drm/nouveau: consume the return of large GSP message
[drm/drm-misc.git] / drivers / crypto / ccree / cc_aead.c
blob81533681f7fb59abf1123d2d045f3d74eda17348
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <crypto/algapi.h>
7 #include <crypto/internal/aead.h>
8 #include <crypto/authenc.h>
9 #include <crypto/gcm.h>
10 #include <linux/rtnetlink.h>
11 #include <crypto/internal/des.h>
12 #include "cc_driver.h"
13 #include "cc_buffer_mgr.h"
14 #include "cc_aead.h"
15 #include "cc_request_mgr.h"
16 #include "cc_hash.h"
17 #include "cc_sram_mgr.h"
19 #define template_aead template_u.aead
21 #define MAX_AEAD_SETKEY_SEQ 12
22 #define MAX_AEAD_PROCESS_SEQ 23
24 #define MAX_HMAC_DIGEST_SIZE (SHA256_DIGEST_SIZE)
25 #define MAX_HMAC_BLOCK_SIZE (SHA256_BLOCK_SIZE)
27 #define MAX_NONCE_SIZE CTR_RFC3686_NONCE_SIZE
29 struct cc_aead_handle {
30 u32 sram_workspace_addr;
31 struct list_head aead_list;
34 struct cc_hmac_s {
35 u8 *padded_authkey;
36 u8 *ipad_opad; /* IPAD, OPAD*/
37 dma_addr_t padded_authkey_dma_addr;
38 dma_addr_t ipad_opad_dma_addr;
41 struct cc_xcbc_s {
42 u8 *xcbc_keys; /* K1,K2,K3 */
43 dma_addr_t xcbc_keys_dma_addr;
46 struct cc_aead_ctx {
47 struct cc_drvdata *drvdata;
48 u8 ctr_nonce[MAX_NONCE_SIZE]; /* used for ctr3686 iv and aes ccm */
49 u8 *enckey;
50 dma_addr_t enckey_dma_addr;
51 union {
52 struct cc_hmac_s hmac;
53 struct cc_xcbc_s xcbc;
54 } auth_state;
55 unsigned int enc_keylen;
56 unsigned int auth_keylen;
57 unsigned int authsize; /* Actual (reduced?) size of the MAC/ICv */
58 unsigned int hash_len;
59 enum drv_cipher_mode cipher_mode;
60 enum cc_flow_mode flow_mode;
61 enum drv_hash_mode auth_mode;
64 static void cc_aead_exit(struct crypto_aead *tfm)
66 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
67 struct device *dev = drvdata_to_dev(ctx->drvdata);
69 dev_dbg(dev, "Clearing context @%p for %s\n", crypto_aead_ctx(tfm),
70 crypto_tfm_alg_name(&tfm->base));
72 /* Unmap enckey buffer */
73 if (ctx->enckey) {
74 dma_free_coherent(dev, AES_MAX_KEY_SIZE, ctx->enckey,
75 ctx->enckey_dma_addr);
76 dev_dbg(dev, "Freed enckey DMA buffer enckey_dma_addr=%pad\n",
77 &ctx->enckey_dma_addr);
78 ctx->enckey_dma_addr = 0;
79 ctx->enckey = NULL;
82 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
83 struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
85 if (xcbc->xcbc_keys) {
86 dma_free_coherent(dev, CC_AES_128_BIT_KEY_SIZE * 3,
87 xcbc->xcbc_keys,
88 xcbc->xcbc_keys_dma_addr);
90 dev_dbg(dev, "Freed xcbc_keys DMA buffer xcbc_keys_dma_addr=%pad\n",
91 &xcbc->xcbc_keys_dma_addr);
92 xcbc->xcbc_keys_dma_addr = 0;
93 xcbc->xcbc_keys = NULL;
94 } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC auth. */
95 struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
97 if (hmac->ipad_opad) {
98 dma_free_coherent(dev, 2 * MAX_HMAC_DIGEST_SIZE,
99 hmac->ipad_opad,
100 hmac->ipad_opad_dma_addr);
101 dev_dbg(dev, "Freed ipad_opad DMA buffer ipad_opad_dma_addr=%pad\n",
102 &hmac->ipad_opad_dma_addr);
103 hmac->ipad_opad_dma_addr = 0;
104 hmac->ipad_opad = NULL;
106 if (hmac->padded_authkey) {
107 dma_free_coherent(dev, MAX_HMAC_BLOCK_SIZE,
108 hmac->padded_authkey,
109 hmac->padded_authkey_dma_addr);
110 dev_dbg(dev, "Freed padded_authkey DMA buffer padded_authkey_dma_addr=%pad\n",
111 &hmac->padded_authkey_dma_addr);
112 hmac->padded_authkey_dma_addr = 0;
113 hmac->padded_authkey = NULL;
118 static unsigned int cc_get_aead_hash_len(struct crypto_aead *tfm)
120 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
122 return cc_get_default_hash_len(ctx->drvdata);
125 static int cc_aead_init(struct crypto_aead *tfm)
127 struct aead_alg *alg = crypto_aead_alg(tfm);
128 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
129 struct cc_crypto_alg *cc_alg =
130 container_of(alg, struct cc_crypto_alg, aead_alg);
131 struct device *dev = drvdata_to_dev(cc_alg->drvdata);
133 dev_dbg(dev, "Initializing context @%p for %s\n", ctx,
134 crypto_tfm_alg_name(&tfm->base));
136 /* Initialize modes in instance */
137 ctx->cipher_mode = cc_alg->cipher_mode;
138 ctx->flow_mode = cc_alg->flow_mode;
139 ctx->auth_mode = cc_alg->auth_mode;
140 ctx->drvdata = cc_alg->drvdata;
141 crypto_aead_set_reqsize_dma(tfm, sizeof(struct aead_req_ctx));
143 /* Allocate key buffer, cache line aligned */
144 ctx->enckey = dma_alloc_coherent(dev, AES_MAX_KEY_SIZE,
145 &ctx->enckey_dma_addr, GFP_KERNEL);
146 if (!ctx->enckey) {
147 dev_err(dev, "Failed allocating key buffer\n");
148 goto init_failed;
150 dev_dbg(dev, "Allocated enckey buffer in context ctx->enckey=@%p\n",
151 ctx->enckey);
153 /* Set default authlen value */
155 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
156 struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
157 const unsigned int key_size = CC_AES_128_BIT_KEY_SIZE * 3;
159 /* Allocate dma-coherent buffer for XCBC's K1+K2+K3 */
160 /* (and temporary for user key - up to 256b) */
161 xcbc->xcbc_keys = dma_alloc_coherent(dev, key_size,
162 &xcbc->xcbc_keys_dma_addr,
163 GFP_KERNEL);
164 if (!xcbc->xcbc_keys) {
165 dev_err(dev, "Failed allocating buffer for XCBC keys\n");
166 goto init_failed;
168 } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC authentication */
169 struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
170 const unsigned int digest_size = 2 * MAX_HMAC_DIGEST_SIZE;
171 dma_addr_t *pkey_dma = &hmac->padded_authkey_dma_addr;
173 /* Allocate dma-coherent buffer for IPAD + OPAD */
174 hmac->ipad_opad = dma_alloc_coherent(dev, digest_size,
175 &hmac->ipad_opad_dma_addr,
176 GFP_KERNEL);
178 if (!hmac->ipad_opad) {
179 dev_err(dev, "Failed allocating IPAD/OPAD buffer\n");
180 goto init_failed;
183 dev_dbg(dev, "Allocated authkey buffer in context ctx->authkey=@%p\n",
184 hmac->ipad_opad);
186 hmac->padded_authkey = dma_alloc_coherent(dev,
187 MAX_HMAC_BLOCK_SIZE,
188 pkey_dma,
189 GFP_KERNEL);
191 if (!hmac->padded_authkey) {
192 dev_err(dev, "failed to allocate padded_authkey\n");
193 goto init_failed;
195 } else {
196 ctx->auth_state.hmac.ipad_opad = NULL;
197 ctx->auth_state.hmac.padded_authkey = NULL;
199 ctx->hash_len = cc_get_aead_hash_len(tfm);
201 return 0;
203 init_failed:
204 cc_aead_exit(tfm);
205 return -ENOMEM;
208 static void cc_aead_complete(struct device *dev, void *cc_req, int err)
210 struct aead_request *areq = (struct aead_request *)cc_req;
211 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(areq);
212 struct crypto_aead *tfm = crypto_aead_reqtfm(cc_req);
213 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
215 /* BACKLOG notification */
216 if (err == -EINPROGRESS)
217 goto done;
219 cc_unmap_aead_request(dev, areq);
221 /* Restore ordinary iv pointer */
222 areq->iv = areq_ctx->backup_iv;
224 if (err)
225 goto done;
227 if (areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
228 if (memcmp(areq_ctx->mac_buf, areq_ctx->icv_virt_addr,
229 ctx->authsize) != 0) {
230 dev_dbg(dev, "Payload authentication failure, (auth-size=%d, cipher=%d)\n",
231 ctx->authsize, ctx->cipher_mode);
232 /* In case of payload authentication failure, MUST NOT
233 * revealed the decrypted message --> zero its memory.
