;
126 break;
127 case COUNTER_FUNCTION_QUADRATURE_X2_B:
128 if (!priv->has_encoder)
129 return -EOPNOTSUPP;
130 sms = TIM_SMCR_SMS_ENCODER_MODE_2;
131 break;
132 case COUNTER_FUNCTION_QUADRATURE_X4:
133 if (!priv->has_encoder)
134 return -EOPNOTSUPP;
135 sms = TIM_SMCR_SMS_ENCODER_MODE_3;
136 break;
137 default:
138 return -EINVAL;
141 /* Store enable status */
142 regmap_read(priv->regmap, TIM_CR1, &cr1);
144 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
146 regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
148 /* Make sure that registers are updated */
149 regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
151 /* Restore the enable status */
152 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1);
154 return 0;
157 static int stm32_count_direction_read(struct counter_device *counter,
158 struct counter_count *count,
159 enum counter_count_direction *direction)
161 struct stm32_timer_cnt *const priv = counter_priv(counter);
162 u32 cr1;
164 regmap_read(priv->regmap, TIM_CR1, &cr1);
165 *direction = (cr1 & TIM_CR1_DIR) ? COUNTER_COUNT_DIRECTION_BACKWARD :
166 COUNTER_COUNT_DIRECTION_FORWARD;
168 return 0;
171 static int stm32_count_ceiling_read(struct counter_device *counter,
172 struct counter_count *count, u64 *ceiling)
174 struct stm32_timer_cnt *const priv = counter_priv(counter);
175 u32 arr;
177 regmap_read(priv->regmap, TIM_ARR, &arr);
179 *ceiling = arr;
181 return 0;
184 static int stm32_count_ceiling_write(struct counter_device *counter,
185 struct counter_count *count, u64 ceiling)
187 struct stm32_timer_cnt *const priv = counter_priv(counter);
189 if (ceiling > priv->max_arr)
190 return -ERANGE;
192 /* TIMx_ARR register shouldn't be buffered (ARPE=0) */
193 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
194 regmap_write(priv->regmap, TIM_ARR, ceiling);
196 return 0;
199 static int stm32_count_enable_read(struct counter_device *counter,
200 struct counter_count *count, u8 *enable)
202 struct stm32_timer_cnt *const priv = counter_priv(counter);
203 u32 cr1;
205 regmap_read(priv->regmap, TIM_CR1, &cr1);
207 *enable = cr1 & TIM_CR1_CEN;
209 return 0;
212 static int stm32_count_enable_write(struct counter_device *counter,
213 struct counter_count *count, u8 enable)
215 struct stm32_timer_cnt *const priv = counter_priv(counter);
216 u32 cr1;
217 int ret;
219 if (enable) {
220 regmap_read(priv->regmap, TIM_CR1, &cr1);
221 if (!(cr1 & TIM_CR1_CEN)) {
222 ret = clk_enable(priv->clk);
223 if (ret) {
224 dev_err(counter->parent, "Cannot enable clock %d\n", ret);
225 return ret;
229 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
230 TIM_CR1_CEN);
231 } else {
232 regmap_read(priv->regmap, TIM_CR1, &cr1);
233 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
234 if (cr1 & TIM_CR1_CEN)
235 clk_disable(priv->clk);
238 /* Keep enabled state to properly handle low power states */
239 priv->enabled = enable;
241 return 0;
244 static int stm32_count_prescaler_read(struct counter_device *counter,
245 struct counter_count *count, u64 *prescaler)
247 struct stm32_timer_cnt *const priv = counter_priv(counter);
248 u32 psc;
250 regmap_read(priv->regmap, TIM_PSC, &psc);
252 *prescaler = psc + 1;
254 return 0;
257 static int stm32_count_prescaler_write(struct counter_device *counter,
258 struct counter_count *count, u64 prescaler)
260 struct stm32_timer_cnt *const priv = counter_priv(counter);
261 u32 psc;
263 if (!prescaler || prescaler > MAX_TIM_PSC + 1)
264 return -ERANGE;
266 psc = prescaler - 1;
268 return regmap_write(priv->regmap, TIM_PSC, psc);
