1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright 2012 Marvell International Ltd.
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/types.h>
10 #include <linux/interrupt.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/slab.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/device.h>
16 #include <linux/platform_data/mmp_dma.h>
17 #include <linux/dmapool.h>
18 #include <linux/of_dma.h>
21 #include "dmaengine.h"
27 #define DSADR(n) (0x0204 + ((n) << 4))
28 #define DTADR(n) (0x0208 + ((n) << 4))
31 #define DCSR_RUN BIT(31) /* Run Bit (read / write) */
32 #define DCSR_NODESC BIT(30) /* No-Descriptor Fetch (read / write) */
33 #define DCSR_STOPIRQEN BIT(29) /* Stop Interrupt Enable (read / write) */
34 #define DCSR_REQPEND BIT(8) /* Request Pending (read-only) */
35 #define DCSR_STOPSTATE BIT(3) /* Stop State (read-only) */
36 #define DCSR_ENDINTR BIT(2) /* End Interrupt (read / write) */
37 #define DCSR_STARTINTR BIT(1) /* Start Interrupt (read / write) */
38 #define DCSR_BUSERR BIT(0) /* Bus Error Interrupt (read / write) */
40 #define DCSR_EORIRQEN BIT(28) /* End of Receive Interrupt Enable (R/W) */
41 #define DCSR_EORJMPEN BIT(27) /* Jump to next descriptor on EOR */
42 #define DCSR_EORSTOPEN BIT(26) /* STOP on an EOR */
43 #define DCSR_SETCMPST BIT(25) /* Set Descriptor Compare Status */
44 #define DCSR_CLRCMPST BIT(24) /* Clear Descriptor Compare Status */
45 #define DCSR_CMPST BIT(10) /* The Descriptor Compare Status */
46 #define DCSR_EORINTR BIT(9) /* The end of Receive */
48 #define DRCMR(n) ((((n) < 64) ? 0x0100 : 0x1100) + (((n) & 0x3f) << 2))
49 #define DRCMR_MAPVLD BIT(7) /* Map Valid (read / write) */
50 #define DRCMR_CHLNUM 0x1f /* mask for Channel Number (read / write) */
52 #define DDADR_DESCADDR 0xfffffff0 /* Address of next descriptor (mask) */
53 #define DDADR_STOP BIT(0) /* Stop (read / write) */
55 #define DCMD_INCSRCADDR BIT(31) /* Source Address Increment Setting. */
56 #define DCMD_INCTRGADDR BIT(30) /* Target Address Increment Setting. */
57 #define DCMD_FLOWSRC BIT(29) /* Flow Control by the source. */
58 #define DCMD_FLOWTRG BIT(28) /* Flow Control by the target. */
59 #define DCMD_STARTIRQEN BIT(22) /* Start Interrupt Enable */
60 #define DCMD_ENDIRQEN BIT(21) /* End Interrupt Enable */
61 #define DCMD_ENDIAN BIT(18) /* Device Endian-ness. */
62 #define DCMD_BURST8 (1 << 16) /* 8 byte burst */
63 #define DCMD_BURST16 (2 << 16) /* 16 byte burst */
64 #define DCMD_BURST32 (3 << 16) /* 32 byte burst */
65 #define DCMD_WIDTH1 (1 << 14) /* 1 byte width */
66 #define DCMD_WIDTH2 (2 << 14) /* 2 byte width (HalfWord) */
67 #define DCMD_WIDTH4 (3 << 14) /* 4 byte width (Word) */
68 #define DCMD_LENGTH 0x01fff /* length mask (max = 8K - 1) */
70 #define PDMA_MAX_DESC_BYTES DCMD_LENGTH
72 struct mmp_pdma_desc_hw
{
73 u32 ddadr
; /* Points to the next descriptor + flags */
74 u32 dsadr
; /* DSADR value for the current transfer */
75 u32 dtadr
; /* DTADR value for the current transfer */
76 u32 dcmd
; /* DCMD value for the current transfer */
79 struct mmp_pdma_desc_sw
{
80 struct mmp_pdma_desc_hw desc
;
81 struct list_head node
;
82 struct list_head tx_list
;
83 struct dma_async_tx_descriptor async_tx
;
88 struct mmp_pdma_chan
{
