drm: add modifiers for MediaTek tiled formats
[drm/drm-misc.git] / drivers / crypto / mxs-dcp.c
blobd94a26c3541a08bda9f82b873c17e4987c751f55
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Freescale i.MX23/i.MX28 Data Co-Processor driver
5 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
6 */
8 #include <linux/dma-mapping.h>
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/stmp_device.h>
17 #include <linux/clk.h>
18 #include <soc/fsl/dcp.h>
20 #include <crypto/aes.h>
21 #include <crypto/sha1.h>
22 #include <crypto/sha2.h>
23 #include <crypto/internal/hash.h>
24 #include <crypto/internal/skcipher.h>
25 #include <crypto/scatterwalk.h>
27 #define DCP_MAX_CHANS 4
28 #define DCP_BUF_SZ PAGE_SIZE
29 #define DCP_SHA_PAY_SZ 64
31 #define DCP_ALIGNMENT 64
34 * Null hashes to align with hw behavior on imx6sl and ull
35 * these are flipped for consistency with hw output
37 static const uint8_t sha1_null_hash[] =
38 "\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
39 "\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
41 static const uint8_t sha256_null_hash[] =
42 "\x55\xb8\x52\x78\x1b\x99\x95\xa4"
43 "\x4c\x93\x9b\x64\xe4\x41\xae\x27"
44 "\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
45 "\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
47 /* DCP DMA descriptor. */
48 struct dcp_dma_desc {
49 uint32_t next_cmd_addr;
50 uint32_t control0;
51 uint32_t control1;
52 uint32_t source;
53 uint32_t destination;
54 uint32_t size;
55 uint32_t payload;
56 uint32_t status;
59 /* Coherent aligned block for bounce buffering. */
60 struct dcp_coherent_block {
61 uint8_t aes_in_buf[DCP_BUF_SZ];
62 uint8_t aes_out_buf[DCP_BUF_SZ];
63 uint8_t sha_in_buf[DCP_BUF_SZ];
64 uint8_t sha_out_buf[DCP_SHA_PAY_SZ];
66 uint8_t aes_key[2 * AES_KEYSIZE_128];
68 struct dcp_dma_desc desc[DCP_MAX_CHANS];
71 struct dcp {
72 struct device *dev;
73 void __iomem *base;
75 uint32_t caps;
77 struct dcp_coherent_block *coh;
79 struct completion completion[DCP_MAX_CHANS];
80 spinlock_t lock[DCP_MAX_CHANS];
81 struct task_struct *thread[DCP_MAX_CHANS];
82 struct crypto_queue queue[DCP_MAX_CHANS];
83 struct clk *dcp_clk;
86 enum dcp_chan {
87 DCP_CHAN_HASH_SHA = 0,
88 DCP_CHAN_CRYPTO = 2,
91 struct dcp_async_ctx {
92 /* Common context */
93 enum dcp_chan chan;
94 uint32_t fill;
96 /* SHA Hash-specific context */
97 struct mutex mutex;
98 uint32_t alg;
99 unsigned int hot:1;
101 /* Crypto-specific context */
102 struct crypto_skcipher *fallback;
103 unsigned int key_len;
104 uint8_t key[AES_KEYSIZE_128];
105 bool key_referenced;
108 struct dcp_aes_req_ctx {
109 unsigned int enc:1;
110 unsigned int ecb:1;
111 struct skcipher_request fallback_req; // keep at the end
114 struct dcp_sha_req_ctx {
115 unsigned int init:1;
116 unsigned int fini:1;
119 struct dcp_export_state {
120 struct dcp_sha_req_ctx req_ctx;
121 struct dcp_async_ctx async_ctx;
125 * There can even be only one instance of the MXS DCP due to the
126 * design of Linux Crypto API.