271 static int stm32_count_cap_read(struct counter_device *counter,
272 struct counter_count *count,
273 size_t ch, u64 *cap)
275 struct stm32_timer_cnt *const priv = counter_priv(counter);
276 u32 ccrx;
278 if (ch >= priv->nchannels)
279 return -EOPNOTSUPP;
281 switch (ch) {
282 case 0:
283 regmap_read(priv->regmap, TIM_CCR1, &ccrx);
284 break;
285 case 1:
286 regmap_read(priv->regmap, TIM_CCR2, &ccrx);
287 break;
288 case 2:
289 regmap_read(priv->regmap, TIM_CCR3, &ccrx);
290 break;
291 case 3:
292 regmap_read(priv->regmap, TIM_CCR4, &ccrx);
293 break;
294 default:
295 return -EINVAL;
298 dev_dbg(counter->parent, "CCR%zu: 0x%08x\n", ch + 1, ccrx);
300 *cap = ccrx;
302 return 0;
305 static int stm32_count_nb_ovf_read(struct counter_device *counter,
306 struct counter_count *count, u64 *val)
308 struct stm32_timer_cnt *const priv = counter_priv(counter);
309 unsigned long irqflags;
311 spin_lock_irqsave(&priv->lock, irqflags);
312 *val = priv->nb_ovf;
313 spin_unlock_irqrestore(&priv->lock, irqflags);
315 return 0;
318 static int stm32_count_nb_ovf_write(struct counter_device *counter,
319 struct counter_count *count, u64 val)
321 struct stm32_timer_cnt *const priv = counter_priv(counter);
322 unsigned long irqflags;
324 spin_lock_irqsave(&priv->lock, irqflags);
325 priv->nb_ovf = val;
326 spin_unlock_irqrestore(&priv->lock, irqflags);
328 return 0;
331 static DEFINE_COUNTER_ARRAY_CAPTURE(stm32_count_cap_array, 4);
333 static struct counter_comp stm32_count_ext[] = {
334 COUNTER_COMP_DIRECTION(stm32_count_direction_read),
335 COUNTER_COMP_ENABLE(stm32_count_enable_read, stm32_count_enable_write),
336 COUNTER_COMP_CEILING(stm32_count_ceiling_read,
337 stm32_count_ceiling_write),
338 COUNTER_COMP_COUNT_U64("prescaler", stm32_count_prescaler_read,
339 stm32_count_prescaler_write),
340 COUNTER_COMP_ARRAY_CAPTURE(stm32_count_cap_read, NULL, stm32_count_cap_array),
341 COUNTER_COMP_COUNT_U64("num_overflows", stm32_count_nb_ovf_read, stm32_count_nb_ovf_write),
344 static const enum counter_synapse_action stm32_clock_synapse_actions[] = {
345 COUNTER_SYNAPSE_ACTION_RISING_EDGE,
348 static const enum counter_synapse_action stm32_synapse_actions[] = {
349 COUNTER_SYNAPSE_ACTION_NONE,
350 COUNTER_SYNAPSE_ACTION_BOTH_EDGES
353 static int stm32_action_read(struct counter_device *counter,
354 struct counter_count *count,
355 struct counter_synapse *synapse,
356 enum counter_synapse_action *action)
358 enum counter_function function;
359 int err;
361 err = stm32_count_function_read(counter, count, &function);
362 if (err)
363 return err;
365 switch (function) {
366 case COUNTER_FUNCTION_INCREASE:
367 /* counts on internal clock when CEN=1 */
368 if (synapse->signal->id == STM32_CLOCK_SIG)
369 *action = COUNTER_SYNAPSE_ACTION_RISING_EDGE;
370 else
371 *action = COUNTER_SYNAPSE_ACTION_NONE;
372 return 0;
373 case COUNTER_FUNCTION_QUADRATURE_X2_A:
374 /* counts up/down on TI1FP1 edge depending on TI2FP2 level */
375 if (synapse->signal->id == STM32_CH1_SIG)
376 *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
377 else
378 *action = COUNTER_SYNAPSE_ACTION_NONE;
379 return 0;
380 case COUNTER_FUNCTION_QUADRATURE_X2_B:
381 /* counts up/down on TI2FP2 edge depending on TI1FP1 level */
382 if (synapse->signal->id == STM32_CH2_SIG)
383 *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
384 else
385 *action = COUNTER_SYNAPSE_ACTION_NONE;
386 return 0;
387 case COUNTER_FUNCTION_QUADRATURE_X4:
388 /* counts up/down on both TI1FP1 and TI2FP2 edges */
389 if (synapse->signal->id == STM32_CH1_SIG || synapse->signal->id == STM32_CH2_SIG)
