drm/rockchip: Don't change hdmi reference clock rate
[drm/drm-misc.git] / drivers / dma / mediatek / mtk-hsdma.c
blobfa77bb24a430743570fe123aa222fd19ff64ebd1
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (c) 2017-2018 MediaTek Inc.
4 /*
5 * Driver for MediaTek High-Speed DMA Controller
7 * Author: Sean Wang <sean.wang@mediatek.com>
9 */
11 #include <linux/bitops.h>
12 #include <linux/clk.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/iopoll.h>
17 #include <linux/list.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/refcount.h>
24 #include <linux/slab.h>
26 #include "../virt-dma.h"
28 #define MTK_HSDMA_USEC_POLL 20
29 #define MTK_HSDMA_TIMEOUT_POLL 200000
30 #define MTK_HSDMA_DMA_BUSWIDTHS BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
32 /* The default number of virtual channel */
33 #define MTK_HSDMA_NR_VCHANS 3
35 /* Only one physical channel supported */
36 #define MTK_HSDMA_NR_MAX_PCHANS 1
38 /* Macro for physical descriptor (PD) manipulation */
39 /* The number of PD which must be 2 of power */
40 #define MTK_DMA_SIZE 64
41 #define MTK_HSDMA_NEXT_DESP_IDX(x, y) (((x) + 1) & ((y) - 1))
42 #define MTK_HSDMA_LAST_DESP_IDX(x, y) (((x) - 1) & ((y) - 1))
43 #define MTK_HSDMA_MAX_LEN 0x3f80
44 #define MTK_HSDMA_ALIGN_SIZE 4
45 #define MTK_HSDMA_PLEN_MASK 0x3fff
46 #define MTK_HSDMA_DESC_PLEN(x) (((x) & MTK_HSDMA_PLEN_MASK) << 16)
47 #define MTK_HSDMA_DESC_PLEN_GET(x) (((x) >> 16) & MTK_HSDMA_PLEN_MASK)
49 /* Registers for underlying ring manipulation */
50 #define MTK_HSDMA_TX_BASE 0x0
51 #define MTK_HSDMA_TX_CNT 0x4
52 #define MTK_HSDMA_TX_CPU 0x8
53 #define MTK_HSDMA_TX_DMA 0xc
54 #define MTK_HSDMA_RX_BASE 0x100
55 #define MTK_HSDMA_RX_CNT 0x104
56 #define MTK_HSDMA_RX_CPU 0x108
57 #define MTK_HSDMA_RX_DMA 0x10c
59 /* Registers for global setup */
60 #define MTK_HSDMA_GLO 0x204
61 #define MTK_HSDMA_GLO_MULTI_DMA BIT(10)
62 #define MTK_HSDMA_TX_WB_DDONE BIT(6)
63 #define MTK_HSDMA_BURST_64BYTES (0x2 << 4)
64 #define MTK_HSDMA_GLO_RX_BUSY BIT(3)
65 #define MTK_HSDMA_GLO_RX_DMA BIT(2)
66 #define MTK_HSDMA_GLO_TX_BUSY BIT(1)
67 #define MTK_HSDMA_GLO_TX_DMA BIT(0)
68 #define MTK_HSDMA_GLO_DMA (MTK_HSDMA_GLO_TX_DMA | \
69 MTK_HSDMA_GLO_RX_DMA)
70 #define MTK_HSDMA_GLO_BUSY (MTK_HSDMA_GLO_RX_BUSY | \
71 MTK_HSDMA_GLO_TX_BUSY)
72 #define MTK_HSDMA_GLO_DEFAULT (MTK_HSDMA_GLO_TX_DMA | \
73 MTK_HSDMA_GLO_RX_DMA | \
74 MTK_HSDMA_TX_WB_DDONE | \
75 MTK_HSDMA_BURST_64BYTES | \
76 MTK_HSDMA_GLO_MULTI_DMA)
78 /* Registers for reset */
79 #define MTK_HSDMA_RESET 0x208
80 #define MTK_HSDMA_RST_TX BIT(0)
81 #define MTK_HSDMA_RST_RX BIT(16)
83 /* Registers for interrupt control */
84 #define MTK_HSDMA_DLYINT 0x20c
85 #define MTK_HSDMA_RXDLY_INT_EN BIT(15)
87 /* Interrupt fires when the pending number's more than the specified */
88 #define MTK_HSDMA_RXMAX_PINT(x) (((x) & 0x7f) << 8)
90 /* Interrupt fires when the pending time's more than the specified in 20 us */
91 #define MTK_HSDMA_RXMAX_PTIME(x) ((x) & 0x7f)
92 #define MTK_HSDMA_DLYINT_DEFAULT (MTK_HSDMA_RXDLY_INT_EN | \
93 MTK_HSDMA_RXMAX_PINT(20) | \
94 MTK_HSDMA_RXMAX_PTIME(20))
95 #define MTK_HSDMA_INT_STATUS 0x220
96 #define MTK_HSDMA_INT_ENABLE 0x228
97 #define MTK_HSDMA_INT_RXDONE BIT(16)
99 enum mtk_hsdma_vdesc_flag {
100 MTK_HSDMA_VDESC_FINISHED = 0x01,
103 #define IS_MTK_HSDMA_VDESC_FINISHED(x) ((x) == MTK_HSDMA_VDESC_FINISHED)
106 * struct mtk_hsdma_pdesc - This is the struct holding info describing physical
107 * descriptor (PD) and its placement must be kept at
108 * 4-bytes alignment in little endian order.