235 sg_zero_buffer(areq->dst, sg_nents(areq->dst),
236 areq->cryptlen, areq->assoclen);
237 err = -EBADMSG;
239 /*ENCRYPT*/
240 } else if (areq_ctx->is_icv_fragmented) {
241 u32 skip = areq->cryptlen + areq_ctx->dst_offset;
243 cc_copy_sg_portion(dev, areq_ctx->mac_buf, areq_ctx->dst_sgl,
244 skip, (skip + ctx->authsize),
245 CC_SG_FROM_BUF);
247 done:
248 aead_request_complete(areq, err);
251 static unsigned int xcbc_setkey(struct cc_hw_desc *desc,
252 struct cc_aead_ctx *ctx)
254 /* Load the AES key */
255 hw_desc_init(&desc[0]);
256 /* We are using for the source/user key the same buffer
257 * as for the output keys, * because after this key loading it
258 * is not needed anymore
260 set_din_type(&desc[0], DMA_DLLI,
261 ctx->auth_state.xcbc.xcbc_keys_dma_addr, ctx->auth_keylen,
262 NS_BIT);
263 set_cipher_mode(&desc[0], DRV_CIPHER_ECB);
264 set_cipher_config0(&desc[0], DRV_CRYPTO_DIRECTION_ENCRYPT);
265 set_key_size_aes(&desc[0], ctx->auth_keylen);
266 set_flow_mode(&desc[0], S_DIN_to_AES);
267 set_setup_mode(&desc[0], SETUP_LOAD_KEY0);
269 hw_desc_init(&desc[1]);
270 set_din_const(&desc[1], 0x01010101, CC_AES_128_BIT_KEY_SIZE);
271 set_flow_mode(&desc[1], DIN_AES_DOUT);
272 set_dout_dlli(&desc[1], ctx->auth_state.xcbc.xcbc_keys_dma_addr,
273 AES_KEYSIZE_128, NS_BIT, 0);
275 hw_desc_init(&desc[2]);
276 set_din_const(&desc[2], 0x02020202, CC_AES_128_BIT_KEY_SIZE);
277 set_flow_mode(&desc[2], DIN_AES_DOUT);
278 set_dout_dlli(&desc[2], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
279 + AES_KEYSIZE_128),
280 AES_KEYSIZE_128, NS_BIT, 0);
282 hw_desc_init(&desc[3]);
283 set_din_const(&desc[3], 0x03030303, CC_AES_128_BIT_KEY_SIZE);
284 set_flow_mode(&desc[3], DIN_AES_DOUT);
285 set_dout_dlli(&desc[3], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
286 + 2 * AES_KEYSIZE_128),
287 AES_KEYSIZE_128, NS_BIT, 0);
289 return 4;
292 static unsigned int hmac_setkey(struct cc_hw_desc *desc,
293 struct cc_aead_ctx *ctx)
295 unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST };
296 unsigned int digest_ofs = 0;
297 unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
298 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
299 unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
300 CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
301 struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
303 unsigned int idx = 0;
304 int i;
306 /* calc derived HMAC key */
307 for (i = 0; i < 2; i++) {
308 /* Load hash initial state */
309 hw_desc_init(&desc[idx]);
310 set_cipher_mode(&desc[idx], hash_mode);
311 set_din_sram(&desc[idx],
312 cc_larval_digest_addr(ctx->drvdata,
313 ctx->auth_mode),
314 digest_size);
315 set_flow_mode(&desc[idx], S_DIN_to_HASH);
316 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
317 idx++;
319 /* Load the hash current length*/
320 hw_desc_init(&desc[idx]);
321 set_cipher_mode(&desc[idx], hash_mode);
322 set_din_const(&desc[idx], 0, ctx->hash_len);
323 set_flow_mode(&desc[idx], S_DIN_to_HASH);
324 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
325 idx++;
327 /* Prepare ipad key */
328 hw_desc_init(&desc[idx]);
329 set_xor_val(&desc[idx], hmac_pad_const[i]);
330 set_cipher_mode(&desc[idx], hash_mode);
331 set_flow_mode(&desc[idx], S_DIN_to_HASH);
332 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
333 idx++;
335 /* Perform HASH update */
336 hw_desc_init(&desc[idx]);
337 set_din_type(&desc[idx], DMA_DLLI,
338 hmac->padded_authkey_dma_addr,
339 SHA256_BLOCK_SIZE, NS_BIT);
340 set_cipher_mode(&desc[idx], hash_mode);
341 set_xor_active(&desc[idx]);
342 set_flow_mode(&desc[idx], DIN_HASH);
343 idx++;
345 /* Get the digset */
346 hw_desc_init(&desc[idx]);
347 set_cipher_mode(&desc[idx], hash_mode);
348 set_dout_dlli(&desc[idx],
349 (hmac->ipad_opad_dma_addr + digest_ofs),
350 digest_size, NS_BIT, 0);
351 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
352 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
353 set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
354 idx++;
356 digest_ofs += digest_size;
359 return idx;
362 static int validate_keys_sizes(struct cc_aead_ctx *ctx)
364 struct device *dev = drvdata_to_dev(ctx->drvdata);
366 dev_dbg(dev, "enc_keylen=%u authkeylen=%u\n",
367 ctx->enc_keylen, ctx->auth_keylen);
369 switch (ctx->auth_mode) {
370 case DRV_HASH_SHA1:
371 case DRV_HASH_SHA256:
372 break;
373 case DRV_HASH_XCBC_MAC:
374 if (ctx->auth_keylen != AES_KEYSIZE_128 &&
375 ctx->auth_keylen != AES_KEYSIZE_192 &&
376 ctx->auth_keylen != AES_KEYSIZE_256)
377 return -ENOTSUPP;
378 break;
379 case DRV_HASH_NULL: /* Not authenc (e.g., CCM) - no auth_key) */
380 if (ctx->auth_keylen > 0)
381 return -EINVAL;
382 break;
383 default:
384 dev_dbg(dev, "Invalid auth_mode=%d\n", ctx->auth_mode);
385 return -EINVAL;
387 /* Check cipher key size */
388 if (ctx->flow_mode == S_DIN_to_DES) {
389 if (ctx->enc_keylen != DES3_EDE_KEY_SIZE) {
390 dev_dbg(dev, "Invalid cipher(3DES) key size: %u\n",
391 ctx->enc_keylen);
392 return -EINVAL;
394 } else { /* Default assumed to be AES ciphers */
395 if (ctx->enc_keylen != AES_KEYSIZE_128 &&
396 ctx->enc_keylen != AES_KEYSIZE_192 &&
397 ctx->enc_keylen != AES_KEYSIZE_256) {
398 dev_dbg(dev, "Invalid cipher(AES) key size: %u\n",
399 ctx->enc_keylen);
400 return -EINVAL;
404 return 0; /* All tests of keys sizes passed */
407 /* This function prepers the user key so it can pass to the hmac processing
408 * (copy to intenral buffer or hash in case of key longer than block
410 static int cc_get_plain_hmac_key(struct crypto_aead *tfm, const u8 *authkey,
411 unsigned int keylen)
413 dma_addr_t key_dma_addr = 0;
414 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
415 struct device *dev = drvdata_to_dev(ctx->drvdata);
416 u32 larval_addr;
417 struct cc_crypto_req cc_req = {};
418 unsigned int blocksize;
419 unsigned int digestsize;
420 unsigned int hashmode;
421 unsigned int idx = 0;
422 int rc = 0;
423 u8 *key = NULL;
424 struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
425 dma_addr_t padded_authkey_dma_addr =
426 ctx->auth_state.hmac.padded_authkey_dma_addr;
428 switch (ctx->auth_mode) { /* auth_key required and >0 */
429 case DRV_HASH_SHA1:
430 blocksize = SHA1_BLOCK_SIZE;
431 digestsize = SHA1_DIGEST_SIZE;
432 hashmode = DRV_HASH_HW_SHA1;
433 break;
434 case DRV_HASH_SHA256:
435 default:
436 blocksize = SHA256_BLOCK_SIZE;
437 digestsize = SHA256_DIGEST_SIZE;
438 hashmode = DRV_HASH_HW_SHA256;
441 if (keylen != 0) {
443 key = kmemdup(authkey, keylen, GFP_KERNEL);
444 if (!key)
445 return -ENOMEM;
447 key_dma_addr = dma_map_single(dev, key, keylen, DMA_TO_DEVICE);
448 if (dma_mapping_error(dev, key_dma_addr)) {
449 dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
450 key, keylen);
451 kfree_sensitive(key);
452 return -ENOMEM;
454 if (keylen > blocksize) {
455 /* Load hash initial state */
456 hw_desc_init(&desc[idx]);
457 set_cipher_mode(&desc[idx], hashmode);
458 larval_addr = cc_larval_digest_addr(ctx->drvdata,
459 ctx->auth_mode);
460 set_din_sram(&desc[idx], larval_addr, digestsize);
461 set_flow_mode(&desc[idx], S_DIN_to_HASH);
462 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
463 idx++;
465 /* Load the hash current length*/
466 hw_desc_init(&desc[idx]);
467 set_cipher_mode(&desc[idx], hashmode);
468 set_din_const(&desc[idx], 0, ctx->hash_len);
469 set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
470 set_flow_mode(&desc[idx], S_DIN_to_HASH);
471 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
472 idx++;
474 hw_desc_init(&desc[idx]);
475 set_din_type(&desc[idx], DMA_DLLI,
476 key_dma_addr, keylen, NS_BIT);
477 set_flow_mode(&desc[idx], DIN_HASH);
478 idx++;
480 /* Get hashed key */
481 hw_desc_init(&desc[idx]);
482 set_cipher_mode(&desc[idx], hashmode);
483 set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
484 digestsize, NS_BIT, 0);
485 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
486 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
487 set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
488 set_cipher_config0(&desc[idx],
489 HASH_DIGEST_RESULT_LITTLE_ENDIAN);
490 idx++;
492 hw_desc_init(&desc[idx]);
493 set_din_const(&desc[idx], 0, (blocksize - digestsize));
494 set_flow_mode(&desc[idx], BYPASS);
495 set_dout_dlli(&desc[idx], (padded_authkey_dma_addr +
496 digestsize), (blocksize - digestsize),
497 NS_BIT, 0);
498 idx++;
499 } else {
500 hw_desc_init(&desc[idx]);
501 set_din_type(&desc[idx], DMA_DLLI, key_dma_addr,
502 keylen, NS_BIT);
503 set_flow_mode(&desc[idx], BYPASS);
504 set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
505 keylen, NS_BIT, 0);
506 idx++;
508 if ((blocksize - keylen) != 0) {
509 hw_desc_init(&desc[idx]);
510 set_din_const(&desc[idx], 0,
511 (blocksize - keylen));
512 set_flow_mode(&desc[idx], BYPASS);
513 set_dout_dlli(&desc[idx],
514 (padded_authkey_dma_addr +
515 keylen),
516 (blocksize - keylen), NS_BIT, 0);
517 idx++;
520 } else {
521 hw_desc_init(&desc[idx]);
522 set_din_const(&desc[idx], 0, (blocksize - keylen));
523 set_flow_mode(&desc[idx], BYPASS);
524 set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
525 blocksize, NS_BIT, 0);
526 idx++;
529 rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
530 if (rc)
531 dev_err(dev, "send_request() failed (rc=%d)\n", rc);
533 if (key_dma_addr)
534 dma_unmap_single(dev, key_dma_addr, keylen, DMA_TO_DEVICE);
536 kfree_sensitive(key);
538 return rc;
541 static int cc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
542 unsigned int keylen)
544 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
545 struct cc_crypto_req cc_req = {};
546 struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
547 unsigned int seq_len = 0;
548 struct device *dev = drvdata_to_dev(ctx->drvdata);
549 const u8 *enckey, *authkey;
550 int rc;
552 dev_dbg(dev, "Setting key in context @%p for %s. key=%p keylen=%u\n",
553 ctx, crypto_tfm_alg_name(crypto_aead_tfm(tfm)), key, keylen);
555 /* STAT_PHASE_0: Init and sanity checks */
557 if (ctx->auth_mode != DRV_HASH_NULL) { /* authenc() alg. */
558 struct crypto_authenc_keys keys;
560 rc = crypto_authenc_extractkeys(&keys, key, keylen);
561 if (rc)
562 return rc;
563 enckey = keys.enckey;
564 authkey = keys.authkey;
565 ctx->enc_keylen = keys.enckeylen;
566 ctx->auth_keylen = keys.authkeylen;
568 if (ctx->cipher_mode == DRV_CIPHER_CTR) {
569 /* the nonce is stored in bytes at end of key */
570 if (ctx->enc_keylen <
571 (AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE))
572 return -EINVAL;
573 /* Copy nonce from last 4 bytes in CTR key to
574 * first 4 bytes in CTR IV
576 memcpy(ctx->ctr_nonce, enckey + ctx->enc_keylen -
577 CTR_RFC3686_NONCE_SIZE, CTR_RFC3686_NONCE_SIZE);
578 /* Set CTR key size */
579 ctx->enc_keylen -= CTR_RFC3686_NONCE_SIZE;
581 } else { /* non-authenc - has just one key */
582 enckey = key;
583 authkey = NULL;
584 ctx->enc_keylen = keylen;
585 ctx->auth_keylen = 0;
588 rc = validate_keys_sizes(ctx);
589 if (rc)
590 return rc;
592 /* STAT_PHASE_1: Copy key to ctx */
594 /* Get key material */
595 memcpy(ctx->enckey, enckey, ctx->enc_keylen);
596 if (ctx->enc_keylen == 24)
597 memset(ctx->enckey + 24, 0, CC_AES_KEY_SIZE_MAX - 24);
598 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
599 memcpy(ctx->auth_state.xcbc.xcbc_keys, authkey,
600 ctx->auth_keylen);
601 } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC */
602 rc = cc_get_plain_hmac_key(tfm, authkey, ctx->auth_keylen);
603 if (rc)
604 return rc;
607 /* STAT_PHASE_2: Create sequence */
609 switch (ctx->auth_mode) {
610 case DRV_HASH_SHA1:
611 case DRV_HASH_SHA256:
612 seq_len = hmac_setkey(desc, ctx);
613 break;
614 case DRV_HASH_XCBC_MAC:
615 seq_len = xcbc_setkey(desc, ctx);
616 break;
617 case DRV_HASH_NULL: /* non-authenc modes, e.g., CCM */
618 break; /* No auth. key setup */
619 default:
620 dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
621 return -ENOTSUPP;
624 /* STAT_PHASE_3: Submit sequence to HW */
626 if (seq_len > 0) { /* For CCM there is no sequence to setup the key */
627 rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, seq_len);
628 if (rc) {
629 dev_err(dev, "send_request() failed (rc=%d)\n", rc);
630 return rc;
634 /* Update STAT_PHASE_3 */
635 return rc;
638 static int cc_des3_aead_setkey(struct crypto_aead *aead, const u8 *key,
639 unsigned int keylen)
641 struct crypto_authenc_keys keys;
642 int err;
644 err = crypto_authenc_extractkeys(&keys, key, keylen);
645 if (unlikely(err))
646 return err;
648 err = verify_aead_des3_key(aead, keys.enckey, keys.enckeylen) ?:
649 cc_aead_setkey(aead, key, keylen);
651 memzero_explicit(&keys, sizeof(keys));
652 return err;
655 static int cc_rfc4309_ccm_setkey(struct crypto_aead *tfm, const u8 *key,
656 unsigned int keylen)
658 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
660 if (keylen < 3)
661 return -EINVAL;
663 keylen -= 3;
664 memcpy(ctx->ctr_nonce, key + keylen, 3);
666 return cc_aead_setkey(tfm, key, keylen);
669 static int cc_aead_setauthsize(struct crypto_aead *authenc,
670 unsigned int authsize)
672 struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
673 struct device *dev = drvdata_to_dev(ctx->drvdata);
675 /* Unsupported auth. sizes */
676 if (authsize == 0 ||
677 authsize > crypto_aead_maxauthsize(authenc)) {
678 return -ENOTSUPP;
681 ctx->authsize = authsize;
682 dev_dbg(dev, "authlen=%d\n", ctx->authsize);
684 return 0;
687 static int cc_rfc4309_ccm_setauthsize(struct crypto_aead *authenc,
688 unsigned int authsize)
690 switch (authsize) {
691 case 8:
692 case 12:
693 case 16:
694 break;
695 default:
696 return -EINVAL;
699 return cc_aead_setauthsize(authenc, authsize);
702 static int cc_ccm_setauthsize(struct crypto_aead *authenc,
703 unsigned int authsize)
705 switch (authsize) {
706 case 4:
707 case 6:
708 case 8:
709 case 10:
710 case 12:
711 case 14:
712 case 16:
713 break;
714 default:
715 return -EINVAL;
718 return cc_aead_setauthsize(authenc, authsize);
721 static void cc_set_assoc_desc(struct aead_request *areq, unsigned int flow_mode,
722 struct cc_hw_desc desc[], unsigned int *seq_size)
724 struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
725 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
726 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(areq);
727 enum cc_req_dma_buf_type assoc_dma_type = areq_ctx->assoc_buff_type;
728 unsigned int idx = *seq_size;
729 struct device *dev = drvdata_to_dev(ctx->drvdata);
731 switch (assoc_dma_type) {
732 case CC_DMA_BUF_DLLI:
733 dev_dbg(dev, "ASSOC buffer type DLLI\n");
734 hw_desc_init(&desc[idx]);
735 set_din_type(&desc[idx], DMA_DLLI, sg_dma_address(areq->src),
736 areq_ctx->assoclen, NS_BIT);
737 set_flow_mode(&desc[idx], flow_mode);
738 if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
739 areq_ctx->cryptlen > 0)
740 set_din_not_last_indication(&desc[idx]);
741 break;
742 case CC_DMA_BUF_MLLI:
743 dev_dbg(dev, "ASSOC buffer type MLLI\n");
744 hw_desc_init(&desc[idx]);
745 set_din_type(&desc[idx], DMA_MLLI, areq_ctx->assoc.sram_addr,
746 areq_ctx->assoc.mlli_nents, NS_BIT);
747 set_flow_mode(&desc[idx], flow_mode);
748 if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
749 areq_ctx->cryptlen > 0)
750 set_din_not_last_indication(&desc[idx]);
751 break;
752 case CC_DMA_BUF_NULL:
753 default:
754 dev_err(dev, "Invalid ASSOC buffer type\n");
757 *seq_size = (++idx);
760 static void cc_proc_authen_desc(struct aead_request *areq,
761 unsigned int flow_mode,
762 struct cc_hw_desc desc[],
763 unsigned int *seq_size, int direct)
765 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(areq);
766 enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
767 unsigned int idx = *seq_size;
768 struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
769 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
770 struct device *dev = drvdata_to_dev(ctx->drvdata);
772 switch (data_dma_type) {
773 case CC_DMA_BUF_DLLI:
775 struct scatterlist *cipher =
776 (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
777 areq_ctx->dst_sgl : areq_ctx->src_sgl;
779 unsigned int offset =
780 (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
781 areq_ctx->dst_offset : areq_ctx->src_offset;
782 dev_dbg(dev, "AUTHENC: SRC/DST buffer type DLLI\n");
783 hw_desc_init(&desc[idx]);
784 set_din_type(&desc[idx], DMA_DLLI,
785 (sg_dma_address(cipher) + offset),
786 areq_ctx->cryptlen, NS_BIT);
787 set_flow_mode(&desc[idx], flow_mode);
788 break;
790 case CC_DMA_BUF_MLLI:
792 /* DOUBLE-PASS flow (as default)
793 * assoc. + iv + data -compact in one table
794 * if assoclen is ZERO only IV perform
796 u32 mlli_addr = areq_ctx->assoc.sram_addr;
797 u32 mlli_nents = areq_ctx->assoc.mlli_nents;
799 if (areq_ctx->is_single_pass) {
800 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
801 mlli_addr = areq_ctx->dst.sram_addr;
802 mlli_nents = areq_ctx->dst.mlli_nents;
803 } else {
804 mlli_addr = areq_ctx->src.sram_addr;
805 mlli_nents = areq_ctx->src.mlli_nents;
809 dev_dbg(dev, "AUTHENC: SRC/DST buffer type MLLI\n");
810 hw_desc_init(&desc[idx]);
811 set_din_type(&desc[idx], DMA_MLLI, mlli_addr, mlli_nents,
812 NS_BIT);
813 set_flow_mode(&desc[idx], flow_mode);
814 break;
816 case CC_DMA_BUF_NULL:
817 default:
818 dev_err(dev, "AUTHENC: Invalid SRC/DST buffer type\n");
821 *seq_size = (++idx);
824 static void cc_proc_cipher_desc(struct aead_request *areq,
825 unsigned int flow_mode,
826 struct cc_hw_desc desc[],
827 unsigned int *seq_size)
829 unsigned int idx = *seq_size;
830 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(areq);
831 enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
832 struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
833 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
834 struct device *dev = drvdata_to_dev(ctx->drvdata);
836 if (areq_ctx->cryptlen == 0)
837 return; /*null processing*/
839 switch (data_dma_type) {
840 case CC_DMA_BUF_DLLI:
841 dev_dbg(dev, "CIPHER: SRC/DST buffer type DLLI\n");
842 hw_desc_init(&desc[idx]);
843 set_din_type(&desc[idx], DMA_DLLI,
844 (sg_dma_address(areq_ctx->src_sgl) +
845 areq_ctx->src_offset), areq_ctx->cryptlen,
846 NS_BIT);
847 set_dout_dlli(&desc[idx],
848 (sg_dma_address(areq_ctx->dst_sgl) +
849 areq_ctx->dst_offset),
850 areq_ctx->cryptlen, NS_BIT, 0);
851 set_flow_mode(&desc[idx], flow_mode);
852 break;
853 case CC_DMA_BUF_MLLI:
854 dev_dbg(dev, "CIPHER: SRC/DST buffer type MLLI\n");
855 hw_desc_init(&desc[idx]);
856 set_din_type(&desc[idx], DMA_MLLI, areq_ctx->src.sram_addr,
857 areq_ctx->src.mlli_nents, NS_BIT);
858 set_dout_mlli(&desc[idx], areq_ctx->dst.sram_addr,
859 areq_ctx->dst.mlli_nents, NS_BIT, 0);
860 set_flow_mode(&desc[idx], flow_mode);
861 break;
862 case CC_DMA_BUF_NULL:
863 default:
864 dev_err(dev, "CIPHER: Invalid SRC/DST buffer type\n");
867 *seq_size = (++idx);
870 static void cc_proc_digest_desc(struct aead_request *req,
871 struct cc_hw_desc desc[],
872 unsigned int *seq_size)
874 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
875 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
876 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
877 unsigned int idx = *seq_size;
878 unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
879 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
880 int direct = req_ctx->gen_ctx.op_type;
882 /* Get final ICV result */
883 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
884 hw_desc_init(&desc[idx]);
885 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
886 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
887 set_dout_dlli(&desc[idx], req_ctx->icv_dma_addr, ctx->authsize,
888 NS_BIT, 1);
889 set_queue_last_ind(ctx->drvdata, &desc[idx]);
890 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
891 set_aes_not_hash_mode(&desc[idx]);
892 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
893 } else {
894 set_cipher_config0(&desc[idx],
895 HASH_DIGEST_RESULT_LITTLE_ENDIAN);
896 set_cipher_mode(&desc[idx], hash_mode);
898 } else { /*Decrypt*/
899 /* Get ICV out from hardware */
900 hw_desc_init(&desc[idx]);
901 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
902 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
903 set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr,
904 ctx->authsize, NS_BIT, 1);
905 set_queue_last_ind(ctx->drvdata, &desc[idx]);
906 set_cipher_config0(&desc[idx],
907 HASH_DIGEST_RESULT_LITTLE_ENDIAN);
908 set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
909 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
910 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
911 set_aes_not_hash_mode(&desc[idx]);
912 } else {
913 set_cipher_mode(&desc[idx], hash_mode);
917 *seq_size = (++idx);
920 static void cc_set_cipher_desc(struct aead_request *req,
921 struct cc_hw_desc desc[],
922 unsigned int *seq_size)
924 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
925 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
926 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
927 unsigned int hw_iv_size = req_ctx->hw_iv_size;
928 unsigned int idx = *seq_size;
929 int direct = req_ctx->gen_ctx.op_type;
931 /* Setup cipher state */
932 hw_desc_init(&desc[idx]);
933 set_cipher_config0(&desc[idx], direct);
934 set_flow_mode(&desc[idx], ctx->flow_mode);
935 set_din_type(&desc[idx], DMA_DLLI, req_ctx->gen_ctx.iv_dma_addr,
936 hw_iv_size, NS_BIT);
937 if (ctx->cipher_mode == DRV_CIPHER_CTR)
938 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
939 else
940 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
941 set_cipher_mode(&desc[idx], ctx->cipher_mode);
942 idx++;
944 /* Setup enc. key */
945 hw_desc_init(&desc[idx]);
946 set_cipher_config0(&desc[idx], direct);
947 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
948 set_flow_mode(&desc[idx], ctx->flow_mode);
949 if (ctx->flow_mode == S_DIN_to_AES) {
950 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
951 ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
952 ctx->enc_keylen), NS_BIT);
953 set_key_size_aes(&desc[idx], ctx->enc_keylen);
954 } else {
955 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
956 ctx->enc_keylen, NS_BIT);
957 set_key_size_des(&desc[idx], ctx->enc_keylen);
959 set_cipher_mode(&desc[idx], ctx->cipher_mode);
960 idx++;
962 *seq_size = idx;
965 static void cc_proc_cipher(struct aead_request *req, struct cc_hw_desc desc[],
966 unsigned int *seq_size, unsigned int data_flow_mode)
968 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
969 int direct = req_ctx->gen_ctx.op_type;
970 unsigned int idx = *seq_size;
972 if (req_ctx->cryptlen == 0)
973 return; /*null processing*/
975 cc_set_cipher_desc(req, desc, &idx);
976 cc_proc_cipher_desc(req, data_flow_mode, desc, &idx);
977 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
978 /* We must wait for DMA to write all cipher */
979 hw_desc_init(&desc[idx]);
980 set_din_no_dma(&desc[idx], 0, 0xfffff0);
981 set_dout_no_dma(&desc[idx], 0, 0, 1);
982 idx++;
985 *seq_size = idx;
988 static void cc_set_hmac_desc(struct aead_request *req, struct cc_hw_desc desc[],
989 unsigned int *seq_size)
991 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