390 *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
391 else
392 *action = COUNTER_SYNAPSE_ACTION_NONE;
393 return 0;
394 default:
395 return -EINVAL;
399 struct stm32_count_cc_regs {
400 u32 ccmr_reg;
401 u32 ccmr_mask;
402 u32 ccmr_bits;
403 u32 ccer_bits;
406 static const struct stm32_count_cc_regs stm32_cc[] = {
407 { TIM_CCMR1, TIM_CCMR_CC1S, TIM_CCMR_CC1S_TI1,
408 TIM_CCER_CC1E | TIM_CCER_CC1P | TIM_CCER_CC1NP },
409 { TIM_CCMR1, TIM_CCMR_CC2S, TIM_CCMR_CC2S_TI2,
410 TIM_CCER_CC2E | TIM_CCER_CC2P | TIM_CCER_CC2NP },
411 { TIM_CCMR2, TIM_CCMR_CC3S, TIM_CCMR_CC3S_TI3,
412 TIM_CCER_CC3E | TIM_CCER_CC3P | TIM_CCER_CC3NP },
413 { TIM_CCMR2, TIM_CCMR_CC4S, TIM_CCMR_CC4S_TI4,
414 TIM_CCER_CC4E | TIM_CCER_CC4P | TIM_CCER_CC4NP },
417 static int stm32_count_capture_configure(struct counter_device *counter, unsigned int ch,
418 bool enable)
420 struct stm32_timer_cnt *const priv = counter_priv(counter);
421 const struct stm32_count_cc_regs *cc;
422 u32 ccmr, ccer;
424 if (ch >= ARRAY_SIZE(stm32_cc) || ch >= priv->nchannels) {
425 dev_err(counter->parent, "invalid ch: %d\n", ch);
426 return -EINVAL;
429 cc = &stm32_cc[ch];
432 * configure channel in input capture mode, map channel 1 on TI1, channel2 on TI2...
433 * Select both edges / non-inverted to trigger a capture.
435 if (enable) {
436 /* first clear possibly latched capture flag upon enabling */
437 if (!regmap_test_bits(priv->regmap, TIM_CCER, cc->ccer_bits))
438 regmap_write(priv->regmap, TIM_SR, ~TIM_SR_CC_IF(ch));
439 regmap_update_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask,
440 cc->ccmr_bits);
441 regmap_set_bits(priv->regmap, TIM_CCER, cc->ccer_bits);
442 } else {
443 regmap_clear_bits(priv->regmap, TIM_CCER, cc->ccer_bits);
444 regmap_clear_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask);
447 regmap_read(priv->regmap, cc->ccmr_reg, &ccmr);
448 regmap_read(priv->regmap, TIM_CCER, &ccer);
449 dev_dbg(counter->parent, "%s(%s) ch%d 0x%08x 0x%08x\n", __func__, enable ? "ena" : "dis",
450 ch, ccmr, ccer);
452 return 0;
455 static int stm32_count_events_configure(struct counter_device *counter)
457 struct stm32_timer_cnt *const priv = counter_priv(counter);
458 struct counter_event_node *event_node;
459 u32 dier = 0;
460 int i, ret;
462 list_for_each_entry(event_node, &counter->events_list, l) {
463 switch (event_node->event) {
464 case COUNTER_EVENT_OVERFLOW_UNDERFLOW:
465 /* first clear possibly latched UIF before enabling */
466 if (!regmap_test_bits(priv->regmap, TIM_DIER, TIM_DIER_UIE))
467 regmap_write(priv->regmap, TIM_SR, (u32)~TIM_SR_UIF);
468 dier |= TIM_DIER_UIE;
469 break;
470 case COUNTER_EVENT_CAPTURE:
471 ret = stm32_count_capture_configure(counter, event_node->channel, true);
472 if (ret)
473 return ret;
474 dier |= TIM_DIER_CCxIE(event_node->channel + 1);
475 break;
476 default:
477 /* should never reach this path */
478 return -EINVAL;
482 /* Enable / disable all events at once, from events_list, so write all DIER bits */
483 regmap_write(priv->regmap, TIM_DIER, dier);
485 /* check for disabled capture events */
486 for (i = 0 ; i < priv->nchannels; i++) {
487 if (!(dier & TIM_DIER_CCxIE(i + 1))) {
488 ret = stm32_count_capture_configure(counter, i, false);
489 if (ret)
490 return ret;
494 return 0;
497 static int stm32_count_watch_validate(struct counter_device *counter,
498 const struct counter_watch *watch)
500 struct stm32_timer_cnt *const priv = counter_priv(counter);
502 /* Interrupts are optional */
503 if (!priv->nr_irqs)
504 return -EOPNOTSUPP;
506 switch (watch->event) {