109 * @desc1: | The control pad used to indicate hardware how to
110 * @desc2: | deal with the descriptor such as source and
111 * @desc3: | destination address and data length. The maximum
112 * @desc4: | data length each pdesc can handle is 0x3f80 bytes
114 struct mtk_hsdma_pdesc {
115 __le32 desc1;
116 __le32 desc2;
117 __le32 desc3;
118 __le32 desc4;
119 } __packed __aligned(4);
122 * struct mtk_hsdma_vdesc - This is the struct holding info describing virtual
123 * descriptor (VD)
124 * @vd: An instance for struct virt_dma_desc
125 * @len: The total data size device wants to move
126 * @residue: The remaining data size device will move
127 * @dest: The destination address device wants to move to
128 * @src: The source address device wants to move from
130 struct mtk_hsdma_vdesc {
131 struct virt_dma_desc vd;
132 size_t len;
133 size_t residue;
134 dma_addr_t dest;
135 dma_addr_t src;
139 * struct mtk_hsdma_cb - This is the struct holding extra info required for RX
140 * ring to know what relevant VD the PD is being
141 * mapped to.
142 * @vd: Pointer to the relevant VD.
143 * @flag: Flag indicating what action should be taken when VD
144 * is completed.
146 struct mtk_hsdma_cb {
147 struct virt_dma_desc *vd;
148 enum mtk_hsdma_vdesc_flag flag;
152 * struct mtk_hsdma_ring - This struct holds info describing underlying ring
153 * space
154 * @txd: The descriptor TX ring which describes DMA source
155 * information
156 * @rxd: The descriptor RX ring which describes DMA
157 * destination information
158 * @cb: The extra information pointed at by RX ring
159 * @tphys: The physical addr of TX ring
160 * @rphys: The physical addr of RX ring
161 * @cur_tptr: Pointer to the next free descriptor used by the host
162 * @cur_rptr: Pointer to the last done descriptor by the device
164 struct mtk_hsdma_ring {
165 struct mtk_hsdma_pdesc *txd;
166 struct mtk_hsdma_pdesc *rxd;
167 struct mtk_hsdma_cb *cb;
168 dma_addr_t tphys;
169 dma_addr_t rphys;
170 u16 cur_tptr;
171 u16 cur_rptr;
175 * struct mtk_hsdma_pchan - This is the struct holding info describing physical
176 * channel (PC)
177 * @ring: An instance for the underlying ring
178 * @sz_ring: Total size allocated for the ring
179 * @nr_free: Total number of free rooms in the ring. It would
180 * be accessed and updated frequently between IRQ
181 * context and user context to reflect whether ring
182 * can accept requests from VD.