992 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
993 unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
994 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
995 unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
996 CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
997 unsigned int idx = *seq_size;
999 /* Loading hash ipad xor key state */
1000 hw_desc_init(&desc[idx]);
1001 set_cipher_mode(&desc[idx], hash_mode);
1002 set_din_type(&desc[idx], DMA_DLLI,
1003 ctx->auth_state.hmac.ipad_opad_dma_addr, digest_size,
1004 NS_BIT);
1005 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1006 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1007 idx++;
1009 /* Load init. digest len (64 bytes) */
1010 hw_desc_init(&desc[idx]);
1011 set_cipher_mode(&desc[idx], hash_mode);
1012 set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1013 ctx->hash_len);
1014 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1015 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1016 idx++;
1018 *seq_size = idx;
1021 static void cc_set_xcbc_desc(struct aead_request *req, struct cc_hw_desc desc[],
1022 unsigned int *seq_size)
1024 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1025 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1026 unsigned int idx = *seq_size;
1028 /* Loading MAC state */
1029 hw_desc_init(&desc[idx]);
1030 set_din_const(&desc[idx], 0, CC_AES_BLOCK_SIZE);
1031 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1032 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1033 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1034 set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1035 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1036 set_aes_not_hash_mode(&desc[idx]);
1037 idx++;
1039 /* Setup XCBC MAC K1 */
1040 hw_desc_init(&desc[idx]);
1041 set_din_type(&desc[idx], DMA_DLLI,
1042 ctx->auth_state.xcbc.xcbc_keys_dma_addr,
1043 AES_KEYSIZE_128, NS_BIT);
1044 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1045 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1046 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1047 set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1048 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1049 set_aes_not_hash_mode(&desc[idx]);
1050 idx++;
1052 /* Setup XCBC MAC K2 */
1053 hw_desc_init(&desc[idx]);
1054 set_din_type(&desc[idx], DMA_DLLI,
1055 (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1056 AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1057 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1058 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1059 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1060 set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1061 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1062 set_aes_not_hash_mode(&desc[idx]);
1063 idx++;
1065 /* Setup XCBC MAC K3 */
1066 hw_desc_init(&desc[idx]);
1067 set_din_type(&desc[idx], DMA_DLLI,
1068 (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1069 2 * AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1070 set_setup_mode(&desc[idx], SETUP_LOAD_STATE2);
1071 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1072 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1073 set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1074 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1075 set_aes_not_hash_mode(&desc[idx]);
1076 idx++;
1078 *seq_size = idx;
1081 static void cc_proc_header_desc(struct aead_request *req,
1082 struct cc_hw_desc desc[],
1083 unsigned int *seq_size)
1085 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
1086 unsigned int idx = *seq_size;
1088 /* Hash associated data */
1089 if (areq_ctx->assoclen > 0)
1090 cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1092 /* Hash IV */
1093 *seq_size = idx;
1096 static void cc_proc_scheme_desc(struct aead_request *req,
1097 struct cc_hw_desc desc[],
1098 unsigned int *seq_size)
1100 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1101 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1102 struct cc_aead_handle *aead_handle = ctx->drvdata->aead_handle;
1103 unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
1104 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
1105 unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
1106 CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
1107 unsigned int idx = *seq_size;
1109 hw_desc_init(&desc[idx]);
1110 set_cipher_mode(&desc[idx], hash_mode);
1111 set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1112 ctx->hash_len);
1113 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1114 set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
1115 set_cipher_do(&desc[idx], DO_PAD);
1116 idx++;
1118 /* Get final ICV result */
1119 hw_desc_init(&desc[idx]);
1120 set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1121 digest_size);
1122 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1123 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1124 set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1125 set_cipher_mode(&desc[idx], hash_mode);
1126 idx++;
1128 /* Loading hash opad xor key state */
1129 hw_desc_init(&desc[idx]);
1130 set_cipher_mode(&desc[idx], hash_mode);
1131 set_din_type(&desc[idx], DMA_DLLI,
1132 (ctx->auth_state.hmac.ipad_opad_dma_addr + digest_size),
1133 digest_size, NS_BIT);
1134 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1135 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1136 idx++;
1138 /* Load init. digest len (64 bytes) */
1139 hw_desc_init(&desc[idx]);
1140 set_cipher_mode(&desc[idx], hash_mode);
1141 set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1142 ctx->hash_len);
1143 set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1144 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1145 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1146 idx++;
1148 /* Perform HASH update */
1149 hw_desc_init(&desc[idx]);
1150 set_din_sram(&desc[idx], aead_handle->sram_workspace_addr,
1151 digest_size);
1152 set_flow_mode(&desc[idx], DIN_HASH);
1153 idx++;
1155 *seq_size = idx;
1158 static void cc_mlli_to_sram(struct aead_request *req,
1159 struct cc_hw_desc desc[], unsigned int *seq_size)
1161 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1162 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1163 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1164 struct device *dev = drvdata_to_dev(ctx->drvdata);
1166 if ((req_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
1167 req_ctx->data_buff_type == CC_DMA_BUF_MLLI ||
1168 !req_ctx->is_single_pass) && req_ctx->mlli_params.mlli_len) {
1169 dev_dbg(dev, "Copy-to-sram: mlli_dma=%08x, mlli_size=%u\n",
1170 ctx->drvdata->mlli_sram_addr,
1171 req_ctx->mlli_params.mlli_len);
1172 /* Copy MLLI table host-to-sram */
1173 hw_desc_init(&desc[*seq_size]);
1174 set_din_type(&desc[*seq_size], DMA_DLLI,
1175 req_ctx->mlli_params.mlli_dma_addr,
1176 req_ctx->mlli_params.mlli_len, NS_BIT);
1177 set_dout_sram(&desc[*seq_size],
1178 ctx->drvdata->mlli_sram_addr,
1179 req_ctx->mlli_params.mlli_len);
1180 set_flow_mode(&desc[*seq_size], BYPASS);
1181 (*seq_size)++;
1185 static enum cc_flow_mode cc_get_data_flow(enum drv_crypto_direction direct,
1186 enum cc_flow_mode setup_flow_mode,
1187 bool is_single_pass)
1189 enum cc_flow_mode data_flow_mode;
1191 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1192 if (setup_flow_mode == S_DIN_to_AES)
1193 data_flow_mode = is_single_pass ?
1194 AES_to_HASH_and_DOUT : DIN_AES_DOUT;
1195 else
1196 data_flow_mode = is_single_pass ?
1197 DES_to_HASH_and_DOUT : DIN_DES_DOUT;
1198 } else { /* Decrypt */
1199 if (setup_flow_mode == S_DIN_to_AES)
1200 data_flow_mode = is_single_pass ?
1201 AES_and_HASH : DIN_AES_DOUT;
1202 else
1203 data_flow_mode = is_single_pass ?
1204 DES_and_HASH : DIN_DES_DOUT;
1207 return data_flow_mode;
1210 static void cc_hmac_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1211 unsigned int *seq_size)
1213 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1214 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1215 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1216 int direct = req_ctx->gen_ctx.op_type;
1217 unsigned int data_flow_mode =
1218 cc_get_data_flow(direct, ctx->flow_mode,
1219 req_ctx->is_single_pass);
1221 if (req_ctx->is_single_pass) {
1223 * Single-pass flow
1225 cc_set_hmac_desc(req, desc, seq_size);
1226 cc_set_cipher_desc(req, desc, seq_size);
1227 cc_proc_header_desc(req, desc, seq_size);
1228 cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1229 cc_proc_scheme_desc(req, desc, seq_size);
1230 cc_proc_digest_desc(req, desc, seq_size);
1231 return;
1235 * Double-pass flow
1236 * Fallback for unsupported single-pass modes,
1237 * i.e. using assoc. data of non-word-multiple
1239 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1240 /* encrypt first.. */
1241 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1242 /* authenc after..*/
1243 cc_set_hmac_desc(req, desc, seq_size);
1244 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1245 cc_proc_scheme_desc(req, desc, seq_size);
1246 cc_proc_digest_desc(req, desc, seq_size);
1248 } else { /*DECRYPT*/
1249 /* authenc first..*/
1250 cc_set_hmac_desc(req, desc, seq_size);
1251 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1252 cc_proc_scheme_desc(req, desc, seq_size);
1253 /* decrypt after.. */
1254 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1255 /* read the digest result with setting the completion bit
1256 * must be after the cipher operation
1258 cc_proc_digest_desc(req, desc, seq_size);
1262 static void
1263 cc_xcbc_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1264 unsigned int *seq_size)
1266 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1267 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1268 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1269 int direct = req_ctx->gen_ctx.op_type;
1270 unsigned int data_flow_mode =
1271 cc_get_data_flow(direct, ctx->flow_mode,
1272 req_ctx->is_single_pass);
1274 if (req_ctx->is_single_pass) {
1276 * Single-pass flow
1278 cc_set_xcbc_desc(req, desc, seq_size);
1279 cc_set_cipher_desc(req, desc, seq_size);
1280 cc_proc_header_desc(req, desc, seq_size);
1281 cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1282 cc_proc_digest_desc(req, desc, seq_size);
1283 return;
1287 * Double-pass flow
1288 * Fallback for unsupported single-pass modes,
1289 * i.e. using assoc. data of non-word-multiple
1291 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1292 /* encrypt first.. */
1293 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1294 /* authenc after.. */
1295 cc_set_xcbc_desc(req, desc, seq_size);
1296 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1297 cc_proc_digest_desc(req, desc, seq_size);
1298 } else { /*DECRYPT*/
1299 /* authenc first.. */
1300 cc_set_xcbc_desc(req, desc, seq_size);
1301 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1302 /* decrypt after..*/
1303 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1304 /* read the digest result with setting the completion bit
1305 * must be after the cipher operation
1307 cc_proc_digest_desc(req, desc, seq_size);
1311 static int validate_data_size(struct cc_aead_ctx *ctx,
1312 enum drv_crypto_direction direct,
1313 struct aead_request *req)
1315 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
1316 struct device *dev = drvdata_to_dev(ctx->drvdata);
1317 unsigned int assoclen = areq_ctx->assoclen;
1318 unsigned int cipherlen = (direct == DRV_CRYPTO_DIRECTION_DECRYPT) ?