507 case COUNTER_EVENT_CAPTURE:
508 if (watch->channel >= priv->nchannels) {
509 dev_err(counter->parent, "Invalid channel %d\n", watch->channel);
510 return -EINVAL;
512 return 0;
513 case COUNTER_EVENT_OVERFLOW_UNDERFLOW:
514 return 0;
515 default:
516 return -EINVAL;
520 static const struct counter_ops stm32_timer_cnt_ops = {
521 .count_read = stm32_count_read,
522 .count_write = stm32_count_write,
523 .function_read = stm32_count_function_read,
524 .function_write = stm32_count_function_write,
525 .action_read = stm32_action_read,
526 .events_configure = stm32_count_events_configure,
527 .watch_validate = stm32_count_watch_validate,
530 static int stm32_count_clk_get_freq(struct counter_device *counter,
531 struct counter_signal *signal, u64 *freq)
533 struct stm32_timer_cnt *const priv = counter_priv(counter);
535 *freq = clk_get_rate(priv->clk);
537 return 0;
540 static struct counter_comp stm32_count_clock_ext[] = {
541 COUNTER_COMP_FREQUENCY(stm32_count_clk_get_freq),
544 static struct counter_signal stm32_signals[] = {
546 * Need to declare all the signals as a static array, and keep the signals order here,
547 * even if they're unused or unexisting on some timer instances. It's an abstraction,
548 * e.g. high level view of the counter features.
550 * Userspace programs may rely on signal0 to be "Channel 1", signal1 to be "Channel 2",
551 * and so on. When a signal is unexisting, the COUNTER_SYNAPSE_ACTION_NONE can be used,
552 * to indicate that a signal doesn't affect the counter.
555 .id = STM32_CH1_SIG,
556 .name = "Channel 1"
559 .id = STM32_CH2_SIG,
560 .name = "Channel 2"
563 .id = STM32_CLOCK_SIG,
564 .name = "Clock",
565 .ext = stm32_count_clock_ext,
566 .num_ext = ARRAY_SIZE(stm32_count_clock_ext),
569 .id = STM32_CH3_SIG,
570 .name = "Channel 3"
573 .id = STM32_CH4_SIG,
574 .name = "Channel 4"
578 static struct counter_synapse stm32_count_synapses[] = {
580 .actions_list = stm32_synapse_actions,
581 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
582 .signal = &stm32_signals[STM32_CH1_SIG]
585 .actions_list = stm32_synapse_actions,
586 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
587 .signal = &stm32_signals[STM32_CH2_SIG]
590 .actions_list = stm32_clock_synapse_actions,
591 .num_actions = ARRAY_SIZE(stm32_clock_synapse_actions),
592 .signal = &stm32_signals[STM32_CLOCK_SIG]
595 .actions_list = stm32_synapse_actions,
596 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
597 .signal = &stm32_signals[STM32_CH3_SIG]
600 .actions_list = stm32_synapse_actions,
601 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
602 .signal = &stm32_signals[STM32_CH4_SIG]
606 static struct counter_count stm32_counts = {
607 .id = 0,
608 .name = "STM32 Timer Counter",
609 .functions_list = stm32_count_functions,
610 .num_functions = ARRAY_SIZE(stm32_count_functions),
611 .synapses = stm32_count_synapses,
612 .num_synapses = ARRAY_SIZE(stm32_count_synapses),
613 .ext = stm32_count_ext,
614 .num_ext = ARRAY_SIZE(stm32_count_ext)
617 static irqreturn_t stm32_timer_cnt_isr(int irq, void *ptr)
619 struct counter_device *counter = ptr;
620 struct stm32_timer_cnt *const priv = counter_priv(counter);
621 u32 clr = GENMASK(31, 0); /* SR flags can be cleared by writing 0 (wr 1 has no effect) */
622 u32 sr, dier;
623 int i;
625 regmap_read(priv->regmap, TIM_SR, &sr);
626 regmap_read(priv->regmap, TIM_DIER, &dier);
628 * Some status bits in SR don't match with the enable bits in DIER. Only take care of
629 * the possibly enabled bits in DIER (that matches in between SR and DIER).