128 static struct dcp *global_sdcp;
130 /* DCP register layout. */
131 #define MXS_DCP_CTRL 0x00
132 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
133 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
135 #define MXS_DCP_STAT 0x10
136 #define MXS_DCP_STAT_CLR 0x18
137 #define MXS_DCP_STAT_IRQ_MASK 0xf
139 #define MXS_DCP_CHANNELCTRL 0x20
140 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
142 #define MXS_DCP_CAPABILITY1 0x40
143 #define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
144 #define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
145 #define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
147 #define MXS_DCP_CONTEXT 0x50
149 #define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
151 #define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
153 #define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
154 #define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
156 /* DMA descriptor bits. */
157 #define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
158 #define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
159 #define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
160 #define MXS_DCP_CONTROL0_OTP_KEY (1 << 10)
161 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
162 #define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
163 #define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
164 #define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
165 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
166 #define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
168 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
169 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
170 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
171 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
172 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
174 #define MXS_DCP_CONTROL1_KEY_SELECT_SHIFT 8
176 static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
178 int dma_err;
179 struct dcp *sdcp = global_sdcp;
180 const int chan = actx->chan;
181 uint32_t stat;
182 unsigned long ret;
183 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
184 dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
185 DMA_TO_DEVICE);
187 dma_err = dma_mapping_error(sdcp->dev, desc_phys);
188 if (dma_err)
189 return dma_err;
191 reinit_completion(&sdcp->completion[chan]);
193 /* Clear status register. */
194 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
196 /* Load the DMA descriptor. */
197 writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
199 /* Increment the semaphore to start the DMA transfer. */
200 writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
202 ret = wait_for_completion_timeout(&sdcp->completion[chan],
203 msecs_to_jiffies(1000));
204 if (!ret) {
205 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
206 chan, readl(sdcp->base + MXS_DCP_STAT));
207 return -ETIMEDOUT;
210 stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
211 if (stat & 0xff) {
212 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
213 chan, stat);
214 return -EINVAL;
217 dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
219 return 0;
223 * Encryption (AES128)
225 static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
226 struct skcipher_request *req, int init)
228 dma_addr_t key_phys, src_phys, dst_phys;
229 struct dcp *sdcp = global_sdcp;
230 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
231 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
232 bool key_referenced = actx->key_referenced;
233 int ret;
235 if (key_referenced)
236 key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key + AES_KEYSIZE_128,
237 AES_KEYSIZE_128, DMA_TO_DEVICE);
238 else
239 key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
240 2 * AES_KEYSIZE_128, DMA_TO_DEVICE);
241 ret = dma_mapping_error(sdcp->dev, key_phys);
242 if (ret)
243 return ret;
245 src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
246 DCP_BUF_SZ, DMA_TO_DEVICE);
247 ret = dma_mapping_error(sdcp->dev, src_phys);
248 if (ret)
249 goto err_src;
251 dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
252 DCP_BUF_SZ, DMA_FROM_DEVICE);
253 ret = dma_mapping_error(sdcp->dev, dst_phys);
254 if (ret)
255 goto err_dst;
257 if (actx->fill % AES_BLOCK_SIZE) {
258 dev_err(sdcp->dev, "Invalid block size!\n");
259 ret = -EINVAL;
260 goto aes_done_run;
263 /* Fill in the DMA descriptor. */
264 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
265 MXS_DCP_CONTROL0_INTERRUPT |
266 MXS_DCP_CONTROL0_ENABLE_CIPHER;
268 if (key_referenced)
269 /* Set OTP key bit to select the key via KEY_SELECT. */
270 desc->control0 |= MXS_DCP_CONTROL0_OTP_KEY;
271 else
272 /* Payload contains the key. */
273 desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
275 if (rctx->enc)
276 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
277 if (init)
278 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
280 desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
282 if (rctx->ecb)
283 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
284 else
285 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
287 if (key_referenced)
288 desc->control1 |= sdcp->coh->aes_key[0] << MXS_DCP_CONTROL1_KEY_SELECT_SHIFT;
290 desc->next_cmd_addr = 0;
291 desc->source = src_phys;
292 desc->destination = dst_phys;
293 desc->size = actx->fill;
294 desc->payload = key_phys;
295 desc->status = 0;
297 ret = mxs_dcp_start_dma(actx);
299 aes_done_run:
300 dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
301 err_dst:
302 dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
303 err_src:
304 if (key_referenced)
305 dma_unmap_single(sdcp->dev, key_phys, AES_KEYSIZE_128,
306 DMA_TO_DEVICE);
307 else
308 dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
309 DMA_TO_DEVICE);
310 return ret;
313 static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
315 struct dcp *sdcp = global_sdcp;
317 struct skcipher_request *req = skcipher_request_cast(arq);
318 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
319 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
321 struct scatterlist *dst = req->dst;
322 struct scatterlist *src = req->src;
323 int dst_nents = sg_nents(dst);
325 const int out_off = DCP_BUF_SZ;
326 uint8_t *in_buf = sdcp->coh->aes_in_buf;
327 uint8_t *out_buf = sdcp->coh->aes_out_buf;
329 uint32_t dst_off = 0;
330 uint8_t *src_buf = NULL;
331 uint32_t last_out_len = 0;
333 uint8_t *key = sdcp->coh->aes_key;
335 int ret = 0;
336 unsigned int i, len, clen, tlen = 0;
337 int init = 0;
338 bool limit_hit = false;
340 actx->fill = 0;
342 /* Copy the key from the temporary location. */
343 memcpy(key, actx->key, actx->key_len);
345 if (!rctx->ecb) {
346 /* Copy the CBC IV just past the key. */
347 memcpy(key + AES_KEYSIZE_128, req->iv, AES_KEYSIZE_128);
348 /* CBC needs the INIT set. */
349 init = 1;
350 } else {
351 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
354 for_each_sg(req->src, src, sg_nents(req->src), i) {
355 src_buf = sg_virt(src);
356 len = sg_dma_len(src);
357 tlen += len;
358 limit_hit = tlen > req->cryptlen;
360 if (limit_hit)
361 len = req->cryptlen - (tlen - len);
363 do {
364 if (actx->fill + len > out_off)
365 clen = out_off - actx->fill;
366 else
367 clen = len;
369 memcpy(in_buf + actx->fill, src_buf, clen);
370 len -= clen;
371 src_buf += clen;
372 actx->fill += clen;
375 * If we filled the buffer or this is the last SG,
376 * submit the buffer.
378 if (actx->fill == out_off || sg_is_last(src) ||
379 limit_hit) {
380 ret = mxs_dcp_run_aes(actx, req, init);
381 if (ret)
382 return ret;
383 init = 0;
385 sg_pcopy_from_buffer(dst, dst_nents, out_buf,
386 actx->fill, dst_off);
387 dst_off += actx->fill;
388 last_out_len = actx->fill;
389 actx->fill = 0;
391 } while (len);
393 if (limit_hit)
394 break;
397 /* Copy the IV for CBC for chaining */
398 if (!rctx->ecb) {
399 if (rctx->enc)
400 memcpy(req->iv, out_buf+(last_out_len-AES_BLOCK_SIZE),
401 AES_BLOCK_SIZE);
402 else
403 memcpy(req->iv, in_buf+(last_out_len-AES_BLOCK_SIZE),
404 AES_BLOCK_SIZE);
407 return ret;
410 static int dcp_chan_thread_aes(void *data)
412 struct dcp *sdcp = global_sdcp;
413 const int chan = DCP_CHAN_CRYPTO;
415 struct crypto_async_request *backlog;
416 struct crypto_async_request *arq;
418 int ret;
420 while (!kthread_should_stop()) {
421 set_current_state(TASK_INTERRUPTIBLE);
423 spin_lock(&sdcp->lock[chan]);
424 backlog = crypto_get_backlog(&sdcp->queue[chan]);
425 arq = crypto_dequeue_request(&sdcp->queue[chan]);
426 spin_unlock(&sdcp->lock[chan]);
428 if (!backlog && !arq) {
429 schedule();
430 continue;
433 set_current_state(TASK_RUNNING);
435 if (backlog)
436 crypto_request_complete(backlog, -EINPROGRESS);
438 if (arq) {
439 ret = mxs_dcp_aes_block_crypt(arq);
440 crypto_request_complete(arq, ret);
444 return 0;
447 static int mxs_dcp_block_fallback(struct skcipher_request *req, int enc)
449 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
450 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
451 struct dcp_async_ctx *ctx = crypto_skcipher_ctx(tfm);
452 int ret;
454 skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
455 skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
456 req->base.complete, req->base.data);
457 skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
458 req->cryptlen, req->iv);
460 if (enc)
461 ret = crypto_skcipher_encrypt(&rctx->fallback_req);
462 else
463 ret = crypto_skcipher_decrypt(&rctx->fallback_req);
465 return ret;
468 static int mxs_dcp_aes_enqueue(struct skcipher_request *req, int enc, int ecb)
470 struct dcp *sdcp = global_sdcp;
471 struct crypto_async_request *arq = &req->base;
472 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
473 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
474 int ret;
476 if (unlikely(actx->key_len != AES_KEYSIZE_128 && !actx->key_referenced))
477 return mxs_dcp_block_fallback(req, enc);
479 rctx->enc = enc;
480 rctx->ecb = ecb;
481 actx->chan = DCP_CHAN_CRYPTO;
483 spin_lock(&sdcp->lock[actx->chan]);
484 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
485 spin_unlock(&sdcp->lock[actx->chan]);
487 wake_up_process(sdcp->thread[actx->chan]);
489 return ret;
492 static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request *req)
494 return mxs_dcp_aes_enqueue(req, 0, 1);
497 static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request *req)
499 return mxs_dcp_aes_enqueue(req, 1, 1);
502 static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request *req)
504 return mxs_dcp_aes_enqueue(req, 0, 0);
507 static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request *req)
509 return mxs_dcp_aes_enqueue(req, 1, 0);
512 static int mxs_dcp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
513 unsigned int len)
515 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
518 * AES 128 is supposed by the hardware, store key into temporary
519 * buffer and exit. We must use the temporary buffer here, since
520 * there can still be an operation in progress.