1319 (req->cryptlen - ctx->authsize) : req->cryptlen;
1321 if (direct == DRV_CRYPTO_DIRECTION_DECRYPT &&
1322 req->cryptlen < ctx->authsize)
1323 goto data_size_err;
1325 areq_ctx->is_single_pass = true; /*defaulted to fast flow*/
1327 switch (ctx->flow_mode) {
1328 case S_DIN_to_AES:
1329 if (ctx->cipher_mode == DRV_CIPHER_CBC &&
1330 !IS_ALIGNED(cipherlen, AES_BLOCK_SIZE))
1331 goto data_size_err;
1332 if (ctx->cipher_mode == DRV_CIPHER_CCM)
1333 break;
1334 if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1335 if (areq_ctx->plaintext_authenticate_only)
1336 areq_ctx->is_single_pass = false;
1337 break;
1340 if (!IS_ALIGNED(assoclen, sizeof(u32)))
1341 areq_ctx->is_single_pass = false;
1343 if (ctx->cipher_mode == DRV_CIPHER_CTR &&
1344 !IS_ALIGNED(cipherlen, sizeof(u32)))
1345 areq_ctx->is_single_pass = false;
1347 break;
1348 case S_DIN_to_DES:
1349 if (!IS_ALIGNED(cipherlen, DES_BLOCK_SIZE))
1350 goto data_size_err;
1351 if (!IS_ALIGNED(assoclen, DES_BLOCK_SIZE))
1352 areq_ctx->is_single_pass = false;
1353 break;
1354 default:
1355 dev_err(dev, "Unexpected flow mode (%d)\n", ctx->flow_mode);
1356 goto data_size_err;
1359 return 0;
1361 data_size_err:
1362 return -EINVAL;
1365 static unsigned int format_ccm_a0(u8 *pa0_buff, u32 header_size)
1367 unsigned int len = 0;
1369 if (header_size == 0)
1370 return 0;
1372 if (header_size < ((1UL << 16) - (1UL << 8))) {
1373 len = 2;
1375 pa0_buff[0] = (header_size >> 8) & 0xFF;
1376 pa0_buff[1] = header_size & 0xFF;
1377 } else {
1378 len = 6;
1380 pa0_buff[0] = 0xFF;
1381 pa0_buff[1] = 0xFE;
1382 pa0_buff[2] = (header_size >> 24) & 0xFF;
1383 pa0_buff[3] = (header_size >> 16) & 0xFF;
1384 pa0_buff[4] = (header_size >> 8) & 0xFF;
1385 pa0_buff[5] = header_size & 0xFF;
1388 return len;
1391 static int set_msg_len(u8 *block, unsigned int msglen, unsigned int csize)
1393 __be32 data;
1395 memset(block, 0, csize);
1396 block += csize;
1398 if (csize >= 4)
1399 csize = 4;
1400 else if (msglen > (1 << (8 * csize)))
1401 return -EOVERFLOW;
1403 data = cpu_to_be32(msglen);
1404 memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
1406 return 0;
1409 static int cc_ccm(struct aead_request *req, struct cc_hw_desc desc[],
1410 unsigned int *seq_size)
1412 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1413 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1414 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1415 unsigned int idx = *seq_size;
1416 unsigned int cipher_flow_mode;
1417 dma_addr_t mac_result;
1419 if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1420 cipher_flow_mode = AES_to_HASH_and_DOUT;
1421 mac_result = req_ctx->mac_buf_dma_addr;
1422 } else { /* Encrypt */
1423 cipher_flow_mode = AES_and_HASH;
1424 mac_result = req_ctx->icv_dma_addr;
1427 /* load key */
1428 hw_desc_init(&desc[idx]);
1429 set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1430 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1431 ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
1432 ctx->enc_keylen), NS_BIT);
1433 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1434 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1435 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1436 set_flow_mode(&desc[idx], S_DIN_to_AES);
1437 idx++;
1439 /* load ctr state */
1440 hw_desc_init(&desc[idx]);
1441 set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1442 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1443 set_din_type(&desc[idx], DMA_DLLI,
1444 req_ctx->gen_ctx.iv_dma_addr, AES_BLOCK_SIZE, NS_BIT);
1445 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1446 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1447 set_flow_mode(&desc[idx], S_DIN_to_AES);
1448 idx++;
1450 /* load MAC key */
1451 hw_desc_init(&desc[idx]);
1452 set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1453 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1454 ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
1455 ctx->enc_keylen), NS_BIT);
1456 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1457 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1458 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1459 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1460 set_aes_not_hash_mode(&desc[idx]);
1461 idx++;
1463 /* load MAC state */
1464 hw_desc_init(&desc[idx]);
1465 set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1466 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1467 set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1468 AES_BLOCK_SIZE, NS_BIT);
1469 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1470 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1471 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1472 set_aes_not_hash_mode(&desc[idx]);
1473 idx++;
1475 /* process assoc data */
1476 if (req_ctx->assoclen > 0) {
1477 cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1478 } else {
1479 hw_desc_init(&desc[idx]);
1480 set_din_type(&desc[idx], DMA_DLLI,
1481 sg_dma_address(&req_ctx->ccm_adata_sg),
1482 AES_BLOCK_SIZE + req_ctx->ccm_hdr_size, NS_BIT);
1483 set_flow_mode(&desc[idx], DIN_HASH);
1484 idx++;
1487 /* process the cipher */
1488 if (req_ctx->cryptlen)
1489 cc_proc_cipher_desc(req, cipher_flow_mode, desc, &idx);
1491 /* Read temporal MAC */
1492 hw_desc_init(&desc[idx]);
1493 set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1494 set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, ctx->authsize,
1495 NS_BIT, 0);
1496 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1497 set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1498 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1499 set_aes_not_hash_mode(&desc[idx]);
1500 idx++;
1502 /* load AES-CTR state (for last MAC calculation)*/
1503 hw_desc_init(&desc[idx]);
1504 set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1505 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1506 set_din_type(&desc[idx], DMA_DLLI, req_ctx->ccm_iv0_dma_addr,
1507 AES_BLOCK_SIZE, NS_BIT);
1508 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1509 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1510 set_flow_mode(&desc[idx], S_DIN_to_AES);
1511 idx++;
1513 hw_desc_init(&desc[idx]);
1514 set_din_no_dma(&desc[idx], 0, 0xfffff0);
1515 set_dout_no_dma(&desc[idx], 0, 0, 1);
1516 idx++;
1518 /* encrypt the "T" value and store MAC in mac_state */
1519 hw_desc_init(&desc[idx]);
1520 set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1521 ctx->authsize, NS_BIT);
1522 set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1523 set_queue_last_ind(ctx->drvdata, &desc[idx]);
1524 set_flow_mode(&desc[idx], DIN_AES_DOUT);
1525 idx++;
1527 *seq_size = idx;
1528 return 0;
1531 static int config_ccm_adata(struct aead_request *req)
1533 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1534 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1535 struct device *dev = drvdata_to_dev(ctx->drvdata);
1536 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1537 //unsigned int size_of_a = 0, rem_a_size = 0;
1538 unsigned int lp = req->iv[0];
1539 /* Note: The code assume that req->iv[0] already contains the value
1540 * of L' of RFC3610
1542 unsigned int l = lp + 1; /* This is L' of RFC 3610. */
1543 unsigned int m = ctx->authsize; /* This is M' of RFC 3610. */
1544 u8 *b0 = req_ctx->ccm_config + CCM_B0_OFFSET;
1545 u8 *a0 = req_ctx->ccm_config + CCM_A0_OFFSET;
1546 u8 *ctr_count_0 = req_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET;
1547 unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1548 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1549 req->cryptlen :
1550 (req->cryptlen - ctx->authsize);
1551 int rc;
1553 memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1554 memset(req_ctx->ccm_config, 0, AES_BLOCK_SIZE * 3);
1556 /* taken from crypto/ccm.c */
1557 /* 2 <= L <= 8, so 1 <= L' <= 7. */
1558 if (l < 2 || l > 8) {
1559 dev_dbg(dev, "illegal iv value %X\n", req->iv[0]);
1560 return -EINVAL;
1562 memcpy(b0, req->iv, AES_BLOCK_SIZE);
1564 /* format control info per RFC 3610 and
1565 * NIST Special Publication 800-38C
1567 *b0 |= (8 * ((m - 2) / 2));
1568 if (req_ctx->assoclen > 0)
1569 *b0 |= 64; /* Enable bit 6 if Adata exists. */
1571 rc = set_msg_len(b0 + 16 - l, cryptlen, l); /* Write L'. */
1572 if (rc) {
1573 dev_err(dev, "message len overflow detected");
1574 return rc;
1576 /* END of "taken from crypto/ccm.c" */
1578 /* l(a) - size of associated data. */
1579 req_ctx->ccm_hdr_size = format_ccm_a0(a0, req_ctx->assoclen);
1581 memset(req->iv + 15 - req->iv[0], 0, req->iv[0] + 1);
1582 req->iv[15] = 1;
1584 memcpy(ctr_count_0, req->iv, AES_BLOCK_SIZE);
1585 ctr_count_0[15] = 0;
1587 return 0;
1590 static void cc_proc_rfc4309_ccm(struct aead_request *req)
1592 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1593 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1594 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
1596 /* L' */
1597 memset(areq_ctx->ctr_iv, 0, AES_BLOCK_SIZE);
1598 /* For RFC 4309, always use 4 bytes for message length
1599 * (at most 2^32-1 bytes).
1601 areq_ctx->ctr_iv[0] = 3;
1603 /* In RFC 4309 there is an 11-bytes nonce+IV part,
1604 * that we build here.
1606 memcpy(areq_ctx->ctr_iv + CCM_BLOCK_NONCE_OFFSET, ctx->ctr_nonce,
1607 CCM_BLOCK_NONCE_SIZE);
1608 memcpy(areq_ctx->ctr_iv + CCM_BLOCK_IV_OFFSET, req->iv,
1609 CCM_BLOCK_IV_SIZE);
1610 req->iv = areq_ctx->ctr_iv;
1613 static void cc_set_ghash_desc(struct aead_request *req,
1614 struct cc_hw_desc desc[], unsigned int *seq_size)
1616 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1617 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1618 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1619 unsigned int idx = *seq_size;
1621 /* load key to AES*/
1622 hw_desc_init(&desc[idx]);
1623 set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
1624 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1625 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1626 ctx->enc_keylen, NS_BIT);
1627 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1628 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1629 set_flow_mode(&desc[idx], S_DIN_to_AES);
1630 idx++;
1632 /* process one zero block to generate hkey */
1633 hw_desc_init(&desc[idx]);
1634 set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1635 set_dout_dlli(&desc[idx], req_ctx->hkey_dma_addr, AES_BLOCK_SIZE,
1636 NS_BIT, 0);
1637 set_flow_mode(&desc[idx], DIN_AES_DOUT);
1638 idx++;
1640 /* Memory Barrier */
1641 hw_desc_init(&desc[idx]);
1642 set_din_no_dma(&desc[idx], 0, 0xfffff0);
1643 set_dout_no_dma(&desc[idx], 0, 0, 1);
1644 idx++;
1646 /* Load GHASH subkey */
1647 hw_desc_init(&desc[idx]);
1648 set_din_type(&desc[idx], DMA_DLLI, req_ctx->hkey_dma_addr,
1649 AES_BLOCK_SIZE, NS_BIT);
1650 set_dout_no_dma(&desc[idx], 0, 0, 1);
1651 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1652 set_aes_not_hash_mode(&desc[idx]);
1653 set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1654 set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1655 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1656 idx++;
1658 /* Configure Hash Engine to work with GHASH.
