1 // SPDX-License-Identifier: GPL-2.0-only
3 * drivers/cpufreq/cpufreq_governor.c
5 * CPUFREQ governors common code
7 * Copyright (C) 2001 Russell King
8 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
9 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
10 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
11 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/export.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/slab.h>
20 #include "cpufreq_governor.h"
22 #define CPUFREQ_DBS_MIN_SAMPLING_INTERVAL (2 * TICK_NSEC / NSEC_PER_USEC)
24 static DEFINE_PER_CPU(struct cpu_dbs_info
, cpu_dbs
);
26 static DEFINE_MUTEX(gov_dbs_data_mutex
);
28 /* Common sysfs tunables */
30 * sampling_rate_store - update sampling rate effective immediately if needed.
32 * If new rate is smaller than the old, simply updating
33 * dbs.sampling_rate might not be appropriate. For example, if the
34 * original sampling_rate was 1 second and the requested new sampling rate is 10
35 * ms because the user needs immediate reaction from ondemand governor, but not
36 * sure if higher frequency will be required or not, then, the governor may
37 * change the sampling rate too late; up to 1 second later. Thus, if we are
38 * reducing the sampling rate, we need to make the new value effective
41 * This must be called with dbs_data->mutex held, otherwise traversing
42 * policy_dbs_list isn't safe.
44 ssize_t
sampling_rate_store(struct gov_attr_set
*attr_set
, const char *buf
,
47 struct dbs_data
*dbs_data
= to_dbs_data(attr_set
);
48 struct policy_dbs_info
*policy_dbs
;
49 unsigned int sampling_interval
;
52 ret
= sscanf(buf
, "%u", &sampling_interval
);
53 if (ret
!= 1 || sampling_interval
< CPUFREQ_DBS_MIN_SAMPLING_INTERVAL
)
56 dbs_data
->sampling_rate
= sampling_interval
;
59 * We are operating under dbs_data->mutex and so the list and its
60 * entries can't be freed concurrently.
62 list_for_each_entry(policy_dbs
, &attr_set
->policy_list
, list
) {
63 mutex_lock(&policy_dbs
->update_mutex
);
65 * On 32-bit architectures this may race with the
66 * sample_delay_ns read in dbs_update_util_handler(), but that
67 * really doesn't matter. If the read returns a value that's
68 * too big, the sample will be skipped, but the next invocation
69 * of dbs_update_util_handler() (when the update has been
70 * completed) will take a sample.
72 * If this runs in parallel with dbs_work_handler(), we may end
73 * up overwriting the sample_delay_ns value that it has just
74 * written, but it will be corrected next time a sample is
75 * taken, so it shouldn't be significant.
77 gov_update_sample_delay(policy_dbs
, 0);
78 mutex_unlock(&policy_dbs
->update_mutex
);
83 EXPORT_SYMBOL_GPL(sampling_rate_store
);
86 * gov_update_cpu_data - Update CPU load data.
87 * @dbs_data: Top-level governor data pointer.
89 * Update CPU load data for all CPUs in the domain governed by @dbs_data
90 * (that may be a single policy or a bunch of them if governor tunables are
93 * Call under the @dbs_data mutex.