522 actx->key_len = len;
523 actx->key_referenced = false;
524 if (len == AES_KEYSIZE_128) {
525 memcpy(actx->key, key, len);
526 return 0;
530 * If the requested AES key size is not supported by the hardware,
531 * but is supported by in-kernel software implementation, we use
532 * software fallback.
534 crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
535 crypto_skcipher_set_flags(actx->fallback,
536 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
537 return crypto_skcipher_setkey(actx->fallback, key, len);
540 static int mxs_dcp_aes_setrefkey(struct crypto_skcipher *tfm, const u8 *key,
541 unsigned int len)
543 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
545 if (len != DCP_PAES_KEYSIZE)
546 return -EINVAL;
548 switch (key[0]) {
549 case DCP_PAES_KEY_SLOT0:
550 case DCP_PAES_KEY_SLOT1:
551 case DCP_PAES_KEY_SLOT2:
552 case DCP_PAES_KEY_SLOT3:
553 case DCP_PAES_KEY_UNIQUE:
554 case DCP_PAES_KEY_OTP:
555 memcpy(actx->key, key, len);
556 actx->key_len = len;
557 actx->key_referenced = true;
558 break;
559 default:
560 return -EINVAL;
563 return 0;
566 static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher *tfm)
568 const char *name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
569 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
570 struct crypto_skcipher *blk;
572 blk = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
573 if (IS_ERR(blk))
574 return PTR_ERR(blk);
576 actx->fallback = blk;
577 crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx) +
578 crypto_skcipher_reqsize(blk));
579 return 0;
582 static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher *tfm)
584 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
586 crypto_free_skcipher(actx->fallback);
589 static int mxs_dcp_paes_init_tfm(struct crypto_skcipher *tfm)
591 crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx));
593 return 0;
597 * Hashing (SHA1/SHA256)
599 static int mxs_dcp_run_sha(struct ahash_request *req)
601 struct dcp *sdcp = global_sdcp;
602 int ret;
604 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
605 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
606 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
607 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
609 dma_addr_t digest_phys = 0;
610 dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
611 DCP_BUF_SZ, DMA_TO_DEVICE);
613 ret = dma_mapping_error(sdcp->dev, buf_phys);
614 if (ret)
615 return ret;
617 /* Fill in the DMA descriptor. */
618 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
619 MXS_DCP_CONTROL0_INTERRUPT |
620 MXS_DCP_CONTROL0_ENABLE_HASH;
621 if (rctx->init)
622 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
624 desc->control1 = actx->alg;
625 desc->next_cmd_addr = 0;
626 desc->source = buf_phys;
627 desc->destination = 0;
628 desc->size = actx->fill;
629 desc->payload = 0;
630 desc->status = 0;
633 * Align driver with hw behavior when generating null hashes
635 if (rctx->init && rctx->fini && desc->size == 0) {
636 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
637 const uint8_t *sha_buf =
638 (actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
639 sha1_null_hash : sha256_null_hash;
640 memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
641 ret = 0;
642 goto done_run;
645 /* Set HASH_TERM bit for last transfer block. */
646 if (rctx->fini) {
647 digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
648 DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
649 ret = dma_mapping_error(sdcp->dev, digest_phys);
650 if (ret)
651 goto done_run;
653 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
654 desc->payload = digest_phys;
657 ret = mxs_dcp_start_dma(actx);
659 if (rctx->fini)
660 dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
661 DMA_FROM_DEVICE);
663 done_run:
664 dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
666 return ret;
669 static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
671 struct dcp *sdcp = global_sdcp;
673 struct ahash_request *req = ahash_request_cast(arq);
674 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
675 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
676 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
677 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
679 uint8_t *in_buf = sdcp->coh->sha_in_buf;
680 uint8_t *out_buf = sdcp->coh->sha_out_buf;
682 struct scatterlist *src;
684 unsigned int i, len, clen, oft = 0;
685 int ret;
687 int fin = rctx->fini;
688 if (fin)
689 rctx->fini = 0;
691 src = req->src;
692 len = req->nbytes;
694 while (len) {
695 if (actx->fill + len > DCP_BUF_SZ)
696 clen = DCP_BUF_SZ - actx->fill;
697 else
698 clen = len;
700 scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen,
703 len -= clen;
704 oft += clen;
705 actx->fill += clen;
708 * If we filled the buffer and still have some
709 * more data, submit the buffer.