1659 * Since it was not possible to extend HASH submodes to add GHASH,
1660 * The following command is necessary in order to
1661 * select GHASH (according to HW designers)
1663 hw_desc_init(&desc[idx]);
1664 set_din_no_dma(&desc[idx], 0, 0xfffff0);
1665 set_dout_no_dma(&desc[idx], 0, 0, 1);
1666 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1667 set_aes_not_hash_mode(&desc[idx]);
1668 set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1669 set_cipher_do(&desc[idx], 1); //1=AES_SK RKEK
1670 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1671 set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1672 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1673 idx++;
1675 /* Load GHASH initial STATE (which is 0). (for any hash there is an
1676 * initial state)
1678 hw_desc_init(&desc[idx]);
1679 set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1680 set_dout_no_dma(&desc[idx], 0, 0, 1);
1681 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1682 set_aes_not_hash_mode(&desc[idx]);
1683 set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1684 set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1685 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1686 idx++;
1688 *seq_size = idx;
1691 static void cc_set_gctr_desc(struct aead_request *req, struct cc_hw_desc desc[],
1692 unsigned int *seq_size)
1694 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1695 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1696 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1697 unsigned int idx = *seq_size;
1699 /* load key to AES*/
1700 hw_desc_init(&desc[idx]);
1701 set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1702 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1703 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1704 ctx->enc_keylen, NS_BIT);
1705 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1706 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1707 set_flow_mode(&desc[idx], S_DIN_to_AES);
1708 idx++;
1710 if (req_ctx->cryptlen && !req_ctx->plaintext_authenticate_only) {
1711 /* load AES/CTR initial CTR value inc by 2*/
1712 hw_desc_init(&desc[idx]);
1713 set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1714 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1715 set_din_type(&desc[idx], DMA_DLLI,
1716 req_ctx->gcm_iv_inc2_dma_addr, AES_BLOCK_SIZE,
1717 NS_BIT);
1718 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1719 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1720 set_flow_mode(&desc[idx], S_DIN_to_AES);
1721 idx++;
1724 *seq_size = idx;
1727 static void cc_proc_gcm_result(struct aead_request *req,
1728 struct cc_hw_desc desc[],
1729 unsigned int *seq_size)
1731 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1732 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1733 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1734 dma_addr_t mac_result;
1735 unsigned int idx = *seq_size;
1737 if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1738 mac_result = req_ctx->mac_buf_dma_addr;
1739 } else { /* Encrypt */
1740 mac_result = req_ctx->icv_dma_addr;
1743 /* process(ghash) gcm_block_len */
1744 hw_desc_init(&desc[idx]);
1745 set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_block_len_dma_addr,
1746 AES_BLOCK_SIZE, NS_BIT);
1747 set_flow_mode(&desc[idx], DIN_HASH);
1748 idx++;
1750 /* Store GHASH state after GHASH(Associated Data + Cipher +LenBlock) */
1751 hw_desc_init(&desc[idx]);
1752 set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1753 set_din_no_dma(&desc[idx], 0, 0xfffff0);
1754 set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, AES_BLOCK_SIZE,
1755 NS_BIT, 0);
1756 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1757 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1758 set_aes_not_hash_mode(&desc[idx]);
1760 idx++;
1762 /* load AES/CTR initial CTR value inc by 1*/
1763 hw_desc_init(&desc[idx]);
1764 set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1765 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1766 set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_iv_inc1_dma_addr,
1767 AES_BLOCK_SIZE, NS_BIT);
1768 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1769 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1770 set_flow_mode(&desc[idx], S_DIN_to_AES);
1771 idx++;
1773 /* Memory Barrier */
1774 hw_desc_init(&desc[idx]);
1775 set_din_no_dma(&desc[idx], 0, 0xfffff0);
1776 set_dout_no_dma(&desc[idx], 0, 0, 1);
1777 idx++;
1779 /* process GCTR on stored GHASH and store MAC in mac_state*/
1780 hw_desc_init(&desc[idx]);
1781 set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1782 set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1783 AES_BLOCK_SIZE, NS_BIT);
1784 set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1785 set_queue_last_ind(ctx->drvdata, &desc[idx]);
1786 set_flow_mode(&desc[idx], DIN_AES_DOUT);
1787 idx++;
1789 *seq_size = idx;
1792 static int cc_gcm(struct aead_request *req, struct cc_hw_desc desc[],
1793 unsigned int *seq_size)
1795 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1796 unsigned int cipher_flow_mode;
1798 //in RFC4543 no data to encrypt. just copy data from src to dest.
1799 if (req_ctx->plaintext_authenticate_only) {
1800 cc_proc_cipher_desc(req, BYPASS, desc, seq_size);
1801 cc_set_ghash_desc(req, desc, seq_size);
1802 /* process(ghash) assoc data */
1803 cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1804 cc_set_gctr_desc(req, desc, seq_size);
1805 cc_proc_gcm_result(req, desc, seq_size);
1806 return 0;
1809 if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1810 cipher_flow_mode = AES_and_HASH;
1811 } else { /* Encrypt */
1812 cipher_flow_mode = AES_to_HASH_and_DOUT;
1815 // for gcm and rfc4106.
1816 cc_set_ghash_desc(req, desc, seq_size);
1817 /* process(ghash) assoc data */
1818 if (req_ctx->assoclen > 0)
1819 cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1820 cc_set_gctr_desc(req, desc, seq_size);
1821 /* process(gctr+ghash) */
1822 if (req_ctx->cryptlen)
1823 cc_proc_cipher_desc(req, cipher_flow_mode, desc, seq_size);
1824 cc_proc_gcm_result(req, desc, seq_size);
1826 return 0;
1829 static int config_gcm_context(struct aead_request *req)
1831 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1832 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1833 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1834 struct device *dev = drvdata_to_dev(ctx->drvdata);
1836 unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1837 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1838 req->cryptlen :
1839 (req->cryptlen - ctx->authsize);
1840 __be32 counter = cpu_to_be32(2);
1842 dev_dbg(dev, "%s() cryptlen = %d, req_ctx->assoclen = %d ctx->authsize = %d\n",
1843 __func__, cryptlen, req_ctx->assoclen, ctx->authsize);
1845 memset(req_ctx->hkey, 0, AES_BLOCK_SIZE);
1847 memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1849 memcpy(req->iv + 12, &counter, 4);
1850 memcpy(req_ctx->gcm_iv_inc2, req->iv, 16);
1852 counter = cpu_to_be32(1);
1853 memcpy(req->iv + 12, &counter, 4);
1854 memcpy(req_ctx->gcm_iv_inc1, req->iv, 16);
1856 if (!req_ctx->plaintext_authenticate_only) {
1857 __be64 temp64;
1859 temp64 = cpu_to_be64(req_ctx->assoclen * 8);
1860 memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1861 temp64 = cpu_to_be64(cryptlen * 8);
1862 memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1863 } else {
1864 /* rfc4543=> all data(AAD,IV,Plain) are considered additional
1865 * data that is nothing is encrypted.
1867 __be64 temp64;
1869 temp64 = cpu_to_be64((req_ctx->assoclen + cryptlen) * 8);
1870 memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1871 temp64 = 0;
1872 memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1875 return 0;
1878 static void cc_proc_rfc4_gcm(struct aead_request *req)
1880 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1881 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1882 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
1884 memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_NONCE_OFFSET,
1885 ctx->ctr_nonce, GCM_BLOCK_RFC4_NONCE_SIZE);
1886 memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_IV_OFFSET, req->iv,
1887 GCM_BLOCK_RFC4_IV_SIZE);
1888 req->iv = areq_ctx->ctr_iv;
1891 static int cc_proc_aead(struct aead_request *req,
1892 enum drv_crypto_direction direct)
1894 int rc = 0;
1895 int seq_len = 0;
1896 struct cc_hw_desc desc[MAX_AEAD_PROCESS_SEQ];
1897 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1898 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1899 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
1900 struct device *dev = drvdata_to_dev(ctx->drvdata);
1901 struct cc_crypto_req cc_req = {};
1903 dev_dbg(dev, "%s context=%p req=%p iv=%p src=%p src_ofs=%d dst=%p dst_ofs=%d cryptolen=%d\n",
1904 ((direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ? "Enc" : "Dec"),
1905 ctx, req, req->iv, sg_virt(req->src), req->src->offset,
1906 sg_virt(req->dst), req->dst->offset, req->cryptlen);
1908 /* STAT_PHASE_0: Init and sanity checks */
1910 /* Check data length according to mode */
1911 if (validate_data_size(ctx, direct, req)) {
1912 dev_err(dev, "Unsupported crypt/assoc len %d/%d.\n",
1913 req->cryptlen, areq_ctx->assoclen);
1914 return -EINVAL;
1917 /* Setup request structure */
1918 cc_req.user_cb = cc_aead_complete;
1919 cc_req.user_arg = req;
1921 /* Setup request context */
1922 areq_ctx->gen_ctx.op_type = direct;
1923 areq_ctx->req_authsize = ctx->authsize;
1924 areq_ctx->cipher_mode = ctx->cipher_mode;
1926 /* STAT_PHASE_1: Map buffers */
1928 if (ctx->cipher_mode == DRV_CIPHER_CTR) {
1929 /* Build CTR IV - Copy nonce from last 4 bytes in
1930 * CTR key to first 4 bytes in CTR IV
1932 memcpy(areq_ctx->ctr_iv, ctx->ctr_nonce,
1933 CTR_RFC3686_NONCE_SIZE);