631 dier &= (TIM_DIER_UIE | TIM_DIER_CC1IE | TIM_DIER_CC2IE | TIM_DIER_CC3IE | TIM_DIER_CC4IE);
632 sr &= dier;
634 if (sr & TIM_SR_UIF) {
635 spin_lock(&priv->lock);
636 priv->nb_ovf++;
637 spin_unlock(&priv->lock);
638 counter_push_event(counter, COUNTER_EVENT_OVERFLOW_UNDERFLOW, 0);
639 dev_dbg(counter->parent, "COUNTER_EVENT_OVERFLOW_UNDERFLOW\n");
640 /* SR flags can be cleared by writing 0, only clear relevant flag */
641 clr &= ~TIM_SR_UIF;
644 /* Check capture events */
645 for (i = 0 ; i < priv->nchannels; i++) {
646 if (sr & TIM_SR_CC_IF(i)) {
647 counter_push_event(counter, COUNTER_EVENT_CAPTURE, i);
648 clr &= ~TIM_SR_CC_IF(i);
649 dev_dbg(counter->parent, "COUNTER_EVENT_CAPTURE, %d\n", i);
653 regmap_write(priv->regmap, TIM_SR, clr);
655 return IRQ_HANDLED;
658 static void stm32_timer_cnt_detect_channels(struct device *dev,
659 struct stm32_timer_cnt *priv)
661 u32 ccer, ccer_backup;
663 regmap_read(priv->regmap, TIM_CCER, &ccer_backup);
664 regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE);
665 regmap_read(priv->regmap, TIM_CCER, &ccer);
666 regmap_write(priv->regmap, TIM_CCER, ccer_backup);
667 priv->nchannels = hweight32(ccer & TIM_CCER_CCXE);
669 dev_dbg(dev, "has %d cc channels\n", priv->nchannels);
672 /* encoder supported on TIM1 TIM2 TIM3 TIM4 TIM5 TIM8 */
673 #define STM32_TIM_ENCODER_SUPPORTED (BIT(0) | BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(7))
675 static const char * const stm32_timer_trigger_compat[] = {
676 "st,stm32-timer-trigger",
677 "st,stm32h7-timer-trigger",
680 static int stm32_timer_cnt_probe_encoder(struct device *dev,
681 struct stm32_timer_cnt *priv)
683 struct device *parent = dev->parent;
684 struct device_node *tnode = NULL, *pnode = parent->of_node;
685 int i, ret;
686 u32 idx;
689 * Need to retrieve the trigger node index from DT, to be able
690 * to determine if the counter supports encoder mode. It also
691 * enforce backward compatibility, and allow to support other
692 * counter modes in this driver (when the timer doesn't support
693 * encoder).
695 for (i = 0; i < ARRAY_SIZE(stm32_timer_trigger_compat) && !tnode; i++)
696 tnode = of_get_compatible_child(pnode, stm32_timer_trigger_compat[i]);
697 if (!tnode) {
698 dev_err(dev, "Can't find trigger node\n");
699 return -ENODATA;
702 ret = of_property_read_u32(tnode, "reg", &idx);
703 of_node_put(tnode);
704 if (ret) {
705 dev_err(dev, "Can't get index (%d)\n", ret);
706 return ret;
709 priv->has_encoder = !!(STM32_TIM_ENCODER_SUPPORTED & BIT(idx));
711 dev_dbg(dev, "encoder support: %s\n", priv->has_encoder ? "yes" : "no");
713 return 0;
716 static int stm32_timer_cnt_probe(struct platform_device *pdev)
718 struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
719 struct device *dev = &pdev->dev;
720 struct stm32_timer_cnt *priv;
721 struct counter_device *counter;
722 int i, ret;
724 if (IS_ERR_OR_NULL(ddata))
725 return -EINVAL;
727 counter = devm_counter_alloc(dev, sizeof(*priv));
728 if (!counter)
729 return -ENOMEM;
731 priv = counter_priv(counter);
733 priv->regmap = ddata->regmap;
734 priv->clk = ddata->clk;
735 priv->max_arr = ddata->max_arr;
736 priv->nr_irqs = ddata->nr_irqs;
738 ret = stm32_timer_cnt_probe_encoder(dev, priv);
739 if (ret)
740 return ret;
742 stm32_timer_cnt_detect_channels(dev, priv);
744 counter->name = dev_name(dev);
745 counter->parent = dev;
746 counter->ops = &stm32_timer_cnt_ops;
747 counter->counts = &stm32_counts;
748 counter->num_counts = 1;
749 counter->signals = stm32_signals;
750 counter->num_signals = ARRAY_SIZE(stm32_signals);
752 spin_lock_init(&priv->lock);
754 platform_set_drvdata(pdev, priv);
756 /* STM32 Timers can have either 1 global, or 4 dedicated interrupts (optional) */
757 if (priv->nr_irqs == 1) {
758 /* All events reported through the global interrupt */
759 ret = devm_request_irq(&pdev->dev, ddata->irq[0], stm32_timer_cnt_isr,
760 0, dev_name(dev), counter);
761 if (ret) {
762 dev_err(dev, "Failed to request irq %d (err %d)\n",
763 ddata->irq[0], ret);
764 return ret;
766 } else {
767 for (i = 0; i < priv->nr_irqs; i++) {
769 * Only take care of update IRQ for overflow events, and cc for
770 * capture events.