184 struct mtk_hsdma_pchan {
185 struct mtk_hsdma_ring ring;
186 size_t sz_ring;
187 atomic_t nr_free;
191 * struct mtk_hsdma_vchan - This is the struct holding info describing virtual
192 * channel (VC)
193 * @vc: An instance for struct virt_dma_chan
194 * @issue_completion: The wait for all issued descriptors completited
195 * @issue_synchronize: Bool indicating channel synchronization starts
196 * @desc_hw_processing: List those descriptors the hardware is processing,
197 * which is protected by vc.lock
199 struct mtk_hsdma_vchan {
200 struct virt_dma_chan vc;
201 struct completion issue_completion;
202 bool issue_synchronize;
203 struct list_head desc_hw_processing;
207 * struct mtk_hsdma_soc - This is the struct holding differences among SoCs
208 * @ddone: Bit mask for DDONE
209 * @ls0: Bit mask for LS0
211 struct mtk_hsdma_soc {
212 __le32 ddone;
213 __le32 ls0;
217 * struct mtk_hsdma_device - This is the struct holding info describing HSDMA
218 * device
219 * @ddev: An instance for struct dma_device
220 * @base: The mapped register I/O base
221 * @clk: The clock that device internal is using
222 * @irq: The IRQ that device are using
223 * @dma_requests: The number of VCs the device supports to
224 * @vc: The pointer to all available VCs
225 * @pc: The pointer to the underlying PC
226 * @pc_refcnt: Track how many VCs are using the PC
227 * @lock: Lock protect agaisting multiple VCs access PC
228 * @soc: The pointer to area holding differences among
229 * various platform
231 struct mtk_hsdma_device {
232 struct dma_device ddev;
233 void __iomem *base;
234 struct clk *clk;
235 u32 irq;
237 u32 dma_requests;
238 struct mtk_hsdma_vchan *vc;
239 struct mtk_hsdma_pchan *pc;
240 refcount_t pc_refcnt;
242 /* Lock used to protect against multiple VCs access PC */
243 spinlock_t lock;
245 const struct mtk_hsdma_soc *soc;
248 static struct mtk_hsdma_device *to_hsdma_dev(struct dma_chan *chan)
250 return container_of(chan->device, struct mtk_hsdma_device, ddev);
253 static inline struct mtk_hsdma_vchan *to_hsdma_vchan(struct dma_chan *chan)
255 return container_of(chan, struct mtk_hsdma_vchan, vc.chan);
258 static struct mtk_hsdma_vdesc *to_hsdma_vdesc(struct virt_dma_desc *vd)
260 return container_of(vd, struct mtk_hsdma_vdesc, vd);
263 static struct device *hsdma2dev(struct mtk_hsdma_device *hsdma)
265 return hsdma->ddev.dev;
268 static u32 mtk_dma_read(struct mtk_hsdma_device *hsdma, u32 reg)
270 return readl(hsdma->base + reg);
273 static void mtk_dma_write(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
275 writel(val, hsdma->base + reg);
278 static void mtk_dma_rmw(struct mtk_hsdma_device *hsdma, u32 reg,
279 u32 mask, u32 set)
281 u32 val;
283 val = mtk_dma_read(hsdma, reg);
284 val &= ~mask;
285 val |= set;
286 mtk_dma_write(hsdma, reg, val);
289 static void mtk_dma_set(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
291 mtk_dma_rmw(hsdma, reg, 0, val);
294 static void mtk_dma_clr(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
296 mtk_dma_rmw(hsdma, reg, val, 0);
299 static void mtk_hsdma_vdesc_free(struct virt_dma_desc *vd)
301 kfree(container_of(vd, struct mtk_hsdma_vdesc, vd));
304 static int mtk_hsdma_busy_wait(struct mtk_hsdma_device *hsdma)
306 u32 status = 0;
308 return readl_poll_timeout(hsdma->base + MTK_HSDMA_GLO, status,
309 !(status & MTK_HSDMA_GLO_BUSY),
310 MTK_HSDMA_USEC_POLL,
311 MTK_HSDMA_TIMEOUT_POLL);
314 static int mtk_hsdma_alloc_pchan(struct mtk_hsdma_device *hsdma,
315 struct mtk_hsdma_pchan *pc)
317 struct mtk_hsdma_ring *ring = &pc->ring;
318 int err;
320 memset(pc, 0, sizeof(*pc));
323 * Allocate ring space where [0 ... MTK_DMA_SIZE - 1] is for TX ring
324 * and [MTK_DMA_SIZE ... 2 * MTK_DMA_SIZE - 1] is for RX ring.
326 pc->sz_ring = 2 * MTK_DMA_SIZE * sizeof(*ring->txd);
327 ring->txd = dma_alloc_coherent(hsdma2dev(hsdma), pc->sz_ring,
328 &ring->tphys, GFP_NOWAIT);
329 if (!ring->txd)
330 return -ENOMEM;
332 ring->rxd = &ring->txd[MTK_DMA_SIZE];
333 ring->rphys = ring->tphys + MTK_DMA_SIZE * sizeof(*ring->txd);
334 ring->cur_tptr = 0;
335 ring->cur_rptr = MTK_DMA_SIZE - 1;
337 ring->cb = kcalloc(MTK_DMA_SIZE, sizeof(*ring->cb), GFP_NOWAIT);
338 if (!ring->cb) {
339 err = -ENOMEM;
340 goto err_free_dma;
343 atomic_set(&pc->nr_free, MTK_DMA_SIZE - 1);
345 /* Disable HSDMA and wait for the completion */
346 mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
347 err = mtk_hsdma_busy_wait(hsdma);