711 if (len && actx->fill == DCP_BUF_SZ) {
712 ret = mxs_dcp_run_sha(req);
713 if (ret)
714 return ret;
715 actx->fill = 0;
716 rctx->init = 0;
720 if (fin) {
721 rctx->fini = 1;
723 /* Submit whatever is left. */
724 if (!req->result)
725 return -EINVAL;
727 ret = mxs_dcp_run_sha(req);
728 if (ret)
729 return ret;
731 actx->fill = 0;
733 /* For some reason the result is flipped */
734 for (i = 0; i < halg->digestsize; i++)
735 req->result[i] = out_buf[halg->digestsize - i - 1];
738 return 0;
741 static int dcp_chan_thread_sha(void *data)
743 struct dcp *sdcp = global_sdcp;
744 const int chan = DCP_CHAN_HASH_SHA;
746 struct crypto_async_request *backlog;
747 struct crypto_async_request *arq;
748 int ret;
750 while (!kthread_should_stop()) {
751 set_current_state(TASK_INTERRUPTIBLE);
753 spin_lock(&sdcp->lock[chan]);
754 backlog = crypto_get_backlog(&sdcp->queue[chan]);
755 arq = crypto_dequeue_request(&sdcp->queue[chan]);
756 spin_unlock(&sdcp->lock[chan]);
758 if (!backlog && !arq) {
759 schedule();
760 continue;
763 set_current_state(TASK_RUNNING);
765 if (backlog)
766 crypto_request_complete(backlog, -EINPROGRESS);
768 if (arq) {
769 ret = dcp_sha_req_to_buf(arq);
770 crypto_request_complete(arq, ret);
774 return 0;
777 static int dcp_sha_init(struct ahash_request *req)
779 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
780 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
782 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
785 * Start hashing session. The code below only inits the
786 * hashing session context, nothing more.
788 memset(actx, 0, sizeof(*actx));
790 if (strcmp(halg->base.cra_name, "sha1") == 0)
791 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
792 else
793 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
795 actx->fill = 0;
796 actx->hot = 0;
797 actx->chan = DCP_CHAN_HASH_SHA;
799 mutex_init(&actx->mutex);
801 return 0;
804 static int dcp_sha_update_fx(struct ahash_request *req, int fini)
806 struct dcp *sdcp = global_sdcp;
808 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
809 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
810 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
812 int ret;
815 * Ignore requests that have no data in them and are not
816 * the trailing requests in the stream of requests.