1934 memcpy(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE, req->iv,
1935 CTR_RFC3686_IV_SIZE);
1936 /* Initialize counter portion of counter block */
1937 *(__be32 *)(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE +
1938 CTR_RFC3686_IV_SIZE) = cpu_to_be32(1);
1940 /* Replace with counter iv */
1941 req->iv = areq_ctx->ctr_iv;
1942 areq_ctx->hw_iv_size = CTR_RFC3686_BLOCK_SIZE;
1943 } else if ((ctx->cipher_mode == DRV_CIPHER_CCM) ||
1944 (ctx->cipher_mode == DRV_CIPHER_GCTR)) {
1945 areq_ctx->hw_iv_size = AES_BLOCK_SIZE;
1946 if (areq_ctx->ctr_iv != req->iv) {
1947 memcpy(areq_ctx->ctr_iv, req->iv,
1948 crypto_aead_ivsize(tfm));
1949 req->iv = areq_ctx->ctr_iv;
1951 } else {
1952 areq_ctx->hw_iv_size = crypto_aead_ivsize(tfm);
1955 if (ctx->cipher_mode == DRV_CIPHER_CCM) {
1956 rc = config_ccm_adata(req);
1957 if (rc) {
1958 dev_dbg(dev, "config_ccm_adata() returned with a failure %d!",
1959 rc);
1960 goto exit;
1962 } else {
1963 areq_ctx->ccm_hdr_size = ccm_header_size_null;
1966 if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1967 rc = config_gcm_context(req);
1968 if (rc) {
1969 dev_dbg(dev, "config_gcm_context() returned with a failure %d!",
1970 rc);
1971 goto exit;
1975 rc = cc_map_aead_request(ctx->drvdata, req);
1976 if (rc) {
1977 dev_err(dev, "map_request() failed\n");
1978 goto exit;
1981 /* STAT_PHASE_2: Create sequence */
1983 /* Load MLLI tables to SRAM if necessary */
1984 cc_mlli_to_sram(req, desc, &seq_len);
1986 switch (ctx->auth_mode) {
1987 case DRV_HASH_SHA1:
1988 case DRV_HASH_SHA256:
1989 cc_hmac_authenc(req, desc, &seq_len);
1990 break;
1991 case DRV_HASH_XCBC_MAC:
1992 cc_xcbc_authenc(req, desc, &seq_len);
1993 break;
1994 case DRV_HASH_NULL:
1995 if (ctx->cipher_mode == DRV_CIPHER_CCM)
1996 cc_ccm(req, desc, &seq_len);
1997 if (ctx->cipher_mode == DRV_CIPHER_GCTR)
1998 cc_gcm(req, desc, &seq_len);
1999 break;
2000 default:
2001 dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
2002 cc_unmap_aead_request(dev, req);
2003 rc = -ENOTSUPP;
2004 goto exit;
2007 /* STAT_PHASE_3: Lock HW and push sequence */
2009 rc = cc_send_request(ctx->drvdata, &cc_req, desc, seq_len, &req->base);
2011 if (rc != -EINPROGRESS && rc != -EBUSY) {
2012 dev_err(dev, "send_request() failed (rc=%d)\n", rc);
2013 cc_unmap_aead_request(dev, req);
2016 exit:
2017 return rc;
2020 static int cc_aead_encrypt(struct aead_request *req)
2022 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2023 int rc;
2025 memset(areq_ctx, 0, sizeof(*areq_ctx));
2027 /* No generated IV required */
2028 areq_ctx->backup_iv = req->iv;
2029 areq_ctx->assoclen = req->assoclen;
2031 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2032 if (rc != -EINPROGRESS && rc != -EBUSY)
2033 req->iv = areq_ctx->backup_iv;
2035 return rc;
2038 static int cc_rfc4309_ccm_encrypt(struct aead_request *req)
2040 /* Very similar to cc_aead_encrypt() above. */
2042 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2043 int rc;
2045 rc = crypto_ipsec_check_assoclen(req->assoclen);
2046 if (rc)
2047 goto out;
2049 memset(areq_ctx, 0, sizeof(*areq_ctx));
2051 /* No generated IV required */
2052 areq_ctx->backup_iv = req->iv;
2053 areq_ctx->assoclen = req->assoclen - CCM_BLOCK_IV_SIZE;
2055 cc_proc_rfc4309_ccm(req);
2057 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2058 if (rc != -EINPROGRESS && rc != -EBUSY)
2059 req->iv = areq_ctx->backup_iv;
2060 out:
2061 return rc;
2064 static int cc_aead_decrypt(struct aead_request *req)
2066 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2067 int rc;
2069 memset(areq_ctx, 0, sizeof(*areq_ctx));
2071 /* No generated IV required */
2072 areq_ctx->backup_iv = req->iv;
2073 areq_ctx->assoclen = req->assoclen;
2075 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2076 if (rc != -EINPROGRESS && rc != -EBUSY)
2077 req->iv = areq_ctx->backup_iv;
2079 return rc;
2082 static int cc_rfc4309_ccm_decrypt(struct aead_request *req)
2084 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2085 int rc;
2087 rc = crypto_ipsec_check_assoclen(req->assoclen);
2088 if (rc)
2089 goto out;
2091 memset(areq_ctx, 0, sizeof(*areq_ctx));
2093 /* No generated IV required */
2094 areq_ctx->backup_iv = req->iv;
2095 areq_ctx->assoclen = req->assoclen - CCM_BLOCK_IV_SIZE;
2097 cc_proc_rfc4309_ccm(req);
2099 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2100 if (rc != -EINPROGRESS && rc != -EBUSY)
2101 req->iv = areq_ctx->backup_iv;
2103 out:
2104 return rc;
2107 static int cc_rfc4106_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2108 unsigned int keylen)
2110 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2111 struct device *dev = drvdata_to_dev(ctx->drvdata);
2113 dev_dbg(dev, "%s() keylen %d, key %p\n", __func__, keylen, key);
2115 if (keylen < 4)
2116 return -EINVAL;
2118 keylen -= 4;
2119 memcpy(ctx->ctr_nonce, key + keylen, 4);
2121 return cc_aead_setkey(tfm, key, keylen);
2124 static int cc_rfc4543_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2125 unsigned int keylen)
2127 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2128 struct device *dev = drvdata_to_dev(ctx->drvdata);
2130 dev_dbg(dev, "%s() keylen %d, key %p\n", __func__, keylen, key);
2132 if (keylen < 4)
2133 return -EINVAL;
2135 keylen -= 4;
2136 memcpy(ctx->ctr_nonce, key + keylen, 4);
2138 return cc_aead_setkey(tfm, key, keylen);
2141 static int cc_gcm_setauthsize(struct crypto_aead *authenc,
2142 unsigned int authsize)
2144 switch (authsize) {
2145 case 4:
2146 case 8:
2147 case 12:
2148 case 13:
2149 case 14:
2150 case 15:
2151 case 16:
2152 break;
2153 default:
2154 return -EINVAL;
2157 return cc_aead_setauthsize(authenc, authsize);
2160 static int cc_rfc4106_gcm_setauthsize(struct crypto_aead *authenc,
2161 unsigned int authsize)
2163 struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2164 struct device *dev = drvdata_to_dev(ctx->drvdata);
2166 dev_dbg(dev, "authsize %d\n", authsize);
2168 switch (authsize) {
2169 case 8:
2170 case 12:
2171 case 16:
2172 break;
2173 default:
2174 return -EINVAL;
2177 return cc_aead_setauthsize(authenc, authsize);
2180 static int cc_rfc4543_gcm_setauthsize(struct crypto_aead *authenc,
2181 unsigned int authsize)
2183 struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2184 struct device *dev = drvdata_to_dev(ctx->drvdata);
2186 dev_dbg(dev, "authsize %d\n", authsize);
2188 if (authsize != 16)
2189 return -EINVAL;
2191 return cc_aead_setauthsize(authenc, authsize);
2194 static int cc_rfc4106_gcm_encrypt(struct aead_request *req)
2196 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2197 int rc;
2199 rc = crypto_ipsec_check_assoclen(req->assoclen);
2200 if (rc)
2201 goto out;
2203 memset(areq_ctx, 0, sizeof(*areq_ctx));
2205 /* No generated IV required */
2206 areq_ctx->backup_iv = req->iv;
2207 areq_ctx->assoclen = req->assoclen - GCM_BLOCK_RFC4_IV_SIZE;
2209 cc_proc_rfc4_gcm(req);
2211 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2212 if (rc != -EINPROGRESS && rc != -EBUSY)
2213 req->iv = areq_ctx->backup_iv;
2214 out:
2215 return rc;
2218 static int cc_rfc4543_gcm_encrypt(struct aead_request *req)
2220 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2221 int rc;
2223 rc = crypto_ipsec_check_assoclen(req->assoclen);
2224 if (rc)
2225 goto out;
2227 memset(areq_ctx, 0, sizeof(*areq_ctx));
2229 //plaintext is not encrypted with rfc4543
2230 areq_ctx->plaintext_authenticate_only = true;
2232 /* No generated IV required */
2233 areq_ctx->backup_iv = req->iv;
2234 areq_ctx->assoclen = req->assoclen;
2236 cc_proc_rfc4_gcm(req);
2238 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2239 if (rc != -EINPROGRESS && rc != -EBUSY)
2240 req->iv = areq_ctx->backup_iv;
2241 out:
2242 return rc;
2245 static int cc_rfc4106_gcm_decrypt(struct aead_request *req)
2247 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2248 int rc;
2250 rc = crypto_ipsec_check_assoclen(req->assoclen);
2251 if (rc)
2252 goto out;
2254 memset(areq_ctx, 0, sizeof(*areq_ctx));
2256 /* No generated IV required */
2257 areq_ctx->backup_iv = req->iv;
2258 areq_ctx->assoclen = req->assoclen - GCM_BLOCK_RFC4_IV_SIZE;
2260 cc_proc_rfc4_gcm(req);
2262 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2263 if (rc != -EINPROGRESS && rc != -EBUSY)
2264 req->iv = areq_ctx->backup_iv;
2265 out:
2266 return rc;
2269 static int cc_rfc4543_gcm_decrypt(struct aead_request *req)
2271 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2272 int rc;
2274 rc = crypto_ipsec_check_assoclen(req->assoclen);
2275 if (rc)
2276 goto out;
2278 memset(areq_ctx, 0, sizeof(*areq_ctx));
2280 //plaintext is not decrypted with rfc4543
2281 areq_ctx->plaintext_authenticate_only = true;
2283 /* No generated IV required */
2284 areq_ctx->backup_iv = req->iv;
2285 areq_ctx->assoclen = req->assoclen;
2287 cc_proc_rfc4_gcm(req);
2289 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2290 if (rc != -EINPROGRESS && rc != -EBUSY)
2291 req->iv = areq_ctx->backup_iv;
2292 out:
2293 return rc;
2296 /* aead alg */
2297 static struct cc_alg_template aead_algs[] = {
2299 .name = "authenc(hmac(sha1),cbc(aes))",
2300 .driver_name = "authenc-hmac-sha1-cbc-aes-ccree",
2301 .blocksize = AES_BLOCK_SIZE,
2302 .template_aead = {
2303 .setkey = cc_aead_setkey,
2304 .setauthsize = cc_aead_setauthsize,
2305 .encrypt = cc_aead_encrypt,
2306 .decrypt = cc_aead_decrypt,
2307 .init = cc_aead_init,
2308 .exit = cc_aead_exit,
2309 .ivsize = AES_BLOCK_SIZE,
2310 .maxauthsize = SHA1_DIGEST_SIZE,
2312 .cipher_mode = DRV_CIPHER_CBC,
2313 .flow_mode = S_DIN_to_AES,
2314 .auth_mode = DRV_HASH_SHA1,
2315 .min_hw_rev = CC_HW_REV_630,
2316 .std_body = CC_STD_NIST,
2319 .name = "authenc(hmac(sha1),cbc(des3_ede))",
2320 .driver_name = "authenc-hmac-sha1-cbc-des3-ccree",
2321 .blocksize = DES3_EDE_BLOCK_SIZE,