348 if (err)
349 goto err_free_cb;
351 /* Reset */
352 mtk_dma_set(hsdma, MTK_HSDMA_RESET,
353 MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
354 mtk_dma_clr(hsdma, MTK_HSDMA_RESET,
355 MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
357 /* Setup HSDMA initial pointer in the ring */
358 mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, ring->tphys);
359 mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, MTK_DMA_SIZE);
360 mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
361 mtk_dma_write(hsdma, MTK_HSDMA_TX_DMA, 0);
362 mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, ring->rphys);
363 mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, MTK_DMA_SIZE);
364 mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, ring->cur_rptr);
365 mtk_dma_write(hsdma, MTK_HSDMA_RX_DMA, 0);
367 /* Enable HSDMA */
368 mtk_dma_set(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
370 /* Setup delayed interrupt */
371 mtk_dma_write(hsdma, MTK_HSDMA_DLYINT, MTK_HSDMA_DLYINT_DEFAULT);
373 /* Enable interrupt */
374 mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
376 return 0;
378 err_free_cb:
379 kfree(ring->cb);
381 err_free_dma:
382 dma_free_coherent(hsdma2dev(hsdma),
383 pc->sz_ring, ring->txd, ring->tphys);
384 return err;
387 static void mtk_hsdma_free_pchan(struct mtk_hsdma_device *hsdma,
388 struct mtk_hsdma_pchan *pc)
390 struct mtk_hsdma_ring *ring = &pc->ring;
392 /* Disable HSDMA and then wait for the completion */
393 mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
394 mtk_hsdma_busy_wait(hsdma);
396 /* Reset pointer in the ring */
397 mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
398 mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, 0);
399 mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, 0);
400 mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, 0);
401 mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, 0);
402 mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, 0);
403 mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, MTK_DMA_SIZE - 1);
405 kfree(ring->cb);
407 dma_free_coherent(hsdma2dev(hsdma),
408 pc->sz_ring, ring->txd, ring->tphys);
411 static int mtk_hsdma_issue_pending_vdesc(struct mtk_hsdma_device *hsdma,
412 struct mtk_hsdma_pchan *pc,
413 struct mtk_hsdma_vdesc *hvd)
415 struct mtk_hsdma_ring *ring = &pc->ring;
416 struct mtk_hsdma_pdesc *txd, *rxd;
417 u16 reserved, prev, tlen, num_sgs;
418 unsigned long flags;
420 /* Protect against PC is accessed by multiple VCs simultaneously */
421 spin_lock_irqsave(&hsdma->lock, flags);
424 * Reserve rooms, where pc->nr_free is used to track how many free
425 * rooms in the ring being updated in user and IRQ context.
427 num_sgs = DIV_ROUND_UP(hvd->len, MTK_HSDMA_MAX_LEN);
428 reserved = min_t(u16, num_sgs, atomic_read(&pc->nr_free));
430 if (!reserved) {
431 spin_unlock_irqrestore(&hsdma->lock, flags);
432 return -ENOSPC;
435 atomic_sub(reserved, &pc->nr_free);
437 while (reserved--) {
438 /* Limit size by PD capability for valid data moving */
439 tlen = (hvd->len > MTK_HSDMA_MAX_LEN) ?
440 MTK_HSDMA_MAX_LEN : hvd->len;
443 * Setup PDs using the remaining VD info mapped on those
444 * reserved rooms. And since RXD is shared memory between the
445 * host and the device allocated by dma_alloc_coherent call,
446 * the helper macro WRITE_ONCE can ensure the data written to
447 * RAM would really happens.
449 txd = &ring->txd[ring->cur_tptr];
450 WRITE_ONCE(txd->desc1, hvd->src);
451 WRITE_ONCE(txd->desc2,
452 hsdma->soc->ls0 | MTK_HSDMA_DESC_PLEN(tlen));
454 rxd = &ring->rxd[ring->cur_tptr];
455 WRITE_ONCE(rxd->desc1, hvd->dest);
456 WRITE_ONCE(rxd->desc2, MTK_HSDMA_DESC_PLEN(tlen));
458 /* Associate VD, the PD belonged to */
459 ring->cb[ring->cur_tptr].vd = &hvd->vd;
461 /* Move forward the pointer of TX ring */
462 ring->cur_tptr = MTK_HSDMA_NEXT_DESP_IDX(ring->cur_tptr,
463 MTK_DMA_SIZE);
465 /* Update VD with remaining data */
466 hvd->src += tlen;
467 hvd->dest += tlen;
468 hvd->len -= tlen;
472 * Tagging flag for the last PD for VD will be responsible for
473 * completing VD.
475 if (!hvd->len) {
476 prev = MTK_HSDMA_LAST_DESP_IDX(ring->cur_tptr, MTK_DMA_SIZE);
477 ring->cb[prev].flag = MTK_HSDMA_VDESC_FINISHED;
480 /* Ensure all changes indeed done before we're going on */
481 wmb();
484 * Updating into hardware the pointer of TX ring lets HSDMA to take
485 * action for those pending PDs.