818 if (!req->nbytes && !fini)
819 return 0;
821 mutex_lock(&actx->mutex);
823 rctx->fini = fini;
825 if (!actx->hot) {
826 actx->hot = 1;
827 rctx->init = 1;
830 spin_lock(&sdcp->lock[actx->chan]);
831 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
832 spin_unlock(&sdcp->lock[actx->chan]);
834 wake_up_process(sdcp->thread[actx->chan]);
835 mutex_unlock(&actx->mutex);
837 return ret;
840 static int dcp_sha_update(struct ahash_request *req)
842 return dcp_sha_update_fx(req, 0);
845 static int dcp_sha_final(struct ahash_request *req)
847 ahash_request_set_crypt(req, NULL, req->result, 0);
848 req->nbytes = 0;
849 return dcp_sha_update_fx(req, 1);
852 static int dcp_sha_finup(struct ahash_request *req)
854 return dcp_sha_update_fx(req, 1);
857 static int dcp_sha_digest(struct ahash_request *req)
859 int ret;
861 ret = dcp_sha_init(req);
862 if (ret)
863 return ret;
865 return dcp_sha_finup(req);
868 static int dcp_sha_import(struct ahash_request *req, const void *in)
870 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
871 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
872 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
873 const struct dcp_export_state *export = in;
875 memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
876 memset(actx, 0, sizeof(struct dcp_async_ctx));
877 memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
878 memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
880 return 0;
883 static int dcp_sha_export(struct ahash_request *req, void *out)
885 struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
886 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
887 struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
888 struct dcp_export_state *export = out;
890 memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
891 memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
893 return 0;
896 static int dcp_sha_cra_init(struct crypto_tfm *tfm)
898 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
899 sizeof(struct dcp_sha_req_ctx));
900 return 0;
903 static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
907 /* AES 128 ECB and AES 128 CBC */
908 static struct skcipher_alg dcp_aes_algs[] = {
910 .base.cra_name = "ecb(aes)",
911 .base.cra_driver_name = "ecb-aes-dcp",
912 .base.cra_priority = 400,
913 .base.cra_alignmask = 15,
914 .base.cra_flags = CRYPTO_ALG_ASYNC |
915 CRYPTO_ALG_NEED_FALLBACK,
916 .base.cra_blocksize = AES_BLOCK_SIZE,
917 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
918 .base.cra_module = THIS_MODULE,
920 .min_keysize = AES_MIN_KEY_SIZE,
921 .max_keysize = AES_MAX_KEY_SIZE,
922 .setkey = mxs_dcp_aes_setkey,
923 .encrypt = mxs_dcp_aes_ecb_encrypt,
924 .decrypt = mxs_dcp_aes_ecb_decrypt,
925 .init = mxs_dcp_aes_fallback_init_tfm,
926 .exit = mxs_dcp_aes_fallback_exit_tfm,
927 }, {
928 .base.cra_name = "cbc(aes)",
929 .base.cra_driver_name = "cbc-aes-dcp",
930 .base.cra_priority = 400,
931 .base.cra_alignmask = 15,
932 .base.cra_flags = CRYPTO_ALG_ASYNC |
933 CRYPTO_ALG_NEED_FALLBACK,
934 .base.cra_blocksize = AES_BLOCK_SIZE,
935 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
936 .base.cra_module = THIS_MODULE,
938 .min_keysize = AES_MIN_KEY_SIZE,
939 .max_keysize = AES_MAX_KEY_SIZE,
940 .setkey = mxs_dcp_aes_setkey,
941 .encrypt = mxs_dcp_aes_cbc_encrypt,
942 .decrypt = mxs_dcp_aes_cbc_decrypt,
943 .ivsize = AES_BLOCK_SIZE,
944 .init = mxs_dcp_aes_fallback_init_tfm,
945 .exit = mxs_dcp_aes_fallback_exit_tfm,
946 }, {
947 .base.cra_name = "ecb(paes)",
948 .base.cra_driver_name = "ecb-paes-dcp",
949 .base.cra_priority = 401,
950 .base.cra_alignmask = 15,
951 .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_INTERNAL,
952 .base.cra_blocksize = AES_BLOCK_SIZE,
953 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
954 .base.cra_module = THIS_MODULE,
956 .min_keysize = DCP_PAES_KEYSIZE,
957 .max_keysize = DCP_PAES_KEYSIZE,
958 .setkey = mxs_dcp_aes_setrefkey,
959 .encrypt = mxs_dcp_aes_ecb_encrypt,
960 .decrypt = mxs_dcp_aes_ecb_decrypt,
961 .init = mxs_dcp_paes_init_tfm,
962 }, {
963 .base.cra_name = "cbc(paes)",
964 .base.cra_driver_name = "cbc-paes-dcp",
965 .base.cra_priority = 401,
966 .base.cra_alignmask = 15,
967 .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_INTERNAL,
968 .base.cra_blocksize = AES_BLOCK_SIZE,
969 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
970 .base.cra_module = THIS_MODULE,
972 .min_keysize = DCP_PAES_KEYSIZE,