91 struct dma_async_tx_descriptor desc
;
92 struct mmp_pdma_phy
*phy
;
93 enum dma_transfer_direction dir
;
94 struct dma_slave_config slave_config
;
96 struct mmp_pdma_desc_sw
*cyclic_first
; /* first desc_sw if channel
97 * is in cyclic mode */
99 /* channel's basic info */
100 struct tasklet_struct tasklet
;
106 spinlock_t desc_lock
; /* Descriptor list lock */
107 struct list_head chain_pending
; /* Link descriptors queue for pending */
108 struct list_head chain_running
; /* Link descriptors queue for running */
109 bool idle
; /* channel statue machine */
112 struct dma_pool
*desc_pool
; /* Descriptors pool */
115 struct mmp_pdma_phy
{
118 struct mmp_pdma_chan
*vchan
;
121 struct mmp_pdma_device
{
125 struct dma_device device
;
126 struct mmp_pdma_phy
*phy
;
127 spinlock_t phy_lock
; /* protect alloc/free phy channels */
130 #define tx_to_mmp_pdma_desc(tx) \
131 container_of(tx, struct mmp_pdma_desc_sw, async_tx)
132 #define to_mmp_pdma_desc(lh) \
133 container_of(lh, struct mmp_pdma_desc_sw, node)
134 #define to_mmp_pdma_chan(dchan) \
135 container_of(dchan, struct mmp_pdma_chan, chan)
136 #define to_mmp_pdma_dev(dmadev) \
137 container_of(dmadev, struct mmp_pdma_device, device)
139 static int mmp_pdma_config_write(struct dma_chan
*dchan
,
140 struct dma_slave_config
*cfg
,
141 enum dma_transfer_direction direction
);
143 static void set_desc(struct mmp_pdma_phy
*phy
, dma_addr_t addr
)
145 u32 reg
= (phy
->idx
<< 4) + DDADR
;
147 writel(addr
, phy
->base
+ reg
);
150 static void enable_chan(struct mmp_pdma_phy
*phy
)
157 reg
= DRCMR(phy
->vchan
->drcmr
);
158 writel(DRCMR_MAPVLD
| phy
->idx
, phy
->base
+ reg
);
160 dalgn
= readl(phy
->base
+ DALGN
);
161 if (phy
->vchan
->byte_align
)
162 dalgn
|= 1 << phy
->idx
;
164 dalgn
&= ~(1 << phy
->idx
);
165 writel(dalgn
, phy
->base
+ DALGN
);
167 reg
= (phy
->idx
<< 2) + DCSR
;
168 writel(readl(phy
->base
+ reg
) | DCSR_RUN
, phy
->base
+ reg
);
171 static void disable_chan(struct mmp_pdma_phy
*phy
)
178 reg
= (phy
->idx
<< 2) + DCSR
;
179 writel(readl(phy
->base
+ reg
) & ~DCSR_RUN
, phy
->base
+ reg
);
182 static int clear_chan_irq(struct mmp_pdma_phy
*phy
)
185 u32 dint
= readl(phy
->base
+ DINT
);
186 u32 reg
= (phy
->idx
<< 2) + DCSR
;
188 if (!(dint
& BIT(phy
->idx
)))
192 dcsr
= readl(phy
->base
+ reg
);
193 writel(dcsr
, phy
->base
+ reg
);
194 if ((dcsr
& DCSR_BUSERR
) && (phy
->vchan
))
195 dev_warn(phy
->vchan
->dev
, "DCSR_BUSERR\n");
200 static irqreturn_t
mmp_pdma_chan_handler(int irq
, void *dev_id
)
202 struct mmp_pdma_phy
*phy
= dev_id
;
204 if (clear_chan_irq(phy
) != 0)
207 tasklet_schedule(&phy
->vchan
->tasklet
);
211 static irqreturn_t
mmp_pdma_int_handler(int irq
, void *dev_id
)
213 struct mmp_pdma_device
*pdev
= dev_id
;
214 struct mmp_pdma_phy
*phy
;
215 u32 dint
= readl(pdev
->base
+ DINT
);
221 /* only handle interrupts belonging to pdma driver*/
222 if (i
>= pdev
->dma_channels
)
226 ret
= mmp_pdma_chan_handler(irq
, phy
);
227 if (ret
== IRQ_HANDLED
)
237 /* lookup free phy channel as descending priority */
238 static struct mmp_pdma_phy
*lookup_phy(struct mmp_pdma_chan
*pchan
)
241 struct mmp_pdma_device
*pdev
= to_mmp_pdma_dev(pchan
->chan
.device
);
242 struct mmp_pdma_phy
*phy