487 mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
489 spin_unlock_irqrestore(&hsdma->lock, flags);
491 return 0;
494 static void mtk_hsdma_issue_vchan_pending(struct mtk_hsdma_device *hsdma,
495 struct mtk_hsdma_vchan *hvc)
497 struct virt_dma_desc *vd, *vd2;
498 int err;
500 lockdep_assert_held(&hvc->vc.lock);
502 list_for_each_entry_safe(vd, vd2, &hvc->vc.desc_issued, node) {
503 struct mtk_hsdma_vdesc *hvd;
505 hvd = to_hsdma_vdesc(vd);
507 /* Map VD into PC and all VCs shares a single PC */
508 err = mtk_hsdma_issue_pending_vdesc(hsdma, hsdma->pc, hvd);
511 * Move VD from desc_issued to desc_hw_processing when entire
512 * VD is fit into available PDs. Otherwise, the uncompleted
513 * VDs would stay in list desc_issued and then restart the
514 * processing as soon as possible once underlying ring space
515 * got freed.
517 if (err == -ENOSPC || hvd->len > 0)
518 break;
521 * The extra list desc_hw_processing is used because
522 * hardware can't provide sufficient information allowing us
523 * to know what VDs are still working on the underlying ring.
524 * Through the additional list, it can help us to implement
525 * terminate_all, residue calculation and such thing needed
526 * to know detail descriptor status on the hardware.
528 list_move_tail(&vd->node, &hvc->desc_hw_processing);
532 static void mtk_hsdma_free_rooms_in_ring(struct mtk_hsdma_device *hsdma)
534 struct mtk_hsdma_vchan *hvc;
535 struct mtk_hsdma_pdesc *rxd;
536 struct mtk_hsdma_vdesc *hvd;
537 struct mtk_hsdma_pchan *pc;
538 struct mtk_hsdma_cb *cb;
539 int i = MTK_DMA_SIZE;
540 __le32 desc2;
541 u32 status;
542 u16 next;
544 /* Read IRQ status */
545 status = mtk_dma_read(hsdma, MTK_HSDMA_INT_STATUS);
546 if (unlikely(!(status & MTK_HSDMA_INT_RXDONE)))
547 goto rx_done;
549 pc = hsdma->pc;
552 * Using a fail-safe loop with iterations of up to MTK_DMA_SIZE to
553 * reclaim these finished descriptors: The most number of PDs the ISR
554 * can handle at one time shouldn't be more than MTK_DMA_SIZE so we
555 * take it as limited count instead of just using a dangerous infinite
556 * poll.
558 while (i--) {
559 next = MTK_HSDMA_NEXT_DESP_IDX(pc->ring.cur_rptr,
560 MTK_DMA_SIZE);
561 rxd = &pc->ring.rxd[next];
564 * If MTK_HSDMA_DESC_DDONE is no specified, that means data
565 * moving for the PD is still under going.
567 desc2 = READ_ONCE(rxd->desc2);
568 if (!(desc2 & hsdma->soc->ddone))
569 break;
571 cb = &pc->ring.cb[next];
572 if (unlikely(!cb->vd)) {
573 dev_err(hsdma2dev(hsdma), "cb->vd cannot be null\n");
574 break;
577 /* Update residue of VD the associated PD belonged to */
578 hvd = to_hsdma_vdesc(cb->vd);
579 hvd->residue -= MTK_HSDMA_DESC_PLEN_GET(rxd->desc2);
581 /* Complete VD until the relevant last PD is finished */
582 if (IS_MTK_HSDMA_VDESC_FINISHED(cb->flag)) {
583 hvc = to_hsdma_vchan(cb->vd->tx.chan);
585 spin_lock(&hvc->vc.lock);
587 /* Remove VD from list desc_hw_processing */
588 list_del(&cb->vd->node);
590 /* Add VD into list desc_completed */
591 vchan_cookie_complete(cb->vd);
593 if (hvc->issue_synchronize &&
594 list_empty(&hvc->desc_hw_processing)) {
595 complete(&hvc->issue_completion);
596 hvc->issue_synchronize = false;
598 spin_unlock(&hvc->vc.lock);
600 cb->flag = 0;
603 cb->vd = NULL;
606 * Recycle the RXD with the helper WRITE_ONCE that can ensure
607 * data written into RAM would really happens.
609 WRITE_ONCE(rxd->desc1, 0);
610 WRITE_ONCE(rxd->desc2, 0);
611 pc->ring.cur_rptr = next;
613 /* Release rooms */
614 atomic_inc(&pc->nr_free);
617 /* Ensure all changes indeed done before we're going on */
618 wmb();
620 /* Update CPU pointer for those completed PDs */
621 mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, pc->ring.cur_rptr);
624 * Acking the pending IRQ allows hardware no longer to keep the used
625 * IRQ line in certain trigger state when software has completed all
626 * the finished physical descriptors.