973 .max_keysize = DCP_PAES_KEYSIZE,
974 .setkey = mxs_dcp_aes_setrefkey,
975 .encrypt = mxs_dcp_aes_cbc_encrypt,
976 .decrypt = mxs_dcp_aes_cbc_decrypt,
977 .ivsize = AES_BLOCK_SIZE,
978 .init = mxs_dcp_paes_init_tfm,
982 /* SHA1 */
983 static struct ahash_alg dcp_sha1_alg = {
984 .init = dcp_sha_init,
985 .update = dcp_sha_update,
986 .final = dcp_sha_final,
987 .finup = dcp_sha_finup,
988 .digest = dcp_sha_digest,
989 .import = dcp_sha_import,
990 .export = dcp_sha_export,
991 .halg = {
992 .digestsize = SHA1_DIGEST_SIZE,
993 .statesize = sizeof(struct dcp_export_state),
994 .base = {
995 .cra_name = "sha1",
996 .cra_driver_name = "sha1-dcp",
997 .cra_priority = 400,
998 .cra_flags = CRYPTO_ALG_ASYNC,
999 .cra_blocksize = SHA1_BLOCK_SIZE,
1000 .cra_ctxsize = sizeof(struct dcp_async_ctx),
1001 .cra_module = THIS_MODULE,
1002 .cra_init = dcp_sha_cra_init,
1003 .cra_exit = dcp_sha_cra_exit,
1008 /* SHA256 */
1009 static struct ahash_alg dcp_sha256_alg = {
1010 .init = dcp_sha_init,
1011 .update = dcp_sha_update,
1012 .final = dcp_sha_final,
1013 .finup = dcp_sha_finup,
1014 .digest = dcp_sha_digest,
1015 .import = dcp_sha_import,
1016 .export = dcp_sha_export,
1017 .halg = {
1018 .digestsize = SHA256_DIGEST_SIZE,
1019 .statesize = sizeof(struct dcp_export_state),
1020 .base = {
1021 .cra_name = "sha256",
1022 .cra_driver_name = "sha256-dcp",
1023 .cra_priority = 400,
1024 .cra_flags = CRYPTO_ALG_ASYNC,
1025 .cra_blocksize = SHA256_BLOCK_SIZE,
1026 .cra_ctxsize = sizeof(struct dcp_async_ctx),
1027 .cra_module = THIS_MODULE,
1028 .cra_init = dcp_sha_cra_init,
1029 .cra_exit = dcp_sha_cra_exit,
1034 static irqreturn_t mxs_dcp_irq(int irq, void *context)
1036 struct dcp *sdcp = context;
1037 uint32_t stat;
1038 int i;
1040 stat = readl(sdcp->base + MXS_DCP_STAT);
1041 stat &= MXS_DCP_STAT_IRQ_MASK;
1042 if (!stat)
1043 return IRQ_NONE;
1045 /* Clear the interrupts. */
1046 writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
1048 /* Complete the DMA requests that finished. */
1049 for (i = 0; i < DCP_MAX_CHANS; i++)
1050 if (stat & (1 << i))
1051 complete(&sdcp->completion[i]);
1053 return IRQ_HANDLED;
1056 static int mxs_dcp_probe(struct platform_device *pdev)
1058 struct device *dev = &pdev->dev;
1059 struct dcp *sdcp = NULL;
1060 int i, ret;
1061 int dcp_vmi_irq, dcp_irq;
1063 if (global_sdcp) {
1064 dev_err(dev, "Only one DCP instance allowed!\n");
1065 return -ENODEV;
1068 dcp_vmi_irq = platform_get_irq(pdev, 0);
1069 if (dcp_vmi_irq < 0)
1070 return dcp_vmi_irq;
1072 dcp_irq = platform_get_irq(pdev, 1);
1073 if (dcp_irq < 0)
1074 return dcp_irq;
1076 sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
1077 if (!sdcp)
1078 return -ENOMEM;
1080 sdcp->dev = dev;
1081 sdcp->base = devm_platform_ioremap_resource(pdev, 0);
1082 if (IS_ERR(sdcp->base))
1083 return PTR_ERR(sdcp->base);
1086 ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
1087 "dcp-vmi-irq", sdcp);
1088 if (ret) {
1089 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
1090 return ret;
1093 ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1094 "dcp-irq", sdcp);
1095 if (ret) {
1096 dev_err(dev, "Failed to claim DCP IRQ!\n");
1097 return ret;
1100 /* Allocate coherent helper block. */
1101 sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1102 GFP_KERNEL);
1103 if (!sdcp->coh)
1104 return -ENOMEM;
1106 /* Re-align the structure so it fits the DCP constraints. */
1107 sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1109 /* DCP clock is optional, only used on some SOCs */
1110 sdcp->dcp_clk = devm_clk_get_optional_enabled(dev, "dcp");
1111 if (IS_ERR(sdcp->dcp_clk))
1112 return PTR_ERR(sdcp->dcp_clk);
1114 /* Restart the DCP block. */
1115 ret = stmp_reset_block(sdcp->base);
1116 if (ret) {
1117 dev_err(dev, "Failed reset\n");
1118 return ret;
1121 /* Initialize control register. */
1122 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1123 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1124 sdcp->base + MXS_DCP_CTRL);
1126 /* Enable all DCP DMA channels. */
1127 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1128 sdcp->base + MXS_DCP_CHANNELCTRL);
1131 * We do not enable context switching. Give the context buffer a
1132 * pointer to an illegal address so if context switching is
1133 * inadvertantly enabled, the DCP will return an error instead of
1134 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1135 * address will do.