, *found
= NULL
;
246 * dma channel priorities
247 * ch 0 - 3, 16 - 19 <--> (0)
248 * ch 4 - 7, 20 - 23 <--> (1)
249 * ch 8 - 11, 24 - 27 <--> (2)
250 * ch 12 - 15, 28 - 31 <--> (3)
253 spin_lock_irqsave(&pdev
->phy_lock
, flags
);
254 for (prio
= 0; prio
<= ((pdev
->dma_channels
- 1) & 0xf) >> 2; prio
++) {
255 for (i
= 0; i
< pdev
->dma_channels
; i
++) {
256 if (prio
!= (i
& 0xf) >> 2)
268 spin_unlock_irqrestore(&pdev
->phy_lock
, flags
);
272 static void mmp_pdma_free_phy(struct mmp_pdma_chan
*pchan
)
274 struct mmp_pdma_device
*pdev
= to_mmp_pdma_dev(pchan
->chan
.device
);
281 /* clear the channel mapping in DRCMR */
282 reg
= DRCMR(pchan
->drcmr
);
283 writel(0, pchan
->phy
->base
+ reg
);
285 spin_lock_irqsave(&pdev
->phy_lock
, flags
);
286 pchan
->phy
->vchan
= NULL
;
288 spin_unlock_irqrestore(&pdev
->phy_lock
, flags
);
292 * start_pending_queue - transfer any pending transactions
293 * pending list ==> running list
295 static void start_pending_queue(struct mmp_pdma_chan
*chan
)
297 struct mmp_pdma_desc_sw
*desc
;
299 /* still in running, irq will start the pending list */
301 dev_dbg(chan
->dev
, "DMA controller still busy\n");
305 if (list_empty(&chan
->chain_pending
)) {
306 /* chance to re-fetch phy channel with higher prio */
307 mmp_pdma_free_phy(chan
);
308 dev_dbg(chan
->dev
, "no pending list\n");
313 chan
->phy
= lookup_phy(chan
);
315 dev_dbg(chan
->dev
, "no free dma channel\n");
322 * reintilize pending list
324 desc
= list_first_entry(&chan
->chain_pending
,
325 struct mmp_pdma_desc_sw
, node
);
326 list_splice_tail_init(&chan
->chain_pending
, &chan
->chain_running
);
329 * Program the descriptor's address into the DMA controller,
330 * then start the DMA transaction
332 set_desc(chan
->phy
, desc
->async_tx
.phys
);
333 enable_chan(chan
->phy
);
338 /* desc->tx_list ==> pending list */
339 static dma_cookie_t
mmp_pdma_tx_submit(struct dma_async_tx_descriptor
*tx
)
341 struct mmp_pdma_chan
*chan
= to_mmp_pdma_chan(tx
->chan
);
342 struct mmp_pdma_desc_sw
*desc
= tx_to_mmp_pdma_desc(tx
);
343 struct mmp_pdma_desc_sw
*child
;
345 dma_cookie_t cookie
= -EBUSY
;
347 spin_lock_irqsave(&chan
->desc_lock
, flags
);
349 list_for_each_entry(child
, &desc
->tx_list
, node
) {
350 cookie
= dma_cookie_assign(&child
->async_tx
);
353 /* softly link to pending list - desc->tx_list ==> pending list */
354 list_splice_tail_init(&desc
->tx_list
, &chan
->chain_pending
);
356 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
361 static struct mmp_pdma_desc_sw
*
362 mmp_pdma_alloc_descriptor(struct mmp_pdma_chan
*chan
)
364 struct mmp_pdma_desc_sw
*desc
;
367 desc
= dma_pool_zalloc(chan
->desc_pool
, GFP_ATOMIC
, &pdesc
);
369 dev_err(chan
->dev
, "out of memory for link descriptor\n");
373 INIT_LIST_HEAD(&desc
->tx_list
);
374 dma_async_tx_descriptor_init(&desc
->async_tx
, &chan
->chan
);
375 /* each desc has submit */
376 desc
->async_tx
.tx_submit
= mmp_pdma_tx_submit
;
377 desc
->async_tx
.phys
= pdesc
;
383 * mmp_pdma_alloc_chan_resources - Allocate resources for DMA channel.
385 * This function will create a dma pool for descriptor allocation.
386 * Request irq only when channel is requested
387 * Return - The number of allocated descriptors.