628 if (atomic_read(&pc->nr_free) >= MTK_DMA_SIZE - 1)
629 mtk_dma_write(hsdma, MTK_HSDMA_INT_STATUS, status);
631 /* ASAP handles pending VDs in all VCs after freeing some rooms */
632 for (i = 0; i < hsdma->dma_requests; i++) {
633 hvc = &hsdma->vc[i];
634 spin_lock(&hvc->vc.lock);
635 mtk_hsdma_issue_vchan_pending(hsdma, hvc);
636 spin_unlock(&hvc->vc.lock);
639 rx_done:
640 /* All completed PDs are cleaned up, so enable interrupt again */
641 mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
644 static irqreturn_t mtk_hsdma_irq(int irq, void *devid)
646 struct mtk_hsdma_device *hsdma = devid;
649 * Disable interrupt until all completed PDs are cleaned up in
650 * mtk_hsdma_free_rooms call.
652 mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
654 mtk_hsdma_free_rooms_in_ring(hsdma);
656 return IRQ_HANDLED;
659 static struct virt_dma_desc *mtk_hsdma_find_active_desc(struct dma_chan *c,
660 dma_cookie_t cookie)
662 struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
663 struct virt_dma_desc *vd;
665 list_for_each_entry(vd, &hvc->desc_hw_processing, node)
666 if (vd->tx.cookie == cookie)
667 return vd;
669 list_for_each_entry(vd, &hvc->vc.desc_issued, node)
670 if (vd->tx.cookie == cookie)
671 return vd;
673 return NULL;
676 static enum dma_status mtk_hsdma_tx_status(struct dma_chan *c,
677 dma_cookie_t cookie,
678 struct dma_tx_state *txstate)
680 struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
681 struct mtk_hsdma_vdesc *hvd;
682 struct virt_dma_desc *vd;
683 enum dma_status ret;
684 unsigned long flags;
685 size_t bytes = 0;
687 ret = dma_cookie_status(c, cookie, txstate);
688 if (ret == DMA_COMPLETE || !txstate)
689 return ret;
691 spin_lock_irqsave(&hvc->vc.lock, flags);
692 vd = mtk_hsdma_find_active_desc(c, cookie);
693 spin_unlock_irqrestore(&hvc->vc.lock, flags);
695 if (vd) {
696 hvd = to_hsdma_vdesc(vd);
697 bytes = hvd->residue;
700 dma_set_residue(txstate, bytes);
702 return ret;
705 static void mtk_hsdma_issue_pending(struct dma_chan *c)
707 struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
708 struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
709 unsigned long flags;
711 spin_lock_irqsave(&hvc->vc.lock, flags);
713 if (vchan_issue_pending(&hvc->vc))
714 mtk_hsdma_issue_vchan_pending(hsdma, hvc);
716 spin_unlock_irqrestore(&hvc->vc.lock, flags);
719 static struct dma_async_tx_descriptor *
720 mtk_hsdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest,
721 dma_addr_t src, size_t len, unsigned long flags)
723 struct mtk_hsdma_vdesc *hvd;
725 hvd = kzalloc(sizeof(*hvd), GFP_NOWAIT);
726 if (!hvd)
727 return NULL;
729 hvd->len = len;
730 hvd->residue = len;
731 hvd->src = src;
732 hvd->dest = dest;
734 return vchan_tx_prep(to_virt_chan(c), &hvd->vd, flags);
737 static int mtk_hsdma_free_inactive_desc(struct dma_chan *c)
739 struct virt_dma_chan *vc = to_virt_chan(c);
740 unsigned long flags;
741 LIST_HEAD(head);
743 spin_lock_irqsave(&vc->lock, flags);
744 list_splice_tail_init(&vc->desc_allocated, &head);
745 list_splice_tail_init(&vc->desc_submitted, &head);
746 list_splice_tail_init(&vc->desc_issued, &head);
747 spin_unlock_irqrestore(&vc->lock, flags);
749 /* At the point, we don't expect users put descriptor into VC again */
750 vchan_dma_desc_free_list(vc, &head);
752 return 0;
755 static void mtk_hsdma_free_active_desc(struct dma_chan *c)
757 struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
758 bool sync_needed = false;
761 * Once issue_synchronize is being set, which means once the hardware
762 * consumes all descriptors for the channel in the ring, the
763 * synchronization must be notified immediately it is completed.
765 spin_lock(&hvc->vc.lock);
766 if (!list_empty(&hvc->desc_hw_processing)) {
767 hvc->issue_synchronize = true;
768 sync_needed = true;
770 spin_unlock(&hvc->vc.lock);
772 if (sync_needed)
773 wait_for_completion(&hvc->issue_completion);
775 * At the point, we expect that all remaining descriptors in the ring
776 * for the channel should be all processing done.