95 void gov_update_cpu_data(struct dbs_data
*dbs_data
)
97 struct policy_dbs_info
*policy_dbs
;
99 list_for_each_entry(policy_dbs
, &dbs_data
->attr_set
.policy_list
, list
) {
102 for_each_cpu(j
, policy_dbs
->policy
->cpus
) {
103 struct cpu_dbs_info
*j_cdbs
= &per_cpu(cpu_dbs
, j
);
105 j_cdbs
->prev_cpu_idle
= get_cpu_idle_time(j
, &j_cdbs
->prev_update_time
,
106 dbs_data
->io_is_busy
);
107 if (dbs_data
->ignore_nice_load
)
108 j_cdbs
->prev_cpu_nice
= kcpustat_field(&kcpustat_cpu(j
), CPUTIME_NICE
, j
);
112 EXPORT_SYMBOL_GPL(gov_update_cpu_data
);
114 unsigned int dbs_update(struct cpufreq_policy
*policy
)
116 struct policy_dbs_info
*policy_dbs
= policy
->governor_data
;
117 struct dbs_data
*dbs_data
= policy_dbs
->dbs_data
;
118 unsigned int ignore_nice
= dbs_data
->ignore_nice_load
;
119 unsigned int max_load
= 0, idle_periods
= UINT_MAX
;
120 unsigned int sampling_rate
, io_busy
, j
;
123 * Sometimes governors may use an additional multiplier to increase
124 * sample delays temporarily. Apply that multiplier to sampling_rate
125 * so as to keep the wake-up-from-idle detection logic a bit
128 sampling_rate
= dbs_data
->sampling_rate
* policy_dbs
->rate_mult
;
130 * For the purpose of ondemand, waiting for disk IO is an indication
131 * that you're performance critical, and not that the system is actually
132 * idle, so do not add the iowait time to the CPU idle time then.
134 io_busy
= dbs_data
->io_is_busy
;
136 /* Get Absolute Load */
137 for_each_cpu(j
, policy
->cpus
) {
138 struct cpu_dbs_info
*j_cdbs
= &per_cpu(cpu_dbs
, j
);
139 u64 update_time
, cur_idle_time
;
140 unsigned int idle_time
, time_elapsed
;
143 cur_idle_time
= get_cpu_idle_time(j
, &update_time
, io_busy
);
145 time_elapsed
= update_time
- j_cdbs
->prev_update_time
;
146 j_cdbs
->prev_update_time
= update_time
;
148 idle_time
= cur_idle_time
- j_cdbs
->prev_cpu_idle
;
149 j_cdbs
->prev_cpu_idle
= cur_idle_time
;
152 u64 cur_nice
= kcpustat_field(&kcpustat_cpu(j
), CPUTIME_NICE
, j
);
154 idle_time
+= div_u64(cur_nice
- j_cdbs
->prev_cpu_nice
, NSEC_PER_USEC
);
155 j_cdbs
->prev_cpu_nice
= cur_nice
;
158 if (unlikely(!time_elapsed
)) {
160 * That can only happen when this function is called
161 * twice in a row with a very short interval between the
162 * calls, so the previous load value can be used then.
164 load
= j_cdbs
->prev_load
;
165 } else if (unlikely((int)idle_time
> 2 * sampling_rate
&&
166 j_cdbs
->prev_load
)) {
168 * If the CPU had gone completely idle and a task has
169 * just woken up on this CPU now, it would be unfair to
170 * calculate 'load' the usual way for this elapsed
171 * time-window, because it would show near-zero load,
172 * irrespective of how CPU intensive that task actually
173 * was. This is undesirable for latency-sensitive bursty
176 * To avoid this, reuse the 'load' from the previous
177 * time-window and give this task a chance to start with
178 * a reasonably high CPU frequency. However, that
179 * shouldn't be over-done, lest we get stuck at a high
180 * load (high frequency) for too long, even when the
181 * current system load has actually dropped down, so
182 * clear prev_load to guarantee that the load will be
183 * computed again next time.
185 * Detecting this situation is easy: an unusually large
186 * 'idle_time' (as compared to the sampling rate)
187 * indicates this scenario.
189 load
= j_cdbs
->prev_load
;
190 j_cdbs
->prev_load
= 0;
192 if (time_elapsed
>= idle_time
) {
193 load
= 100 * (time_elapsed
- idle_time
) / time_elapsed
;
196 * That can happen if idle_time is returned by
197 * get_cpu_idle_time_jiffy(). In that case
198 * idle_time is roughly equal to the difference
199 * between time_elapsed and "busy time" obtained
200 * from CPU statistics. Then, the "busy time"
201 * can end up being greater than time_elapsed
202 * (for example, if jiffies_64 and the CPU
203 * statistics are updated by different CPUs),
204 * so idle_time may in fact be negative. That
205 * means, though, that the CPU was busy all
206 * the time (on the rough average) during the
207 * last sampling interval and 100 can be
208 * returned as the load.