390 static int mmp_pdma_alloc_chan_resources(struct dma_chan
*dchan
)
392 struct mmp_pdma_chan
*chan
= to_mmp_pdma_chan(dchan
);
397 chan
->desc_pool
= dma_pool_create(dev_name(&dchan
->dev
->device
),
399 sizeof(struct mmp_pdma_desc_sw
),
400 __alignof__(struct mmp_pdma_desc_sw
),
402 if (!chan
->desc_pool
) {
403 dev_err(chan
->dev
, "unable to allocate descriptor pool\n");
407 mmp_pdma_free_phy(chan
);
413 static void mmp_pdma_free_desc_list(struct mmp_pdma_chan
*chan
,
414 struct list_head
*list
)
416 struct mmp_pdma_desc_sw
*desc
, *_desc
;
418 list_for_each_entry_safe(desc
, _desc
, list
, node
) {
419 list_del(&desc
->node
);
420 dma_pool_free(chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
424 static void mmp_pdma_free_chan_resources(struct dma_chan
*dchan
)
426 struct mmp_pdma_chan
*chan
= to_mmp_pdma_chan(dchan
);
429 spin_lock_irqsave(&chan
->desc_lock
, flags
);
430 mmp_pdma_free_desc_list(chan
, &chan
->chain_pending
);
431 mmp_pdma_free_desc_list(chan
, &chan
->chain_running
);
432 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
434 dma_pool_destroy(chan
->desc_pool
);
435 chan
->desc_pool
= NULL
;
438 mmp_pdma_free_phy(chan
);
442 static struct dma_async_tx_descriptor
*
443 mmp_pdma_prep_memcpy(struct dma_chan
*dchan
,
444 dma_addr_t dma_dst
, dma_addr_t dma_src
,
445 size_t len
, unsigned long flags
)
447 struct mmp_pdma_chan
*chan
;
448 struct mmp_pdma_desc_sw
*first
= NULL
, *prev
= NULL
, *new;
457 chan
= to_mmp_pdma_chan(dchan
);
458 chan
->byte_align
= false;
461 chan
->dir
= DMA_MEM_TO_MEM
;
462 chan
->dcmd
= DCMD_INCTRGADDR
| DCMD_INCSRCADDR
;
463 chan
->dcmd
|= DCMD_BURST32
;
467 /* Allocate the link descriptor from DMA pool */
468 new = mmp_pdma_alloc_descriptor(chan
);
470 dev_err(chan
->dev
, "no memory for desc\n");
474 copy
= min_t(size_t, len
, PDMA_MAX_DESC_BYTES
);
475 if (dma_src
& 0x7 || dma_dst
& 0x7)
476 chan
->byte_align
= true;
478 new->desc
.dcmd
= chan
->dcmd
| (DCMD_LENGTH
& copy
);
479 new->desc
.dsadr
= dma_src
;
480 new->desc
.dtadr
= dma_dst
;
485 prev
->desc
.ddadr
= new->async_tx
.phys
;
487 new->async_tx
.cookie
= 0;
488 async_tx_ack(&new->async_tx
);
493 if (chan
->dir
== DMA_MEM_TO_DEV
) {
495 } else if (chan
->dir
== DMA_DEV_TO_MEM
) {
497 } else if (chan
->dir
== DMA_MEM_TO_MEM
) {
502 /* Insert the link descriptor to the LD ring */
503 list_add_tail(&new->node
, &first
->tx_list
);
506 first
->async_tx
.flags
= flags
; /* client is in control of this ack */
507 first
->async_tx
.cookie
= -EBUSY
;
509 /* last desc and fire IRQ */
510 new->desc
.ddadr
= DDADR_STOP
;
511 new->desc
.dcmd
|= DCMD_ENDIRQEN
;
513 chan
->cyclic_first
= NULL
;
515 return &first
->async_tx
;
519 mmp_pdma_free_desc_list(chan
, &first
->tx_list
);
523 static struct dma_async_tx_descriptor
*
524 mmp_pdma_prep_slave_sg(struct dma_chan
*dchan
, struct scatterlist
*sgl
,
525 unsigned int sg_len
, enum dma_transfer_direction dir
,
526 unsigned long flags
, void *context
)
528 struct mmp_pdma_chan
*chan
= to_mmp_pdma_chan(dchan
);
529 struct mmp_pdma_desc_sw
*first
= NULL
, *prev
= NULL
, *new = NULL
;
531 struct scatterlist
*sg
;
535 if ((sgl
== NULL
) || (sg_len
== 0))
538 chan
->byte_align
= false;
540 mmp_pdma_config_write(dchan
, &chan
->slave_config
, dir
);
542 for_each_sg(sgl
, sg
, sg_len
, i
) {
543 addr
= sg_dma_address(sg
);
544 avail
= sg_dma_len(sgl
);
547 len
= min_t(size_t, avail
, PDMA_MAX_DESC_BYTES
);
549 chan
->byte_align
= true;
551 /* allocate and populate the descriptor */
552 new = mmp_pdma_alloc_descriptor(chan
);
554 dev_err(chan
->dev
, "no memory for desc\n");
558 new->desc
.dcmd
= chan
->dcmd
| (DCMD_LENGTH
& len
);
559 if (dir
== DMA_MEM_TO_DEV
) {
560 new->desc
.dsadr
= addr
;
561 new->desc
.dtadr
= chan
->dev_addr
;
563 new->desc
.dsadr
= chan
->dev_addr
;
564 new->desc
.dtadr
= addr
;
570 prev
->desc
.ddadr
= new->async_tx
.phys
;
572 new->async_tx
.cookie
= 0;
573 async_tx_ack(&new->async_tx
);
576 /* Insert the link descriptor to the LD ring */
577 list_add_tail(&new->node
, &first
->tx_list
);
579 /* update metadata */
585 first
->async_tx