778 WARN_ONCE(!list_empty(&hvc->desc_hw_processing),
779 "Desc pending still in list desc_hw_processing\n");
781 /* Free all descriptors in list desc_completed */
782 vchan_synchronize(&hvc->vc);
784 WARN_ONCE(!list_empty(&hvc->vc.desc_completed),
785 "Desc pending still in list desc_completed\n");
788 static int mtk_hsdma_terminate_all(struct dma_chan *c)
791 * Free pending descriptors not processed yet by hardware that have
792 * previously been submitted to the channel.
794 mtk_hsdma_free_inactive_desc(c);
797 * However, the DMA engine doesn't provide any way to stop these
798 * descriptors being processed currently by hardware. The only way is
799 * to just waiting until these descriptors are all processed completely
800 * through mtk_hsdma_free_active_desc call.
802 mtk_hsdma_free_active_desc(c);
804 return 0;
807 static int mtk_hsdma_alloc_chan_resources(struct dma_chan *c)
809 struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
810 int err;
813 * Since HSDMA has only one PC, the resource for PC is being allocated
814 * when the first VC is being created and the other VCs would run on
815 * the same PC.
817 if (!refcount_read(&hsdma->pc_refcnt)) {
818 err = mtk_hsdma_alloc_pchan(hsdma, hsdma->pc);
819 if (err)
820 return err;
822 * refcount_inc would complain increment on 0; use-after-free.
823 * Thus, we need to explicitly set it as 1 initially.
825 refcount_set(&hsdma->pc_refcnt, 1);
826 } else {
827 refcount_inc(&hsdma->pc_refcnt);
830 return 0;
833 static void mtk_hsdma_free_chan_resources(struct dma_chan *c)
835 struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
837 /* Free all descriptors in all lists on the VC */
838 mtk_hsdma_terminate_all(c);
840 /* The resource for PC is not freed until all the VCs are destroyed */
841 if (!refcount_dec_and_test(&hsdma->pc_refcnt))
842 return;
844 mtk_hsdma_free_pchan(hsdma, hsdma->pc);
847 static int mtk_hsdma_hw_init(struct mtk_hsdma_device *hsdma)
849 int err;
851 pm_runtime_enable(hsdma2dev(hsdma));
852 pm_runtime_get_sync(hsdma2dev(hsdma));
854 err = clk_prepare_enable(hsdma->clk);
855 if (err)
856 return err;
858 mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
859 mtk_dma_write(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DEFAULT);
861 return 0;
864 static int mtk_hsdma_hw_deinit(struct mtk_hsdma_device *hsdma)
866 mtk_dma_write(hsdma, MTK_HSDMA_GLO, 0);
868 clk_disable_unprepare(hsdma->clk);
870 pm_runtime_put_sync(hsdma2dev(hsdma));
871 pm_runtime_disable(hsdma2dev(hsdma));
873 return 0;
876 static const struct mtk_hsdma_soc mt7623_soc = {
877 .ddone = BIT(31),
878 .ls0 = BIT(30),
881 static const struct mtk_hsdma_soc mt7622_soc = {
882 .ddone = BIT(15),
883 .ls0 = BIT(14),
886 static const struct of_device_id mtk_hsdma_match[] = {
887 { .compatible = "mediatek,mt7623-hsdma", .data = &mt7623_soc},
888 { .compatible = "mediatek,mt7622-hsdma", .data = &mt7622_soc},
889 { /* sentinel */ }
891 MODULE_DEVICE_TABLE(of, mtk_hsdma_match);
893 static int mtk_hsdma_probe(struct platform_device *pdev)
895 struct mtk_hsdma_device *hsdma;
896 struct mtk_hsdma_vchan *vc;
897 struct dma_device *dd;
898 int i, err;
900 hsdma = devm_kzalloc(&pdev->dev, sizeof(*hsdma), GFP_KERNEL);
901 if (!hsdma)
902 return -ENOMEM;
904 dd = &hsdma->ddev;
906 hsdma->base = devm_platform_ioremap_resource(pdev, 0);
907 if (IS_ERR(hsdma->base))
908 return PTR_ERR(hsdma->base);
910 hsdma->soc = of_device_get_match_data(&pdev->dev);
911 if (!hsdma->soc) {
912 dev_err(&pdev->dev, "No device match found\n");
913 return -ENODEV;
916 hsdma->clk = devm_clk_get(&pdev->dev, "hsdma");
917 if (IS_ERR(hsdma->clk)) {
918 dev_err(&pdev->dev, "No clock for %s\n",