772 if (i != STM32_TIMERS_IRQ_UP && i != STM32_TIMERS_IRQ_CC)
773 continue;
775 ret = devm_request_irq(&pdev->dev, ddata->irq[i], stm32_timer_cnt_isr,
776 0, dev_name(dev), counter);
777 if (ret) {
778 dev_err(dev, "Failed to request irq %d (err %d)\n",
779 ddata->irq[i], ret);
780 return ret;
785 /* Reset input selector to its default input */
786 regmap_write(priv->regmap, TIM_TISEL, 0x0);
788 /* Register Counter device */
789 ret = devm_counter_add(dev, counter);
790 if (ret < 0)
791 dev_err_probe(dev, ret, "Failed to add counter\n");
793 return ret;
796 static int __maybe_unused stm32_timer_cnt_suspend(struct device *dev)
798 struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
800 /* Only take care of enabled counter: don't disturb other MFD child */
801 if (priv->enabled) {
802 /* Backup registers that may get lost in low power mode */
803 regmap_read(priv->regmap, TIM_SMCR, &priv->bak.smcr);
804 regmap_read(priv->regmap, TIM_ARR, &priv->bak.arr);
805 regmap_read(priv->regmap, TIM_CNT, &priv->bak.cnt);
806 regmap_read(priv->regmap, TIM_CR1, &priv->bak.cr1);
808 /* Disable the counter */
809 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
810 clk_disable(priv->clk);
813 return pinctrl_pm_select_sleep_state(dev);
816 static int __maybe_unused stm32_timer_cnt_resume(struct device *dev)
818 struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
819 int ret;
821 ret = pinctrl_pm_select_default_state(dev);
822 if (ret)
823 return ret;
825 if (priv->enabled) {
826 ret = clk_enable(priv->clk);
827 if (ret) {
828 dev_err(dev, "Cannot enable clock %d\n", ret);
829 return ret;
832 /* Restore registers that may have been lost */
833 regmap_write(priv->regmap, TIM_SMCR, priv->bak.smcr);
834 regmap_write(priv->regmap, TIM_ARR, priv->bak.arr);
835 regmap_write(priv->regmap, TIM_CNT, priv->bak.cnt);
837 /* Also re-enables the counter */
838 regmap_write(priv->regmap, TIM_CR1, priv->bak.cr1);
841 return 0;
844 static SIMPLE_DEV_PM_OPS(stm32_timer_cnt_pm_ops, stm32_timer_cnt_suspend,
845 stm32_timer_cnt_resume);
847 static const struct of_device_id stm32_timer_cnt_of_match[] = {
848 { .compatible = "st,stm32-timer-counter", },
851 MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match);
853 static struct platform_driver stm32_timer_cnt_driver = {
854 .probe = stm32_timer_cnt_probe,
855 .driver = {
856 .name = "stm32-timer-counter",
857 .of_match_table = stm32_timer_cnt_of_match,
858 .pm = &stm32_timer_cnt_pm_ops,
861 module_platform_driver(stm32_timer_cnt_driver);
863 MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>");
864 MODULE_ALIAS("platform:stm32-timer-counter");
865 MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver");
866 MODULE_LICENSE("GPL v2");
867 MODULE_IMPORT_NS("COUNTER");