210 load
= (int)idle_time
< 0 ? 100 : 0;
212 j_cdbs
->prev_load
= load
;
215 if (unlikely((int)idle_time
> 2 * sampling_rate
)) {
216 unsigned int periods
= idle_time
/ sampling_rate
;
218 if (periods
< idle_periods
)
219 idle_periods
= periods
;
226 policy_dbs
->idle_periods
= idle_periods
;
230 EXPORT_SYMBOL_GPL(dbs_update
);
232 static void dbs_work_handler(struct work_struct
*work
)
234 struct policy_dbs_info
*policy_dbs
;
235 struct cpufreq_policy
*policy
;
236 struct dbs_governor
*gov
;
238 policy_dbs
= container_of(work
, struct policy_dbs_info
, work
);
239 policy
= policy_dbs
->policy
;
240 gov
= dbs_governor_of(policy
);
243 * Make sure cpufreq_governor_limits() isn't evaluating load or the
244 * ondemand governor isn't updating the sampling rate in parallel.
246 mutex_lock(&policy_dbs
->update_mutex
);
247 gov_update_sample_delay(policy_dbs
, gov
->gov_dbs_update(policy
));
248 mutex_unlock(&policy_dbs
->update_mutex
);
250 /* Allow the utilization update handler to queue up more work. */
251 atomic_set(&policy_dbs
->work_count
, 0);
253 * If the update below is reordered with respect to the sample delay
254 * modification, the utilization update handler may end up using a stale
255 * sample delay value.
258 policy_dbs
->work_in_progress
= false;
261 static void dbs_irq_work(struct irq_work
*irq_work
)
263 struct policy_dbs_info
*policy_dbs
;
265 policy_dbs
= container_of(irq_work
, struct policy_dbs_info
, irq_work
);
266 schedule_work_on(smp_processor_id(), &policy_dbs
->work
);
269 static void dbs_update_util_handler(struct update_util_data
*data
, u64 time
,
272 struct cpu_dbs_info
*cdbs
= container_of(data
, struct cpu_dbs_info
, update_util
);
273 struct policy_dbs_info
*policy_dbs
= cdbs
->policy_dbs
;
276 if (!cpufreq_this_cpu_can_update(policy_dbs
->policy
))
280 * The work may not be allowed to be queued up right now.
282 * - Work has already been queued up or is in progress.
283 * - It is too early (too little time from the previous sample).
285 if (policy_dbs
->work_in_progress
)
289 * If the reads below are reordered before the check above, the value
290 * of sample_delay_ns used in the computation may be stale.
293 lst
= READ_ONCE(policy_dbs
->last_sample_time
);
294 delta_ns
= time
- lst
;
295 if ((s64
)delta_ns
< policy_dbs
->sample_delay_ns
)
299 * If the policy is not shared, the irq_work may be queued up right away
300 * at this point. Otherwise, we need to ensure that only one of the
301 * CPUs sharing the policy will do that.
303 if (policy_dbs
->is_shared
) {
304 if (!atomic_add_unless(&policy_dbs
->work_count
, 1, 1))
308 * If another CPU updated last_sample_time in the meantime, we
309 * shouldn't be here, so clear the work counter and bail out.