.cookie
= -EBUSY
;
586 first
->async_tx
.flags
= flags
;
588 /* last desc and fire IRQ */
589 new->desc
.ddadr
= DDADR_STOP
;
590 new->desc
.dcmd
|= DCMD_ENDIRQEN
;
593 chan
->cyclic_first
= NULL
;
595 return &first
->async_tx
;
599 mmp_pdma_free_desc_list(chan
, &first
->tx_list
);
603 static struct dma_async_tx_descriptor
*
604 mmp_pdma_prep_dma_cyclic(struct dma_chan
*dchan
,
605 dma_addr_t buf_addr
, size_t len
, size_t period_len
,
606 enum dma_transfer_direction direction
,
609 struct mmp_pdma_chan
*chan
;
610 struct mmp_pdma_desc_sw
*first
= NULL
, *prev
= NULL
, *new;
611 dma_addr_t dma_src
, dma_dst
;
613 if (!dchan
|| !len
|| !period_len
)
616 /* the buffer length must be a multiple of period_len */
617 if (len
% period_len
!= 0)
620 if (period_len
> PDMA_MAX_DESC_BYTES
)
623 chan
= to_mmp_pdma_chan(dchan
);
624 mmp_pdma_config_write(dchan
, &chan
->slave_config
, direction
);
629 dma_dst
= chan
->dev_addr
;
633 dma_src
= chan
->dev_addr
;
636 dev_err(chan
->dev
, "Unsupported direction for cyclic DMA\n");
640 chan
->dir
= direction
;
643 /* Allocate the link descriptor from DMA pool */
644 new = mmp_pdma_alloc_descriptor(chan
);
646 dev_err(chan
->dev
, "no memory for desc\n");
650 new->desc
.dcmd
= (chan
->dcmd
| DCMD_ENDIRQEN
|
651 (DCMD_LENGTH
& period_len
));
652 new->desc
.dsadr
= dma_src
;
653 new->desc
.dtadr
= dma_dst
;
658 prev
->desc
.ddadr
= new->async_tx
.phys
;
660 new->async_tx
.cookie
= 0;
661 async_tx_ack(&new->async_tx
);
666 if (chan
->dir
== DMA_MEM_TO_DEV
)
667 dma_src
+= period_len
;
669 dma_dst
+= period_len
;
671 /* Insert the link descriptor to the LD ring */
672 list_add_tail(&new->node
, &first
->tx_list
);
675 first
->async_tx
.flags
= flags
; /* client is in control of this ack */
676 first
->async_tx
.cookie
= -EBUSY
;
678 /* make the cyclic link */
679 new->desc
.ddadr
= first
->async_tx
.phys
;
680 chan
->cyclic_first
= first
;
682 return &first
->async_tx
;
686 mmp_pdma_free_desc_list(chan
, &first
->tx_list
);
690 static int mmp_pdma_config_write(struct dma_chan
*dchan
,
691 struct dma_slave_config
*cfg
,
692 enum dma_transfer_direction direction
)
694 struct mmp_pdma_chan
*chan
= to_mmp_pdma_chan(dchan
);
695 u32 maxburst
= 0, addr
= 0;
696 enum dma_slave_buswidth width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
701 if (direction
== DMA_DEV_TO_MEM
) {
702 chan
->dcmd
= DCMD_INCTRGADDR
| DCMD_FLOWSRC
;
703 maxburst
= cfg
->src_maxburst
;
704 width
= cfg
->src_addr_width
;
705 addr
= cfg
->src_addr
;
706 } else if (direction
== DMA_MEM_TO_DEV
) {
707 chan
->dcmd
= DCMD_INCSRCADDR
| DCMD_FLOWTRG
;
708 maxburst
= cfg
->dst_maxburst
;
709 width
= cfg
->dst_addr_width
;
710 addr
= cfg
->dst_addr
;
713 if (width
== DMA_SLAVE_BUSWIDTH_1_BYTE
)
714 chan
->dcmd
|= DCMD_WIDTH1
;
715 else if (width
== DMA_SLAVE_BUSWIDTH_2_BYTES
)
716 chan
->dcmd
|= DCMD_WIDTH2
;
717 else if (width
== DMA_SLAVE_BUSWIDTH_4_BYTES
)
718 chan
->dcmd
|= DCMD_WIDTH4
;
721 chan
->dcmd
|= DCMD_BURST8
;
722 else if (maxburst
== 16)
723 chan
->dcmd
|= DCMD_BURST16
;
724 else if (maxburst
== 32)
725 chan
->dcmd
|= DCMD_BURST32
;
727 chan
->dir
= direction
;
728 chan
->dev_addr
= addr
;
733 static int mmp_pdma_config(struct dma_chan
*dchan
,
734 struct dma_slave_config
*cfg
)
736 struct mmp_pdma_chan
*chan
= to_mmp_pdma_chan(dchan
);
738 memcpy(&chan
->slave_config
, cfg
, sizeof(*cfg
));
742 static int mmp_pdma_terminate_all(struct dma_chan
*dchan
)
744 struct mmp_pdma_chan
*chan
= to_mmp_pdma_chan(dchan
);
750 disable_chan(chan
->phy
);
751 mmp_pdma_free_phy(chan
);
752 spin_lock_irqsave(&chan
->desc_lock
, flags
);
753 mmp_pdma_free_desc_list(chan
, &chan
->chain_pending
);
754 mmp_pdma_free_desc_list(chan
, &chan
->chain_running
);
755 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
761 static unsigned int mmp_pdma_residue(struct mmp_pdma_chan
*chan
,
764 struct mmp_pdma_desc_sw
*sw
;
765 u32 curr
, residue
= 0;
767 bool cyclic
= chan
->cyclic_first
!= NULL
;
770 * If the channel does not have a phy pointer anymore, it has already
771 * been completed. Therefore, its residue is 0.