2322 .template_aead = {
2323 .setkey = cc_des3_aead_setkey,
2324 .setauthsize = cc_aead_setauthsize,
2325 .encrypt = cc_aead_encrypt,
2326 .decrypt = cc_aead_decrypt,
2327 .init = cc_aead_init,
2328 .exit = cc_aead_exit,
2329 .ivsize = DES3_EDE_BLOCK_SIZE,
2330 .maxauthsize = SHA1_DIGEST_SIZE,
2332 .cipher_mode = DRV_CIPHER_CBC,
2333 .flow_mode = S_DIN_to_DES,
2334 .auth_mode = DRV_HASH_SHA1,
2335 .min_hw_rev = CC_HW_REV_630,
2336 .std_body = CC_STD_NIST,
2339 .name = "authenc(hmac(sha256),cbc(aes))",
2340 .driver_name = "authenc-hmac-sha256-cbc-aes-ccree",
2341 .blocksize = AES_BLOCK_SIZE,
2342 .template_aead = {
2343 .setkey = cc_aead_setkey,
2344 .setauthsize = cc_aead_setauthsize,
2345 .encrypt = cc_aead_encrypt,
2346 .decrypt = cc_aead_decrypt,
2347 .init = cc_aead_init,
2348 .exit = cc_aead_exit,
2349 .ivsize = AES_BLOCK_SIZE,
2350 .maxauthsize = SHA256_DIGEST_SIZE,
2352 .cipher_mode = DRV_CIPHER_CBC,
2353 .flow_mode = S_DIN_to_AES,
2354 .auth_mode = DRV_HASH_SHA256,
2355 .min_hw_rev = CC_HW_REV_630,
2356 .std_body = CC_STD_NIST,
2359 .name = "authenc(hmac(sha256),cbc(des3_ede))",
2360 .driver_name = "authenc-hmac-sha256-cbc-des3-ccree",
2361 .blocksize = DES3_EDE_BLOCK_SIZE,
2362 .template_aead = {
2363 .setkey = cc_des3_aead_setkey,
2364 .setauthsize = cc_aead_setauthsize,
2365 .encrypt = cc_aead_encrypt,
2366 .decrypt = cc_aead_decrypt,
2367 .init = cc_aead_init,
2368 .exit = cc_aead_exit,
2369 .ivsize = DES3_EDE_BLOCK_SIZE,
2370 .maxauthsize = SHA256_DIGEST_SIZE,
2372 .cipher_mode = DRV_CIPHER_CBC,
2373 .flow_mode = S_DIN_to_DES,
2374 .auth_mode = DRV_HASH_SHA256,
2375 .min_hw_rev = CC_HW_REV_630,
2376 .std_body = CC_STD_NIST,
2379 .name = "authenc(xcbc(aes),cbc(aes))",
2380 .driver_name = "authenc-xcbc-aes-cbc-aes-ccree",
2381 .blocksize = AES_BLOCK_SIZE,
2382 .template_aead = {
2383 .setkey = cc_aead_setkey,
2384 .setauthsize = cc_aead_setauthsize,
2385 .encrypt = cc_aead_encrypt,
2386 .decrypt = cc_aead_decrypt,
2387 .init = cc_aead_init,
2388 .exit = cc_aead_exit,
2389 .ivsize = AES_BLOCK_SIZE,
2390 .maxauthsize = AES_BLOCK_SIZE,
2392 .cipher_mode = DRV_CIPHER_CBC,
2393 .flow_mode = S_DIN_to_AES,
2394 .auth_mode = DRV_HASH_XCBC_MAC,
2395 .min_hw_rev = CC_HW_REV_630,
2396 .std_body = CC_STD_NIST,
2399 .name = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
2400 .driver_name = "authenc-hmac-sha1-rfc3686-ctr-aes-ccree",
2401 .blocksize = 1,
2402 .template_aead = {
2403 .setkey = cc_aead_setkey,
2404 .setauthsize = cc_aead_setauthsize,
2405 .encrypt = cc_aead_encrypt,
2406 .decrypt = cc_aead_decrypt,
2407 .init = cc_aead_init,
2408 .exit = cc_aead_exit,
2409 .ivsize = CTR_RFC3686_IV_SIZE,
2410 .maxauthsize = SHA1_DIGEST_SIZE,
2412 .cipher_mode = DRV_CIPHER_CTR,
2413 .flow_mode = S_DIN_to_AES,
2414 .auth_mode = DRV_HASH_SHA1,
2415 .min_hw_rev = CC_HW_REV_630,
2416 .std_body = CC_STD_NIST,
2419 .name = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
2420 .driver_name = "authenc-hmac-sha256-rfc3686-ctr-aes-ccree",
2421 .blocksize = 1,
2422 .template_aead = {
2423 .setkey = cc_aead_setkey,
2424 .setauthsize = cc_aead_setauthsize,
2425 .encrypt = cc_aead_encrypt,
2426 .decrypt = cc_aead_decrypt,
2427 .init = cc_aead_init,
2428 .exit = cc_aead_exit,
2429 .ivsize = CTR_RFC3686_IV_SIZE,
2430 .maxauthsize = SHA256_DIGEST_SIZE,
2432 .cipher_mode = DRV_CIPHER_CTR,
2433 .flow_mode = S_DIN_to_AES,
2434 .auth_mode = DRV_HASH_SHA256,
2435 .min_hw_rev = CC_HW_REV_630,
2436 .std_body = CC_STD_NIST,
2439 .name = "authenc(xcbc(aes),rfc3686(ctr(aes)))",
2440 .driver_name = "authenc-xcbc-aes-rfc3686-ctr-aes-ccree",
2441 .blocksize = 1,
2442 .template_aead = {
2443 .setkey = cc_aead_setkey,
2444 .setauthsize = cc_aead_setauthsize,
2445 .encrypt = cc_aead_encrypt,
2446 .decrypt = cc_aead_decrypt,
2447 .init = cc_aead_init,
2448 .exit = cc_aead_exit,
2449 .ivsize = CTR_RFC3686_IV_SIZE,
2450 .maxauthsize = AES_BLOCK_SIZE,
2452 .cipher_mode = DRV_CIPHER_CTR,
2453 .flow_mode = S_DIN_to_AES,
2454 .auth_mode = DRV_HASH_XCBC_MAC,
2455 .min_hw_rev = CC_HW_REV_630,
2456 .std_body = CC_STD_NIST,
2459 .name = "ccm(aes)",
2460 .driver_name = "ccm-aes-ccree",
2461 .blocksize = 1,
2462 .template_aead = {
2463 .setkey = cc_aead_setkey,
2464 .setauthsize = cc_ccm_setauthsize,
2465 .encrypt = cc_aead_encrypt,
2466 .decrypt = cc_aead_decrypt,
2467 .init = cc_aead_init,
2468 .exit = cc_aead_exit,
2469 .ivsize = AES_BLOCK_SIZE,
2470 .maxauthsize = AES_BLOCK_SIZE,
2472 .cipher_mode = DRV_CIPHER_CCM,
2473 .flow_mode = S_DIN_to_AES,
2474 .auth_mode = DRV_HASH_NULL,
2475 .min_hw_rev = CC_HW_REV_630,
2476 .std_body = CC_STD_NIST,
2479 .name = "rfc4309(ccm(aes))",
2480 .driver_name = "rfc4309-ccm-aes-ccree",
2481 .blocksize = 1,
2482 .template_aead = {
2483 .setkey = cc_rfc4309_ccm_setkey,
2484 .setauthsize = cc_rfc4309_ccm_setauthsize,
2485 .encrypt = cc_rfc4309_ccm_encrypt,
2486 .decrypt = cc_rfc4309_ccm_decrypt,
2487 .init = cc_aead_init,
2488 .exit = cc_aead_exit,
2489 .ivsize = CCM_BLOCK_IV_SIZE,
2490 .maxauthsize = AES_BLOCK_SIZE,
2492 .cipher_mode = DRV_CIPHER_CCM,
2493 .flow_mode = S_DIN_to_AES,
2494 .auth_mode = DRV_HASH_NULL,
2495 .min_hw_rev = CC_HW_REV_630,
2496 .std_body = CC_STD_NIST,
2499 .name = "gcm(aes)",
2500 .driver_name = "gcm-aes-ccree",
2501 .blocksize = 1,
2502 .template_aead = {
2503 .setkey = cc_aead_setkey,
2504 .setauthsize = cc_gcm_setauthsize,
2505 .encrypt = cc_aead_encrypt,
2506 .decrypt = cc_aead_decrypt,
2507 .init = cc_aead_init,
2508 .exit = cc_aead_exit,
2509 .ivsize = 12,
2510 .maxauthsize = AES_BLOCK_SIZE,
2512 .cipher_mode = DRV_CIPHER_GCTR,
2513 .flow_mode = S_DIN_to_AES,
2514 .auth_mode = DRV_HASH_NULL,
2515 .min_hw_rev = CC_HW_REV_630,
2516 .std_body = CC_STD_NIST,
2519 .name = "rfc4106(gcm(aes))",
2520 .driver_name = "rfc4106-gcm-aes-ccree",
2521 .blocksize = 1,
2522 .template_aead = {
2523 .setkey = cc_rfc4106_gcm_setkey,
2524 .setauthsize = cc_rfc4106_gcm_setauthsize,
2525 .encrypt = cc_rfc4106_gcm_encrypt,
2526 .decrypt = cc_rfc4106_gcm_decrypt,
2527 .init = cc_aead_init,
2528 .exit = cc_aead_exit,
2529 .ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2530 .maxauthsize = AES_BLOCK_SIZE,
2532 .cipher_mode = DRV_CIPHER_GCTR,
2533 .flow_mode = S_DIN_to_AES,
2534 .auth_mode = DRV_HASH_NULL,
2535 .min_hw_rev = CC_HW_REV_630,
2536 .std_body = CC_STD_NIST,
2539 .name = "rfc4543(gcm(aes))",
2540 .driver_name = "rfc4543-gcm-aes-ccree",
2541 .blocksize = 1,
2542 .template_aead = {
2543 .setkey = cc_rfc4543_gcm_setkey,
2544 .setauthsize = cc_rfc4543_gcm_setauthsize,
2545 .encrypt = cc_rfc4543_gcm_encrypt,
2546 .decrypt = cc_rfc4543_gcm_decrypt,
2547 .init = cc_aead_init,
2548 .exit = cc_aead_exit,
2549 .ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2550 .maxauthsize = AES_BLOCK_SIZE,
2552 .cipher_mode = DRV_CIPHER_GCTR,
2553 .flow_mode = S_DIN_to_AES,
2554 .auth_mode = DRV_HASH_NULL,
2555 .min_hw_rev = CC_HW_REV_630,
2556 .std_body = CC_STD_NIST,
2560 static struct cc_crypto_alg *cc_create_aead_alg(struct cc_alg_template *tmpl,
2561 struct device *dev)
2563 struct cc_crypto_alg *t_alg;
2564 struct aead_alg *alg;
2566 t_alg = devm_kzalloc(dev, sizeof(*t_alg), GFP_KERNEL);
2567 if (!t_alg)
2568 return ERR_PTR(-ENOMEM);
2570 alg = &tmpl->template_aead;
2572 if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s",
2573 tmpl->name) >= CRYPTO_MAX_ALG_NAME)
2574 return ERR_PTR(-EINVAL);
2575 if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
2576 tmpl->driver_name) >= CRYPTO_MAX_ALG_NAME)
2577 return ERR_PTR(-EINVAL);
2579 alg->base.cra_module = THIS_MODULE;
2580 alg->base.cra_priority = CC_CRA_PRIO;
2582 alg->base.cra_ctxsize = sizeof(struct cc_aead_ctx);
2583 alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
2584 alg->base.cra_blocksize = tmpl->blocksize;
2585 alg->init = cc_aead_init;
2586 alg->exit = cc_aead_exit;
2588 t_alg->aead_alg = *alg;
2590 t_alg->cipher_mode = tmpl->cipher_mode;
2591 t_alg->flow_mode = tmpl->flow_mode;
2592 t_alg->auth_mode = tmpl->auth_mode;
2594 return t_alg;
2597 int cc_aead_free(struct cc_drvdata *drvdata)
2599 struct cc_crypto_alg *t_alg, *n;
2600 struct cc_aead_handle *aead_handle = drvdata->aead_handle;
2602 /* Remove registered algs */
2603 list_for_each_entry_safe(t_alg, n, &aead_handle->aead_list, entry) {
2604 crypto_unregister_aead(&t_alg->aead_alg);
2605 list_del(&t_alg->entry);
2608 return 0;
2611 int cc_aead_alloc(struct cc_drvdata *drvdata)
2613 struct cc_aead_handle *aead_handle;
2614 struct cc_crypto_alg *t_alg;
2615 int rc = -ENOMEM;
2616 int alg;
2617 struct device *dev = drvdata_to_dev(drvdata);
2619 aead_handle = devm_kmalloc(dev, sizeof(*aead_handle), GFP_KERNEL);
2620 if (!aead_handle) {
2621 rc = -ENOMEM;
2622 goto fail0;
2625 INIT_LIST_HEAD(&aead_handle->aead_list);
2626 drvdata->aead_handle = aead_handle;
2628 aead_handle->sram_workspace_addr = cc_sram_alloc(drvdata,
2629 MAX_HMAC_DIGEST_SIZE);
2631 if (aead_handle->sram_workspace_addr == NULL_SRAM_ADDR) {
2632 rc = -ENOMEM;
2633 goto fail1;
2636 /* Linux crypto */
2637 for (alg = 0; alg < ARRAY_SIZE(aead_algs); alg++) {
2638 if ((aead_algs[alg].min_hw_rev > drvdata->hw_rev) ||
2639 !(drvdata->std_bodies & aead_algs[alg].std_body))
2640 continue;
2642 t_alg = cc_create_aead_alg(&aead_algs[alg], dev);
2643 if (IS_ERR(t_alg)) {
2644 rc = PTR_ERR(t_alg);
2645 dev_err(dev, "%s alg allocation failed\n",
2646 aead_algs[alg].driver_name);
2647 goto fail1;
2649 t_alg->drvdata = drvdata;
2650 rc = crypto_register_aead(&t_alg->aead_alg);
2651 if (rc) {
2652 dev_err(dev, "%s alg registration failed\n",
2653 t_alg->aead_alg.base.cra_driver_name);
2654 goto fail1;
2657 list_add_tail(&t_alg->entry, &aead_handle->aead_list);
2658 dev_dbg(dev, "Registered %s\n",
2659 t_alg->aead_alg.base.cra_driver_name);
2662 return 0;
2664 fail1:
2665 cc_aead_free(drvdata);
2666 fail0:
2667 return rc;