311 if (unlikely(lst
!= READ_ONCE(policy_dbs
->last_sample_time
))) {
312 atomic_set(&policy_dbs
->work_count
, 0);
317 policy_dbs
->last_sample_time
= time
;
318 policy_dbs
->work_in_progress
= true;
319 irq_work_queue(&policy_dbs
->irq_work
);
322 static void gov_set_update_util(struct policy_dbs_info
*policy_dbs
,
323 unsigned int delay_us
)
325 struct cpufreq_policy
*policy
= policy_dbs
->policy
;
328 gov_update_sample_delay(policy_dbs
, delay_us
);
329 policy_dbs
->last_sample_time
= 0;
331 for_each_cpu(cpu
, policy
->cpus
) {
332 struct cpu_dbs_info
*cdbs
= &per_cpu(cpu_dbs
, cpu
);
334 cpufreq_add_update_util_hook(cpu
, &cdbs
->update_util
,
335 dbs_update_util_handler
);
339 static inline void gov_clear_update_util(struct cpufreq_policy
*policy
)
343 for_each_cpu(i
, policy
->cpus
)
344 cpufreq_remove_update_util_hook(i
);
349 static struct policy_dbs_info
*alloc_policy_dbs_info(struct cpufreq_policy
*policy
,
350 struct dbs_governor
*gov
)
352 struct policy_dbs_info
*policy_dbs
;
355 /* Allocate memory for per-policy governor data. */
356 policy_dbs
= gov
->alloc();
360 policy_dbs
->policy
= policy
;
361 mutex_init(&policy_dbs
->update_mutex
);
362 atomic_set(&policy_dbs
->work_count
, 0);
363 init_irq_work(&policy_dbs
->irq_work
, dbs_irq_work
);
364 INIT_WORK(&policy_dbs
->work
, dbs_work_handler
);
366 /* Set policy_dbs for all CPUs, online+offline */
367 for_each_cpu(j
, policy
->related_cpus
) {
368 struct cpu_dbs_info
*j_cdbs
= &per_cpu(cpu_dbs
, j
);
370 j_cdbs
->policy_dbs
= policy_dbs
;
375 static void free_policy_dbs_info(struct policy_dbs_info
*policy_dbs
,
376 struct dbs_governor
*gov
)
380 mutex_destroy(&policy_dbs
->update_mutex
);
382 for_each_cpu(j
, policy_dbs
->policy
->related_cpus
) {
383 struct cpu_dbs_info
*j_cdbs
= &per_cpu(cpu_dbs
, j
);
385 j_cdbs
->policy_dbs
= NULL
;
386 j_cdbs
->update_util
.func
= NULL
;
388 gov
->free(policy_dbs
);
391 static void cpufreq_dbs_data_release(struct kobject
*kobj
)
393 struct dbs_data
*dbs_data
= to_dbs_data(to_gov_attr_set(kobj
));
394 struct dbs_governor
*gov
= dbs_data
->gov
;
400 int cpufreq_dbs_governor_init(struct cpufreq_policy
*policy
)
402 struct dbs_governor
*gov
= dbs_governor_of(policy
);
403 struct dbs_data
*dbs_data
;
404 struct policy_dbs_info
*policy_dbs
;
407 /* State should be equivalent to EXIT */
408 if (policy
->governor_data
)
411 policy_dbs
= alloc_policy_dbs_info(policy
, gov
);
415 /* Protect gov->gdbs_data against concurrent updates. */
416 mutex_lock(&gov_dbs_data_mutex
);
418 dbs_data
= gov
->gdbs_data
;
420 if (WARN_ON(have_governor_per_policy())) {
422 goto free_policy_dbs_info
;
424 policy_dbs
->dbs_data
= dbs_data
;
425 policy
->governor_data
= policy_dbs
;
427 gov_attr_set_get(&dbs_data
->attr_set
, &policy_dbs
->list
);
431 dbs_data
= kzalloc(sizeof(*dbs_data
), GFP_KERNEL
);
434 goto free_policy_dbs_info
;
438 gov_attr_set_init(&dbs_data
->attr_set
, &policy_dbs
->list
);
440 ret
= gov
->init(dbs_data
);
445 * The sampling interval should not be less than the transition latency
446 * of the CPU and it also cannot be too small for dbs_update() to work
449 dbs_data
->sampling_rate
= max_t(unsigned int,
450 CPUFREQ_DBS_MIN_SAMPLING_INTERVAL
,
451 cpufreq_policy_transition_delay_us(policy
));
453 if (!have_governor_per_policy())
454 gov
->gdbs_data
= dbs_data
;
456 policy_dbs
->dbs_data
= dbs_data
;
457 policy
->governor_data