776 if (chan
->dir
== DMA_DEV_TO_MEM
)
777 curr
= readl(chan
->phy
->base
+ DTADR(chan
->phy
->idx
));
779 curr
= readl(chan
->phy
->base
+ DSADR(chan
->phy
->idx
));
781 list_for_each_entry(sw
, &chan
->chain_running
, node
) {
784 if (chan
->dir
== DMA_DEV_TO_MEM
)
785 start
= sw
->desc
.dtadr
;
787 start
= sw
->desc
.dsadr
;
789 len
= sw
->desc
.dcmd
& DCMD_LENGTH
;
793 * 'passed' will be latched once we found the descriptor which
794 * lies inside the boundaries of the curr pointer. All
795 * descriptors that occur in the list _after_ we found that
796 * partially handled descriptor are still to be processed and
797 * are hence added to the residual bytes counter.
802 } else if (curr
>= start
&& curr
<= end
) {
803 residue
+= end
- curr
;
808 * Descriptors that have the ENDIRQEN bit set mark the end of a
809 * transaction chain, and the cookie assigned with it has been
810 * returned previously from mmp_pdma_tx_submit().
812 * In case we have multiple transactions in the running chain,
813 * and the cookie does not match the one the user asked us
814 * about, reset the state variables and start over.
816 * This logic does not apply to cyclic transactions, where all
817 * descriptors have the ENDIRQEN bit set, and for which we
818 * can't have multiple transactions on one channel anyway.
820 if (cyclic
|| !(sw
->desc
.dcmd
& DCMD_ENDIRQEN
))
823 if (sw
->async_tx
.cookie
== cookie
) {
831 /* We should only get here in case of cyclic transactions */
835 static enum dma_status
mmp_pdma_tx_status(struct dma_chan
*dchan
,
837 struct dma_tx_state
*txstate
)
839 struct mmp_pdma_chan
*chan
= to_mmp_pdma_chan(dchan
);
842 ret
= dma_cookie_status(dchan
, cookie
, txstate
);
843 if (likely(ret
!= DMA_ERROR
))
844 dma_set_residue(txstate
, mmp_pdma_residue(chan
, cookie
));
850 * mmp_pdma_issue_pending - Issue the DMA start command
851 * pending list ==> running list
853 static void mmp_pdma_issue_pending(struct dma_chan
*dchan
)
855 struct mmp_pdma_chan
*chan
= to_mmp_pdma_chan(dchan
);
858 spin_lock_irqsave(&chan
->desc_lock
, flags
);
859 start_pending_queue(chan
);
860 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
868 static void dma_do_tasklet(struct tasklet_struct
*t
)
870 struct mmp_pdma_chan
*chan
= from_tasklet(chan
, t
, tasklet
);
871 struct mmp_pdma_desc_sw
*desc
, *_desc
;
872 LIST_HEAD(chain_cleanup
);
874 struct dmaengine_desc_callback cb
;
876 if (chan
->cyclic_first
) {
877 spin_lock_irqsave(&chan
->desc_lock
, flags
);
878 desc
= chan
->cyclic_first
;
879 dmaengine_desc_get_callback(&desc
->async_tx
, &cb
);
880 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
882 dmaengine_desc_callback_invoke(&cb
, NULL
);
887 /* submit pending list; callback for each desc; free desc */
888 spin_lock_irqsave(&chan
->desc_lock
, flags
);
890 list_for_each_entry_safe(desc
, _desc
, &chan
->chain_running
, node
) {
892 * move the descriptors to a temporary list so we can drop
893 * the lock during the entire cleanup operation
895 list_move(&desc
->node
, &chain_cleanup
);
898 * Look for the first list entry which has the ENDIRQEN flag
899 * set. That is the descriptor we got an interrupt for, so
900 * complete that transaction and its cookie.
902 if (desc
->desc
.dcmd
& DCMD_ENDIRQEN
) {
903 dma_cookie_t cookie
= desc
->async_tx
.cookie
;
904 dma_cookie_complete(&desc
->async_tx
);
905 dev_dbg(chan
->dev
, "completed_cookie=%d\n", cookie
);
911 * The hardware is idle and ready for more when the
912 * chain_running list is empty.