919 dev_name(&pdev->dev));
920 return PTR_ERR(hsdma->clk);
923 err = platform_get_irq(pdev, 0);
924 if (err < 0)
925 return err;
926 hsdma->irq = err;
928 refcount_set(&hsdma->pc_refcnt, 0);
929 spin_lock_init(&hsdma->lock);
931 dma_cap_set(DMA_MEMCPY, dd->cap_mask);
933 dd->copy_align = MTK_HSDMA_ALIGN_SIZE;
934 dd->device_alloc_chan_resources = mtk_hsdma_alloc_chan_resources;
935 dd->device_free_chan_resources = mtk_hsdma_free_chan_resources;
936 dd->device_tx_status = mtk_hsdma_tx_status;
937 dd->device_issue_pending = mtk_hsdma_issue_pending;
938 dd->device_prep_dma_memcpy = mtk_hsdma_prep_dma_memcpy;
939 dd->device_terminate_all = mtk_hsdma_terminate_all;
940 dd->src_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
941 dd->dst_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
942 dd->directions = BIT(DMA_MEM_TO_MEM);
943 dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
944 dd->dev = &pdev->dev;
945 INIT_LIST_HEAD(&dd->channels);
947 hsdma->dma_requests = MTK_HSDMA_NR_VCHANS;
948 if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
949 "dma-requests",
950 &hsdma->dma_requests)) {
951 dev_info(&pdev->dev,
952 "Using %u as missing dma-requests property\n",
953 MTK_HSDMA_NR_VCHANS);
956 hsdma->pc = devm_kcalloc(&pdev->dev, MTK_HSDMA_NR_MAX_PCHANS,
957 sizeof(*hsdma->pc), GFP_KERNEL);
958 if (!hsdma->pc)
959 return -ENOMEM;
961 hsdma->vc = devm_kcalloc(&pdev->dev, hsdma->dma_requests,
962 sizeof(*hsdma->vc), GFP_KERNEL);
963 if (!hsdma->vc)
964 return -ENOMEM;
966 for (i = 0; i < hsdma->dma_requests; i++) {
967 vc = &hsdma->vc[i];
968 vc->vc.desc_free = mtk_hsdma_vdesc_free;
969 vchan_init(&vc->vc, dd);
970 init_completion(&vc->issue_completion);
971 INIT_LIST_HEAD(&vc->desc_hw_processing);
974 err = dma_async_device_register(dd);
975 if (err)
976 return err;
978 err = of_dma_controller_register(pdev->dev.of_node,
979 of_dma_xlate_by_chan_id, hsdma);
980 if (err) {
981 dev_err(&pdev->dev,
982 "MediaTek HSDMA OF registration failed %d\n", err);
983 goto err_unregister;
986 mtk_hsdma_hw_init(hsdma);
988 err = devm_request_irq(&pdev->dev, hsdma->irq,
989 mtk_hsdma_irq, 0,
990 dev_name(&pdev->dev), hsdma);
991 if (err) {
992 dev_err(&pdev->dev,
993 "request_irq failed with err %d\n", err);
994 goto err_free;
997 platform_set_drvdata(pdev, hsdma);
999 dev_info(&pdev->dev, "MediaTek HSDMA driver registered\n");
1001 return 0;
1003 err_free:
1004 mtk_hsdma_hw_deinit(hsdma);
1005 of_dma_controller_free(pdev->dev.of_node);
1006 err_unregister:
1007 dma_async_device_unregister(dd);
1009 return err;
1012 static void mtk_hsdma_remove(struct platform_device *pdev)
1014 struct mtk_hsdma_device *hsdma = platform_get_drvdata(pdev);
1015 struct mtk_hsdma_vchan *vc;
1016 int i;
1018 /* Kill VC task */
1019 for (i = 0; i < hsdma->dma_requests; i++) {
1020 vc = &hsdma->vc[i];
1022 list_del(&vc->vc.chan.device_node);
1023 tasklet_kill(&vc->vc.task);
1026 /* Disable DMA interrupt */
1027 mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
1029 /* Waits for any pending IRQ handlers to complete */
1030 synchronize_irq(hsdma->irq);
1032 /* Disable hardware */
1033 mtk_hsdma_hw_deinit(hsdma);
1035 dma_async_device_unregister(&hsdma->ddev);
1036 of_dma_controller_free(pdev->dev.of_node);
1039 static struct platform_driver mtk_hsdma_driver = {
1040 .probe = mtk_hsdma_probe,
1041 .remove = mtk_hsdma_remove,
1042 .driver = {
1043 .name = KBUILD_MODNAME,
1044 .of_match_table = mtk_hsdma_match,
1047 module_platform_driver(mtk_hsdma_driver);
1049 MODULE_DESCRIPTION("MediaTek High-Speed DMA Controller Driver");
1050 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
1051 MODULE_LICENSE("GPL v2");