= policy_dbs
;
459 gov
->kobj_type
.sysfs_ops
= &governor_sysfs_ops
;
460 gov
->kobj_type
.release
= cpufreq_dbs_data_release
;
461 ret
= kobject_init_and_add(&dbs_data
->attr_set
.kobj
, &gov
->kobj_type
,
462 get_governor_parent_kobj(policy
),
463 "%s", gov
->gov
.name
);
467 /* Failure, so roll back. */
468 pr_err("initialization failed (dbs_data kobject init error %d)\n", ret
);
470 kobject_put(&dbs_data
->attr_set
.kobj
);
472 policy
->governor_data
= NULL
;
474 if (!have_governor_per_policy())
475 gov
->gdbs_data
= NULL
;
481 free_policy_dbs_info
:
482 free_policy_dbs_info(policy_dbs
, gov
);
485 mutex_unlock(&gov_dbs_data_mutex
);
488 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init
);
490 void cpufreq_dbs_governor_exit(struct cpufreq_policy
*policy
)
492 struct dbs_governor
*gov
= dbs_governor_of(policy
);
493 struct policy_dbs_info
*policy_dbs
= policy
->governor_data
;
494 struct dbs_data
*dbs_data
= policy_dbs
->dbs_data
;
497 /* Protect gov->gdbs_data against concurrent updates. */
498 mutex_lock(&gov_dbs_data_mutex
);
500 count
= gov_attr_set_put(&dbs_data
->attr_set
, &policy_dbs
->list
);
502 policy
->governor_data
= NULL
;
504 if (!count
&& !have_governor_per_policy())
505 gov
->gdbs_data
= NULL
;
507 free_policy_dbs_info(policy_dbs
, gov
);
509 mutex_unlock(&gov_dbs_data_mutex
);
511 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit
);
513 int cpufreq_dbs_governor_start(struct cpufreq_policy
*policy
)
515 struct dbs_governor
*gov
= dbs_governor_of(policy
);
516 struct policy_dbs_info
*policy_dbs
= policy
->governor_data
;
517 struct dbs_data
*dbs_data
= policy_dbs
->dbs_data
;
518 unsigned int sampling_rate
, ignore_nice
, j
;
519 unsigned int io_busy
;
524 policy_dbs
->is_shared
= policy_is_shared(policy
);
525 policy_dbs
->rate_mult
= 1;
527 sampling_rate
= dbs_data
->sampling_rate
;
528 ignore_nice
= dbs_data
->ignore_nice_load
;
529 io_busy
= dbs_data
->io_is_busy
;
531 for_each_cpu(j
, policy
->cpus
) {
532 struct cpu_dbs_info
*j_cdbs
= &per_cpu(cpu_dbs
, j
);
534 j_cdbs
->prev_cpu_idle
= get_cpu_idle_time(j
, &j_cdbs
->prev_update_time
, io_busy
);
536 * Make the first invocation of dbs_update() compute the load.
538 j_cdbs
->prev_load
= 0;
541 j_cdbs
->prev_cpu_nice
= kcpustat_field(&kcpustat_cpu(j
), CPUTIME_NICE
, j
);
546 gov_set_update_util(policy_dbs
, sampling_rate
);
549 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start
);
551 void cpufreq_dbs_governor_stop(struct cpufreq_policy
*policy
)
553 struct policy_dbs_info
*policy_dbs
= policy
->governor_data
;
555 gov_clear_update_util(policy_dbs
->policy
);
556 irq_work_sync(&policy_dbs
->irq_work
);
557 cancel_work_sync(&policy_dbs
->work
);
558 atomic_set(&policy_dbs
->work_count
, 0);
559 policy_dbs
->work_in_progress
= false;
561 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop
);
563 void cpufreq_dbs_governor_limits(struct cpufreq_policy
*policy
)
565 struct policy_dbs_info
*policy_dbs
;
567 /* Protect gov->gdbs_data against cpufreq_dbs_governor_exit() */
568 mutex_lock(&gov_dbs_data_mutex
);
569 policy_dbs
= policy
->governor_data
;
573 mutex_lock(&policy_dbs
->update_mutex
);
574 cpufreq_policy_apply_limits(policy
);
575 gov_update_sample_delay(policy_dbs
, 0);
576 mutex_unlock(&policy_dbs
->update_mutex
);
579 mutex_unlock(&gov_dbs_data_mutex
);
581 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits
);