914 chan
->idle
= list_empty(&chan
->chain_running
);
916 /* Start any pending transactions automatically */
917 start_pending_queue(chan
);
918 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
920 /* Run the callback for each descriptor, in order */
921 list_for_each_entry_safe(desc
, _desc
, &chain_cleanup
, node
) {
922 struct dma_async_tx_descriptor
*txd
= &desc
->async_tx
;
924 /* Remove from the list of transactions */
925 list_del(&desc
->node
);
926 /* Run the link descriptor callback function */
927 dmaengine_desc_get_callback(txd
, &cb
);
928 dmaengine_desc_callback_invoke(&cb
, NULL
);
930 dma_pool_free(chan
->desc_pool
, desc
, txd
->phys
);
934 static void mmp_pdma_remove(struct platform_device
*op
)
936 struct mmp_pdma_device
*pdev
= platform_get_drvdata(op
);
937 struct mmp_pdma_phy
*phy
;
938 int i
, irq
= 0, irq_num
= 0;
941 of_dma_controller_free(op
->dev
.of_node
);
943 for (i
= 0; i
< pdev
->dma_channels
; i
++) {
944 if (platform_get_irq(op
, i
) > 0)
948 if (irq_num
!= pdev
->dma_channels
) {
949 irq
= platform_get_irq(op
, 0);
950 devm_free_irq(&op
->dev
, irq
, pdev
);
952 for (i
= 0; i
< pdev
->dma_channels
; i
++) {
954 irq
= platform_get_irq(op
, i
);
955 devm_free_irq(&op
->dev
, irq
, phy
);
959 dma_async_device_unregister(&pdev
->device
);
962 static int mmp_pdma_chan_init(struct mmp_pdma_device
*pdev
, int idx
, int irq
)
964 struct mmp_pdma_phy
*phy
= &pdev
->phy
[idx
];
965 struct mmp_pdma_chan
*chan
;
968 chan
= devm_kzalloc(pdev
->dev
, sizeof(*chan
), GFP_KERNEL
);
973 phy
->base
= pdev
->base
;
976 ret
= devm_request_irq(pdev
->dev
, irq
, mmp_pdma_chan_handler
,
977 IRQF_SHARED
, "pdma", phy
);
979 dev_err(pdev
->dev
, "channel request irq fail!\n");
984 spin_lock_init(&chan
->desc_lock
);
985 chan
->dev
= pdev
->dev
;
986 chan
->chan
.device
= &pdev
->device
;
987 tasklet_setup(&chan
->tasklet
, dma_do_tasklet
);
988 INIT_LIST_HEAD(&chan
->chain_pending
);
989 INIT_LIST_HEAD(&chan
->chain_running
);
991 /* register virt channel to dma engine */
992 list_add_tail(&chan
->chan
.device_node
, &pdev
->device
.channels
);
997 static const struct of_device_id mmp_pdma_dt_ids
[] = {
998 { .compatible
= "marvell,pdma-1.0", },
1001 MODULE_DEVICE_TABLE(of
, mmp_pdma_dt_ids
);
1003 static struct dma_chan
*mmp_pdma_dma_xlate(struct of_phandle_args
*dma_spec
,
1004 struct of_dma
*ofdma
)
1006 struct mmp_pdma_device
*d
= ofdma
->of_dma_data
;
1007 struct dma_chan
*chan
;
1009 chan
= dma_get_any_slave_channel(&d
->device
);
1013 to_mmp_pdma_chan(chan
)->drcmr
= dma_spec
->args
[0];
1018 static int mmp_pdma_probe(struct platform_device
*op
)
1020 struct mmp_pdma_device
*pdev
;
1021 struct mmp_dma_platdata
*pdata
= dev_get_platdata(&op
->dev
);
1022 int i
, ret
, irq
= 0;
1023 int dma_channels
= 0, irq_num
= 0;
1024 const enum dma_slave_buswidth widths
=
1025 DMA_SLAVE_BUSWIDTH_1_BYTE
| DMA_SLAVE_BUSWIDTH_2_BYTES
|
1026 DMA_SLAVE_BUSWIDTH_4_BYTES
;
1028 pdev
= devm_kzalloc(&op
->dev
, sizeof(*pdev
), GFP_KERNEL
);
1032 pdev
->dev
= &op
->dev
;
1034 spin_lock_init(&pdev
->phy_lock
);
1036 pdev
->base
= devm_platform_ioremap_resource(op
, 0);
1037 if (IS_ERR(pdev
->base
))
1038 return PTR_ERR(pdev
->base
);
1040 if (pdev
->dev
->of_node
) {
1041 /* Parse new and deprecated dma-channels properties */