1137 writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1138 for (i = 0; i < DCP_MAX_CHANS; i++)
1139 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1140 writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1142 global_sdcp = sdcp;
1144 platform_set_drvdata(pdev, sdcp);
1146 for (i = 0; i < DCP_MAX_CHANS; i++) {
1147 spin_lock_init(&sdcp->lock[i]);
1148 init_completion(&sdcp->completion[i]);
1149 crypto_init_queue(&sdcp->queue[i], 50);
1152 /* Create the SHA and AES handler threads. */
1153 sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1154 NULL, "mxs_dcp_chan/sha");
1155 if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1156 dev_err(dev, "Error starting SHA thread!\n");
1157 ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1158 return ret;
1161 sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1162 NULL, "mxs_dcp_chan/aes");
1163 if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1164 dev_err(dev, "Error starting SHA thread!\n");
1165 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1166 goto err_destroy_sha_thread;
1169 /* Register the various crypto algorithms. */
1170 sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1172 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1173 ret = crypto_register_skciphers(dcp_aes_algs,
1174 ARRAY_SIZE(dcp_aes_algs));
1175 if (ret) {
1176 /* Failed to register algorithm. */
1177 dev_err(dev, "Failed to register AES crypto!\n");
1178 goto err_destroy_aes_thread;
1182 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1183 ret = crypto_register_ahash(&dcp_sha1_alg);
1184 if (ret) {
1185 dev_err(dev, "Failed to register %s hash!\n",
1186 dcp_sha1_alg.halg.base.cra_name);
1187 goto err_unregister_aes;
1191 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1192 ret = crypto_register_ahash(&dcp_sha256_alg);
1193 if (ret) {
1194 dev_err(dev, "Failed to register %s hash!\n",
1195 dcp_sha256_alg.halg.base.cra_name);
1196 goto err_unregister_sha1;
1200 return 0;
1202 err_unregister_sha1:
1203 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1204 crypto_unregister_ahash(&dcp_sha1_alg);
1206 err_unregister_aes:
1207 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1208 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1210 err_destroy_aes_thread:
1211 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1213 err_destroy_sha_thread:
1214 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1216 return ret;
1219 static void mxs_dcp_remove(struct platform_device *pdev)
1221 struct dcp *sdcp = platform_get_drvdata(pdev);
1223 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1224 crypto_unregister_ahash(&dcp_sha256_alg);
1226 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1227 crypto_unregister_ahash(&dcp_sha1_alg);
1229 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1230 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1232 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1233 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1235 platform_set_drvdata(pdev, NULL);
1237 global_sdcp = NULL;
1240 static const struct of_device_id mxs_dcp_dt_ids[] = {
1241 { .compatible = "fsl,imx23-dcp", .data = NULL, },
1242 { .compatible = "fsl,imx28-dcp", .data = NULL, },
1243 { /* sentinel */ }
1246 MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1248 static struct platform_driver mxs_dcp_driver = {
1249 .probe = mxs_dcp_probe,
1250 .remove = mxs_dcp_remove,
1251 .driver = {
1252 .name = "mxs-dcp",
1253 .of_match_table = mxs_dcp_dt_ids,
1257 module_platform_driver(mxs_dcp_driver);
1259 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1260 MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1261 MODULE_LICENSE("GPL");
1262 MODULE_ALIAS("platform:mxs-dcp");