1042 if (of_property_read_u32(pdev
->dev
->of_node
, "dma-channels",
1044 of_property_read_u32(pdev
->dev
->of_node
, "#dma-channels",
1046 } else if (pdata
&& pdata
->dma_channels
) {
1047 dma_channels
= pdata
->dma_channels
;
1049 dma_channels
= 32; /* default 32 channel */
1051 pdev
->dma_channels
= dma_channels
;
1053 for (i
= 0; i
< dma_channels
; i
++) {
1054 if (platform_get_irq_optional(op
, i
) > 0)
1058 pdev
->phy
= devm_kcalloc(pdev
->dev
, dma_channels
, sizeof(*pdev
->phy
),
1060 if (pdev
->phy
== NULL
)
1063 INIT_LIST_HEAD(&pdev
->device
.channels
);
1065 if (irq_num
!= dma_channels
) {
1066 /* all chan share one irq, demux inside */
1067 irq
= platform_get_irq(op
, 0);
1068 ret
= devm_request_irq(pdev
->dev
, irq
, mmp_pdma_int_handler
,
1069 IRQF_SHARED
, "pdma", pdev
);
1074 for (i
= 0; i
< dma_channels
; i
++) {
1075 irq
= (irq_num
!= dma_channels
) ? 0 : platform_get_irq(op
, i
);
1076 ret
= mmp_pdma_chan_init(pdev
, i
, irq
);
1081 dma_cap_set(DMA_SLAVE
, pdev
->device
.cap_mask
);
1082 dma_cap_set(DMA_MEMCPY
, pdev
->device
.cap_mask
);
1083 dma_cap_set(DMA_CYCLIC
, pdev
->device
.cap_mask
);
1084 dma_cap_set(DMA_PRIVATE
, pdev
->device
.cap_mask
);
1085 pdev
->device
.dev
= &op
->dev
;
1086 pdev
->device
.device_alloc_chan_resources
= mmp_pdma_alloc_chan_resources
;
1087 pdev
->device
.device_free_chan_resources
= mmp_pdma_free_chan_resources
;
1088 pdev
->device
.device_tx_status
= mmp_pdma_tx_status
;
1089 pdev
->device
.device_prep_dma_memcpy
= mmp_pdma_prep_memcpy
;
1090 pdev
->device
.device_prep_slave_sg
= mmp_pdma_prep_slave_sg
;
1091 pdev
->device
.device_prep_dma_cyclic
= mmp_pdma_prep_dma_cyclic
;
1092 pdev
->device
.device_issue_pending
= mmp_pdma_issue_pending
;
1093 pdev
->device
.device_config
= mmp_pdma_config
;
1094 pdev
->device
.device_terminate_all
= mmp_pdma_terminate_all
;
1095 pdev
->device
.copy_align
= DMAENGINE_ALIGN_8_BYTES
;
1096 pdev
->device
.src_addr_widths
= widths
;
1097 pdev
->device
.dst_addr_widths
= widths
;
1098 pdev
->device
.directions
= BIT(DMA_MEM_TO_DEV
) | BIT(DMA_DEV_TO_MEM
);
1099 pdev
->device
.residue_granularity
= DMA_RESIDUE_GRANULARITY_DESCRIPTOR
;
1101 if (pdev
->dev
->coherent_dma_mask
)
1102 dma_set_mask(pdev
->dev
, pdev
->dev
->coherent_dma_mask
);
1104 dma_set_mask(pdev
->dev
, DMA_BIT_MASK(64));
1106 ret
= dma_async_device_register(&pdev
->device
);
1108 dev_err(pdev
->device
.dev
, "unable to register\n");
1112 if (op
->dev
.of_node
) {
1113 /* Device-tree DMA controller registration */
1114 ret
= of_dma_controller_register(op
->dev
.of_node
,
1115 mmp_pdma_dma_xlate
, pdev
);
1117 dev_err(&op
->dev
, "of_dma_controller_register failed\n");
1118 dma_async_device_unregister(&pdev
->device
);
1123 platform_set_drvdata(op
, pdev
);
1124 dev_info(pdev
->device
.dev
, "initialized %d channels\n", dma_channels
);
1128 static const struct platform_device_id mmp_pdma_id_table
[] = {
1133 static struct platform_driver mmp_pdma_driver
= {
1136 .of_match_table
= mmp_pdma_dt_ids
,
1138 .id_table
= mmp_pdma_id_table
,
1139 .probe
= mmp_pdma_probe
,
1140 .remove
= mmp_pdma_remove
,
1143 module_platform_driver(mmp_pdma_driver
);
1145 MODULE_DESCRIPTION("MARVELL MMP Peripheral DMA Driver");
1146 MODULE_AUTHOR("Marvell International Ltd.");
1147 MODULE_LICENSE("GPL v2");